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We study the dynamics and thermalization of the Fredkin spin chain, a system with local three-body
interactions, particle conservation, and explicit kinetic constraints. We consider deformations away from its
stochastic point in order to tune between regimes where kinetic energy dominates and those where potential
energy does. By means of exact diagonalization, perturbation theory, and variational matrix product states, we
show there is a sudden change of behavior in the dynamics that occurs, from one of fast thermalization to one of
slow metastable (prethermal) dynamics near the stochastic point. This change in relaxation is connected to the
emergence of additional kinetic constraints, which lead to the fragmentation of Hilbert space in the limit of a
large potential energy. We also show that this change can lead to thermalization being evaded for special initial
conditions because of nonthermal eigenstates (akin to quantum many-body scars). We provide clear evidence
for the existence of these nonthermal states for large system sizes even when far from the large-potential-energy
limit, and explain their connection to the emergent kinetic constraints.
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I. INTRODUCTION

Recent years have seen many developments in the un-
derstanding of the dynamics and thermalization of quantum
many-body systems. The eigenstate thermalization hypothesis
(ETH) [1,2] implies that, for generic models, the long-time
local properties of large isolated quantum many-body systems
are determined entirely by the energy density of the system:
The conditions of the initial state are lost, and the expecta-
tion values of local observables are described by the thermal
ensemble at a temperature given by the conserved energy
(for reviews, see e.g., Refs. [3–5]). While the ETH has been
extensively verified both numerically (e.g., Refs. [6–10]) and
experimentally (e.g., Refs. [11–15]) for a vast number of sce-
narios, there has been a great deal of interest in understanding
systems, which do not obey it.

A prime example of systems, which violate the ETH are
integrable systems (for reviews, see e.g., Refs. [16,17]). Such
systems have an extensive number of conserved quantities,
allowing them to retain key information from initial con-
ditions and avoid thermalization [5] (converging instead to
the so-called generalized Gibbs ensemble [18,19]). A second
example of nonergodicity is thought to be that of many-body
localization (MBL) [20–23], where the combination of inter-
actions and strong quenched disorder leads to the proliferation
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of emergent conserved quantities (although it is still debated
whether MBL is truly stable or only metastable [24–27]).

Given the above, there has been a great interest in under-
standing what conditions can yield nonthermalizing dynamics
beyond the paradigm of integrability, in particular in the
absence of quenched disorder. There are a number of frame-
works now understood to lead to nonthermal behavior even
at long times. Examples include translationally invariant sys-
tems with boundary-localized almost-conserved operators, or
“strong zero modes” [28–33], systems with kinetic constraints
[34–38], systems in tilted potentials [39–41], lattice gauge
systems [42–45], and (dissipative) non-Hermitian quantum
Hamiltonians displaying “skin effects” [46,47]. A promis-
ing avenue of research is the recently discovered area of
quantum many-body scars (QMBS) [48,49] (for reviews see
Refs. [50–53]). This is the name given to nonthermal eigen-
states in an otherwise thermalizing Hamiltonian. Originally
discovered [48] in the PXP constrained model [54,55] to
explain the nonthermal behavior observed in cold atom exper-
iments [56–58], there are now many systems known to host
QMBS, see for example Refs. [59–67].

In this paper, we study quantum Fredkin spin chains [68]
with an additional parameter to deform the Hamiltonian away
from its stochastic point in order to explore slow thermaliza-
tion and the existence of a family of nonthermal eigenstates.
This is similar in spirit to the study in Ref. [37] of the kinet-
ically constrained quantum East model [34], which showed
the existence of a large number of nonthermal eigenstates
responsible for its slow relaxation dynamics. Like in the quan-
tum East model, here we find that at the stochastic point,
there is a distinct change in the dynamical behavior from fast
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relaxation to slow thermalization. Furthermore, we show that
in this model there exist nonthermal eigenstates reminiscent of
QMBS. We explain this behavior through the emergence of a
folded model [69,70], that is, a quantum dynamics that is more
constrained than what is explicitly stated by the dynamical
rules of the Hamiltonian, and which is responsible for the
intermediate time dynamics. We note that, while having some
similarities, the nonthermal eigenstates that we find here for
the Fredkin model are distinct from those of Refs. [64,65],
which consider generalized Fredkin chains.

The paper is organized as follows. In Sec. II we introduce
the model and its Hamiltonian, and describe its symmetries
and its known ground-state phase diagram [71,72]. Section III
explains the emergence of the folded model in the large po-
tential energy limit: this is a more constrained version of
the original Hamiltonian that helps explain the behavior of
the original model by means of perturbation theory. We nu-
merically demonstrate nonergodic properties of the system
in Sec. IV: while the level spacing statistics suggest that the
system is ergodic overall, we are able to find interesting slow
and heterogeneous dynamics evidenced through autocorrela-
tion functions and growth of entanglement entropy. In Sec. V,
we show that this is a consequence of nonthermal eigen-
states: We are able to find these eigenstates exactly for small
system sizes using exact diagonalization (ED), and provide
convincing evidence for their existence in larger systems by
approximating them using variational matrix product states
(MPS) and perturbation theory. We conclude in Sec. VI, where
we offer an outlook on our results.

II. MODEL

We consider a one-dimensional lattice of N spin-1/2 par-
ticles, each with local basis states |�i〉 and |�i〉, where i
denotes the lattice site. We will refer to the basis states as
spin up and spin down respectively, or alternatively, particles
and holes. The system evolves under a Hamiltonian with local
three-body interactions,

Ĥc,s = −
N−1∑
i=1

f̂i[e
−s

√
c(1 − c)(Ŝ+

i Ŝ−
i+1 + Ŝ−

i Ŝ+
i+1)

− cv̂in̂i+1 − (1 − c)n̂iv̂i+1], (1)

with the Pauli ladder operators acting on site i, Ŝ+
i = |�i〉〈�i|

and Ŝ−
i = |�i〉〈�i|, and occupation operators n̂i = |�i〉〈�i|

and v̂i = |�i〉〈�i|. The operator f̂i = n̂i−1 + v̂i+2 is the Fred-
kin kinetic constraint. This constraint only allows the terms
inside the brackets of Eq. (1) to be “activated” if either the
neighbor to the left of the pair is spin up, or if the neigh-
bor to the right is spin down. We allow for c ∈ (0, 1) and
s ∈ (−∞,∞). and consider open boundary conditions (OBC)
with v̂0 = 1 and n̂N+1 = 1 fixed.

