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Abstract 1 

 2 

Biological control efficiency can be improved by developing effective mass-rearing systems to 3 

produce large numbers of high-quality parasitoids. This study explores an alternative host for 4 

rearing Sclerodermus brevicornis (Hymenoptera: Bethylidae), a potential biological control agent for 5 

the suppression of exotic and invasive wood-boring long-horned beetle populations in the European 6 

agroforestry ecosystems. We trial larvae of the rice moth, Corcyra cephalonica Stainton 7 

(Lepidoptera: Pyralidae), as hosts for the parasitoid. We quantify the probability and timing of host 8 

attack and parasitism as well as reproductive success, offspring production and the characteristics 9 

of adult offspring. As S. brevicornis is a quasi-social species (multiple females, communally produce 10 

offspring broods), we also explore the effects of varying the number of females to which individual 11 

hosts are presented, with the aim of determining the optimal female-to-host ratio. As time to host 12 

attack can be a limiting factor in S. brevicornis rearing protocols, we trial the use of adult females of 13 

another species of the bethylid wasp, Goniozus legneri Gordh, to paralyse C. cephalonica larvae prior 14 

to presentation. We identify the conditions within our experiment that maximise offspring 15 

production per host and offspring production per adult female parasitoid. We find that C. 16 

cephalonica is suitable as a factious host and, as it is considerably more straightforward to 17 

laboratory-rear than cerambycid species, it is a good candidate for adoption by future S. brevicornis 18 

mass-rearing and release programmes.  19 

 20 

Keywords: Factitious host, parasitoid mass-rearing, life-history, biological control 21 
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Introduction 1 

Members of the genus Sclerodermus Latreille, 1809 (Hymenoptera: Bethylidae) are small-sized (1.5 2 

– 6 mm) parasitoid wasps (Evans, 1978). There are approximately 81 species worldwide (Gordh & 3 

Moczar, 1990; Lanes & Azevedo, 2008). Species of this genus are idiobiont ectoparasitoids (Li & Sun, 4 

2011; Hu et al., 2012), typically of coleopteran larvae. Morphological characteristics of Sclerodermus 5 

enable them to find and attack their hosts in enclosed spaces, such as feeding tunnels (Kühne & 6 

Becker, 1974; Evans, 1978; Yang et al., 2012a; Baena & Zuzarte, 2013; Jiang et al., 2015). Some 7 

species are of considerable economic importance as they are used in biological control programmes 8 

(Yang et al., 2014) while others may be medically detrimental (Evans, 1978; Papini, 2014; Yang et 9 

al., 2014; Skvarla, 2018). 10 

In China, Sclerodermus species have formed an integral part of effective and successful forest 11 

pest-management programs (Chen & Cheng, 2000; Yang, 2004; Kaishu, 2006; Tang et al., 2012; Yang 12 

et al., 2014; Jiang et al., 2015). Among the pest there is the pine sawyer beetle, Monochamus 13 

alternatus Hope (Coleoptera: Cerambycidae), a vector of pine wood nematode, Bursaphelenchus 14 

xylophilus (Steiner & Buhrer) (Lai et al., 2012; Yang et al., 2012b; Zhang et al., 2012; Yang et al., 15 

2013; Yang et al., 2014); the oak long-horned beetle, Massicus raddei Blessig (Coleoptera: 16 

Cerambycidae) (Wu et al., 2008; Wang et al., 2010; Tang et al., 2012; Yang et al., 2012a); and the 17 

emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) (Wu et al., 2008; Yang 18 

et al., 2012a). Several Asian species of long-horned beetles have invaded Europe (Jucker and Lupi, 19 

2011) and some of the 17 recorded species of Sclerodermus (Andre, 1881; Kieffer, 1914ab), have 20 

now been reported as associated with these invasive pests (Hérard et al., 2007; Lupi et al., 2014). 21 

One of these European natives, Sclerodermus brevicornis (Kieffer), was first reported as associated 22 

with the long-horned beetle, Oxypleurus nodieri Mulsant (Coleoptera: Cerambycidae) 23 

approximately one century ago (Kieffer, 1914a) and much more recently, in 2011, was reported in 24 

association with the exotic Asian longhorn beetle, Psacothea hilaris hilaris (Pascoe) (Coleoptera: 25 

Cerambycidae) (Lupi et al., 2014). It was subsequently shown that S. brevicornis can be laboratory 26 

reared on P. hilaris hilaris and two other invasive longhorn beetles species and that it has potential 27 

for deployment in biological control programs (Lupi et al., 2017). 28 

While rearing S. brevicornis on longhorn beetles is entirely possible, the process of rearing the 29 

hosts is time-consuming and physically demanding (Lupi et al., 2015; Lupi et al., 2017). Moreover, 30 

S. brevicornis foundresses are best left undisturbed for at least four days to successfully paralyse its 31 

host, a process that increases the overall duration of parasitoid rearing. The success of parasitoids 32 
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used in biological control programs is often determined by finding suitable alternative hosts used 1 

for their mass-rearing (Lemos et al., 2003; Ramalho & Dias, 2003; Pratissoli et al., 2004). Such hosts 2 

should ideally have low production costs and no adverse effects on the reproductive and 3 

behavioural performance of the parasitoids (Pereira, 2006). Therefore, attempts have been made 4 

to find a suitable factitious host for S. brevicornis. Thus far, it has been found that female S. 5 

brevicornis do not successfully parasitize pupae of the mealworm, Tenebrio molitor L. (Coleoptera: 6 

Tenebrionidae), or late-instar larvae of the greater wax moth, Galleria mellonella L. (Lepidoptera: 7 

Galleridae) (D.L. unpublished data). 8 

Here we evaluate the potential use of larvae of the rice moth, Corcyra cephalonica Stainton 9 

(Lepidoptera: Pyralidae), as host for S. brevicornis. Besides being a pest insect, the rice moth is 10 

commonly used as a factitious host for rearing around 75 species of natural enemies (Chaudhuri & 11 

Senapati, 2017), including parasitoids and predators (Hardy & Blackburn, 1991; Jalali & Singh, 1992; 12 

Sahayaraj, 2002; Ballal et al., 2003; Jalali et al., 2003; Lenin & Rajan, 2016; Subandi et al., 2017). 13 

