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We propose a new class of modified regression-based tests for detecting asset price bubbles designed to be robust to the presence
of general forms of both conditional and unconditional heteroskedasticity in the price series. This modification, based on the
approach developed in Beare (2018) in the context of conventional unit root testing, is achieved by purging the impact of
unconditional heteroskedasticity from the data using a kernel estimate of volatility before the application of the bubble detection
methods proposed in Phillips, Shi and Yu (2015) (PSY). The modified statistic is shown to achieve the same limiting null
distribution as the corresponding (heteroskedasticity-uncorrected) statistic from PSY would obtain under homoskedasticity,
such that the usual critical values provided in PSY may still be used. Versions of the test based on regressions including either
no intercept or a (redundant) intercept are considered. Representations for asymptotic local power against a single bubble model
are also derived. Monte Carlo simulation results highlight that neither one of these tests dominates the other across different
bubble locations and magnitudes, and across different models of time-varying volatility. Accordingly, we also propose a test
based on a union of rejections between the with- and without-intercept variants of the modified PSY test. The union procedure
is shown to perform almost as well as the better of the constituent tests for a given DGP, and also performs very well compared
to existing heteroskedasticity-robust tests across a large range of simulation DGPs.
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1. INTRODUCTION

Asset price bubbles tend to be characterised by a sudden and explosive increase in the price of an asset without a
corresponding increase in the fundamental value of the asset (thereby representing a misallocation of resources),
usually followed by a subsequent destruction of value through a sharp and catastrophic price collapse. As such,
bubbles often presage economic recessions; indeed, the 2007/08 Global Financial Crisis was preceded by suspected
price bubbles in the US housing, commodity, and stock markets. In the aftermath of the crisis, policymakers reacted
by considering new rules for macroprudential regulation and intervention.

As a result, the development of econometric methods to empirically identify asset price bubbles has been the
focus of much recent research. Explosive behaviour in financial asset price series is closely related to the theory
of rational bubbles, with a rational bubble deemed to have occurred if explosive characteristics are manifest in the
time path of prices, but not dividends. Accordingly, Phillips et al. (2015) (PSY) model potential bubble behaviour
using a time-varying autoregression which allows for explosive autoregressive regimes within distinct subsets of
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2 D. I. HARVEY ET AL.

the data. PSY propose bubble detection tests based on a double supremum of forward and backward recursive
right-tailed Dickey–Fuller (DF) statistics, a generalisation of the original and widely used Phillips et al. (2011)
(PWY) test that employed a single supremum of forward-only recursive DF statistics.

A key assumption underlying both the PWY and PSY bubble detection procedures is that the innovations
driving the asset price series are conditionally and unconditionally homoskedastic. While the presence of con-
ditional heteroskedasticity, such as GARCH, in a wide range of financial variables, including asset returns, is a
well-established stylised fact, a number of recent empirical studies have also questioned the reasonableness of
the unconditional homoskedasticity assumption. In particular, strong evidence of structural breaks in the uncon-
ditional variance of asset returns is reported in, inter alia, Rapach et al. (2008), McMillan and Wohar (2011),
Calvo-Gonzalez et al. (2010) and Vivian and Wohar (2012). Harvey et al. (2016) demonstrate that the asymptotic
null distribution of the PWY test depends on the time-path of the underlying unconditional volatility. As a result
if the test is compared to critical values derived under a homoskedastic error assumption, its size is not in general
controlled if volatility is time varying, with a higher than expected probability of spurious bubble identification
resulting. Harvey et al. (2016) propose a wild bootstrap implementation of the PWY test, which delivers correct
asymptotic size in the presence of time-varying volatility. A similar wild bootstrap approach can be applied to the
tests proposed in PSY to allow for unconditionally heteroskedastic errors and is considered in Harvey et al. (2020)
(HLZ) as a comparator for their sign-based version of the PSY test. HLZ find that, under heteroskedasticity, their
sign-based approach generally outperforms these bootstrap PSY tests.

Our contribution in this article is to develop a bootstrap-free approach to obtaining heteroskedasticity-robust
versions of the PSY bubble detection tests. To that end, we follow the volatility re-scaling approach developed
by Beare (2018) in the context of conventional full sample unit root tests directed against a stationary alternative.
This entails calculating the PSY test statistic not from the original data, denoted yt, but instead from the series of
cumulated first differences, Δyt, of the data standardised by a kernel estimate 𝜎̂t of 𝜎t, the volatility of Δyt. That is,
we cumulate Δyt∕𝜎̂t and treat this volatility-purged cumulated series as the data that we input into the calculation
of the PSY statistic. This approach has parallels with the approach taken in HLZ who, instead of cumulating
Δyt∕𝜎̂t, base the PSY statistic on the cumulation of Δyt∕ ||Δyt

|| = sign(Δyt), a quantity which is by construction
exact invariant to the pattern of time-varying volatility in Δyt under the null. HLZ show that this approach leads
to power gains when compared to a wild bootstrap implementation of the usual PSY test. The main aim of this
article is a comparison of the performance of the two non-bootstrap approaches to gauge whether using Δyt∕𝜎̂t in
place of the binary quantity Δyt∕ ||Δyt

|| might lead to further improvements in bubble detection efficacy. We would
anticipate a gain in power, given that 𝜎̂t uses more sample information to estimate 𝜎t than in HLZ, where 𝜎t is
essentially proxied by ||Δyt

|| alone.
Under the unit root null and alternative of a single locally explosive bubble regime, we derive the asymptotic

distribution of the two variants of PSY tests based on Δyt∕𝜎̂t: one which most closely follows Beare (2018) and
fits an intercept term in the underlying DF regression, and another which omits this term which is in fact redundant
under our model specification. Using a number of different specifications for a bubble/collapse DGP and pattern of
time-varying volatility, we find that the local asymptotic power of our new tests compares very well with that of the
HLZ tests, with the better of our two new tests outperforming the better of the HLZ tests for a given DGP. Between
our two new tests, we find that which offers the better power performance depends on the bubble/collapse/volatility
specification under consideration. This prompts us to consider a union of rejections testing strategy that combines
the with-intercept and without-intercept test variants. We find that this strategy performs very well, capturing
almost all of the power available from the better performing of the two individual tests across the full range of
bubble/collapse/volatility specifications that we examine. As such, it also outperforms the better performing of the
two HLZ tests.

