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SAMHD1 restricts HIV-1 infection in dendritic cells
(DCs) by dNTP depletion, but its expression in
DCs and primary CD4+ T-lymphocytes cannot be
upregulated by interferons
Corine St Gelais1, Suresh de Silva1†, Sarah M Amie2†, Christopher M Coleman1, Heather Hoy1,
Joseph A Hollenbaugh2, Baek Kim2* and Li Wu1,3*
Abstract

Background: SAMHD1 is an HIV-1 restriction factor in non-dividing monocytes, dendritic cells (DCs), macrophages,
and resting CD4+ T-cells. Acting as a deoxynucleoside triphosphate (dNTP) triphosphohydrolase, SAMHD1
hydrolyzes dNTPs and restricts HIV-1 infection in macrophages and resting CD4+ T-cells by decreasing the
intracellular dNTP pool. However, the intracellular dNTP pool in DCs and its regulation by SAMHD1 remain unclear.
SAMHD1 has been reported as a type I interferon (IFN)-inducible protein, but whether type I IFNs upregulate
SAMHD1 expression in primary DCs and CD4+ T-lymphocytes is unknown.

Results: Here, we report that SAMHD1 significantly blocked single-cycle and replication-competent HIV-1 infection
of DCs by decreasing the intracellular dNTP pool and thereby limiting the accumulation of HIV-1 late reverse
transcription products. Type I IFN treatment did not upregulate endogenous SAMHD1 expression in primary DCs or
CD4+ T-lymphocytes, but did in HEK 293T and HeLa cell lines. When SAMHD1 was over-expressed in these two cell
lines to achieve higher levels than that in DCs, no HIV-1 restriction was observed despite partially reducing the
intracellular dNTP pool.

Conclusions: Our results suggest that SAMHD1-mediated reduction of the intracellular dNTP pool in DCs is a
common mechanism of HIV-1 restriction in myeloid cells. Endogenous expression of SAMHD1 in primary DCs or
CD4+ T-lymphocytes is not upregulated by type I IFNs.
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Background
Myeloid lineage cells such as monocytes, macrophages
and dendritic cells (DCs) are important immune cells that
elicit innate and adaptive immune responses to a variety
of pathogens, including viruses. HIV-1 is known to repli-
cate poorly in myeloid cells; however, these cells play an
important role in promoting dissemination of HIV-1 to
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CD4+ T-lymphocytes, the major target of HIV-1 infection
[1,2]. In contrast to HIV-1, HIV-2 and simian immuno-
deficiency virus (SIV) from the sooty mangaby lineage are
able to efficiently infect myeloid lineage cells by a mechan-
ism initially attributed to the Vpx protein mediating deg-
radation of an unknown host cellular restriction factor [3].
Restriction factors are a group of cellular proteins that can
block viral replication in cells and are typically upregulated
by type I interferons (IFNs) [4-6]. Well-characterized
HIV-1 restriction factors include apolipoprotein B mRNA
editing enzyme, catalytic polypeptide-like 3G (APOBEC3G)
[7], tripartite motif 5α (TRIM5α) [8], and tetherin (also
known as BST-2 or CD317) [9,10].
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SAM domain and HD domain-containing protein 1
(SAMHD1) was initially identified in myeloid cells as an
HIV-1 restriction factor that was degraded by HIV-2/SIV
Vpx [11-13]. Recent studies also revealed that SAMHD1
restricts HIV-1 infection in resting CD4+ T-cells [14,15].
Vpx-mediated degradation of SAMHD1 was found to re-
lieve HIV-1 restriction in myeloid cells and resting CD4+

T-cells, allowing enhancement of HIV-1 infection [11-18].
SAMHD1 is a dGTP-regulated deoxynucleoside triphos-
phate (dNTP) triphosphohydrolase that hydrolyzes dNTPs
in vitro [19,20]. SAMHD1-mediated HIV-1 restriction
occurs via endogenous SAMHD1 depleting the intracellular
dNTP pool, thereby inhibiting HIV-1 reverse transcription
and viral infection [14,16,18,21]. However, the intracellular
dNTP pool concentration in DCs has not been reported.
Moreover, the effect of SAMHD1 on regulating the dNTP
pool in DCs remains to be investigated.
Mutations in SAMHD1 are associated with a rare gen-

etic disorder known as Aicardi-Goutieres syndrome
(AGS) with symptoms of a congenital viral infection likely
due to excessive production of IFN-alpha (IFNα) and
increased immune activation [22,23], suggesting that
SAMHD1 may act as a negative regulator of the type I IFN
response. SAMHD1-deficient CD14+ monocytes and rest-
ing CD4+ T-lymphocytes from AGS patients are highly sus-
ceptible to HIV-1 infection in vitro [13-15], suggesting that
SAMHD1 may be critical for inhibiting HIV-1 infection
in vivo. Moreover, IFNα treatment of monocytes isolated
from a healthy donor up-regulated the levels of SAMHD1
protein [13], indicating that SAMHD1 is type I IFN-
inducible in monocytes. However, it remained unknown
whether endogenous SAMHD1 expression in DCs and pri-
mary CD4+ T-cells can be upregulated by type I IFNs.
In this study, we sought to understand the mechanism

of SAMHD1-mediated HIV-1 restriction by characteriz-
ing SAMHD1 protein expression and response to IFNs
in both DCs and primary CD4+ T-lymphocytes. We
show that Vpx-mediated degradation of SAMHD1 in
DCs significantly enhances HIV-1 infection and accumu-
lation of late reverse transcription products, and increases
the intracellular dNTP pool. We observed that endogen-
ous SAMHD1 in primary DCs or CD4+ T-lymphocytes
are not readily upregulated by type I IFNs. Our results
provide new information on the cellular mechanism of
SAMHD1-mediated HIV-1 restriction in DCs and the
function of SAMHD1 as an HIV-1 restriction factor.