The Hamiltonian Ĥc,s for c = 1/2 and s = 0 was intro-
duced in Ref. [68], and was later generalized to c �= 1/2
in Refs. [71,73,74]. In Ref. [72], the operator Eq. (1) was
considered in the context of classical stochastic dynamics:
with opposite sign, the Hamiltonian Eq. (1) is explicitly a
stochastic generator (of continuous-time Markov chains) for
c = 1/2 and s = 0, while for c �= 1/2 and s = 0, Eq. (1)

FIG. 1. Fredkin spin chain. (a) An example configuration from
the largest subspace D for N = 12 sites. The (black) arrows show
particle hops allowed by the constraints in the kinetic part of Eq. (1).
The (red) crossed arrow is a transition not allowed by the constraints.
Above the configuration, we indicate the contributions to the energy
from the diagonal operators in Eq. (1). (b) The same configuration
in its height field representation: a particle (hole) corresponds to a
step up (down) in height. The (shaded) area Â of the height field is
an order parameter for the system.

is also stochastic but only after a similarity transformation
(see Ref. [72] for details). In the stochastic context, the in-
troduction of the e−s prefactor to the kinetic terms makes
Eq. (1) equivalent to a tilted generator—a classical stochastic
dynamics, which does not conserve probability and encodes
the statistics of hopping events—which allows one to study
the fluctuations of the dynamics at s = 0. For the quantum
case, the introduction of this parameter allows us to control the
relative strength of the kinetic terms compared to the potential
energy in the Hamiltonian. The generalization of tilted gener-
ators to unitary quantum dynamics was recently considered in
Refs. [34,37,75] for other kinetically constrained models.

A. Symmetries

The Fredkin model has a U (1) symmetry, which conserves
the total magnetization, Ẑtot = ∑N

i=1 Ẑi, where Ẑi = 2n̂i − 1
is the Pauli-z operator acting on site i [68]. Furthermore,
the kinetic constraint reduces the fixed magnetization sectors
into subsectors, which can be understood in terms of random
walk excursions and Catalan combinatorics [68]. The largest
of these subsectors, D, occurs for half-filling (Ẑtot = 0) and
corresponds to all the configurations, which have at least as
many spin ups as spin downs when counted from left-to-right
in the lattice [68,72]. An example configuration in this sector
is shown in Fig. 1(a). The figure shows the transitions that are
allowed by the kinetic part of Eq. (1). Above the configuration
in Fig. 1(a) are the local contributions to the potential energy
of Eq. (1).

It is possible to represent each configuration of D by a
random walker excursion [76] if one considers each lattice
site as a step in time, where a particle moves the walker
a step in the positive direction, and a hole moves it in the
negative direction. This results in an alternative representation
of configurations in terms of a height field ĥi = ∑i

j=1 Ẑ j , see
Fig. 1(b). In what follows we consider the case of half-filling
(Ztot = 0) and the allowed configurations in that sector have
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non-negative height, hi � 0, with the terminating condition
hN = Ẑtot = 0. This set of classical basis states is therefore
equivalent to Dyck paths, and this subspace has a dimension
equal to the Catalan number CN/2 [68]. A natural observable
to quantify a configuration is the area under the height field,

Â =
N∑

i=1

ĥi =
N∑

i=1

(N + 1 − i)Ẑi. (2)

Notice that the bunching of particles produces a large area,
while if they spread out the area becomes smaller.

The final symmetry is charge parity (CP). The first
aspect to this is a global spin-flip, C|� j/� j〉 = |� j/� j〉,
and the second is spatially reflecting the lattice,
P|� j/� j〉 = |�N+1− j/�N+1− j〉. Together, this can be written
as CP|� j/� j〉 = |�N+1− j/�N+1− j〉. Note that this acts on all
lattice sites simultaneously, and it follows that [Ĥ , CP] = 0.
Each of the sectors previously described (except for the
frozen irreducible configurations � · · ·� and � · · ·�) will
contain two CP sectors, with CP = ±1. Note that there exist
computational basis states x that are invariant under the action
of CP, and thus can only belong to the CP = +1 sector.
Among these are the states |Pj〉 ∈ D,

|Pj〉 = |� · · ·�〉︸ ︷︷ ︸
N/2+1− j

⊗ |�� · · ·��〉︸ ︷︷ ︸
2 j−2

⊗ |� · · ·�〉︸ ︷︷ ︸
N/2+1− j

,
(3)

for j = 1, . . . , N/2, where the numbers underneath indicate
the number of lattice sites. These product states will play a
significant role in understanding the nonthermal eigenstates
states in Sec. V.

III. FOLDED MODEL

We now consider the Hamiltonian Ĥc,s in the limit s → ∞.
It is first instructive to study the energy spectrum of Ĥc,s

restricted to D, that is, {En : En � En+1}, where Ĥc,s|En〉 =
En|En〉 for all n = 1, 2, · · · , dim(D). For convenience, we
normalize this spectrum between zero and one,

εn = En − Emin

Emax − Emin
, (4)

where Emin (Emax) are the minimum (maximum) energies in
the ensemble. Figure 2(a) shows the normalized spectrum
for increasing values of s � 0 at c = 0.7 and N = 18. The
color of the lines indicates the density of states in the local
neighborhood with brighter indicating a higher density. Since
the Hamiltonian has the form Ĥ = e−sT̂ + V̂ , increasing the
value of s increases the relative strength of the potential energy
V̂ terms to the kinetic energy T̂ . This causes the spectrum
to look more sparse with increasing s, forming distinct bands
around the discrete eigenvalues of V̂ (noting that there is still
repulsion of levels within the bands because of T̂ ).

This behavior can be explained through a perturbative
picture. The standard approach would be to treat Ĥc,s using
degenerate perturbation theory with respect to T̂ . However,
we can improve on this by considering the operator

T̂0 =
∑

x,y �=x

Tyxδ(Vx − Vy)|y〉〈x|, (5)

FIG. 2. Folded Fredkin model. (a) The energy spectra of Ĥc,s

(normalized between 0 and 1) for increasing s. The colors indicate
the density of states in the local neighborhood. As the value of s
is increased, the spectrum becomes sparser. The data is for c = 0.7
and N = 18 from ED. (b) In the original Fredkin model, hops can
occur between the middle sites (shown as half-filled circles) only
for the cases shown, while the sites in grey do not participate in
the constraint. (c) Transitions in the folded Fredkin model for any
value of c are allowed if both the nearest neighbors and next-nearest
neighbors to the central sites obey an XNOR constraint (i.e., they
are equal). (d) In the folded Fredkin model at c = 1/2 the constraint
reduces to an XNOR on the nearest neighbor pair, with the next-
nearest neighbors playing no role. (e) For the special case of c = 1/3
there is an extra allowed transition on top of those for c = 1/2 as
shown. (f) Something similar occurs for the special case of c = 1/4,
with two extra transitions allowed beyond those of c = 1/2.

where Tyx = 〈y|T̂ |x〉, Vx = 〈x|V̂ |x〉, and δ(Vx − Vy) is the
Dirac-delta function. We then write Ĥc,s = Ĥ0 + e−sδT̂0,
where Ĥ0 = V̂ + e−sT̂0 and δT̂0 = T̂ − T̂0. While it is unusual
to have the perturbing parameter within our choice of Ĥ0, it is
important to note that [T̂0, V̂ ] = 0 and thus the eigenstates of
Ĥ0 are independent of s (but not their respective eigenvalues).
The operator T̂0 is sometimes referred to as the folded model
[69,70]; in the limit of s → ∞, the dynamics of the system
within a sector with fixed V̂ is entirely determined by T̂0. The
name comes from the fact that the bands in the spectrum [as
illustrated in Fig. 2(a)] “fold” onto one another.