Apart from few cases (e.g. Amiresmaeili et al., 2018), indeed it is generally easier to produce 14 

biocontrol agents on factitious hosts rather than on their natural ones (Kumar & Murthy, 2000). We 15 

explore the performance of S. brevicornis, when presented with C. cephalonica larvae, by 16 

quantifying the probability and timing of host attack and parasitism as well as reproductive success, 17 

offspring production and characteristics. As S. brevicornis is a quasi-social species (multiple females, 18 

termed ‘foundresses’ attack single hosts and produce offspring broods on them communally), we 19 

also explore the effects of varying the number of females to which individual hosts are presented, 20 

with the aim of determining the optimal female-to-host ratio (Wei et al., 2017). As time to host 21 

attack can be a limiting factor in S. brevicornis rearing protocols, we trial the use of adult females of 22 

another species of the bethylid wasp, Goniozus legneri Gordh, to paralyse C. cephalonica larvae prior 23 

to their presentation to Sclerodermus females. Goniozus legneri is a gregarious ecto-parasitoid 24 

present in several agroecosystems and easy to rear in the laboratory (Legner & Silveira-Guido, 1983; 25 

Legner & Gordh, 1992; Steffan et al., 2001; Zaviezo et al., 2007); it is also known to typically attack 26 

and paralyse C. cephalonica larvae within minutes of presentation (I.H. pers. obs.). 27 

 28 

 29 

Materials and Methods 30 

All cultures and experiments were carried out in a climate room at 26.0°C ±0.5°C, photoperiod 16:8 31 

(L:D), and 70 ±5% R.H. in a laboratory at the University of Milan, Italy. 32 
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 1 

Host and parasitoid cultures 2 

A stock culture of Corcyra cephalonica was set up in Plexiglas cages (length: 36cm × width: 26cm × 3 

height: 25cm) where the adults could fly and mate. To obtain eggs, females were captured and 4 

positioned into a small container to allow oviposition. Eggs were then collected and transferred into 5 

Petri dishes (15 cm diameter × 2 cm deep) containing a diet used for rearing Pyralid moths (following 6 

Limonta et al., 2009). Petri dishes were kept closed until used for experiments or until pupation to 7 

obtain new adults for the stock culture. 8 

Sclerodermus brevicornis was maintained on the larvae of the longhorn beetle Psacothea hilaris 9 

hilaris. Two different systems for rearing P. h. hilaris were set up according to the instar (pre-10 

imaginal or adult) following published protocols (Favaro et al., 2017; Lupi et al., 2015). To obtain 11 

new offspring of S. brevicornis, six to eight newly emerged females were presented with single late 12 

instar larvae of the long horned beetle in plastic containers (5 cm diameter × 4 cm deep) on a bed 13 

(ca. 1.5 mm) of cork oak granules, following Lupi et al. (2017). 14 

A culture of G. legneri (Hymenoptera: Bethylidae) was reared on C. cephalonica. Individual female 15 

parasitoids were presented with single host larvae in glass vials of 10mL with a base of 1.4 mm. The 16 

strain of G. legneri was obtained from the University of Nottingham, UK, in 2016, and is referred to 17 

as ‘U’ in Khidr et al. (2013). 18 

 19 

Experiments 20 

All the experiments were carried out using Corcyra cephalonica as a host, selecting larvae ranging 21 

from 0.030-0.040g. One of two procedures was adopted before C. cephalonica were presented to 22 

S. brevicornis: either S. brevicornis females were presented with unparalysed hosts or were 23 

presented toa pre-paralysed larvae by a female of G. legneri, removed before being presented to S. 24 

brevicornis. Then, in each replicate, a host was placed into a plastic vial (10cm long × 1.3cm 25 

diameter) and either 1, 2, 3, 4, 5 or 6 adult S. brevicornis females (foundresses) were added into 26 

each vial. The vials were closed with a gauze and cotton wool. To give adequate overall statistical 27 

power (Smith et al., 2011), the trial contained the same number of replicates per female at time 28 

zero (n=100) but when, prior the paralysis, some parasitoids died inside the vial, this was declassed 29 

to the corresponding female group number. The result was that we set up 92, 224, 111, 54, 50 and 30 

54 for foundress numbers of 1, 2, 3, 4, 5 and 6, respectively, giving a total number of 585 replicates. 31 

We ensured that a balanced range of pre-paralysed or unparalysed hosts were represented within 32 
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the replicates of the first four foundress groups. Five- and six-foundress groups were not presented 1 

with pre-paralysed hosts. 2 

Vials were observed daily to record host paralysis (occurrence and timing), egg laying (occurrence 3 

and time of first oviposition to begin a clutch), pupation (timing of first within a brood), emergence 4 

of adult offspring (timing, number and sex) and whether offspring were alate or apterous 5 

(S. brevicornis is wing dimorphic in both sexes according to Lupi et al., 2017). Observations were 6 

made attempting not to disturb the wasps and in consequence some offspring may have been 7 

overlooked at earlier developmental stages. If a host was oviposited on, it was considered to have 8 

been successfully parasitized. Parasitism rate was defined as the proportion of replicates in which 9 

oviposition occurred out of total number of replicates in which hosts were paralysed. The 10 

production of at least one adult offspring in a replicate was defined as reproductive success. 11 

 12 

Statistical analyses 13 

Data were analysed using Generalized Linear Modelling approaches (Aitkin et al., 1989; Crawley, 14 

1993; Faraway, 2006). All analyses were carried out using the statistical software package GenStat 15 

(version 17, VSN International, Hemel Hempstead, UK). 16 

The explanatory variables ‘foundress number’ and the ‘use of G. legneri’ (as a pre-host-paralysing 17 

agent) were fitted as factors. For some analyses foundress number was initially treated as a factor 18 

with six levels but, because there was only variation in G. legneri use among 1-4 foundress 19 

replicates, analyses including consideration of pre-paralysis excluded 5- and 6-foundress replicates 20 

and thus fitted foundress number as a factor with four levels. In some analyses we additional 21 

explored results by fitting foundress number as a continuous variable. 22 

The response variables were the parameters recorded during the daily observations and at the 23 

end of the experiment. Logistic analyses (GLM) were used to explore binary data on host paralysis, 24 

oviposition and foundresses reproductive success; these analyses assumed binomially distributed 25 

errors (the reported test statistic is change in deviance, G, which is approximately χ2 distributed, 26 