Results
Vpx-mediated SAMHD1 degradation in DCs significantly
increases HIV-1 infection and accumulation of late
reverse-transcription products
Treatment of DCs, monocytes, macrophages, and differ-
entiated monocytic cell lines with Vpx-containing SIV
virus-like particles (VLPs) has been shown to enhance
HIV-1 infection in these cells [11-13,16,24-30]. Vpx-
mediated degradation of SAMHD1 accounts for the
enhanced HIV-1 infection in myeloid cells [11-13,16]. We
confirmed that Vpx-mediated degradation of SAMHD1
enhanced both single-cycle and replication-competent
HIV-1 infection in DCs. DCs were transduced with either
Vpx-negative SIV VLPs or VLPs containing Vpx from
HIV-2 or SIV. These VLPs lack viral genetic material and
can be used to effectively deliver Vpx protein to DCs
[3,31]. Mock-transduced DCs served as an additional
negative control to exclude any effect of other SIV pro-
teins on SAMHD1 expression. VLP-transduced DCs were
infected with single-cycle or replication-competent HIV-
1, and viral infection was measured by detecting luciferase
activity and p24 capsid release, respectively.
Vpx efficiently degraded endogenous SAMHD1 in

DCs at 24 hr post-transduction (Figure 1A) and signifi-
cantly enhanced vesicular stomatitis virus G protein
(VSV-G)-pseudotyped single-cycle HIV-1 infection of DCs
by 1.5- to 41-fold over a period of 24 to 96 hr post-
infection (p <0.05), relative to negative controls (Figure 1B).
The increase in HIV-1 infection of myeloid cells in the
presence of Vpx-mediated SAMHD1 degradation has been
attributed to increased production of late HIV-1 reverse
transcription products, which constitute full-length viral
cDNA [11,12,16]. To better understand the mechanism
underlying SAMHD1-mediated HIV-1 restriction in DCs,
we quantified the products of HIV-1 early and late reverse
transcription over a time course ranging from 12 to 72
hr post-infection in the presence or absence of Vpx.
This time course is based on our previous kinetics stud-
ies of HIV-1 infection and viral cDNA measurement in
DCs [32-36]. We found that DCs transduced with Vpx
(+) VLPs and infected with HIV-1 had no significant
difference in the production of early minus strand re-
verse transcription products at 12 to 72 hr post-
infection (Figure 1C). However, analysis of late reverse
transcription products revealed 4.5-, 6.9-, and 3.6-fold
increases at 24, 48, and 72 hr post-infection (p ≤0.001),
respectively, in the presence of Vpx (Figure 1D). These
results are in agreement with a previous study of non-
dividing macrophages [12], suggesting that the synthe-
sis of HIV-1 early reverse transcripts is less restricted
by SAMHD1 relative to late reverse transcripts in mye-
loid cells.
Furthermore, we observed that Vpx-mediated SAMHD1

degradation increased infection of DCs with R5-tropic,
replication-competent HIV-1NLAD8, as evidenced by
4-fold enhancement of p24 production in the super-
natants from infected DCs at 72 hr post-infection
(p <0.001) (Figure 1E). Immunoblotting of DC lysates
from the same experiment indicated that de novo pro-
duction of HIV-1 Gag p55 was significantly enhanced
in SAMHD1 knockdown cells compared to negative
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Figure 1 Vpx-mediated SAMHD1 degradation in DCs efficiently increases HIV-1 infection and accumulation of late reverse-transcription
products. Monocyte-derived DCs were transduced with SIV VLPs containing HIV-2 Vpx (Vpx +) or not (Vpx -). Mock transduction (no VLPs) was
used as a negative control. (A) Whole cell lysates were subjected to immunoblotting for SAMHD1 at 24 hr post-transduction. β-actin was used as
a loading control. Relative levels of SAMHD1 compared to β-actin are shown. (B) VLP-transduced DCs were infected with HIV-Luc/VSV-G at a
multiplicity of infection (MOI) of 1 and the infection was detected by measuring luciferase activity in the cell lysates at the indicated times
post-infection. Fold enhancement of HIV-1 infection (VLP without Vpx control set to 1) is shown. (C) HIV-1 early reverse-transcription products
(early RT) in DCs transduced with VLPs. The early reverse-transcription copies were measured by qPCR at the indicated times post-HIV-1 infection
(MOI of 1). (D) Increased HIV-1 late reverse-transcription products (late RT) in DCs transduced with VLPs. The late reverse-transcription copies
were measured by qPCR at the indicated times post-HIV-1 infection (MOI of 1). (E and F) VLP-transduced DCs were infected with replication-
competent, R5-tropic, HIV-1NLAD8 (MOI of 0.5). At 3 days post-infection, HIV-1 p24 in the supernatant was measured by ELISA. (F) Expression of
SAMHD1, HIV-1 Gag (p55 and p24), and β-actin in NLAD8 HIV-1 infected DCs was detected by immunoblotting. The data shown represent one of
three independent experiments. Error bars represent standard deviation of the mean of duplicate samples. (B, D, and E) The asterisks indicate a
significant difference (p <0.05) compared with the controls of no VLP and/or (Vpx -).
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controls (Figure 1F), confirming productive infection.
Similar results were obtained using VLPs containing en-
dogenous SIVmac251 Vpx (Vpx is expressed from the SIV-
mac251 proviral DNA rather than trans-complemented)
(data not shown). These results demonstrate that Vpx-
mediated SAMHD1 degradation efficiently enhances HIV-1
infection of DCs and demonstrates that knockdown of
SAMHD1 in DCs enables accumulation of full-length viral
cDNA.