Applying this analysis to the Fredkin model is simple.
One must first find all matrix elements Txy with Vx = Vy.
This can be done at the level of local transitions. Under the
constraint in Eq. (1), the transitions are defined by local four-
body configurations, see Fig. 2(b). Considering each of these
transitions, one can then calculate the local contribution to the
potential energy before and after the transition. Indeed, since
the transition can alter the kinetic constraint of a neighboring
pair of particles, it is now necessary to consider local six-
body configurations (involving the two sites at either side of
the pair, which undergoes the transition). Notice that while
there are originally three constraints, which depend on the
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TABLE I. Allowed transitions in the folded Fredkin model. The
constraint of the folded model depends on both the nearest and
next-nearest neighbors of the sites making the transition: the left
column shows all such neighborhoods, including only those where
the constraint of the original model is also satisfied, see Fig. 2(b). The
central column shows the change in the potential energy caused by
each transition. The right column shows the values of c for which the
transitions are resonant, and therefore possible in the corresponding
folded model.

Transition �V��→�� Folded

������↔ ������ 0 All c������↔ ������ 1 − 2c c = 1/2������↔ ������ 4c − 1 c = 1/4������↔ ������ −2c None������↔ ������ 0 All c������↔ ������ 2c − 1 c = 1/2������↔ ������ 2c − 1 c = 1/2������↔ ������ 0 All c������↔ ������ 6c − 2 c = 1/3������↔ ������ 4c − 1 c = 1/4������↔ ������ 2c − 1 c = 1/2������↔ ������ 0 All c

neighboring sites, there are now twelve possibilities, which
depend on both the neighboring and next-neighboring sites.
One must determine, which possibilities allow for transitions
with Vx = Vy. Table I shows each of these possibilities along
with their change in potential energy �V��→�� for the
hoppings�� → �� (the reverse is given by −�V��→��)
and the value of c for which �V��→�� = 0.

A. Effective models

There are four possibilities, which are allowed for all
values of c, see Table I. Together, these four possibilities
can be collectively described by an exclusive-NOR (XNOR)
constraint on the neighboring sites, and an XNOR constraint
on the next-nearest-neighboring sites, where the XNOR con-
straint is one only if the two sites take the same value. That is,
the constraint is activated if the left neighboring site is in the
same state as the right neighbor to the pair, and the left next-
nearest neighbor is in the same state as the right next-nearest
neighboring site (but note, however, that the neighboring sites
can differ from the next-nearest neighboring sites). This is
illustrated in Fig. 2(c).

For the special cases c = 1/2, 1/3, 1/4, there are addi-
tional allowed moves. The least constrained case is c = 1/2,
which allows for a total of eight possibilities, which can be
summarized by the XNOR constraint only on the neighboring
sites, shown in Fig. 2(d). This dynamics (sometimes called
the “folded XXZ” model) has been considered in various
studies, see Refs. [69,70,77–81]. Furthermore, this constraint
is intimately related to the generalized Fredkin spin chains
studied in Ref. [64], which considered Eq. (1) with s = 0,
but with a kinetic constraint n̂i−1 − v̂i+2. The introduction
of the minus sign causes the operators to act destructively;
while not identical to the folded Fredkin model for c = 1/2,
it is important to note the similarity between the effective

constraints. The form of the constraint for the special cases
c = 1/3 and c = 1/4 have additional terms, which allows for
more possibilities for moves, see Figs. 2(e) and 2(f).

The short-time dynamics for the model is then approxi-
mately described by the effective Hamiltonian

Ĥ eff
c,s = − e−s

√
c(1 − c)

N−2∑
i=2

ĝ(c)
i [σ̂+

i σ̂−
i+1 + σ̂−

i σ̂+
i+1]

+
N∑

i=2

f̂i[cv̂in̂i+1 + (1 − c)n̂iv̂i+1], (6)

where ĝ(c)
i are the emergent kinetic constraints shown in

Figs. 2(c)–2(f), where for c �= 1/2, 1/3, 1/4,

ĝ(c)
i = ĝi = 1

4

(
1 + σ z

i−1σ
z
i+2

)(
1 + σ z

i−2σ
z
i+3

)
, (7)

while for the special cases c = 1/2, c = 1/3 and c = 1/4,

ĝ(1/2)
i = 1

2

(
1 + σ z

i−1σ
z
i+2

)
, (8)

ĝ(1/3)
i = ĝi + 2v̂i−2n̂i−1v̂i+2n̂i+3, (9)

ĝ(1/4)
i = ĝi + 2(n̂i−2n̂i−1v̂i+2n̂i+3 + v̂i−2n̂i−1v̂i+2v̂i+3). (10)

The main focus of what follows will be the case c > 1/2,
which results in the most constrained dynamics with the con-
straint Eq. (7), see Fig. 2(c). As we show below, the existence
of the folded model in the s → ∞ limit has dramatic conse-
quences for the dynamics at finite s > 0.

B. Fragmentation

The effective Hamiltonian Ĥ eff
c,s is a more constrained

model than Eq. (1), which describes its leading order dy-
namics. The more stringent kinetic constraint of the folded
model has severe consequences on its dynamics (and thus on
the short-time dynamics of the full model). One important
feature of Eq. (6) is that the Hilbert space is fragmented:
the subspaces of the original Hamiltonian divide into smaller
subspaces [51,82].

For concreteness, let us focus on the largest subspace of
the Fredkin chain, D. Figure 3(a) illustrates how it fragments
for a system size N = 8 and c > 1/2, for which dim D = 14.
Each block in the figure is an ergodic component. Notice
that the subspace strongly fractures into many components,
with the majority being an isolated computational basis state,
and with at most two states for the system size shown here.
In particular, for c �= 1/4, 1/3, 1/2, the product states |Pj〉
are completely isolated, and are shown by the red blocks in
Fig. 3(a). Indeed, we can quantify the strength of the frag-
mentation by counting the number of ergodic components of
the folded model within D. This is shown in Fig. 3(b) as a
function of N for various values of c in Fig. 2. In all cases, the
number of ergodic components of the corresponding folded
model grows exponentially in N .

It is also useful to consider how the size of each ergodic
component grows. It would be reasonable to conclude from
Figs. 3(a) and 3(b) that D fragments into sectors, which are
not extensive in system size. However, as shown in Fig. 3(c),
the mean dimension of the fragments, 〈dim(Dfragment )〉, also
grows exponentially but at a rate smaller than that of D.
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FIG. 3. Hilbert space fragmentation in the folded model. (a) An illustration of the fragmentation for N = 8 and c > 1/2. Each block
describes a sector within D; the red blocks are the isolated configurations |Pj〉. The vertical position of each block represents the value of the
conserved quantity V̂ for each sector. (b) The number of fragments within D grows exponentially with N . (c) The average dimension of each
ergodic component, 〈dim(Dfragment )〉, within D also grows exponentially. (d) On the contrary, the ratio of the dimension of the largest ergodic
component dim(Dmax)/dim(D) decreases exponentially with system size.

Figure 3(d) shows the ratio dim(Dmax)/dim(D) where Dmax

is the dimension of the largest fragment. Note that this is
exponentially decaying to zero with N , and thus the space is
strongly fragmented [51].