(Crawley, 1993). Other logistic analyses of proportional data with denominators larger than unity 27 

(e.g. proportion of alate males or females, offspring sex ratio, etc.) assumed quasi-binomial error 28 

distributions (the reported test statistic is the F-ratio, (Crawley, 1993; Wilson & Hardy, 2002). All 29 

logistic analyses adopted a logit link function. Log-linear analyses were used to analyse count data 30 

(e.g. number of offspring produced) assuming quasi-Poisson error distributions and a log-link 31 
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function (Crawley, 1993) . Data derived from integers (e.g. per-foundress brood size) that were likely 1 

to be approximately Poisson-distributed were also analysed using log-linear models (Faraway, 2006; 2 

Tang et al., 2014). Following logistic and log-linear analyses, we give the percentage deviance 3 

explained (%Dev) as a descriptor analogous to r2.  4 

Parametric cohort survival analyses with censoring (Aitkin et al., 1989; Crawley, 1993) were used 5 

to analyse the influences on times-to-events, such as time to host paralysis, oviposition, larval 6 

hatching, spinning cocoons and adult offspring emergence. 7 

 8 

RESULTS 9 

 10 

Probability host utilization and developmental success 11 

 12 

Probability of paralysis 13 

The mean probability of a host (which had not been pre-paralysed by G. legneri) of being paralysed 14 

by S. brevicornis was 0.754 (S.E. = +0.021, -0.022, n=411). The probability was greater when there 15 

were multiple foundresses (logistic ANOVA: G5=3.11, P=0.008, %Dev=3.39, Fig. 1). The model was 16 

simplified by aggregating foundress number categories to find the minimal adequate model 17 

(Crawley, 1993): this showed that there was not a significant difference between the multi-18 

foundress replicates (G4=0.51, P=0.727, %Dev=0.57, n=350) and that the probability of paralysis was 19 

higher among these than among single foundress replicates (G1=13.51, P<0.001, %Dev=2.95). 20 

Similarly, if foundress number was fitted as a continuous variable, the probability of paralysis 21 

increased in a curvilinear relationship with increasing foundress number (logistic regression: 22 

G1=3.15, P=0.076, %Dev=0.69; quadratic term: G1=7.48, P=0.006, %Dev=1.63, Fig. 1). 23 

 24 

Probability of oviposition  25 

The overall probability of a presented host of being oviposited on by S. brevicornis was 0.610 (SE ± 26 

0.020, n=585). There was a significant interaction between foundress number and pre-paralysis 27 

treatment: for unparalysed hosts, oviposition probability increased with foundress number but for 28 

pre-paralysed hosts, it declined (logistic ANCOVA, G3 = 6.50, P < 0.001, %Dev = 2.98, n=481). For 29 

hosts that were paralysed (whether by G. legneri or by S. brevicornis), the probability of subsequent 30 

oviposition by S. brevicornis was 0.7454 (S.E. = +0.019, -0.020). Again, there was a significant 31 
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interaction between foundress number and pre-paralysis treatment (logistic ANCOVA: G3 = 6.75, 1 

P<0.001, %Dev = 4.21, Fig. 2). 2 

 3 

Probabilities of development towards adulthood 4 

Among the 357 replicates in which eggs were laid, the probability of at least one egg of hatching 5 

was 0.7956 (S.E. = +0.020, -0.022). This probability was significantly lower among eggs laid by five-6 

foundress groups (logistic analysis: G5 = 2.49, P = 0.029, %Dev = 3.45). The model was simplified by 7 

aggregating foundress number categories to find the minimal adequate model (Crawley, 1993): this 8 

showed that there was a no significant difference among foundress groups of 1, 2, 3, 4 and 6 (G4 = 9 

0.83, P = 0.506, %Dev = 1.11) and the probability was significantly lower when eggs were laid by 10 

five-foundress groups (G1 = 9.16, P = 0.002, %Dev = 2.53). Egg hatching probability was not 11 

influenced by the use of G. legneri (G1 = 2.09, P = 0.148, %Dev = 0.79; pre-paralysis × foundress 12 

number interaction: G3 = 0.04, P = 0.988, %Dev = 0.05). 13 

In replicates with hatched larvae, the probability of some developing to the pupal stage was 14 

0.8416 (S.E. = +0.021, -0.023, n = 284). Larvae produced by four-foundress groups pupated 15 

significantly more successfully than those for two or three-foundress groups, whereas pupation 16 

success of offspring of other foundress group sizes was intermediate (logistic analysis: G5 = 2.79, P 17 

= 0.016, %Dev = 5.62). Pupation probability was unaffected by the use of G. legneri (G1 = 0.00, P = 18 

0.947, %Dev = 0.002; pre-paralysis × foundress number interaction: G3 = 0.02, P = 0.997, %Dev = 19 

0.02). 20 

Among replicates in which some offspring reached the pupal stage (n = 239), the probability of 21 

at least one adult offspring emerging was 0.983 (S.E. = +0.007, -0.0107); this was unaffected by 22 

foundress number (G5 = 1.11, P = 0.355, %Dev = 13.60), the use of G. legneri (G1 = 0.48, P = 0.487, 23 

%Dev = 1.24) or their interaction (G3 = 1.54, P = 0.202, %Dev = 11.88). 24 

Overall probability of reproductive success 25 

The overall probability of the successful production of at least one adult offspring from a presented 26 

host was 0.4017 (SEM = +0.0204, -0.0201). Success did not differ significantly across all foundress 27 

number treatments (logistic ANOVA: G5 = 1.52, P = 0.180, %Dev = 0.96, n = 585) but there was a 28 

positive relationship when foundress number was fitted as a variate (logistic regression: G1 = 4.52, 29 

P = 0.033, %Dev = 0.57, Fig. 3). Among foundress numbers treatments where pre-paralysis was also 30 
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varied, there was a significant interaction (pre-paralysis: G1 = 0.03, P = 0.862, %Dev = 0.005; 1 