Vpx(+) VLP treatment increases the intracellular pool of
dNTPs in DCs
The intracellular dNTP concentrations of DCs have not
been previously published, and it is not known if
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SAMHD1 modulates the dNTP pool in primary DCs.
To address these questions, we determined the intracel-
lular dNTP levels of DCs and quantified the effect of
Vpx treatment on the dNTP pool in DCs using a single
nucleotide incorporation assay. DCs from two independ-
ent donors were treated with SIV VLPs (+/−) Vpx. Cell
samples were harvested at 0, 12, and 24 hr post-VLP
treatment and intracellular dNTP levels were determined.
Vpx(−) VLP treated DCs, which served as a negative

control, maintained overall dNTP levels below 203 nM
during the time course, except DCs from donor 1
B 

A 

Vpx-                       Vpx+

Donor 1 

Donor 2 

Vpx-                       Vpx+

* 

* 

Figure 2 Vpx-treatment increases the intracellular dNTP pool in DCs.
were collected at 0, 12, and 24 hours post VLP treatment. (A) The intracellu
nucleotide incorporation assay. The data show results of DCs from two ind
the mean of duplicate samples. The asterisks indicate a significant differenc
transduction. (B). A representative HIV-1 RT-based single nucleotide primer
(+/−) RT were used to indicate unextended primer (P) versus and extended
prevent complete primer extension and maintain results within the linear r
displayed an elevated level of dCTP (415 nM) at time 0
post-treatment (Figure 2A). These results indicate the
variability of dNTP concentrations among DCs from dif-
ferent donors. However, compared to Vpx(−) VLP-
transduced DCs, when DCs were treated with Vpx(+)
VLPs to degrade SAMHD1, an increase in the dNTP
levels was evident, with dATP, dCTP, dGTP, and dTTP
levels increasing significantly (7-, 3-, 3, and 9-fold, re-
spectively; p <0.001) at 24 hr post-treatment in donor 1
(Figure 2A). Compared to Vpx(−) VLP-transduced DCs,
Vpx(+) VLP-treated DCs from donor 2 also showed
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increased dNTP levels at 24 hr post-transduction (20-,
7-, 7- and 14-fold for dATP, dCTP, dGTP, and dTTP, re-
spectively; p <0.001) (Figure 2A). Overall, Vpx treatment
of DCs from two donors increased the intracellular
dNTP pool 1.1- to 4.9- fold and 3- to 20-fold at 12 hr
and 24 hr post-treatment, respectively (Additional file 1:
Table S1).
A representative gel image of HIV-1 RT-based single

nucleotide primer extension assay is shown for dATP ex-
tension (Figure 2B). Extended primer (P+1) can be visua-
lized with increasing intensity in both donor 1 and donor
2 samples in the presence of Vpx at 12 and 24 hr post
VLP treatment. These data suggest that primary DCs
possess low levels of intracellular dNTPs, in keeping with
other non-dividing primary cells, such as macrophages
and resting CD4+ T-lymphocytes [14,21,37-39]. Our
results also suggest that SAMHD1 plays an impor-
tant role in maintaining the intracellular dNTP pool
in DCs.

Type I and type II IFN treatment does not upregulate
SAMHD1 protein expression in DCs
SAMHD1 was initially identified as a homologue of the
mouse IFN-gamma (IFNγ)-inducible protein [40]. Con-
sistent with other HIV-1 restriction factors, SAMHD1 is
induced by type I IFN treatment in primary monocytes
[13]. To investigate the effect of type I IFNs on
SAMHD1 protein expression in DCs, we treated DCs
with increasing amounts of either IFNα or IFN-beta
(IFNβ) for 24 hr and then detected endogenous
SAMHD1 protein expression. Surprisingly, immunoblot-
ting for SAMHD1 revealed that there was no major
change in the protein levels of SAMHD1 upon treat-
ment with either IFNα (Figure 3A) or IFNβ (Figure 3B).
To confirm that the IFN treatment was effective, we
detected tetherin expression, in type I IFN-treated DCs
(Figure 3A and 3B, middle panels) as observed previ-
ously [32]. We also found that IFNγ (a type II IFN) did
not affect SAMHD1 expression in DCs (Figure 3C). The
positive control for IFNγ stimulation (human leukocyte
antigen class II, HLA-II) confirmed the effectiveness of
IFNγ treatment (Figure 3C, middle panel). Overall, these
results demonstrate that endogenous expression of
SAMHD1 protein in DCs is further upregulated by treat-
ment with type I or type II IFNs.