The remainder of the article is organised as follows. Section 2 outlines the heteroskedastic bubble DGP we
work with and the assumptions under which we will operate. Section 3 introduces our heteroskedasticity-modified
version of the PSY test. Here we also establish the limit distributions of the re-scaled PSY statistics under local
alternatives for the case of a single bubble episode. Asymptotic local powers of our new tests are numerically
compared with the HLZ tests in Section 4. A union of rejections procedure is outlined in Section 5. The results
from a Monte Carlo study exploring the finite sample properties of the tests are discussed in Section 6. Section 7
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NEW HETEROSKEDASTICITY-ROBUST TEST 3

concludes. Proofs of our asymptotic results are provided in Appendix A. An accompanying Appendix S1 contains
the finite sample simulation results discussed in Section 6.

In what follows ‘⌊.⌋’ denotes the integer part of its argument, ‘1(⋅)’ denotes the indicator function, ‘
p
−−→’ and ‘⇒’

respectively, denote convergence in probability and weak convergence, in each case as the sample size diverges,
and ‘x ∶= y’ (‘x =∶ y’) denotes that x (y) is defined by y (x).

2. THE HETEROSKEDASTIC STOCHASTIC BUBBLE MODEL

To keep the contents of the article as tractable as possible, we focus attention on the case where a sin-
gle bubble episode is present under the alternative. However, it is important to stress that the modified
heteroskedasticity-robust versions of PSY’s GSADF test that we develop in this article are, like the original
GSADF test, also valid tests for models where multiple bubbles are present under the alternative. We will also
only discuss volatility re-scaled modifications of the leading doubly recursive GSADF test from PSY. The same
re-scaling principle can be applied to the (singly) forward and backward recursive tests, SADF and BSADF
respectively, discussed in PSY (the former coinciding with the test developed in PWY).

To that end, we follow HLZ and focus attention on the time series process {yt} generated according to the
following DGP,

yt = 𝜇 + ut, t = 1, … ,T , (1)

ut = 𝜌tut−1 + 𝜀t, 𝜀t = 𝜎tzt, t = 2, … ,T (2)

where 𝜌t ∶= 𝜌(t∕T) with

𝜌(t∕T) =

⎧⎪⎪⎨⎪⎪⎩
1 t = 2, … , ⌊𝜏1T⌋,
1 + 𝛿1 t = ⌊𝜏1T⌋ + 1, … , ⌊𝜏2T⌋,
1 − 𝛿2 t = ⌊𝜏2T⌋ + 1, … , ⌊𝜏3T⌋,
1 t = ⌊𝜏3T⌋ + 1, … ,T ,

(3)

where 𝛿1 ≥ 0 and 𝛿2 ≥ 0, and where 0 ≤ 𝜏1 < 𝜏2 < 𝜏3 ≤ 1. We assume that the initial condition u1 is such that
u1 = op(T1∕2). In the context of (2), 𝜀t is a zero-mean innovation process with (possibly) time-varying volatility
function, 𝜎t, precise conditions on which are given in Assumptions 1 and 2 below.

The DGP given by (1)–(3) imposes a unit root on yt up to time ⌊𝜏1T⌋, after which yt is an explosive bubble
process when 𝛿1 > 0 until time ⌊𝜏2T⌋. Notice that this explosive regime would originate at the beginning of
the sample if 𝜏1 = 0. If 𝜏2 < 1, the explosive regime then ends in-sample, at which point the model permits a
possible collapse, with 𝛿2 > 0 creating a collapse regime modelled by stationary mean-reverting behaviour. The
null hypothesis, H0, is that no bubble is present in the series and yt follows a unit root process throughout the
sample period, i.e. H0 ∶ 𝛿i = 0, i = 1, 2. The alternative hypothesis is H1 ∶ 𝛿1 > 0 and 𝛿2 ≥ 0. In its most general
form, where 𝛿2 > 0 with 𝜏3 < 1, the alternative is that yt is unit root, followed by bubble, then collapse, before
returning to a unit root regime. Special cases of this alternative are clearly permitted within the framework of (3).
For example, if 𝛿2 = 0 the bubble regime does not collapse but terminates in a unit root regime; if 𝛿2 > 0 with
𝜏3 = 1, the collapse period runs to the end of the sample. Under H1 we will consider locally explosive alternatives
(and collapses) of the form 𝛿i = ciT

−1, ci ≥ 0, i = 1, 2, the scaling by T−1 providing the appropriate Pitman drift
for asymptotic power comparisons of the tests when c1 > 0 and c2 ≥ 0. Throughout our analysis, we assume that
a collapse does not occur without the presence of a prior bubble, i.e. when c1 = 0, we assume c2 = 0.

With respect to the error process, 𝜀t, in (1), we make Assumptions 1 and 2:

Assumption 1. (a) Let zt be a martingale difference sequence (MDS) with respect to the natural filtration, t,

generated by {zs, s ≤ t}, with unit unconditional variance, E(z2
t ) = 1, and where T−1∑T

t=2z2
t

p
→ 1. (b) For all integers
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4 D. I. HARVEY ET AL.

q such that 2 ⩽ q ⩽ 8 and for all integers r1, … , rq−1 ⩾ 0, the qth order cumulants 𝜅q(t, t − r1, … , t − rq−1) of
(zt, zt−r1

, … , zt−rq−1
) satisfy the condition that supt

∑∞
r1 ,… ,rq−1=−∞

|𝜅q(t, t − r1, … , t − rq−1)| <∞.