Interaction: G3 = 2.72, P = 0.043, %Dev = 1.23, n = 481) such that reproductive success increased 2 

with increase of foundress number when G. legneri was not utilised but decreased when hosts had 3 

been pre-paralysed: this interaction was due to the use of G. legneri affecting the probability of 4 

oviposition (Fig. 2). Considering only the hosts that were oviposited on, adult offspring were 5 

produced in two thirds of the cases (mean = 0.658, SE = +0.025, -0.026); the probability of post-6 

oviposition success was marginally significantly affected by foundress number (G5 = 2.23, P = 0.048, 7 

%Dev = 2.43) but there was no overall trend as foundress number increased (logistic regression: G1 8 

= 0.16, P = 0.685, %Dev = 0.04) and the probability was unaffected by the use of G. legneri (main 9 

effect: G1 = 0.75, P = 0.385, %Dev = 0.21, n = 280; interaction: G3 = 0.22, P = 0.884, %Dev = 0.18). 10 

  11 

 12 

Timing of host use and offspring development 13 

Descriptive statistics for timings under all experimental treatment combinations are given in Table 14 

1. 15 

Time to paralysis  16 

Among the 411 replicates in which unparalysed hosts were presented to S. brevicornis females, the 17 

time to paralyse hosts ranged between 1 and 13 days (mean=3.95, SE= ±0.12) but not all hosts 18 

became paralysed (see above). The time taken to paralysis was affected by foundress number 19 

(survival analysis with hosts unparalysed by day 13 treated as censors: G5= 28, P<0.001, %Dev = 20 

4.48). Aggregation of factor levels indicated that timing was not significantly different among multi-21 

foundress treatments (G4= 3, P= 0.558, %Dev = 0.47) but was significantly slower in single-foundress 22 

replicates (G1= 25, P<0.001, %Dev = 4.15; Fig. 4). 23 

 24 

Time to oviposition 25 

The time from host presentation to eggs first observation ranged from 3 to 18 days (mean=7.37, SE= 26 

±0.14) and varied according to the number of foundresses present (G5 = 35, P<0.001, %Dev = 3.77, 27 

n = 582); larger foundress groups typically started ovipositing earlier. There was a significant 28 

interaction between foundress number and the use of G. legneri (G3 = 22, P<0.001, %Dev = 3.01, n 29 

= 478); groups of three foundresses took longer to lay eggs on hosts that were pre-paralysed 30 

compared to other treatment combinations. 31 
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Once a host was paralysed, the time until oviposition, ranged from 1 to 17 days (mean=4.22, SE= 1 

±0.15), varied according to foundress number (G5 = 88, P<0.001, %Dev = 11.59, n = 476), with eggs 2 

typically laid earlier by larger foundress groups (Fig. 5). Times were shorter when G. legneri 3 

foundresses were not utilised for pre-host-paralysis (G1 = 18, P<0.001, %Dev = 2.83, n = 394) and, as 4 

above, there was a significant interaction between foundress number and the use of G. legneri (G3 5 

= 21, P<0.001, %Dev = 3.3). 6 

 7 

Time to egg hatching 8 

The time from when at least one egg was first observed on a host to the first observation of larvae 9 

on the host ranged from 1 to 12 days (mean = 4.43, SE = ±0.12). This timing varied across foundress 10 

number treatments (G5 = 23, P<0.001, %Dev = 4.33, n = 354); eggs produced by groups of 5-11 

foundresses typically took the longest time to hatch. Eggs hatched marginally significantly earlier 12 

when hosts had not been pre-paralysed by G. legneri (G1 = 4, P = 0.046, %Dev = 0.81, n = 277) but 13 

there was no significant interaction with foundress number (G3 = 0.00, P = 1.00, %Dev = 0.17). 14 

 15 

Time to pupation 16 

Pupae were first observed between 4 to 17 days (mean=5.91, SE=±0.16) after the first observation 17 

of larvae on a host. Offspring of smaller foundress groups pupated significantly earlier (G5 = 14, P = 18 

0.0156, %Dev = 3.60, n=282). Time to pupation was unaffected by the use of G. legneri (G1 = 2, P = 19 

0.1573, %Dev = 0.57; interaction with foundress number: G3 = 2, P = 0.5724, %Dev = 0.72, n=227). 20 

Time to adult emergence 21 

Adult offspring of S. brevicornis emerged from pupae between 6 to 26 days (mean=15.56, 22 

SE=±0.223) after the first observation of pupae in the brood. This period differed across foundress 23 

number treatments (G5 = 7, P = 0.221, %Dev = 3.99, n = 237). Pupae produced from hosts that were 24 

pre-paralysed by G. legneri developed to adult offspring within a significantly shorter time (G1 = 13, 25 

P<0.001, %Dev = 6.15, n = 189). There was no significant interaction effect between foundress 26 

number and the use of G. legneri (G3 = 7, P = 0.5724, %Dev = 1.27). 27 

Time for egg to adult development 28 
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Overall egg-to-adult development ranged between 17 and 40 days (mean = 25.85, SE = ±0.25). 1 

Developmental time was significantly shorter when eggs were produced by four-foundress groups 2 

(G5 = 12, P = 0.0348, %Dev = 2.22, n=354). This time was significantly not affected by the use of G. 3 

legneri as a pre-host-paralysing agent (G1 = 1, P = 0.3173, %Dev = 0.18; interaction with foundress 4 

number: G3 = 1, P = 0.8013, %Dev = 0.16, n=277)5 

Number and characteristics of offspring produced 6 

Number of offspring 7 

A mean of 6.34 (SEM = +0.40, -0.38) offspring were produced per host across all 585 replicates. 8 

Offspring production did not differ significantly across all foundress number treatments (log-linear 9 

ANOVA: F5,579 = 1.95, P = 0.084, %Dev = 1.66, n = 585). However, among the treatments where pre-10 

paralysis was also varied, there was a significant interaction between pre-paralysis and foundress 11 

number (pre-paralysis: F1,474 = 3.84, P = 0.051, %Dev = 0.77; Interaction: F3,476 = 3.58, P = 0.014, %Dev 12 