While the effective Hamiltonian Ĥ eff
c,s only gives the leading

order of Ĥc,s, the full dynamics can be retrieved perturbatively.
It is important to note that while the eigenstates of Ĥ eff

c,s are
by no means trivial, the fragmented Hilbert space allows one
to diagonalize individual fragmented sectors for much larger
system sizes. We can then approximately recover the eigen-
states of Ĥc,s by means of perturbation theory, which we will
apply in Sec. V; see Appendix B for details.

IV. ERGODICITY BREAKING

In this section, by means of ED, we provide numerical evi-
dence for the dynamics of Eq. (1) being nonergodic for special
initial states, and explain the connection of this phenomenon
to the folded model.

A. Level statistics

We first investigate the level spacing statistics of the Hamil-
tonian Ĥc,s in search of indications of quantum chaos (i.e.,
Wigner-Dyson level statistics) or integrability (i.e., Poisson
level statistics); for a review, see e.g., Ref. [3]. For the
eigenenergies En of Ĥc,s we calculate the level spacings,
δn = En+1 − En, normalized such that 〈δ〉 = 1. We obtain {En}
using ED for system sizes up to N = 22 within the subspace
D and the CP = +1 sector (with a subspace dimension of
29264), restricting to the middle 2/3 of the energy spectrum.

Figures 4(a) and 4(b) show the level spacing distributions
for c = 1/2 and c = 0.7, respectively. Each panel shows the
statistics for s = 0, 0.5, 1.0, comparing to the Wigner-Dyson
(WD) distribution (dashed line), and to the Poisson distribu-
tion (dotted line). We find that for s � 0, the statistics are
consistent with Wigner-Dyson, indicating the usual level re-
pulsion. In contrast, for increasing s � 0 there appears to be a
shift towards Poisson statistics, which is more pronounced for
c > 1/2.

The above observations can be condensed by calculating
the ratio between consecutive gaps r [21]: For each eigenstate,

FIG. 4. Level spacing statistics. (a) Histograms of the normalized
level spacings, δ, at c = 1/2 in the CP sector CP = +1 and for
system size N = 22 (i.e., over an irreducible space with dimension
29624). We show results for s = 0 (red), s = 0.5 (blue), and s = 1
(green). The dashed line is the Wigner-Dyson (WD) distribution
for level repulsion, while the dotted line is for Poisson statistics.
(b) The same for c = 0.7. (c) The average r-value, 〈r〉, for c = 1/2
as a function of s in the sector CP = +1 for sizes N = 18, 20, 22.
The dashed line corresponds to level repulsion obtained from the
Gaussian orthogonal ensemble (GOE), 〈r〉 ≈ 0.53, and the dotted
line to Poisson statistics, 〈r〉 ≈ 0.38. Each data point shows the mean
r-value averaged over five points in the range [s − �s, s + �s] for
the indicated s value and the �s = 0.02. The errors bars show the
standard error for the mean. (d) The same for c = 0.7.
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we calculate the quantity rn = min{δn+1, δn}/ max{δn+1, δn},
and then average over all rn to obtain 〈r〉 [83]. This takes
the value 〈r〉 ≈ 0.53 for the Gaussian orthogonal ensemble
(Wigner-Dyson distribution), and 〈r〉 ≈ 0.38 for the uncorre-
lated spectrum (Poisson distribution). In Figs. 4(c) and 4(d)
we show 〈r〉 for the same systems above for sizes N =
18, 20, 22.

In the limit s → ∞, the Hamiltonian is well described
by Eq. (6) and there are additional (emergent) kinetic con-
straints, which explains the apparent Poisson statistics of the
level spacing (dotted line) for s > 0. In turn, for s � 0, the
observed value is more compatible with the Wigner-Dyson
statistics (dashed line) one would expect to see in ergodic
systems. We note that for the case of c = 1/2, the change
from Wigner-Dyson to Poisson statistics seems to be lessened
with increasing system size, with the change occurring at an s
that increases with N . A similar observation can be made for
c = 0.7. In this case, the crossover looks to be getting sharper
with increasing system size. However, it is hard to conclude
the nature of this change from the small system sizes that are
accessible. Nevertheless, the key observation is that there is
a significant change in statistics close to the stochastic point
s = 0.

B. Prethermalization

Next, we show that the change described above in the
spectrum is related to slow relaxation. In order to probe
metastability, we consider the time-averaged autocorrelations
of the site occupations n̂i, with respect to the infinite tempera-
ture state within the sector D. We define the autocorrelation of
the lattice site i at some time t as ci(t ) = 〈n̂i(t )n̂i(0)〉D, where
the subscript denotes the expectation is taken with respect
to the infinite temperature state within D. By summing over
lattice sites and taking the time-average, we then find

c(t ) = t−1
N∑

j=1

∫ t

0
dt ′c j (t

′). (11)

Finally, we normalize,

C(t ) = c(t ) − c(∞)

c(0) − c(∞)
, (12)

such that C(0) = 1 and C(∞) = 0.
Figures 5(a) and 5(b) show the autocorrelation functions

for c = 1/2 and c = 0.7 at system size N = 18 and for var-
ious s. In both instances, for s � 0, there is an initial decay,
followed by a plateau with a much longer life-time, which
becomes more pronounced with increasing s. This behavior
is easily explained using the folded picture. At early times,
the dominant contributions to the dynamics comes from the
effective Hamiltonian, Eq. (6). This is shown for s = 2 by the
dashed-black line. Note that we normalize it with respect to
the full Hamiltonian, Eq. (1), and thus it does not decrease
to zero in the infinite time limit. The two-point correlator
measured from the effective Hamiltonian well matches the
true dynamics at short times.

For c = 1/2, the folded dynamics stops being a reliable de-
scription at the point when the autocorrelation plateaus. It is at
this point that the system has thermalized within a sector of the

FIG. 5. Relaxation dynamics. (a) The normalized (and time-
integrated) autocorrelation function C(t ) of the site occupations at
c = 1/2 for various s and N = 18. The dashed-black lines show the
correlation function under the folded dynamics Eq. (6) at s = 2.0.
(b) The same for c = 0.7, where the plateaus are more pronounced.
(c) The relaxation timescale τrel as a function of s for system sizes
N = 14, 16, 18 and c = 0.5. (d) The same for c = 0.7. (e) Time-
averaged occupation profiles for s = 1.0 and N = 20 starting from
the initial state |PN/4〉. (f) The same for c = 0.7. Note that time is
rescaled by e−s as this is the bare timescale for the kinetic energy, cf.
(1).

folded model, and the long-time dynamics is dominated by the
off-resonance transitions not described by it. The relaxation
for c = 0.7 is much slower and becomes more pronounced
with increasing s because of the strong fragmentation in the
folded model, cf. Figs. 2(c) and 2(d).