Assumption 2. The volatility function is non-stochastic and satisfies 𝜎t ∶= 𝜎(t∕T), where 𝜎(⋅) is a strictly positive
càdlàg function (which therefore allows for a countable number of jumps in volatility) with support [0, 1] and is
uniformly bounded by a constant M.

Remark 2.1. Part (a) of Assumption 1 ensures that a MDS functional central limit theorem (FCLT) holds on the
innovations {zt}; cf. Assumption 1 of Chang and Park (2002, p. 433). Part (b) of Assumption 1 coincides with
Assumption 1 (iii) of Goncalves and Kilian (2007). These conditions allow for conditional heteroskedasticity of an
unknown and quite general form. An implication of the restrictions placed on the cumulants by Assumption 1(b) is
that supt E(𝜀8

t ) < ∞. This moment assumption appears standard in the related literature where a kernel smoothed
estimate of the volatility function is required and is also imposed by, inter alia, Xu and Phillips (2008), Harvey
et al. (2019), Cavaliere et al. (2022) (CNT), Boswijk and Zu (2018, 2022). An exception is Beare (2018) whose
method of proof only requires a finite fourth moment assumption. The trade-off for this weaker moment condition
is that Beare (2018) needs to impose a continuous differentiability condition on 𝜎(⋅) which is stronger than our
Assumption 2 which allows for a discontinuous unconditional volatility function. The large sample results given
in this article should also hold under the mixing and moment conditions on 𝜀t and the continuously differentiable
condition on 𝜎(⋅) adopted in Beare (2018). ⋄

Remark 2.2. Assumption 2 implies that 𝜎t is the unconditional volatility of 𝜀t. Under Assumption 2 the volatility
process can display (possibly) multiple instantaneous volatility shifts (which need not be located at the same
point in the sample as the putative regimes associated with bubble behaviour), polynomially (possibly piecewise)
trending volatility and smooth transition variance breaks, among other things. The conventional homoskedasticity
assumption, that 𝜎t = 𝜎 for all t, is also permitted with 𝜎(t∕T) = 𝜎 for all t. Consequently both the conditional
and unconditional variance of 𝜀t are allowed to display time-varying behaviour under Assumptions 1 and 2. ⋄

Remark 2.3. Broadly similar conditions to those placed on 𝜎(⋅) by Assumption 2 are adopted in Assumption 1(b)
of CNT who also allow 𝜎(⋅) to be a càdlàg function. Our conditions on 𝜎(⋅) are rather weaker than those imposed
by, for example, assumption (i) of Xu and Phillips (2008) which requires 𝜎(⋅) to satisfy a uniform first-order
Lipschitz condition with at most a finite number of discontinuities. ⋄

Remark 2.4. It is also instructive to compare our assumptions with those made in the extant bubble testing liter-
ature. PWY and PSY impose that 𝜀t ∼ i.i.d(0, 𝜎2). Harvey et al. (2016) develop wild bootstrap implementations
of the PWY tests which allow for unconditional heteroskedasticity in 𝜀t of a similar form to Assumption 2, but
impose conditional homoskedasticity on zt. Similarly, although HLZ allow for unconditional heteroskedasticity
in developing their sign-based tests for explosive bubbles, they also impose conditional homoskedasticity on zt.
Harvey et al. (2019) also impose conditional homoskedasticity on zt in their weighted least squares implementa-
tion of the PWY test. To the best of our knowledge then, this article develops the only regression-based bubble
detection tests currently available in the literature that allow for both conditional and unconditional heteroskedas-
ticity in the errors. Given the empirical findings on the nature of volatility in financial price series discussed in
Section 1, this should render these methods attractive to practitioners. ⋄

3. VOLATILITY RE-SCALED PSY TESTS

To obtain a volatility-robust version of the GSADF test developed in PSY, rather than calculating the statistic
directly from the observed data series, yt, we instead propose calculating it from the series of cumulated first
differences of the data, Δyt, re-scaled by a kernel estimate of the volatility of Δyt. That is, we cumulate Δyt∕𝜎̂t,
where 𝜎̂t denotes the kernel estimate of 𝜎t, and treat this volatility-adjusted cumulated series as the data for the
GSADF statistic. This approach follows in the spirit of Beare (2018), who used cumulated standardised differences
in the context of full sample unit root testing against a stationary alternative in the presence of heteroskedasticity.

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12784
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NEW HETEROSKEDASTICITY-ROBUST TEST 5

We first define a non-parametric variance estimator of the form

𝜎̂
2
t ∶=

T∑
j=2

wt,j(yj − yj−1)2, (4)

where the kernel weights, wt,j, are given by

wt,j ∶=
K
(

j−t

Th

)
∑T

j=2K
(

j−t

Th

) ,
where K(⋅) is a kernel function and h the associated bandwidth, precise conditions on both of which will be
given later.

Next we construct the cumulated first differences of Δyt standardised by 𝜎̂t, i.e.

xt ∶=
t∑

j=2

Δyj

𝜎̂j

, t = 2, … ,T . (5)

Notice that the volatility-robust test of HLZ is based on Δyt∕||Δyt
||, which arises as a special case of Δyt∕𝜎̂t if we

set wt,j = 1(j = t). This is therefore essentially equivalent to imposing a bandwidth of zero in the kernel function.
Our proposed statistic is then a volatility re-scaled version of PSY’s GSADF statistic, constructed from xt rather

than yt; that is,

PSY𝜎 ∶= sup
𝜆1∈[0,1−𝜋]

sup
𝜆2∈[𝜆1+𝜋,1]

DF𝜎(𝜆1, 𝜆2),

where using generic notation, DF𝜎 is the t-ratio for 𝜙̂(𝜆1, 𝜆2) in the (with-intercept) fitted Dickey–Fuller OLS
regression

Δxt = 𝛼̂(𝜆1, 𝜆2) + 𝜙̂(𝜆1, 𝜆2)xt−1 + et, (6)

calculated over the sub-sample period t = ⌊𝜆1T⌋, … , ⌊𝜆2T⌋, i.e.