= 2.16, n = 481). Overall, a mean of 7.56 (SEM = +0.90, -0.80, n = 174) offspring were produced when 13 

hosts were pre-paralysed and 5.84 (SEM = +0.52, -0.48, n = 307) were produced when hosts were 14 

not pre-paralysed. The overall mean offspring production per host was at a maximum of 10.20 (SE 15 

± 1.32) when there were six foundresses and the host was not pre-paralysed (Table 2) and (Fig. 8 16 

(a)). 17 

When replicates with no offspring production were excluded, a mean of 15.79 (SEM = +0.63, -18 

0.61) offspring were produced per host. The number of offspring produced was affected by 19 

foundress number (log-linear ANOVA: F5,229 = 3.31, P = 0.007, %Dev = 6.74, n = 235) in a significantly 20 

curvilinear relationship (quadratic log-linear regression: F1,234 = 4.07, P = 0.045, %Dev = 1.72, Fig. 6). 21 

Among this restricted set of replicates, production was significantly higher when hosts were pre-22 

paralysed (pre-paralysis: F1,184 = 10.32, P = 0.002, %Dev = 5.17, n = 187). There was no significant 23 

Interaction between foundress number and the use of G. legneri (F3,182 = 0.80, P = 0.494, %Dev = 24 

1.20). 25 

 26 

The number of offspring produced per foundress per host across all 585 replicates (i.e. including 27 

those with complete reproductive failure) had a mean of 2.78 (SEM = +0.18, -0.17) and was typically 28 

lower when foundress number was greater (log-linear analysis: F5,579 = 8.67, P<0.001, %Dev = 6.97), 29 

or when hosts were not pre-paralysed (F1,477 = 4.97, P = 0.026, %Dev = 0.99, n=481). There was no 30 

significant interaction effect between foundress number and pre-paralysis treatment (F3,476 = 2.49, 31 
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P = 0.060, %Dev = 1.49). The overall mean offspring production per foundress per host was at a 1 

maximum of 7.194 (SE ± 0.854) when there was single foundress and the host was pre-paralysed 2 

(Table 2) and (Fig. 8 (b)). 3 

Similar patterns were observed among the replicates in which there was some reproductive 4 

success: per-foundress offspring produced per host (mean = 6.91, SEM = +0.34, -0.33) declined with 5 

foundress number (F5,229 = 37.29, P<0.001, %Dev = 44.88, n=235), or when hosts were not pre-6 

paralysed (F1,183 = 8.99, P = 0.003, %Dev = 3.45, n = 187, Fig. 7). There was no interaction between 7 

foundress number and G. legneri use as pre-paralysis treatment (F3,182 = 0.97, P = 0.407, %Dev = 8 

1.12). 9 

 10 

Sexual composition of broods 11 

Three of the 235 that produced adult offspring contained male offspring only: a single foundress 12 

brood of 13 males, a 2-foundress brood of 15 males and a 3-foundress brood of just one male. As 13 

all-male broods typically suggest maternal virginity, and thus a lack of sex allocation control, these 14 

replicates were excluded from further sex ratio analysis (following (Hardy & Cook, 1995; Kapranas 15 

et al., 2016a). Two broods with exceptionally high sex ratios were also excluded: a single-foundress 16 

replicate of 0.89 (a sex ratio three times higher than any other mixed sex brood, suggesting lack of 17 

sex ratio control) and a five foundress replicate of 0.90 (several foundresses may have been virgins). 18 

Data remained from 31 single foundress broods, 83 2-foundress broods, 40 3-foundress broods, 29 19 

4-foundress broods, 21 5-foundress broods and 26 6-foundress broods. 20 

Brood sex ratios (the proportion of offspring that were male, m/[m+f]) were very strongly female 21 

biased (mean = 0.0838, +SE = 0.0051, -SE = 0.0049). Sex ratios were not significantly influenced by 22 

pre-paralysis treatment (F1,175 = 0.98, P = 0.323, %Dev = 0.40, n = 182) or its interaction with 23 

foundress number (F3,177 = 0.56, P = 0.641, %Dev = 0.69). Sex ratios were typically more female 24 

biased in broods produced by larger numbers of foundresses (logistic analysis: F5,226 = 12.44, 25 

P<0.001, %Dev = 21.58, Fig. 9). Sex ratios were also affected by brood size and by its interaction with 26 

foundress number (brood size: F1,221 = 7.77, P = 0.006, %Dev = 2.42; Interaction: F5,225 = 4.92, 27 

P<0.001, %Dev = 7.64), such that sex ratios declined with an increase of brood size among broods 28 

produced by 1, 2, 3 or 5 females and increased among broods produced by 4 or 6 foundresses. 29 
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The number of males produced per brood decreased significantly as foundress number increased 1 

(log-linear analysis: F5,223 = 9.89, P<0.001, %Dev = 15.16) and increased with an increase of brood 2 

size (F1,219 = 49.78, P<0.001, %Dev = 15.26, Fig. 10) as there was a significant interaction between 3 

foundress number and brood size (F5,223 = 3.85, P = 0.002, %Dev = 5.90). The mean per-foundress 4 

number of males in a brood produced decreased as foundress number increased (F5,223 = 18.54, 5 

P<0.001, %Dev = 18.43) and increased with brood size (F1,219 = 4.88, P<0.001, %Dev = 8.52), with 6 

generally greater increases when foundress numbers were greater (Foundress number × brood size 7 

interaction: F5,223 = 3.32, P = 0.007, %Dev = 3.30). 8 

The proportion of broods that were all females (‘virgin broods’, according Kapranas et al., 2016b) 9 

generally increased with increasing foundress number (logistic analysis: G5 = 2.67, P = 0.020, %Dev 10 

= 5.06, Fig. 11a) and also decreased with an increase of brood size (G1 = 22.21, P<0.001, %Dev = 8.41, 11 

Fig. 11b); there was a significant interaction between foundresses numbers and brood size (G5 = 12 

3.21, P = 0.007, %Dev = 6.07). Virginity was not significantly affected by the use of G. legneri to pre-13 

paralyse the host (G1 = 0.04, P = 0.845, %Dev = 0.02, n = 182), nor by its interaction with foundress 14 

number (G3 = 2.22, P = 0.083, %Dev = 2.91). 15 

 16 

Wing dimorphism 17 

Wing dimorphism occurred in both male and male offspring (Table 3). Of the 230 broods containing 18 

at least one adult female, there were no instances of exclusively alate (winged) females. In 216 19 

broods, all females were apterous (wingless) while 14 broods contained a mixture of apterous 20 