From the autocorrelation functions, we are able to measure
a relaxation timescale τrel, which we estimate as the first time
when C(t = τrel ) falls below 0.05. We show this as a function
of s in Figs. 5(c) and 5(d) for system sizes N = 14, 16, 18.
Notice that for c = 0.5, it is clear that there is a change in
behavior around the stochastic point s = 0, with the timescale
increasing far more rapidly for s > 0. For c = 0.7, this change
is less clear: there appear to be multiple kinks in the curves,
for both s < 0 and s > 0, indicating a competition of multiple
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FIG. 6. Entanglement dynamics. Dynamics following a quench from the state |PN/4〉. (a) The time-averaged entropy profiles Si(t ) at c = 1/2
for s = 1.0 and N = 20, at various times t . The solid-black line is the estimated value for t = ∞ (obtained by time-averaging in the range
t ∈ [1 × 1012, 2 × 1012]). (b) The same for c = 0.7. (c) The time-averaged entanglement entropy for the half system bipartition, SN/2(t ), as
a function of time (scaled by e−s) for various s ∈ [−1.0, 2.0]. The dashed-black line shows logarithmic growth, and the dotted lines give the
saturation values at t → ∞. (d) The same for c = 0.7. (e) Long-time averaged SN/2(∞) as a function of system size for the same values of s.
(f) The same for c = 0.7 (the apparent super-linear in N growth of s � 0.5 is likely to be an artefact of the small systems sizes studied). (g)
Long-time averaged entanglement profiles Si(∞) for the same values of s. (h) The same for c = 0.7.

timescales. Nevertheless, it is clear that there is still a change
from a fast-thermalizing regime to a slow-thermalizing regime
around the stochastic point.

The long-relaxation times can also be seen by considering
the evolution of local occupations,

〈n̂ j (t )〉 = t−1
∫ t

0
dt ′〈ψ (t ′)|n̂ j |ψ (t ′)〉 (13)

with respect to some initial state |ψ (0)〉, where we have once
again taken the time average to remove the effects of short
scale fluctuations. We show the occupation profiles for the ini-
tial state |PN/4〉 in Figs. 5(e) and 5(f) for s = 1.0 and N = 20.
For c = 1/2, the system remembers its initial conditions for
intermediate times, eventually relaxing to a state in which
the initial density modulations are removed, see Figs. 5(e).
In contrast, for c = 0.7 the initial density pattern persists for
the longest simulated times, see Figs. 5(f). This difference is
easy to understand from the fact that for c = 0.7 the initial
state is a frozen irreducible configuration in the folded picture.
This is not the case for c = 1/2, as for this value of c there
are allowed on-resonance processes in the folded dynamics
that lead to relaxation to an almost featureless state within the
simulated timescales.

C. Entanglement entropy dynamics

The effect of the constrained dynamics can be further un-
derstood by considering the growth of entanglement entropy
for simple initial states. Specifically, given a state |ψ (t )〉 at

time t , we partition the system into parts A and B with the cut
taken between sites i and i + 1. We then calculate the bipartite
entanglement entropy between A and B,

Si(t ) = −TrA[ρA(t ) ln ρA(t )], (14)

where ρA(t ) = TrB|ψ (t )〉〈ψ (t )|. To consider the time evolu-
tion of the entanglement entropy, as before we perform the
time average to smooth out uninteresting fluctuations,

Si(t ) = t−1
∫ t

0
dt ′ Si(t

′). (15)

Figure 6 shows such time-integrated entanglement entropy for
the product state |PN/4〉, see Eq. (3), at c = 1/2 in the top row,
and at c = 0.7 in the bottom row.

We first consider the evolution of the entanglement entropy
profiles for all bipartitions i at different times, see Figs. 6(a)
and 6(b). The entanglement profiles are heterogeneous for
small times in both cases, where the dynamics is approxi-
mately described by evolution with the folded Eq. (6). For
c = 1/2, the constraint of the folded model is that of Fig. 2(d).
For states of the form |Pj〉 this implies that all sites are frozen
except at the two bonds at the interfaces of the three domains
that define |Pj〉, cf. Eq. (3). The initial dynamics generated
here is then able to spread allowing the state to relax within
the sector of the model. For c > 1/2 the situation is slightly
different. For the folded model, Fig. 2(c), the state |Pj〉 is a
dynamically frozen configuration. A transition from the full
model is required near the boundaries of the domain to get
the dynamics going. Once this occurs, the folded constraint
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FIG. 7. Spectrum and nonthermal eigenstates. (a) Expectation of the area 〈A〉 as a function of the renormalized energy density ε, for
c = 0.7 and s = 0.8 at size N = 22 and CP = +1 from ED. The color indicates the density of states in the local neighborhood (with lighter
color corresponding to higher density). Red crosses are the nonthermal eigenstates |S j〉 for j = 1, . . . , N/2 (left-to-right). The blue line is the
canonical average. (b) Same for the entanglement entropy for the midpoint bipartition. (c) Density profiles in the nonthermal eigenstates (red
crosses), 〈S j |ni|S j〉, for j = 2, . . . , N/2 − 1. We also show the same profiles in the approximate eigenstate from second-order perturbation
theory (blue circles).

Fig. 2(c) can be satisfied at the boundary to allow on reso-
nance transitions there, see Table I. From Fig. 6(b), it is clear
that at early times the entanglement grows quickest at these
boundaries.

Figures 6(c) and 6(d) show the growth of entanglement
with time at for the midpoint bipartition SN/2(t ). The dotted
lines are the estimated long-time averaged entropy. In both
cases, there is a slow logarithmic growth of entanglement,
before eventually saturating to some long-time limit. For c =
1/2, the effect of increasing s is small, as the folded dynamics
allows |Pj〉 to thermalize within a fragmented sector that is ex-
tensive in N . The same is not true for c = 0.7, where the initial
state is frozen, and the saturation value decreases sharply with
s. Note that while this decrease in saturation values occurs for
all s shown, it is most profound for s > 0.

Figure 6(e) shows that for c = 1/2 the saturation value
of the entropy grows as a function of N for all s. This fact
suggests the lack of a sharp change in behavior for c = 1/2
when going from s positive to s negative (despite the fact that
there is a small decrease in the saturation value of the entropy
at fixed N for increasing s). In contrast, Fig. 6(f) shows that at
c = 0.7 the entropy saturates with N for large enough s > 0.
Again, this is explained through the folded model. (Note that
for small s > 0 and c = 0.7, the entanglement appears to grow
with system size, but we expect it will eventually saturate for
larger N .)

For s � 0, we observe a linear growth of the entropy with
N , with similar slope for all the curves, suggesting a volume
law, even though a definite conclusion cannot be drawn from

the limited system sizes available. Figures 6(g) and 6(h) show
the long-time averaged entanglement entropy profiles for all
bipartitions. For c = 1/2, they take a typical structure, with
the entropy increasing approximately linearly up to the mid-
point of the system. For c = 0.7, the entropy profiles shows a
larger spatial variations, which become more pronounced for
increasing s.

V. NONTHERMAL EIGENSTATES

The folded model and the observed slow heterogeneous
dynamics suggests the existence of nonthermal behavior at
the level of the spectrum. In this section we investigate the
spectral properties of the model by means of ED, perturbation
theory, and variational MPS. We verify the existence of the
nonthermal eigenstates far from the large interaction limit, and
for large system sizes.