DF𝜎(𝜆1, 𝜆2) ∶=
𝜙̂(𝜆1, 𝜆2)√

ŝ2(𝜆1, 𝜆2)∕
∑⌊𝜆2T⌋

t=⌊𝜆1T⌋+1

(
xt−1 − x

)2
, (7)

where x ∶= (⌊𝜆2T⌋ − ⌊𝜆1T⌋)−1∑⌊𝜆2T⌋
t=⌊𝜆1T⌋+1

xt−1 and ŝ2(𝜆1, 𝜆2) ∶= (⌊𝜆2T⌋ − ⌊𝜆1T⌋ − 2)−1∑⌊𝜆2T⌋
t=⌊𝜆1T⌋+1

e2
t , with et being

the residuals in (6). The PSY𝜎 statistic is the supremum of a double sequence of statistics with minimum sample
length ⌊𝜋T⌋; we assume that 𝜏1 ≥ 𝜋, such that the onset of a bubble regime (should one occur) begins after the
shortest sub-sample considered.1

In the fitted regression (6), we have followed Beare (2018) and included an intercept term. However, the xt are,
by construction, numerically invariant to the nuisance parameter 𝜇 in the DGP (1) and so there is no requirement
to include this intercept term. As such, we also consider the corresponding statistic that excludes the intercept
term in (6). Denoting the corresponding without-intercept version of (7) by DF∗

𝜎
(𝜆1, 𝜆2), the corresponding PSY

statistic is given by

PSY∗
𝜎
∶= sup

𝜆1∈[0,1−𝜋]
sup

𝜆2∈[𝜆1+𝜋,1]
DF∗

𝜎
(𝜆1, 𝜆2).

1 In practice, in view of (5), we need to impose a minimum value of 2∕T on 𝜆1, such that the earliest possible starting time index in the
regression in (6) is t = ⌊T(2∕T)⌋ + 1 = 3.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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6 D. I. HARVEY ET AL.

To obtain the asymptotic distributions of the two statistics, we first need to establish the large sample behaviour
of the partial sum process, xt. This requires us to place certain conditions on the kernel and bandwidth used in
constructing the non-parametric variance estimator, 𝜎̂2

t in (4). Specifically, we make the following assumptions,
both of which are typical in the literature; see, for example, Xu and Phillips (2008), Harvey et al. (2019), CNT,
and Boswijk and Zu (2018, 2022). Notice, however, that Assumption 4 is less restrictive than the corresponding
bandwidth rate condition imposed in Beare (2018), which requires that Th4 → ∞.

Assumption 3. The kernel function K(⋅) is a bounded, non-negative and continuous function defined on the real
number line and ∫ ∞

−∞K(x)dx = 1.

Assumption 4. The bandwidth h is such that as T → ∞, h → 0 and Th2 → ∞.

We are now in a position to detail the large sample behaviour of the partial sum process xt under the most general
form of the model in (1)–(3):

Theorem 1. Let yt satisfy (1)–(3) and let Assumptions 1–4 hold. Then, under H1 ∶ 𝛿i = ciT
−1, ci ≥ 0, i = 1, 2,

T−1∕2x⌊Tr⌋ ⇒ (r) =∶

⎧⎪⎪⎪⎨⎪⎪⎪⎩

W(r) r ⩽ 𝜏1

W(r) + c1∫ r

𝜏1

V1(s)
𝜎(s)

ds 𝜏1 < r ⩽ 𝜏2

W(r) + c1∫ 𝜏2

𝜏1

V1(s)
𝜎(s)

ds − c2∫ r

𝜏2

V2(s)
𝜎(s)

ds 𝜏2 < r ⩽ 𝜏3

W(r) + c1∫ 𝜏2

𝜏1

V1(s)
𝜎(s)

ds − c2∫ 𝜏3

𝜏2

V2(s)
𝜎(s)

ds r > 𝜏3

, (8)

where V1(r) ∶= e(r−𝜏1)c1∫ 𝜏1

0 𝜎(v)dW(v) + ∫ r

𝜏1
e(r−v)c1𝜎(v)dW(v), V2(r) ∶= e−(r−𝜏2)c2 V1(𝜏2) + ∫ r

𝜏2
e−(r−v)c2𝜎(v)dW(v), and

where W(r) is a standard Brownian motion on [0, 1].

Remark 3.1. Theorem 1 establishes the limiting distribution of xt under both the null hypothesis and local alterna-
tives. Under H0, c1 = c2 = 0 and (⋅) reduces to the standard Brownian motion, W(⋅), and hence does not depend
on the underlying volatility process, 𝜎(⋅). Under H1 the asymptotic distribution of (r) depends on the constants
c1 and c2, and also on the volatility process 𝜎(⋅). ⋄

Next, in Theorem 2, we detail the large sample behaviour of PSY𝜎 and PSY∗
𝜎

under both the null and local
alternative hypotheses.

Theorem 2. Let the conditions of Theorem 1 hold. Then,

PSY𝜎 ⇒ sup
𝜆1∈[0,1−𝜋]

sup
𝜆2∈[𝜆1+𝜋,1]

Lc1,c2,𝜎
(𝜆1, 𝜆2) =∶ Gc1,c2,𝜎

PSY∗
𝜎
⇒ sup

𝜆1∈[0,1−𝜋]
sup

𝜆2∈[𝜆1+𝜋,1]
L∗

c1,c2,𝜎
(𝜆1, 𝜆2) =∶ G∗

c1,c2,𝜎
,

where

Lc1,c2,𝜎
(𝜆1, 𝜆2) ∶=

̃(𝜆2)2 − ̃(𝜆1)2 − (𝜆2 − 𝜆1)

2
√

∫ 𝜆2

𝜆1
̃(r)2dr

L∗
c1,c2,𝜎

(𝜆1, 𝜆2) ∶=
(𝜆2)2 − (𝜆1)2 − (𝜆2 − 𝜆1)

2
√

∫ 𝜆2

𝜆1
(r)2dr

,

with ̃(r) ∶= (r) − (𝜆2 − 𝜆1)−1∫ 𝜆2

𝜆1
(v)dv, where (r) is defined in Theorem 1.