(80.75%) and alate (19.25%) females. Adult males were produced in 170 broods: 164 contained 21 

exclusively alate males and six contained a mix of apterous (25.81%) and alate (74.19%) males. Male 22 

aptery only occurred when all or most females in a brood were also apterous. 23 

 24 

The proportion of females that were alate differed among foundress number treatments (F5,230 25 

= 2.41, P = 0.038, %Dev = 4.73, n = 232), such that adult female offspring produced by single 26 

foundress groups contained significantly more alate members. This proportion declined as total 27 

brood size increased (F1,226 = 114.78, P<0.001, %Dev = 5.81) and also as the number of females in a 28 

brood increased (F1,231 = 10.86, P = 0.001, %Dev = 4.34). There was no significant interaction 29 

between foundress number and brood size (F5,225 = 2.06, P = 0.072, %Dev = 4.05) or female offspring 30 

number (F5,225 = 1.87, P = 0.101, %Dev = 3.73). 31 
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The proportion of males that were alate was generally high but differed significantly according 1 

to foundress number, being lowest when broods were produced by three-foundresses (F5,170 = 7.79, 2 

P < 0.001, %Dev = 16.60, n = 172). This proportion also declined with an increase in brood size (F1,161 3 

= 17.47, P<0.001, %Dev = 7.44, Fig. 12) but there was no significant interaction between foundress 4 

number and brood size (F5,165 = 1.19, P = 0.317, %Dev = 2.53). Alate males were also less common 5 

when there were more males in a brood (F1,166 = 14.71, P<0.001, %Dev = 5.37) and there was a 6 

significant interaction between foundress number and the number of males in a given brood (F5,165 7 

= 7.90, P<0.001, %Dev = 14.41). 8 

 9 

Discussion 10 

We have shown that larvae of the rice moth, Corcyra cephalonica, can be utilized as factitious hosts 11 

for Sclerodermus brevicornis. This is in contrast to a previous attempt to rear S. brevicornis on 12 

lepidopteran larvae (Galleria mellonella, D.L. unpublished data) and it is noteworthy that 13 

Sclerodermus species normally develop on coleopterans (Gordh & Moczar, 1990). Around 75% of 14 

hosts were attacked and paralysed (similar to estimates obtained from S. brevicornis attack on 15 

equivalently sized long-horn beetle larvae Abdi et al. (submitted), and around 60% of all hosts 16 

presented had eggs laid onto them (compared to 73% when provided with beetle larvae, Abdi et al. 17 

(submitted). Oviposition was disrupted by the pre-paralysis of hosts using G. legneri (possibly due 18 

to changes in host odour). However, the probabilities of paralysis and oviposition increased with 19 

foundress number, as did the probability of a host yielding at least one parasitoid offspring as found 20 

by Tang and colleagues (2014). Our finding that around half of the presented hosts yielded offspring 21 

is consistent with data from S. brevicornis reared on  larvae of Psacothea hilaris hilaris (Lupi et al., 22 

2017) and similar to estimates from other Sclerodermus species (Tang et al., 2014). 23 

 24 

Timing of offspring production 25 

Lupi et al. (2017) reported that the developmental time of S. brevicornis on beetle larvae is 26 

approximately one month. Our data indicate that overall development times on C. cephalonica are 27 

similar. The time required to successfully parasitize host decreased with an increase in foundress 28 

numbers, as also found by Tang et al. (2014). We also found that S. brevicornis foundresses took 29 

more time to oviposit on hosts (and for their eggs to enclose) when hosts were pre-paralysed by G. 30 

legneri females: we suggest that this may be related to altered odours when hosts are paralysed. In 31 
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terms of the timing off parasitoid production, there appear be no major negative effects associated 1 

with using C. cephalonica as a factitious host. 2 

 3 

Numerical offspring production 4 

Across all hosts provided, the numerical production of adult offspring (~6.5 per host) was not 5 

affected by the number of foundresses present but, if hosts yielding no offspring were excluded, 6 

production was greatest at intermediate numbers of foundresses (peaking at ~18 per host). Our 7 

data suggest that to maximise S. brevicornis offspring production per foundress per host, hosts 8 

should be pre-paralysed and should be presented to a single foundress. Under these conditions 9 

around 7.2 offspring per-foundress per host can be recruited into the next generation. This is 10 

represented by the parameter c in classical discrete-time host-population models: c is typically 11 

negatively associated with equilibrium host density (Hassell, 2000; Heimpel, 2000), and thus better 12 

biocontrol performance. Previous studies on S. harmandi (Tang et al., 2014) and S. pupariae (Wei et 13 

al., 2017) have found that the probability of producing adult offspring from a given host is enhanced 14 

when foundress groups were larger than 1. However, the sizes of hosts considered by those studies 15 

were substantial (ranging up to 0.64g and 0.24mg, respectively) while the maximum size of C. 16 

cephalonica hosts studied here was 0.040g: compared to cerambycid larvae, C. cephalonica larvae 17 

are small hosts. 18 

 19 

Offspring properties 20 

Female biased sex ratios are generally a desirable property among parasitoids that are biological 21 

control agents because it is females, not males, that attack the target pest (Ode & Hardy, 2008; Li 22 

et al., 2010; Boulton et al., 2015). Most adult offspring produced by S. brevicornis were females 23 

(92%) which accords with prior reports in this species (Lupi et al., 2017) and congeners (Kühne & 24 