Type I and type II IFN treatment causes a transient
increase in SAMHD1 mRNA levels at early time points in
primary DCs
To examine whether IFN treatment of DCs affected
SAMHD1 mRNA levels, we treated DCs from two
donors with 2000 U/mL of IFNα, IFNβ or IFNγ for
either 6 or 24 hr and performed quantitative PCR ana-
lysis. We observed that at 6 hr post-treatment with
all three types of IFNs, levels of SAMHD1 mRNA
increased 2.1- to 2.7-fold (IFNα, p=0.0038; IFNβ, p = 0.0025;
IFNγ, p = 0.001) above mock treated DCs (Figure 4A-C,
donor 1). By 24 hr post-treatment, SAMHD1 mRNA
levels regressed to levels comparable to or slightly below
mock treated DCs (Figure 4A-C). Similar trends were
observed for a second donor although the fold change in
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mRNA levels at 6 hr post-treatment compared to mock
treated cells ranged from 2.8- to 4.3-fold (Figure 4A-C,
donor 2). These data indicate that SAMHD1 mRNA in
DCs can be transiently upregulated by IFNs for a short
period post-treatment; however, it does not translate to
an increase in SAMHD1 protein expression.

Kinetics analysis of SAMHD1 protein and mRNA in DCs
treated with IFNα
As we observed that at 24 hr post-IFN treatment,
SAMHD1 protein levels were not increased and that
mRNA levels were only increased transiently at 6 hr
post-IFN treatment, we thus examined the steady state
levels of SAMHD1 protein and mRNA over a more ex-
tensive time course from 6 to 72 hr post-IFNα treat-
ment. We treated DCs from two donors with IFNα and
performed immunoblotting for SAMHD1 protein and
qPCR analysis for SAMHD1 mRNA detection. Over the
time period of 6 to 72 hr post-IFNα treatment,
SAMHD1 protein levels in the mock treated samples did
not vary; indicating that SAMHD1 is stably expressed in
DCs (Figure 5A). Analysis of SAMHD1 protein in the
IFNα-treated samples also showed no change in protein
levels across the time course (Figure 5A), confirming
that SAMHD1 protein levels are not upregulated by
IFNα treatment. The effectiveness of IFNα treatment
was confirmed by up-regulation of tetherin protein levels
observed from 6 to 72 hr post-treatment in DCs from
both donors (Figure 5A). Analysis of SAMHD1 mRNA
levels in DCs from both donors indicated small varia-
tions in mRNA levels in mock-treated cells throughout
the time course. In IFNα-treated DCs, minor increases
in mRNA levels were observed at 6 and 12 hr post-
treatment (donor 971, 1.7- and 1.6-fold respectively;
donor 929, 2- and 3.3-fold respectively; Figure 5B). By
24 hr post-treatment, SAMHD1 mRNA levels returned
to levels comparable with mock treated cells (Figure 5B).
These results confirm that SAMHD1 mRNA levels in
DCs can be transiently induced by treatment with IFNα
for 6–12 hr, and that there is no effect of IFNα treat-
ment on SAMHD1 protein levels in DCs.
SAMHD1 levels in primary CD4+ T-lymphocytes are not
upregulated by type I IFN treatment
In addition to primary DCs, we analyzed SAMHD1 protein
levels in resting and phytohemagglutinin (PHA)-activated
primary CD4+ T-lymphocytes from two independent
donors (Figure 6). We observed that resting and activated
CD4+ T-lymphocytes expressed abundant SAMHD1, which
was likely comparable to those in DCs (donor 2 results in
Figure 6). These data are in agreement with the recent
reports regarding SAMHD1 expression in resting and acti-
vated CD4+ T-lymphocytes [14,15]. Moreover, we observed
that type I IFN treatment did not significantly affect
SAMHD1 protein expression (Figure 6), indicating that



A 

B 

MDDC (donor 929) 

SAMHD1 

GAPDH 

+ - + - + - + - + - IFN - 

0 hr 6 hr 12 hr 24 hr 48 hr 72 hr 

Tetherin 

MDDC (donor 971) 

SAMHD1 

GAPDH 

+ - + - + - + - + - IFN - 

0 hr 6 hr 12 hr 24 hr 48 hr 72 hr 

Tetherin 

0.0 

0.5 

1.0 

1.5 

0 hr 6 hr 12 hr 24 hr 48 hr 72 hr 

R
el

at
iv

e 
sa

m
h

d
1 

m
R

N
A

 

Time post IFN treatment 

Mock  

IFN

0.0 

1.0 

2.0 

3.0 

4.0 

0 hr 6 hr 12 hr 24 hr 48 hr 72 hr 

R
el

at
iv

e 
sa

m
h

d
1 

m
R

N
A

 

Time post IFN treatment 

Mock  

IFN

MDDC (donor 971) 

MDDC (donor 929) 

Figure 5 Kinetics analysis of SAMHD1 protein and mRNA in DCs treated with IFNα. Monocyte-derived DCs (MDDC) from two independent
donors were mock treated, indicated with “-”, or treated with 2000 U/mL IFNα, indicated with “+”, for the indicated times. (A) Whole cell lysates
were subjected to immunoblotting for SAMHD1 and tetherin expression. GAPDH was used as a loading control. (B) Quantitative PCR was
performed using SAMHD1 cDNA specific primers and all data was normalized to GAPDH. Data shown represents fold change in mRNA levels
compared to 0 hr mock treated cells.

St Gelais et al. Retrovirology 2012, 9:105 Page 7 of 15
http://www.retrovirology.com/content/9/1/105
endogenous SAMHD1 in primary CD4+ T-lymphocytes
cannot be further upregulated by type I IFNs.