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12784
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NEW HETEROSKEDASTICITY-ROBUST TEST 7

Table I. Asymptotic and finite sample critical values for 𝜉-level tests

PSY𝜎 PSY∗
𝜎

UPSY𝜎

𝜉 = 0.10 𝜉 = 0.05 𝜉 = 0.01 𝜉 = 0.10 𝜉 = 0.05 𝜉 = 0.01 𝜉 = 0.10 𝜉 = 0.05 𝜉 = 0.01

T = 100 1.629 1.828 2.392 3.637 4.158 5.553 3.950 4.527 6.129
T = 200 1.608 1.789 2.140 3.226 3.595 4.330 3.468 3.804 4.589
T = 400 1.712 1.935 2.296 3.167 3.446 4.007 3.361 3.598 4.145
T = ∞ 1.875 2.094 2.486 2.978 3.296 3.859 3.186 3.486 3.951

Remark 3.2. The limit distributions of PSY𝜎 and PSY∗
𝜎

under the null hypothesis H0 are given by G0,0,𝜎 and
G∗

0,0,𝜎 respectively, which do not depend on 𝜎(s). For PSY𝜎 , G0,0,𝜎 coincides with the limiting null distribution
given for the GSADF statistic in Theorem 1 of PSY (p. 1049) for the case where 𝜀t ∼ i.i.d(0, 𝜎2). Consequently, for
any volatility process satisfying Assumption 2, the limiting null distribution of PSY𝜎 coincides with the limit null
distribution of the standard GSADF statistic proposed in PSY (based on yt) that would obtain were the volatility
constant, with the same applying for PSY∗

𝜎
. Under H1, the limiting distributions of PSY𝜎 and PSY∗

𝜎
depend on c1

and c2 and on the volatility process 𝜎(⋅). ⋄

Remark 3.3. We have assumed thus far that 𝜀t is serially uncorrelated. More generally, we might wish to allow
it to admit a finite autoregressive representation of the form2

𝜀t =
p∑

i=1

𝜃i𝜀t−i + 𝜎tzt, (9)

with the autoregressive coefficients 𝜃i, i = 1, … , p, satisfying standard stability conditions, such that 𝜀t would
be covariance stationary in the unconditionally homoskedastic case where 𝜎2

t = 𝜎2, for all t. In this situation, in
constructing PSY𝜎 and PSY∗

𝜎
the subsample regression (6), and its without-intercept equivalent respectively, need

to be augmented with the p lagged difference terms Δxt−1, ...,Δxt−p. The non-parametric variance estimator defined
in (4), based on first-differences, can still be used to construct the sample data {xt}, as in (5). Under the null, in this
context 𝜎̂2

t provides an estimate of Var(Δyt), and so the resultingΔxt = Δyt∕𝜎̂t sequence will follow an approximate
AR(p) model with homoskedastic innovations. Under the conditions of Theorem 1, our proof can in principle be
extended, to show that the limiting null distributions of the resulting augmented PSY𝜎 and PSY∗

𝜎
statistics are still

given by G0,0,𝜎 and G∗
0,0,𝜎 respectively. Notice that Var(Δyt) under specification (9) is approximately equal under

the null to 𝜎t multiplied by a (time-invariant) constant determined by the AR coefficients 𝜃j, j = 1, ..., p, from (9).
In view of this, one could alternatively estimate 𝜎t non-parametrically directly using the residuals from estimating
a full-sample ADF regression (that is, the regression of Δyt on a constant, yt−1, and p lags of Δyt) and use this
residual-based estimate to construct the sample {xt}. The resulting {xt} sample will also follow an approximate
homoskedastic AR(p) model under the null. ⋄

For the setting 𝜋 = 0.1, asymptotic upper-tail critical values of the null distributions G0,0,𝜎 and G∗
0,0,𝜎 are given

in Table I for the usual significance levels. Here, and throughout our asymptotic analysis, we approximated W(r)
using NIID(0, 1) random variates with discretised normalised sums of 1000 steps. Table I also provides finite
sample null critical values of PSY𝜎 and PSY∗

𝜎
based on generating 𝜀t as NIID(0, 1) and using a Gaussian kernel

for K(⋅) with bandwidth setting h = 0.1T−0.25 (in line with our setting for the finite sample simulations below).
Monte Carlo results throughout this article are based on 2000 replications.

2 At a practical level, the doubly recursive nature of the PSY-type approach, which includes relatively short sub-sample sizes, means that
only a small fixed value of p should be used, in line with the recommendation of PSY. In any case, substantial serial correlation would not be
expected in 𝜀t, given that under the null this process represents asset returns which should, at least in theory, be serially uncorrelated.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12784 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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8 D. I. HARVEY ET AL.

In the next section, we examine the asymptotic local powers of the PSY𝜎 and PSY∗
𝜎

tests, comparing these with
the sign-based tests of HLZ, and explore the extent to which any gain is obtained by excluding the intercept term
in the underlying DF regressions.