Becker, 1974; Li & Sun, 2011; Liu et al., 2011; Hu et al., 2012; Tang et al., 2014; Wei et al., 2014; Gao 25 

et al., 2016; Kapranas et al., 2016b). It is thought that sex ratio bias in Sclerodermus is due to local 26 

resource enhancement (LRE), a mutually beneficial female–female interactions that increase the 27 

reproductive value of daughters, rather than local mate competition (LMC) which is the more 28 

commonly applied expiation of female-biased sex ratios among parasitoids (Tang et al., 2014). Here, 29 

we found a slight increase in bias as foundress number increased, while other studies have found 30 

the opposite (Tang et al., 2014; Wang et al., 2016). This strongly female-biased sex ratio in S. 31 

brevicornis, whether caused by LRE or LMC, is considered an asset for biological control programs 32 
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(Ode & Hardy, 2008). In addition, cooperation among S. brevicornis co-foundresses as a result of 1 

local resource enhancement (LRE) is likely to increase the range of successfully attackable host sizes 2 

(Tang et al., 2014; Kapranas et al., 2016b), and in consequence, is likely to improve the biocontrol 3 

potential of the parasitoid. 4 

Associate with the highly female-biased sex ratio, some broods contained no adult male offspring 5 

at all (virgin broods), which is generally undesirable in rearing programmes because, as a 6 

consequence of arrhenotocky, unmated females are constrained to produce only male offspring in 7 

the following generation. As found in prior studies on S. brevicornis (Lupi et al., 2017) and in 8 

congeners (Kapranas et al., 2016b), the prevalence of all-male broods declined strongly with brood 9 

size and is likely to be associated with mortality of offspring within developing broods. However, we 10 

found that virginity was more prevalent when broods were produced by more foundresses, while 11 

Kapranas et al. (2016b) found the opposite effect of foundress number for S. harmandi. 12 

Wing dimorphism was present among the adult offspring of both sexes although the vast majority 13 

(ca. 99%) of females produced were apterous whereas alate morphs dominated among the males 14 

(ca. 97%); as observed throughout the genus (Kühne & Becker, 1974; Evans, 1978; Tang et al., 2014; 15 

Wang et al., 2016; Lupi et al., 2017; Wei et al., 2017). Apterous males were most common when 16 

brood sizes were larger and we found that the production of alate females was associated with 17 

single-foundress broods. This is consistent with S. pupariae in which the proportion of winged 18 

female progeny decreases as foundress number increases (Wang et al., 2016). Often wingless forms 19 

are confined to a given emergence site whereas winged morphs have greater potential to colonize 20 

hosts at greater distances, which is likely to influence the efficacy of mass release programmes. 21 

 22 

Conclusion 23 

Species of Sclerodermus are considered among the most effective bethylids used in biocontrol 24 

programmes (Yang, 2004; Yang et al., 2014; Jiang et al., 2015). Sclerodermus brevicornis is native to 25 

Europe and has potential to counter invasion by Asian wood-boring long-horned beetles, especially 26 

if mass-reared for subsequent inundative field release (Lupi et al., 2017). However, S. brevicornis 27 

rearing systems have depended on using larvae of long-horned beetles that require considerable 28 

effort and time to maintain in laboratory cultures release (Lupi et al., 2017). Corcyra cephalonica is 29 

simple and inexpensive to mass-rear and is a commonly used factitious host for a range of parasitoid 30 

species, but has not previously been used for Sclerodermus. We conclude that, despite being a 31 

relatively small Lepidoptera, rather than a large Coleoptera, C. cephalonica is suitable for the 32 
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maintenance of laboratory cultures of S. brevicornis. Further, the procedure of pre-paralysis is not 1 

required; although it can enhance production of offspring per host, it will be labour-intensive in 2 

mass-culture facilities and taking human labour into account will likely lead to its exclusion from 3 

optimal rearing protocols. While not all C. cephalonica hosts presented to S. brevicornis females 4 

ultimately yield the next generation of parasitoid offspring, it should be possible to obtain outputs 5 

of up to around 10 parasitoids per host, the vast majority of which will be mated females. Figure 8 6 

summarizes the relative outputs for the combinations of culturing conditions trialled. The 7 

development of practicable and efficient mass-rearing systems brings the active deployment of 8 

European Sclerodermus against invasive long-horned beetles closer to implementation. 9 
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 1 

  2 

Figure 1. Effect of number of foundresses on the probability of paralysis: The mean probability of a host 3 

(which had not been pre-paralysed by G. legneri) being paralysed by S. brevicornis was greater when there 4 

were multiple foundresses. The line shows the fitted quadratic logistic regression: probability of paralysis 5 

=1/(1+(1/(exp((0.081×foundress number)+(0.137×foundress number2)-0.515)))). 6 
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  1 

Figure 2. The effect of foundress number on the probability of oviposition: oviposition 2 

probability for previously unparalysed hosts increased with an increase in foundress 3 

number, but declined when hosts were pre-paralysed by G. legneri. Logistic regression lines 4 

fitted separately across the range of foundress numbers evaluated. 5 
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 1 

 2 

Figure 3. The overall probability of reproductive success. The probability of success did not differ 3 

significantly between groups (foundress number treated as a factor) but increased significantly when 4 

foundress number was fitted as a variate:  logistic regression line, probability =1/(1+(1/(EXP((0.119 × 5 

foundress number)-0.739)))). 6 
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 1 

  2 

Figure 4. The effect of foundress number on time taken to paralyse hosts. Single 3 

foundresses took significantly longer to paralyse hosts than did multiple foundresses. 4 

Among multiple foundress replicates, the number of foundresses did not affect timing 5 

significantly. 6 
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 1 

Figure 5. Influence of time to egg laying on paralysed hosts. Smaller foundress 2 

groups (1-4) took significantly longer to oviposit on hosts than did groups of 5 or 3 

6 foundresses. 4 

  5 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16 18

P
rp

o
p
rt

io
n
 o

f 
h
o
s
ts

 n
o
t 

o
v
ip

o
s
it
e
d
 o

n

Time to oviposition (days)

One foundress

Two foundresses

Three foundresses

Four foundresses

Five foundresses

Six foundresses



28 
 

 1 

Fig. 6. The number of adult offspring produced. The mean brood size was larger in intermediate 2 

sized foundress groups than in smaller or larger groups. Quadratic log-linear regression: brood 3 

size = (-0.942 × foundress number2) + (6.1177 × foundress number) + 7.991). 4 
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 1 

Fig. 7. Effects of number of foundresses and pre-paralysis on per-foundress offspring production. 2 