Type I IFN treatment upregulates SAMHD1 protein
expression in HEK 293T cells and HeLa cells
As the levels of endogenous SAMHD1 protein in DCs
and resting CD4+ T-lymphocytes were not affected by
IFN treatment, we investigated the effect of type I IFN
on SAMHD1 protein expression in HEK 293T and HeLa
cell lines, which express relatively lower levels of en-
dogenous SAMHD1 (Figure 7). Treatment of either cell
line with IFNα or IFNβ significantly increased SAMHD1
protein levels compared to mock treated cells (Figure 7A
and 7B, top panel). As expected, tetherin expression was
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also enhanced by type I IFN treatment (Figure 7A and
7B, middle panel), confirming that SAMHD1 is a type I
IFN inducible protein in HEK 293T and HeLa cells.
Comparison of endogenous SAMHD1 levels between
HEK 293T cells, HeLa cells and DCs from five different
A 
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Figure 7 Type I IFN treatment upregulates SAMHD1 expression in H
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Over-expression of SAMHD1 in HEK 293T cells or HeLa
cells does not inhibit HIV-1 infection, but modestly
decreases the intracellular dNTP pool in HeLa cells
Given that HEK 293T and HeLa cell lines are highly per-
missive to post-entry HIV-1 infection [33], and express
lower SAMHD1 compared to primary DCs (Figure 7C),
we investigated whether over-expression of SAMHD1 in
these cells could cause an HIV-1-specific restriction
phenotype and whether SAMHD1 retained its dNTP hy-
drolysis enzymatic activity. First, immunoblotting was
performed to assess the relative levels of SAMHD1 over-
expression in HEK 293T and HeLa cells compared to
endogenous SAMHD1 in DCs. We found that both
transfected HEK 293T and HeLa cells expressed high
levels of SAMHD1 above the endogenous level observed
for DCs from two different donors (Figure 8A).
We next determined the effect of SAMHD1 over-

expression on the intracellular dNTP pool and VSV-G-
pseudotyped single-cycle HIV-1 infection. SAMHD1
over-expression in HEK 293T and HeLa cells was
confirmed by immunoblotting (Figure 8B and 8E).
Transfected cells were either infected with VSV-G-
pseudotyped HIV-1 and lysates measured for luciferase
activity to determine HIV-1 infection or, cellular extracts
were processed for dNTP quantification. Even in the
presence of high SAMHD1 expression levels, there was
no effect on HIV-1 infection in either HEK 293T cells or
HeLa cells at 2 days post-infection (Figure 8C and 8F).
Interestingly, SAMHD1 over-expression in HEK 293T
cells had little effect on the dNTP concentration, at most
a 1.3-fold decrease was observed for dTTP levels
(Figure 8D). Comparatively, SAMHD1 over-expression
in HeLa cells had a more pronounced effect on dNTP
concentration and 1.8-, 2.4-, 1.5-, and 2.2-fold decreases
were observed for dATP, dCTP, dGTP, and dTTP,
respectively (p <0.05) (Figure 8G). These results indicate
that SAMHD1 retains its enzymatic activity and is able
to modestly hydrolyze dNTPs in HeLa cells; however,
the effect is not significant enough to deplete the intra-
cellular dNTP pool to a level that is capable of restrict-
ing HIV-1 infection.

Discussion
In the current study, we examined the role of SAMHD1
in restricting HIV-1 infection of DCs and compared
SAMHD1 expression levels following treatment with
IFNs. Our results show that Vpx-mediated degradation
of SAMHD1 in DCs can relieve a post-entry restriction
block against HIV-1 by increasing the intracellular
dNTP pool and promoting the accumulation of HIV-1
late reverse transcription products. However, early reverse
transcription products were not affected by SAMHD1
degradation, consistent with previous findings in macro-
phages [12], suggesting that SAMHD1-mediated HIV-1
restriction mainly affects late reverse transcription. A pre-
vious study found that the HIV-1 genome is not com-
pletely reverse transcribed in quiescent lymphocytes,
unlike in activated lymphocytes [41]. It is likely that HIV-
1 early reverse transcription can be initiated in non-
cycling cells with low dNTP concentrations, but the late
reverse transcription cannot be completed. We also
observed that there was no direct correlation between
fold increase in HIV-1 late reverse transcription products
and fold change in viral infectivity. A potential explan-
ation for the difference is that HIV-1 late reverse tran-
scription product levels may not fully reflect the efficiency
of viral gene expression given the complexity of the viral
life-cycle in DCs [33-35].
SAMHD1 functions as a dGTP-dependent phosphohy-

drolase [19,20], and its degradation with Vpx treatment
in DCs increased accumulation of HIV-1 late reverse
transcription products, suggesting that SAMHD1 regu-
lates intracellular dNTP levels in DCs. We show that
DCs contain low levels of dNTPs (~11–415 nM),
within the range of resting T-lymphocytes (300–5,000
nM) [37], but below that in HIV-1 permissive cell
types, such as activated peripheral blood mononuclear
cells (PBMCs) (1.5–9.2 μM) [38] and activated CD4+

T-lymphocytes (3–30 μM) [37]. It appears that DCs
have dNTP levels ~1.9- to 2.3-fold higher than macro-
phages (~50 nM) [16].
Although HIV-1 infection of DCs is enhanced in the

presence of Vpx, the levels of p24 released into the
supernatant from infected DCs are lower compared to
those from macrophages and fully permissive target cells
[32,33]. This suggests that SAMHD1 has a role in HIV-1
restriction in DCs, but it is likely that additional post-
entry restriction steps exist to block HIV-1 infection in
DCs. For example, APOBEC3A is highly expressed in
myeloid-lineage cells and interacts with Vpx, leading to
its degradation, which correlates with increased HIV-1
infection in primary monocytes [42]. Silencing of APO-
BEC3A relieves restriction of HIV-1 in macrophages,
DCs and monocytes [43], and abolished deaminase ac-
tivity of APOBEC3A in monocytes [44]. There also
remains an unidentified cryptic sensor for HIV-1 infec-
tion in DCs dependent on newly synthesized viral
capsid [29].
SAMHD1 restricts HIV1 infection in resting CD4+ T-

lymphocytes by limiting reverse transcription through
depleting intracellular dNTP concentrations [14]. Previ-
ous studies measuring dNTP levels in resting T-
lymphocytes suggest that the intracellular dNTP pool is
sufficiently low to restrict HIV-1 reverse transcription,
which can be attributed to SAMHD1 activity [37,38]. Re-
cent studies showed that T-cell activation does not sig-
nificantly affect SAMHD1 expression in primary CD4+