4. ASYMPTOTIC LOCAL POWER COMPARISONS

We examine the asymptotic power of the PSY𝜎 and PSY∗
𝜎

tests under the locally explosive alternative H1. By
way of comparison, we also simulate the asymptotic power of the two sign-based tests of HLZ: sPSY and sPSY,
using HLZ’s notation.3 The sPSY test relies on an assumption of a zero median in the distribution of zt, while
sPSY, which is based on recursively demeaned sign(Δyt) rather than simply sign(Δyt), controls size irrespective
of whether the median is zero or not. We consider both a benchmark case of homoskedasticity, 𝜎(r) = 1, and
also heteroskedastic settings with volatility functions 𝜎(r) = S(r, 𝜎1, 𝜎2, 𝜏𝜎, 𝛾) where S(r, 𝜎1, 𝜎2, 𝜏𝜎, 𝛾) is a logistic
smooth transition function of the form

S(r, 𝜎1, 𝜎2, 𝜏𝜎, 𝛾) ∶= 𝜎1 +
𝜎2 − 𝜎1

1 + exp{−𝛾(r − 𝜏𝜎)}
.

This function transitions from the value 𝜎1 to 𝜎2 over r, with midpoint fraction 𝜏𝜎 and transition speed 𝛾 . Specifi-
cally, we set 𝛾 = 30, 𝜎1 = 1 and consider 𝜎2 ∈ {1∕6, 1∕3, 3, 6} allowing downshifts and upshifts in volatility with
𝜏𝜎 ∈ {0.4, 0.8} to represent earlier and later volatility midpoint timings. For the locally explosive alternatives (and
possible collapses) we have {𝜏1, 𝜏2, 𝜏3} = {0.1, 0.4, 0.6}, {0.3, 0.6, 0.8} and {0.5, 0.8, 1.0} for early, middle and
late explosive episodes respectively, with explosive magnitudes c1 ∈ {2, 4, 6, 8, 10} and collapse magnitudes c2 =
kc1 with k ∈ {0, 0.5, 1}, such that an explosive episode is either unaccompanied by a collapse, or accompanied by a
collapse with a parameter value of half or equal to the explosive magnitude. We simulate the asymptotic powers of
upper-tail nominal 0.05-level tests using limit null critical values for PSY𝜎 and PSY∗

𝜎
taken from Table I. For sPSY

and sPSY we use the limit null critical values in Table I of HLZ.4 Here 𝜎(r), like W(r), is discretised over 1000 steps.
Consider first the homoskedastic case of Table II. Comparing PSY𝜎 and PSY∗

𝜎
, we see that PSY∗

𝜎
is generally

more powerful than PSY𝜎 , particularly when the explosive episode occurs early in the sample, where power gains
of up to around 0.11 can be seen. In turn, PSY𝜎 is generally more powerful than sPSY (with some exceptions
for the earlier explosive cases), while sPSY is always more powerful than sPSY. Here then, PSY∗

𝜎
emerges pretty

unambiguously as the preferred test.
Turning to the first heteroskedastic specification in Table III, S(r, 1, 1∕6, 0.4, 30) (early large downward shift in

volatility) a rather more involved picture emerges. While there are some cases where the power of PSY∗
𝜎

exceeds
that of PSY𝜎 , the reverse pattern can arise when a collapse is present, with the power of PSY𝜎 actually much higher
than that of PSY∗

𝜎
when the explosive episode occurs early in the sample, with power differences up to around

0.22. Notice also that sPSY is more powerful than sPSY and PSY∗
𝜎

in this early explosive episode with collapse
environment. PSY𝜎 almost always has higher power than the better of sPSY and sPSY, and therefore emerges as
arguably the best test overall for these settings. For S(r, 1, 1∕3, 0.4, 30) (early small downward shift in volatility),
much the same overall comments apply. For the heteroskedastic specifications in Table IV, S(r, 1, 3, 0.4, 30) (early
small upward shift in volatility) and S(r, 1, 6, 0.4, 30) (early large upward shift in volatility), the pattern of results
is broadly in line with the homoskedastic case, with PSY∗

𝜎
representing the best-performing test, almost without

exception.
In Table V, the timing of the volatility change is now later, with S(r, 1, 1∕6, 0.8, 30) (late large downward shift

in volatility) and S(r, 1, 1∕3, 0.8, 30) (late small downward shift in volatility). Here, we see that PSY∗
𝜎

is the best
performing test when the explosive episode timing is early or central, but PSY𝜎 performs best when the explo-
sive episode occurs late in the sample. Lastly, for the heteroskedastic specifications in Table VI S(r, 1, 3, 0.8, 30)

3 Given that HLZ find that sPSY generally outperforms a wild bootstrap implementation of the PSY test under heteroskedasticity, we do not
consider bootstrap-based tests in our present comparison.
4 Local asymptotic powers of sPSY and sPSY depend on the probability density function of zt. For the purposes of this comparison exercise
we assume, as in HLZ, that zt is normally distributed.

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12784
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NEW HETEROSKEDASTICITY-ROBUST TEST 9

Table II. Local asymptotic power of nominal 0.05-level tests

𝜎(r) = 1

𝜏1 𝜏2 𝜏3 c1 c2 PSY𝜎 PSY∗
𝜎

UPSY𝜎 sPSY sPSY

0.1 0.4 0.6 2 0 0.072 0.105 0.087 0.108 0.061
1 0.068 0.091 0.079 0.098 0.070
2 0.068 0.084 0.076 0.092 0.082

4 0 0.183 0.292 0.263 0.244 0.107
2 0.181 0.268 0.242 0.222 0.136
4 0.209 0.263 0.251 0.214 0.176

6 0 0.466 0.547 0.527 0.487 0.262
3 0.469 0.524 0.512 0.464 0.306
6 0.486 0.518 0.513 0.462 0.371

8 0 0.720 0.754 0.743 0.705 0.538
4 0.715 0.735 0.728 0.684 0.560
8 0.722 0.731 0.730 0.679 0.591

10 0 0.856 0.869 0.861 0.840 0.765
5 0.854 0.861 0.856 0.832 0.776

10 0.855 0.861 0.855 0.831 0.782

0.3 0.6 0.8 2 0 0.099 0.139 0.126 0.121 0.050
1 0.097 0.126 0.119 0.111 0.063
2 0.104 0.120 0.117 0.105 0.078