The number of offspring produced per foundress per host (across replicates in which there was some 3 

reproductive success) was typically lower when foundress number was greater. Among foundress 4 

numbers 1-4, per-foundress production was also lower when hosts were not pre-paralysed by G. 5 

legneri females. 6 
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 1 

 2 

Fig. 8. Offspring production according to the combinations of conditions trialled. Panel (a) shows 3 

the total number of adult offspring produced per host whereas panel (b) shows adult offspring 4 

produced per-foundress per host. 5 
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 1 

Fig. 9. Sex ratios in relation to foundress number. Broods produced by larger foundress groups 2 

were typically more female biased. Logistic regression: sex ratio = 1/(1+(1/EXP((-0.3106 x 3 

foundress number)-1.471))). 4 
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 1 

Fig. 10. Effect of brood size on per-brood male production: The number of males produced per 2 

brood increased with an increase of brood size 3 
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 1 

 2 

Fig. 11. The prevalence of virgin broods: Panel (a): The proportion of broods that 3 

were all females increased with an increase in foundress number. Panel (b) 4 

virginity decreased with an increase of brood size. Lines were fitted by logistic 5 

regression. 6 
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 1 

 2 

Fig. 12. The relationship between the proportion of winged males and 3 

brood size. Line fitted by logistic regression. 4 
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Table 1. Times taken for host use and offspring development (Values are mean number of days ± SEM) 1 

Number of 

Foundresses 

G. legneri used to 

pre-paralyse the 

host? 

Host 

presentation-

to-paralysis 

Host 

presentation-

to-oviposition 

Paralysis-to-

oviposition 

Oviposition-

to-hatching 

Hatching-to-

pupation 

Pupation-to-

emergenge 

Total egg-to-

adult 

development 

1 Yes 1.70 ± 0.21 9.05 ± 0.58 7.25 ± 0.54 6.35 ± 0.80 7.07 ± 0.81 15.08 ± 0.84 26.92 ± 1.05 

 No 5.50 ± 0.50 9.50 ± 0.51 4.27 ± 0.47 5.04 ± 0.59 5.10 ± 0.48 17.00 ± 0.58 25.90 ± 0.80 

2 Yes 1.08 ± 0.12 8.60 ± 0.33 7.36 ± 0.31 4.54 ± 0.31 6.06 ± 0.42 13.69 ± 0.46 24.28 ± 0.59 

 No 3.76 ± 0.24 7.24 ± 0.29 3.42 ± 0.27 4.67 ± 0.28 6.08 ± 0.37 14.00 ± 0.57 24.50 ± 0.75 

3 Yes 0.66 ± 0.14 8.60 ± 0.72 6.00 ± 0.67 4.36 ± 0.53 6.00 ± 1.24 16.22 ± 1.01 26.11 ± 0.79 

 No 2.98 ± 0.23 7.36 ± 0.39 4.44 ± 0.36 3.63 ± 0.27 5.09 ± 0.44 17.34 ± 0.51 26.16 ± 0.50 

4 Yes 2.01 ± 0.27 7.00 ± 0.72 5.00 ± 0.67 4.60 ± 0.54 8.00 ± 0.72 15.70 ± 0.63 28.30 ± 0.30 

 No 4.10 ± 0.40 7.36 ± 0.55 3.68 ± 0.52 4.90 ± 0.48 4.84 ± 0.56 17.00 ± 0.71 26.95 ± 0.71 

5 No 4.14 ± 0.15 5.78 ± 0.41 1.68 ± 0.38 4.83 ± 0.28 6.09 ± 0.46 17.00 ± 0.81 27.59 ± 0.84 

6 No 4.18 ± 0.12 5.89 ± 0.43 1.87 ± 0.40 4.16 ± 0.29 6.31 ± 0.28 16.00 ± 0.54 26.42 ± 0.45 

Overall means 3.01 ± 0.24 7.64 ± 0.49 4.50 ± 0.46 4.71 ± 0.44 6.06 ± 0.58 15.90 ± 0.66 26.31 ± 0.68 

 2 

  3 
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Table 2. Offspring production according to the combinations of conditions trialled. 1 

2 Foundress 

number 

Pre-paralysis 

treatment 

Total 

adult offspring 

 Females  Males Per-foundress 

adult offspring  Apterous Alate  Apterous Alate 

One Yes 7.194 ± 1.744  5.839 ± 1.601 0.129 ± 0.084  0.032 ± 0.028 1.194 ± 0.282 7.194 ± 0.854 

No 4.409 ± 1.243  3.393 ± 1.141 0.001 ± 0.060  0.067 ± 0.020 0.590 ± 0.201 4.409 ± 0.609 

Two Yes 5.092 ± 1.041  4.529 ± 0.956 0.001 ± 0.050  0.001 ± 0.017 0.563 ± 0.168 2.546 ± 0.510 

No 5.569 ± 0.830  5.102 ± 0.762 0.015 ± 0.040  0.001 ± 0.013 0.453 ± 0.134 2.785 ± 0.406 

Three Yes 3.450 ± 1.535  3.025 ± 1.409 0.025 ± 0.074  0.025 ± 0.024 0.375 ± 0.248 1.150 ± 0.752 

No 7.423 ± 1.152  6.634 ± 1.058 0.169 ± 0.055  0.014 ± 0.018 0.606 ± 0.186 2.474 ± 0.564 

Four Yes 9.812 ± 2.428  8.000 ± 2.228 0.001 ± 0.116  0.001 ± 0.039 1.813 ± 0.392 2.453 ± 1.188 

No 6.816 ± 1.575  6.026 ± 1.446 0.158 ± 0.076  0.026 ± 0.025 0.605 ± 0.255 1.704 ± 0.771 

Five No 8.060 ± 1.373  7.500 ± 1.261 0.020 ± 0.066  0.001 ± 0.022 0.540 ± 0.222 1.612 ± 0.672 

Six No 10.204 ± 1.321  9.593 ± 1.213 0.001 ± 0.063  0.001 ± 0.021 0.611 ± 0.214 1.701 ± 0.647 
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Table 3. Wing dimorphism among adult offspring 1 

Sex Total offspring Alate Apterous 

Male 306 298 (97.39%) 8 (2.61%)  

Female 3346 46 (1.37%) 3300 (98.63%) 

 2 

 3 