T-cells treated with PHA or with anti-CD3/anti-CD28
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Figure 8 Over-expression of SAMHD1 in HEK 293T cells or HeLa cells does not inhibit HIV-1 infection, but only modestly decreases the
intracellular dNTP pool. (A) HEK 293T and HeLa cells were transiently transfected with SAMHD1-expressing construct or an empty vector.
SAMHD1 expression was detected by immunoblotting with SAMHD1-specific antibodies at 24 hr post-transfection. Equal amounts of total protein
(20 μg) of the lysates of DCs from two donors and HEK 293T and HeLa cells were loaded. (B-D) HEK 293T cells and (E-G) HeLa cells were
transiently transfected with HA-tagged SAMHD1-expressing construct or an empty vector. SAMHD1 expression in transfected HEK 293T cells
(B) or HeLa cells (E) was detected by immunoblotting with anti-HA at 24 hr post-transfection. β-actin was used as a loading control. Transfected
HEK 293T cells (C) or HeLa cells (F) were infected with HIV-Luc/VSV-G at an MOI of 0.5, and the infection was detected by measuring luciferase
activity in the cell lysates at 48 hr post-infection and normalized to protein content (10 μg/sample). cps, counts per second. The intracellular
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for 2–3 days [14,15]. In agreement with these results, we
observed that PHA-treatment of resting CD4+ T-cells
for 2 days only slightly decreased SAMHD1 expression
in activated CD4+ T-lymphocytes (by 10%- 30% in two
donors, Figure 6). Activated CD4+ T-cells have a 3- to 8-
fold higher dNTP concentration relative to resting CD4+

T-cells, while SAMHD1 expression remains the same in
resting and activated CD4+ T-cells [14]. It is possible
that intracellular dNTP levels can be significantly
increased when CD4+ T-cells are activated and become
dividing cells. How activated CD4+ T-cells upregulate
the intracellular dNTP pool without decreasing SAMHD1
expression remains to be investigated.
We found that over-expression of SAMHD1 in divid-

ing cell lines does not restrict HIV-1, similar to a study
which found that SAMHD1 expression in dividing cell
lines did not have an inhibitory effect on a range of
viruses, including HIV-1 [45]. Our dNTP analysis in
HeLa cells suggests that SAMHD1 is able to moderately
deplete the dNTP pool; but the concentration of dNTPs
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was within the range of activated T-lymphocytes [37],
suggesting dividing cell lines are capable of maintaining
their dNTP pools in the presence of high levels of
SAMHD1. It is possible that the catalytic activity of
over-expressed SAMHD1 in HEK 293T and HeLa cells
may be less stoichiometrically active than the endogen-
ous protein in DCs, and/or that the transformed cell
lines lack a potential cellular co-factor(s) for SAMHD1-
mediated HIV-1 restriction function [46].
Analysis of SAMHD1 after IFN treatment indicated

that neither type I nor type II IFN treatment affected
SAMHD1 protein levels in DCs or primary CD4+ T-
lymphocytes. However, analysis of SAMHD1 mRNA
levels at 6 hr post-treatment with IFN indicated a 2- to
4-fold increase in mRNA, suggesting that in DCs
SAMHD1 is IFN sensitive, albeit transiently. Compre-
hensive analysis of the effect of IFNα treatment of DCs
from 6 to 72 hrs indicated no change in SAMHD1 pro-
tein levels and a small transient increase in mRNA levels
at 6 and 12 hr post-treatment. Furthermore, our data for
IFN treatment of HEK 293T and HeLa cells, as well as
previous studies [13] show that SAMHD1 is type I IFN
inducible. Although Berger et al. observed increased
SAMHD1 protein levels in primary monocytes upon
IFNα treatment, we observed that primary monocytes
express lower levels of SAMHD1 relative to DCs (data
not shown), which could partially explain the difference
in response to IFNα treatment across the two cell types.
As we show that DCs have low levels of dNTPs, it is
plausible that SAMHD1 expression and/or its activity is
tightly regulated in these cells to ensure a minimal
dNTP pool is maintained without causing detrimental
effects on the cell, for example, DNA repair within cells
requires carefully modulated dNTP levels [47,48]. It is
also possible that post-transcriptional regulation of
SAMHD1 mRNA may affect SAMHD1 protein expres-
sion in the cell. A recent study identified naturally oc-
curring splice variants of SAMHD1 [49], indicating that
SAMHD1 expression and activity is regulated at a tran-
scriptional level.
Interestingly, HIV-1 has no means of counteracting