4 0 0.334 0.403 0.382 0.336 0.117
2 0.334 0.384 0.368 0.315 0.165
4 0.353 0.380 0.374 0.309 0.219

6 0 0.634 0.656 0.643 0.602 0.427
3 0.628 0.641 0.631 0.587 0.461
6 0.644 0.637 0.639 0.581 0.496

8 0 0.808 0.815 0.806 0.779 0.686
4 0.803 0.806 0.800 0.767 0.700
8 0.805 0.804 0.800 0.763 0.713

10 0 0.895 0.896 0.894 0.870 0.837
5 0.889 0.893 0.888 0.867 0.842

10 0.892 0.890 0.890 0.866 0.845

0.5 0.8 1.0 2 0 0.120 0.164 0.145 0.139 0.050
1 0.119 0.151 0.140 0.128 0.055
2 0.126 0.145 0.140 0.123 0.072

4 0 0.433 0.474 0.457 0.406 0.192
2 0.428 0.456 0.448 0.390 0.212
4 0.448 0.453 0.457 0.387 0.264

6 0 0.710 0.726 0.715 0.669 0.543
3 0.705 0.717 0.710 0.656 0.558
6 0.709 0.716 0.710 0.654 0.590

8 0 0.858 0.863 0.858 0.838 0.778
4 0.857 0.859 0.854 0.829 0.785
8 0.858 0.857 0.856 0.829 0.803

10 0 0.932 0.935 0.931 0.918 0.894
5 0.931 0.931 0.929 0.914 0.896

10 0.931 0.931 0.929 0.913 0.902

Notes: 𝜏1 and 𝜏2 denote the sample fraction at which the explosive period begins and ends; 𝜏3 denotes the end of the collapse regime; c1 and
c2 denote the locally explosive and collapse magnitudes; 𝜎(r) denotes the volatility function.

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12784 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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10 D. I. HARVEY ET AL.

Table III. Local asymptotic power of nominal 0.05-level tests

𝜎(r) = S(r, 1, 1∕6, 0.4, 30) 𝜎(r) = S(r, 1, 1∕3, 0.4, 30)

𝜏1 𝜏2 𝜏3 c1 c2 PSY𝜎 PSY∗
𝜎

UPSY𝜎 sPSY sPSY PSY𝜎 PSY∗
𝜎

UPSY𝜎 sPSY sPSY

0.1 0.4 0.6 2 0 0.074 0.115 0.096 0.113 0.061 0.074 0.113 0.092 0.111 0.061
1 0.152 0.092 0.139 0.100 0.151 0.085 0.094 0.090 0.097 0.099
2 0.321 0.103 0.296 0.127 0.276 0.145 0.086 0.131 0.097 0.152

4 0 0.233 0.343 0.314 0.290 0.124 0.216 0.330 0.297 0.278 0.119
2 0.515 0.318 0.496 0.298 0.438 0.323 0.294 0.325 0.257 0.267
4 0.667 0.523 0.648 0.489 0.572 0.475 0.293 0.447 0.280 0.404

6 0 0.554 0.605 0.588 0.548 0.344 0.535 0.591 0.574 0.534 0.320
3 0.765 0.631 0.749 0.615 0.673 0.625 0.568 0.610 0.517 0.517
6 0.837 0.778 0.828 0.745 0.766 0.718 0.579 0.700 0.570 0.620

8 0 0.783 0.800 0.790 0.757 0.637 0.771 0.787 0.779 0.746 0.616
4 0.886 0.835 0.881 0.816 0.835 0.814 0.778 0.803 0.742 0.736
8 0.910 0.883 0.905 0.861 0.869 0.853 0.787 0.842 0.775 0.786

10 0 0.894 0.896 0.893 0.875 0.821 0.884 0.891 0.886 0.867 0.810
5 0.943 0.920 0.941 0.910 0.916 0.910 0.886 0.904 0.862 0.856

10 0.954 0.940 0.951 0.921 0.927 0.921 0.892 0.916 0.875 0.875

0.3 0.6 0.8 2 0 0.472 0.519 0.493 0.443 0.229 0.257 0.321 0.294 0.273 0.085
1 0.481 0.501 0.487 0.423 0.302 0.266 0.301 0.292 0.250 0.135
2 0.545 0.497 0.533 0.425 0.414 0.306 0.294 0.310 0.246 0.208

4 0 0.796 0.808 0.795 0.770 0.677 0.656 0.681 0.662 0.624 0.481
2 0.795 0.795 0.786 0.761 0.703 0.659 0.665 0.656 0.610 0.516
4 0.811 0.793 0.803 0.766 0.738 0.679 0.660 0.668 0.609 0.570

6 0 0.904 0.908 0.903 0.878 0.855 0.836 0.841 0.834 0.811 0.751
3 0.900 0.905 0.899 0.874 0.861 0.831 0.835 0.828 0.804 0.766
6 0.906 0.903 0.902 0.878 0.872 0.838 0.834 0.832 0.805 0.779

8 0 0.951 0.951 0.950 0.942 0.926 0.915 0.921 0.915 0.896 0.872
4 0.949 0.949 0.947 0.939 0.930 0.914 0.918 0.913 0.888 0.877
8 0.950 0.948 0.948 0.940 0.934 0.916 0.917 0.913 0.890 0.884

10 0 0.977 0.977 0.977 0.971 0.967 0.953 0.953 0.951 0.947 0.929
5 0.978 0.977 0.977 0.970 0.970 0.950 0.950 0.948 0.942 0.931

10 0.978 0.977 0.977 0.971 0.972 0.951 0.950 0.948 0.942 0.934

0.5 0.8 1.0 2 0 0.587 0.616 0.595 0.556 0.353 0.343 0.406 0.386 0.350 0.114
1 0.584 0.610 0.591 0.547 0.371 0.340 0.390 0.373 0.332 0.134
2 0.607 0.607 0.603 0.545 0.434 0.369 0.383 0.386 0.329 0.201