A. Spectral properties from exact diagonalization

We use ED to determine all the energy eigenstates in the
subspace D. By exploiting the symmetries of the model, we
are able to run the calculations for system sizes up to N = 22.
Figure 7 shows the results of ED for c = 0.7, s = 0.8, N = 22
in the sector CP = +1. As a relevant observable we consider
the expectation of the area, defined in Eq. (2), within each
eigenstate 〈Â〉, see Fig. 7(a). The thermal (canonical) average
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within the subspace D,

〈Â〉β =
∑

Ej
e−βEj 〈Ej |Â|Ej〉∑

Ej
e−βEj

, (16)

at the inverse temperature β that corresponds to the same
energy density, is also shown by the solid blue line for com-
parison. It is apparent that there are a number of eigenstates
with an expectation of the area far from the thermal value, an
indication that ETH might be violated by these states. The
largest discrepancy is observed by the states (N/2 in total)
marked by the red crosses, which appear to be equispaced in
energy. In analogy to recent results [48], we interpret these as
scarred eigenstates, |S j〉, with j = 1, · · · , N/2 [84].

The (midpoint) bipartite entanglement entropy SN/2 of all
eigenstates is shown in Fig. 7(b). In analogy with the area,
a significant number of eigenstates, including the nonthermal
eigenstates |S j〉, have a value of this entropy, which is smaller
than the one obtained by averaging over a small energy win-
dow. For the purpose of comparison, we can define as a proxy
its “thermal” average as

Sβ =
∑

Ej
e−βEj SN/2(Ej )∑

Ej
e−βEj

, (17)

where SN/2(Ej ) is the bipartite entanglement entropy of the
individual eigenstate, |Ej〉. Figure 7(b) shows that this proxy
(blue curve) differs from the actual entropies of the nonther-
mal eigenstates (red crosses).

To further understand the properties of the nonthermal
eigenstates, we calculate their local observables. In particular,
we measure the local occupation profiles 〈ni〉 = 〈S j |ni|S j〉
for lattice sites i = 1, . . . , N , shown by the red crosses in
Fig. 7(c) for j = 2, . . . , N/2 − 1. Notice that the structure
of each eigenstate can be separated into approximately three
partitions: the first is N/2 + 1 − j spins that have a large
occupation for spin-up, the second has 2 j − 2 spins that are
approximately antiferromagnetic, and the third is N/2 + 1 − j
spins that have a large occupation for spin-down. These highly
resemble the product states Eq. (3), indicating each |S j〉 have
a high overlap with |Pj〉. We verify this connection using
second-order perturbation theory. In the limit s → ∞, each
of the product states |Pj〉 are eigenstates of the Hamiltonian
Eq. (1). The eigenstates for s �= ∞ can be estimated using
perturbation theory on the states |Pj〉, see Appendix B for
more details, and are shown by the blue circles in Fig. 7(c).
Note that for the most part, the results of perturbation theory
closely agree with those of ED. Even for the case of j = 9
where the disagreement is the largest, the results qualitatively
match, indicating that perturbation theory can help explain the
dynamics of the model, even when far from the s = ∞ limit.

B. Extracting nonthermal eigenstates with MPS

We now seek to investigate the nonthermal eigenstates for
system sizes larger than those accessible via ED. In particular,
the low-entanglement properties of the nonthermal eigenstates
states suggest that an MPS approximation might be a suit-
able ansatz for the wavefunctions. While it could be that
MPS are able to describe such states, variationally targeting
these excited states using methods such as the density matrix

renormalization group (DMRG) [85]—which are best suited
for extremal eigenstates—is difficult because of the fact they
exist throughout the entire spectrum. To address this issue
we use the approach similar to that described in Ref. [86],
which aims to variationally minimise the energy variance of a
wavefunction ψ ,

δEψ
2 = 〈ψ |Ĥ2|ψ〉

〈ψ |ψ〉 − 〈ψ |Ĥ |ψ〉2

〈ψ |ψ〉2 , (18)

using gradient decent to optimize the tensors in a DMRG-like
fashion [87]. Reference [86] minimized Eq. (18) with the
addition of a Lagrange multiplier to target eigenstates at some
desired energy. Here, we adapt this variational minimization
to target states, which have a large overlap with |Pj〉, see
Appendix C for more details. Using this algorithm, we are
able to estimate to good precision the nonthermal eigenstates
for system sizes up to N = 100 for c � 0.7 and s � 0.75,
where the eigenstates are distinguished enough from the bulk
spectrum to allow us to target them with this approach.

C. Properties of the nonthermal eigenstates

Figure 8 shows the results from our MPS numerics for
c = 0.7. As a proof-of-principle, we show the occupation
profiles of the nonthermal eigenstates we obtain |SMPS

j 〉 in
Figs. 8(a)–8(c) for N = 40, s = 0.8, 1.0, 1.2, and j = 5 (top
panel), j = 10 (middle panel), and j = 15 (bottom panel).
Their spatial structure resembles that of the exact S j for small
systems from ED of Fig. 7. Furthermore, it is evident that
larger s results in profiles increasingly resemble those of the
product states |Pj〉. Figures 8(d)–8(f) show the corresponding
entanglement entropy profiles Si. The states |SMPS

j 〉 can be
approximately separated into three regions, similar to those
of |Pj〉, see Eq. (3). The first i = 1, · · · , N/2 − j + 1 spins
have an occupation profile 〈n̂i〉 ≈ 1, while the last i = N/2 +
j − 1, · · · , N have 〈v̂i〉 ≈ 1. Both of these regions have ap-
proximately zero entanglement with the rest of the system. In
contrast, in the central region, N/2 − j + 2 � i � N/2 + j,
the spin profile is approximately an antiferromagnetic pattern,
with an entanglement profile that alternates between close to
zero and a small but nonzero value. This suggests that there is
a dimerized structure within this partition, where neighboring
pairs of spins are coupled but do not interact with the other
pairs of spins. As Figs. 8(d)–8(f) show, the entanglement
entropy is maximal at the interface of two regions of |SMPS

j 〉.
The explanation for this is the same as for the growth of entan-
glement entropy for the product states |Pj〉: the off-resonant
transitions at the boundaries of the regions give the smallest
change in potential energy, and are thus more prominent.