SAMHD1, and our recent study suggests that co-
evolution of primate SAMHD1 and lentivirus Vpx led to
the loss of the vpx gene in the HIV-1 precursor, SIVcpz,
and consequently HIV-1 [50]. Additional studies also
suggested that SAMHD1 restriction toward HIV-1 was
evolutionarily maintained under positive selection and
that antagonism of SAMHD1 by Vpx is species-specific
[51,52], but that Vpx degradation of SAMHD1 was an
acquired ability that arose through positive selection in
lentiviruses [45]. We recently reported that common
polymorphisms of SAMHD1 are unlikely to contribute
to the infection and natural control of HIV-1, at least in
European and African-American individuals [53]. It is
interesting to investigate whether polymorphisms of
SAMHD1 are associated with HIV-2 and SIV infections
in humans and non-human primates, respectively.
SAMHD1 has been suggested to play a role in the in-

nate immune responses to viral infections [54-58]. Our
results indicate that SAMHD1 functions as an important
restriction factor to counteract HIV-1 infection in DCs.
Broader understanding of the mechanism of SAMHD1-
mediated restriction in non-dividing cells and further in-
vestigation of the biological role of SAMHD1 is vital
to enhancing our knowledge of HIV-1 infection and
pathogenesis.

Conclusions
Our results suggest that SAMHD1-mediated reduction
of the intracellular dNTP pool in DCs is a common
mechanism of HIV-1 restriction in myeloid cells. En-
dogenous expression of SAMHD1 in primary DCs or
CD4+ T-lymphocytes is not further upregulated by type
I IFNs.

Methods
Plasmids
HIV-1 proviral vector pNL-Luc-E–R+ contains a firefly
luciferase reporter gene was a kind gift from Dr. Nathaniel
Landau (New York University School of Medicine) [59].
HIV-1 proviral vector pNLAD8 (R5-tropic) was a kind
gift from Dr. Eric Freed [60] (National Cancer Institute-
Frederick). The SIV3+ plasmid, provided by Dr. Andrea
Cimarelli [61], was used to produce SIVmac251 VLPs
for delivery of Vpx into cells. A SIV3+ derivative, in
which the vpx and vpr initiation codons were mutated,
pSIVX-, was provided by Dr. Jacek Skowronski (Case
Western Reserve School of Medicine) and has been
described previously[12]. Trans-complemented Vpx-
containing VLPs were produced using pCG.myc.Vpx
that expresses Vpx from HIV-2Rod, and human
SAMHD1 expression plasmid pCG-F-HA-SAMHD1
(kind gifts from Dr. Jacek Skowronski) or empty vector
controls were used for transfections and over-expression
in cell lines.

Cell culture
Human PBMCs were isolated from the buffy coat of
healthy blood donors as previously described [62]. Pri-
mary CD14+ monocytes and CD4+ T-lymphocytes were
isolated from PBMCs by positive selection as described
previously [36,62]. Immature DCs were generated from
purified monocytes by treatment with granulocyte-
macrophage colony-stimulating factor and IL-4 (50 ng/mL,
R&D Systems) for 5 days as described previously [63,64].
Primary resting CD4+ T cells were cultured in the pres-
ence of 20 IU/mL of recombinant IL-2 (obtained from
the NIH AIDS Research and Reference Reagent
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Program) and activated by 5 μg/mL of PHA (Sigma-
Aldrich) for 2 days (short-term activation) as previously
described [62]. DCs and CD4+ T-lymphocytes generated
using these methods were more than 98% pure by flow
cytometry analysis of surface markers as previously
described [34,36,64]. Human embryonic kidney cell line
HEK 293T cells, HeLa cells, and the HIV-1 indicator
cell line GHOST/X4/R5 have been previously described
[63,64].

Generation of SIV VLP for DC transduction
SIV VLPs were generated by transfection of HEK293T
cells with the appropriate plasmids, SIV3+ or SIV(X-),
pCG.myc.Vpx and the VSV-G expressing vector pVSV-G
as described [65]. Two days post-transfection, superna-
tants were harvested and filtered through a 0.45 μM fil-
ter and layered over a 25-45% sucrose step gradient.
Gradients were ultra-centrifuged at 28,000 × g for
90 min at 4°C. Supernatants were collected from the
gradient interface, diluted in PBS and ultra-centrifuged
through a 25% sucrose cushion at 28,000 × g for 90 min
at 4°C. VLPs were recovered in medium by gentle rock-
ing at 4°C for 3 hr, aliquoted and stored at −80°C (proto-
col adapted from [65]).

Treatment of DCs, CD4+ T-lymphocytes and cell lines with
type 1 IFNs
Cells were treated with a range of concentration of IFNs
or mock treated with medium, as indicated and
described previously [32,34,35]. At 24 hr post-treatment,
lysates were harvested and analyzed by SDS-PAGE and
immunoblotting. All IFNs and other cytokines were pur-
chased from PeproTech.

Quantification PCR analysis of SAMHD1 mRNA levels in
IFN-treated DCs
Levels of SAMHD1 mRNA levels in DCs treated with
2000 U/mL IFNα, IFNβ, or IFNγ for 6 or 24 hr were
quantified by SYBR-green real-time quantitative PCR
analysis using primer sets and protocols previously
described [53]. Briefly, RNA from treated DCs at various
time points was isolated using an RNeasy kit (QIAgen)
and 200 ng of total RNA from IFN-treated DCs was
used as input for cDNA synthesis, according to manu-
facturer’s instructions for SuperScript III First-Strand
Synthesis System (Life Technologies).