Next, we consider the properties of the nonthermal eigen-
states |SMPS

j 〉 as one increases system size. It is easy to show
that the product states |Pj〉 have energy Ej = 〈Pj |Ĥ |Pj〉 =
2(1 − c j) and area

〈Pj |Â|Pj〉 = N2/4 − j( j − 1)

= N2

4
− 4(Ej − 2 + c)2

c2
+ 4. (19)

Since the nonthermal eigenstates are very close to these prod-
ucts, we can expect that a similar relation holds between
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FIG. 8. Properties of the scarred states found with vMPS. (a)–(c) Density profiles 〈SMPS
j |n̂i|SMPS

j 〉, for j = 5, 10, 15 (as indicated) for
three values of s at c = 0.7 and system size N = 40. (d)–(f) Corresponding bipartite entanglement entropy profiles, Si. (g) Square root of the
rescaled area, Ã j = c2(N2 − 4Aj ), as a function of the scarred eigenstate energy Ej at c = 0.7 and s = 0.8 for system sizes N = 20, . . . , 100.
The dashed-black line shows a linear fit, and the solid-blue line shows the results from first-order perturbation theory (PT-1) with N = 100.
(h) Maximum bipartite entanglement entropy for the scarred states, Smax = maxi Si, shown for each |S j〉 with j = 1, . . . , N/2 for sizes N =
20, . . . , 100. The data in both (g) and (h) are for c = 0.7 and s = 0.8. (i) Maximum entanglement entropy, Smax, for the nonthermal eigenstate
|SN/4〉 as a function of system size at c = 0.7 for various s ∈ [0.75, 1.0]. (j) Saturation value of the entanglement entropy at c = 0.7 as a
function of s, obtained from the nonthermal eigenstate |SN/4〉 at size N = 200. The dashed line show the apparent exponential decay. The blue
line is the results from first-order perturbation theory (PT-1) at size N = 100.

their area and energy. To probe it, Figure 8(g) shows the
square root of the rescaled area for the nonthermal eigenstates,
Ã j = c2(N2 − 4Aj ), as a function of energy for s = 0.75 and
system sizes N = 20, . . . , 100 for all nonthermal eigenstates
j = 1, · · · , N/2. It is clear that the quadratic relation Aj ∼ E2

j
holds for the nonthermal eigenstates. The figure shows that
there is excellent agreement with the result of first-order per-
turbation theory around |Pj〉.

We also consider the entanglement entropy as a function
of system size. Figure 8(h) shows the maximum bipartite
entanglement entropy over all lattice sites, Smax = maxi Si, for
the same nonthermal eigenstates consider in Fig. 8(g). When
close to the edges of the spectrum, the maximal entanglement
entropy is small, as is expected for local quantum many-body
systems. Under the ETH, the entanglement entropy of eigen-
states should grow as the energy moves closer to the middle
of the spectrum. However, for the nonthermal eigenstates the
maximal entanglement saturates to a value, which appears
to be independent of system size (in the large N limit). This
suggests that the nonthermal eigenstates obey an area law,
thus violating the ETH. We confirm this more directly in
Fig. 8(i), where we show the maximal entanglement entropy
as a function of system size N for several s for the nonthermal
eigenstate j = N/4 (the one closest to the middle of the
energy spectrum): It is clear that the maximal entanglement
entropy saturates with increasing system size for this state.
Figure 8(j) shows the maximal entanglement entropy of the
state j = N/4 as a function of s for N = 200. The maximal
entanglement entropy appears to decrease exponentially with
s. We also compare this result to first-order perturbation the-
ory for N = 100, which coincides with the MPS numerics for
large s.

VI. CONCLUSIONS

Here, we studied the quantum dynamics of Fredkin spin
chains deformed away from their stochastic point. The intro-
duction of a “tilting” parameter allows us to tune the dynamics
between regimes of fast and slow thermalization, with the
change occurring at the stochastic point (a quantum analog
of what occurs in the classical stochastic case [72]). The same
model in the fast regime (s < 0) was considered in Ref. [88]
as an effective model for Moore-Read states on thin cylinders.

In this paper, we have focused on the slow dynamical
regime (s > 0), where we find an emergence of extra effective
constraints that define the so-called folded model. By means
of exact diagonalization, we have investigated the spectral
statistics and relaxation dynamics for the model. For each
of the parameter regimes studied here, our results indicate a
change in the dynamical behavior near the stochastic point.
This is a change from a fast thermalizing dynamics to a slow
thermalizing dynamics that includes metastable regimes and
slow (sub)logarithmic growth of entanglement for relevant
initial states. For the parameter that gives the most constrained
effective dynamics, we also find that these initial states (which
are frozen in the folded picture) appear to avoid thermalization
at all times accessible to numerics.

This apparent violation of the ETH can be attributed to the
existence of nonthermal eigenstates, throughout the spectrum
of the Hamiltonian, that have a large overlap with the initial
states of interest. We verified the existence of these nonther-
mal eigenstates for large system sizes by means of variational
MPS, even when far from the large interaction limit. These
eigenstates are nonthermal in the sense they obey area laws
and expectation values of local observables are far from those
of thermal equilibrium.
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FIG. 9. Ground state phase transition. Known phase diagram for
the ground state of the Fredkin chain Eq. (1), see e.g., Ref. [72]. The
blue-shaded region for s < 0 and s = 0, c < 1/2 is the flat phase and
exhibits AFM behavior. The red-shaded region for s > 0 and s = 0,
c > 1/2 is the tilted phase and is exponentially localized with all up
spins (particles) to the left. The green dot shows the critical point at
c = 1/2 and s = 0. This state is maximally entropic within D, where
all possible configurations appear with equal weight in the ground
state.

Our paper adds to the collective understanding of phe-
nomena, which can lead to the violation of the ETH. The
key insight for understanding the observations here is the
existence of the more-constrained folded dynamics, as has re-
cently been done to understand slow heterogeneous dynamics
of other kinetically constrained models [81].
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APPENDIX A: GROUND-STATE PHASE TRANSITION

The ground state of the Fredkin model in the subspace D
has previously been shown to exhibit a rich phase diagram in
the (s, c) parameter space [71,72]. The first phase corresponds
to an antiferromagnet (AFM) where neighboring spins tend to
anti-align. In analogy with dimer lattice coverings, we name
this phase the flat phase [89,90], as the corresponding height
field encloses a small area. This exists for both (s < 0, c), and
(s = 0, c < 1/2), shown by the blue-shaded region in Fig. 9.
In this phase, the ground state obeys an area law, with the von
Neumann entanglement entropy for a symmetric bipartition
scaling as a constant for large N [71]. The second phase is
a localized phase where particles are localized towards the
left edge of the system and holes towards the right edge [72].
We call this the tilted phase (as the height field gives a large

area), and exists for both (s > 0, c), and (s = 0, c > 1/2),
shown by the red-shaded region in Fig. 9. As for the AFM
phase, the ground state also obeys an area law for its bipartite
entanglement. The Hamiltonian Eq. (1) has a critical point at
(s = 0, c = 1/2) [91,92], shown by the green dot in Fig. 9.
At this point, the ground state is an equal superposition of all
possible configurations in D [68], and its bipartite entangle-
ment entropy is known to scale logarithmically in system size
[73,93]. Away from this critical point, the transition between
the flat and tilted states is of first order [72].

APPENDIX B: PERTURBATION THEORY

For concreteness, and because of their relevance later, we
will focus on the product states |Pj〉 and c > 1/2. Notice that
|Pj〉 are frozen configurations in the folded model and thus are
eigenstates of Ĥ eff

c,s . In what follows we will assume there are
no degeneracies with the eigenstate |Pj〉 in the folded model.
However, in practice this should be considered carefully to
ensure this is the case for the given order of perturbation
theory.