HIV-1 stocks
Single-cycle, luciferase reporter HIV-1 stock (HIV-Luc/
VSV-G) was generated by calcium phosphate co-
transfection of HEK 293T cells with the pNL-Luc-E–R+

and pVSV-G as described [33]. Replication-competent
NLAD8 WT HIV-1 virus stocks were generated by
transfection of HEK 293T cells with proviral vector
pNLAD8 as described [62]. All virus stocks were har-
vested 2 days post-transfection and filtered through a
0.45 μM filter. The infectious units of virus stocks were
evaluated by limiting dilution on GHOST/X4/R5 cells
as described [64]. HIV-1 p24 concentrations of viral
stocks were measured by ELISA (anti-p24-coated plates
were purchased from the AIDS Vaccine Program, SAIC-
Frederick, MD) as previously described [34].

Transfections
HEK 293T cells were transfected using a calcium phos-
phate method to over-express SAMHD1 or vector con-
trols, and cells were processed for downstream
applications at 24 hr post-transfection. HeLa cells were
transfected using the TransIT-HeLaMONSTER transfec-
tion kit (Mirus) according to the manufacturer’s instruc-
tions. At 24 hr post-transfection, cells were processed
for HIV-1 infection assays, dNTP analysis, or cell lysates
were harvested for immunoblot analysis.

Immunoblotting
Cells were harvested as indicated and lysed in cell lysis
buffer (Cell Signaling) supplemented with protease in-
hibitor cocktail (Sigma-Aldrich). Cell lysates were sub-
jected to 12% SDS-PAGE and immunoblotting as
described [66]. Restore Western blot stripping buffer
(Pierce) was used to strip antibodies from probed
membranes. Super-signal chemiluminescence substrate
(Pierce) was used to detect horseradish peroxidase-
conjugated secondary antibodies. Polyclonal mouse anti-
body reactive to SAMHD1 (ab67820) was purchased
from Abcam and used at 1 μg/mL in 5% milk in
Tris-buffered-saline-Tween. Antibody to HLA-II was
purchased from BD Biosciences. Tetherin antiserum was
a kind gift from Dr. Paul Spearman (Emory University)
and used as described previously [32] . Antibody specific
to the HA-epitope (Ha.11 clone 16B12) was purchased
from Covance. β-actin (Santa Cruz Biotechnologies) or
GAPDH (AbD serotec) antibodies were used as loading
controls. Immunoblotting images were captured using
Molecular Imager ChemiDoc XRS instrument or Fuji-
film Luminescent Image Analyzer (LAS 4000) and ana-
lyzed using Quantity One software (BioRad) or Multi
Gauge V3.0 software (Fuji Film).

HIV-1 infection assays
HIV-1 infection assays using luciferase reporter viruses
were performed using a multiplicity of infection (MOI)
range of 0.5-2 as described previously [64,67]. Cell
lysates were obtained at the indicated times post-
infection and analyzed for luciferase activity using a
commercially available kit (Promega) according to the
manufacturer’s instructions. Total cell protein was quan-
tified using a BCA assay (Pierce) and all luciferase
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results were normalized to total protein content. For in-
fection of DCs using replication-competent HIV-1, DCs
(2.5×105) were transduced with Vpx-containing VLPs for
2 hr and then incubated with HIV-1NLAD8 (20 ng p24-
equivalent, MOI of 0.5) for 2 hr as described [32,34].
Cells were then washed thoroughly and cultured for the
indicated times. Cell-free supernatants from the HIV-1-
infected DCs were harvested for Gag p24 quantification
by p24 ELISA at the indicated times post-infection. Whole
cell lysates of HIV-1-infected DCs were subjected to im-
munoblotting for HIV-1 Gag detection as described [32].
Quantitative PCR analysis of HIV-1 cDNA
Levels of early and late reverse transcription products in
infected DCs were quantified by SYBR-green based real-
time quantitative PCR analysis using primer sets previ-
ously described [33,34,68]. Briefly, 100 ng of genomic
DNA from HIV-1 infected DCs were used as input for
the detection of early or late reverse transcription pro-
ducts. All virus stocks were treated with DNaseI (40 U/ml;
Ambion) prior to infections to avoid plasmid DNA contam-
ination. DNA from infected cells at various time points was
isolated using a DNeasy Blood and Tissue kit (QIAgen).
Intracellular dNTP quantification of DCs
For dNTP analysis and quantification, cells were har-
vested and lysed in cold 65% aqueous methanol, heated
to 95°C for 3 min and extracts dried in a speed vacuum.
Reactions were prepared and analyzed as described pre-
viously [37]. Briefly, extracts were incubated with 200
fmol substrate, 50 nM HIV-1 reverse transcriptase (RT),
10 μM oligonucleotide dT, and RT reaction buffer. Reac-
tions were incubated for 5 min at 37°C and terminated
using 10 μl 40 mM EDTA, 99% formamide and heated
at 95°C for 5 min. For analysis, reaction products were
separated on a 14% polyacrylamide-urea denaturing gel
(SequaGel, National Diagnostics) and analyzed on a
PhosphorImager (PerkinElmer). Product extension was
quantified by densitometry (Quantity One) and dNTP
content was back calculated from percent product
extended. VLP + Vpx (24 hr) reactions were initially
diluted 1:3 to prevent substrate from being fully
extended. The calculation of intracellular dNTP concen-
trations (nM) was based on the reported volumes of
DCs [69], HEK 293T cells [70], and HeLa cells [71].
Statistical analysis
Data were analyzed using a two-way ANOVA test and
Student’s T-test and statistical significance was defined
as p <0.05.
Additional file

Additional file 1: Table S1. Intracellular dNTP levels in DCs treated with
Vpx(+) or Vpx(-) VLPs.
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