The action of δT̂ will sparsely connect the fragmented
sectors of Ĥ eff

c,s . For first-order perturbation theory, one only
needs to find the fragmented sectors connected to |Pj〉 through
the off-resonant transitions, which are allowed in the original
model, but not allowed in the folded model. We numerically
observe that this is at most five sectors for the states |Pj〉;
notice that δT̂ only acts at the boundaries of the partitions
in Eq. (3), and so we expect the number of connecting sectors
to be constant with N . Furthermore, we observe that the di-
mensionality of each of the connecting sectors grows at most
linearly in N , which is in contrast to the average exponential
behavior observed in Fig. 3. Let us label the eigenstates of
Ĥ eff

c,s within the subspace spanned by these five sectors M by
|Ẽm〉 with energies Ẽm. Then the first-order corrections (up to
normalization) to |Pj〉 goes as

∣∣P̃(1)
j

〉 = |Pj〉 + e−s
∑

Em∈M
|Ẽm〉 〈Ẽm|δT̂ |Pj〉

Ej − Ẽm
, (B1)

where Ej = 〈Pj |V̂ |Pj〉. As the dimension of M is only linear
in N , we are able to calculate Eq. (B1) for system sizes up to
N ∼ O(100).

To find the second corrections, we must now also consider
the additional fragmented sectors, which are connected to
M through δT̂ . We denote the subspace spanned by M and
these additional fragmented sectors by K. The eigenstates of
Ĥ eff

c,s within K are again denoted by Em, Ek . The second-order
corrections then go as

∣∣P̃(2)
j

〉 = |Pj〉 + e−s
∑

Em∈M
|Ẽm〉 〈Ẽm|δT̂ |Pj〉

Ej − Ẽm
,

+ e−2s
∑

Em∈K

∑
Ek �=Em∈K

|Ẽm〉 〈Ẽm|δT̂ |Ẽk〉〈Ẽk|δT̂ |Pj〉
(Ej − Ẽm)(Ej − Ẽk )

− 1

2
e−2s

∑
Em∈M

|Pj〉 |〈Ẽm|δT̂ |Pj〉|2
(Ej − Ẽm)2

. (B2)
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The dimension of the subspace K is substantially larger than
M and does not allow us to use it for such large system
sizes. Nevertheless, we can use it for system sizes, which can
be achieved by ED to verify the eigenstates can be retrieved
perturbatively.

APPENDIX C: VARIATIONAL MATRIX PRODUCT STATES
FOR NONTHERMAL EIGENSTATES

To approximate the nonthermal eigenstates for large sys-
tem sizes and some given value of s, we employ variational
MPS. As we are targeting eigenstates throughout the energy
spectrum of the Hamiltonian, we cannot use algorithms such
as DMRG, which are typically used to find low-lying eigen-
states. We instead choose to minimise the energy variance
Eq. (18). Since this choice of cost function is quartic in
the tensors of the MPS, we use gradient decent to minimise
Eq. (18) as described in Ref. [86].

The cost function Eq. (18) is not enough to target different
nonthermal eigenstates. In Ref. [86], the search was steered
towards states with a fixed value of the mean energy by adding
a Lagrange multiplier term to the cost function, of the form
(〈ψ |Ĥ |ψ〉 − Etarget )2. Here, instead, we want to approximate
the nonthermal eigenstate that is closest to a given Pj , in a
similar spirit to the X-DMRG algorithm for excited states
in the MBL regime in Ref. [94]. To ensure we target the
desired nonthermal eigenstate, we use a strategy, which an-
neals s from large-to-small. Suppose for some given system
size N , we wish to target the nonthermal eigenstate |S j〉. In
the limit s → ∞, the nonthermal eigenstate will be the prod-
uct state, lims→∞ |S j〉 = |Pj〉. We choose this as our initial
guess for the method. We then optimize over the sequence
of MPSs ∣∣Ss0=∞

j

〉 = |Pj〉 → ∣∣S̃s1
j

〉 → · · · → ∣∣S̃sT
j

〉
, (C1)

where s0 > s1 > · · · > sT and sT is the target value of s,
and |S̃s

j〉 is our MPS approximation of the true scarred state,
|Ss

j〉.
To optimize for some si, we propose a cost function, which

will aim to minimise the energy variance while maximising

FIG. 10. The energy variance of the nonthermal eigenstates
estimated using vMPS for c = 0.7 and N = 20, . . . , 100. Each
data point shows the mean-energy variance over all nonthermal
eigenstates j = 1, . . . , N/2, and the error bars show the standard
deviation. The maximal bond dimension used was D = 64.

the overlap with the solution from the previous s,

C
(∣∣S̃si

j

〉) =
〈
S̃si

j

∣∣Ĥ2
∣∣S̃si

j

〉
〈
S̃si

j

∣∣S̃si
j

〉 −
〈
S̃si

j

∣∣Ĥ ∣∣S̃si
j

〉2
〈
S̃si

j

∣∣S̃si
j

〉2 − λ
|〈S̃si

j

∣∣S̃si−1
j

〉∣∣2

〈
S̃si

j

∣∣S̃si
j

〉 ,

(C2)

where λ > 0 is a Lagrange multiplier. In practice, we use a
routine, which slowly reduces the value of λ to ensure conver-
gence to an eigenstate, which closely resembles the solution
for the previous si−1. Furthermore, we also aim to keep the
bond dimension D low to encourage the optimization to find
an eigenstate with small entanglement entropy. However, we
gradually increase it when required to also ensure the opti-
mization can find a solution with small energy variance.

The results of the method for c = 0.7 and N = 20, . . . , 100
are shown in Fig. 10. The plot shows the average energy
variance over all scarred states j = 1, . . . , N/2, and the error
bars show the standard deviation over all states. We use a
maximal bond dimension of D = 64, and terminate the opti-
mizations when δE2 < 10−10 or the maximal bond dimension
is exceeded. We are able to find good solutions for s � 0.75.
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[52] Z. Papić, Weak ergodicity breaking through the lens of quantum
entanglement, in Entanglement in Spin Chains: From Theory to
Quantum Technology Applications, edited by A. Bayat, S. Bose,
and H. Johannesson (Springer International Publishing, Cham,
2022), pp. 341–395.

[53] A. Chandran, T. Iadecola, V. Khemani, and R. Moessner, Quan-
tum many-body scars: A quasiparticle perspective, Annu. Rev.
Condens. Matter Phys. 14, 443 (2023).

[54] P. Fendley, K. Sengupta, and S. Sachdev, Competing density-
wave orders in a one-dimensional hard-boson model, Phys. Rev.
B 69, 075106 (2004).

[55] I. Lesanovsky, Many-body spin interactions and the ground
state of a dense Rydberg lattice gas, Phys. Rev. Lett. 106,
025301 (2011).

[56] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner et al.,
Probing many-body dynamics on a 51-atom quantum simulator,
Nature (London) 551, 579 (2017).

[57] D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini,
S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W.
Ho et al., Controlling quantum many-body dynamics in driven
Rydberg atom arrays, Science 371, 1355 (2021).

[58] G.-X. Su, H. Sun, A. Hudomal, J.-Y. Desaules, Z.-Y. Zhou, B.
Yang, J. C. Halimeh, Z.-S. Yuan, Z. Papić, and J.-W. Pan, Ob-
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