4 0 0.844 0.847 0.841 0.826 0.747 0.719 0.738 0.721 0.692 0.560
2 0.843 0.842 0.838 0.820 0.753 0.717 0.729 0.715 0.682 0.573
4 0.850 0.840 0.843 0.818 0.776 0.730 0.727 0.723 0.680 0.612

6 0 0.938 0.939 0.933 0.924 0.901 0.875 0.878 0.871 0.855 0.807
3 0.936 0.934 0.932 0.922 0.903 0.874 0.875 0.868 0.852 0.806
6 0.938 0.933 0.934 0.921 0.908 0.875 0.873 0.871 0.850 0.820

8 0 0.974 0.974 0.973 0.965 0.956 0.942 0.943 0.942 0.927 0.908
4 0.973 0.972 0.971 0.963 0.956 0.941 0.941 0.940 0.924 0.911
8 0.974 0.972 0.972 0.964 0.957 0.941 0.940 0.940 0.925 0.914

10 0 0.987 0.986 0.987 0.981 0.980 0.971 0.970 0.970 0.966 0.956
5 0.987 0.986 0.986 0.980 0.979 0.971 0.970 0.970 0.964 0.960

10 0.988 0.986 0.987 0.980 0.980 0.972 0.970 0.970 0.965 0.961

Notes: 𝜏1 and 𝜏2 denote the sample fraction at which the explosive period begins and ends; 𝜏3 denotes the end of the collapse regime; c1 and c2
denote the locally explosive and collapse magnitudes; 𝜎(r) denotes the volatility function, with S(r, 𝜎1, 𝜎2, 𝜏𝜎 , 𝛾) denoting a smooth transition
function from 𝜎1 to 𝜎2 with midpoint 𝜏𝜎 and speed 𝛾 .

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
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NEW HETEROSKEDASTICITY-ROBUST TEST 11

Table IV. Local asymptotic power of nominal 0.05-level tests

𝜎(r) = S(r, 1, 3, 0.4, 30) 𝜎(r) = S(r, 1, 6, 0.4, 30)

𝜏1 𝜏2 𝜏3 c1 c2 PSY𝜎 PSY∗
𝜎

UPSY𝜎 sPSY sPSY PSY𝜎 PSY∗
𝜎

UPSY𝜎 sPSY sPSY

0.1 0.4 0.6 2 0 0.070 0.093 0.081 0.101 0.063 0.068 0.086 0.080 0.095 0.061
1 0.066 0.086 0.075 0.094 0.063 0.063 0.081 0.075 0.091 0.062
2 0.064 0.081 0.072 0.088 0.064 0.060 0.077 0.070 0.087 0.061

4 0 0.142 0.249 0.220 0.204 0.099 0.121 0.219 0.190 0.182 0.092
2 0.135 0.234 0.203 0.194 0.101 0.115 0.206 0.179 0.172 0.091
4 0.134 0.226 0.196 0.185 0.111 0.111 0.198 0.173 0.167 0.092

6 0 0.365 0.470 0.449 0.409 0.194 0.294 0.426 0.400 0.361 0.171
3 0.357 0.451 0.435 0.396 0.204 0.286 0.412 0.387 0.347 0.174
6 0.356 0.447 0.432 0.393 0.213 0.283 0.408 0.383 0.343 0.173

8 0 0.630 0.676 0.659 0.623 0.414 0.539 0.624 0.605 0.563 0.333
4 0.623 0.660 0.647 0.610 0.418 0.532 0.611 0.594 0.552 0.335
8 0.620 0.658 0.646 0.604 0.423 0.531 0.610 0.591 0.547 0.335

10 0 0.805 0.825 0.816 0.783 0.652 0.742 0.777 0.767 0.734 0.560
5 0.795 0.815 0.806 0.776 0.654 0.736 0.769 0.758 0.725 0.558

10 0.795 0.814 0.805 0.772 0.655 0.735 0.766 0.755 0.721 0.558

0.3 0.6 0.8 2 0 0.070 0.088 0.082 0.086 0.050 0.066 0.074 0.073 0.074 0.053
1 0.070 0.081 0.073 0.079 0.054 0.065 0.067 0.066 0.069 0.054
2 0.068 0.073 0.069 0.073 0.057 0.063 0.061 0.063 0.065 0.057

4 0 0.153 0.201 0.180 0.172 0.065 0.119 0.149 0.137 0.131 0.059
2 0.146 0.182 0.167 0.157 0.076 0.113 0.136 0.121 0.117 0.067
4 0.149 0.178 0.165 0.148 0.091 0.112 0.131 0.119 0.112 0.071

6 0 0.334 0.407 0.384 0.339 0.123 0.235 0.293 0.271 0.246 0.089
3 0.331 0.386 0.366 0.314 0.155 0.228 0.274 0.252 0.223 0.104
6 0.339 0.381 0.368 0.308 0.189 0.227 0.270 0.249 0.215 0.124

8 0 0.576 0.606 0.597 0.550 0.356 0.422 0.473 0.464 0.407 0.195
4 0.566 0.588 0.582 0.528 0.388 0.413 0.455 0.443 0.383 0.218
8 0.570 0.584 0.580 0.522 0.409 0.419 0.449 0.441 0.378 0.243

10 0 0.760 0.774 0.766 0.733 0.622 0.634 0.652 0.646 0.596 0.433
5 0.752 0.758 0.752 0.715 0.642 0.628 0.639 0.635 0.571 0.454

10 0.754 0.754 0.751 0.711 0.649 0.625 0.636 0.632 0.568 0.467

0.5 0.8 1.0 2 0 0.093 0.111 0.103 0.096 0.054 0.090 0.102 0.098 0.089 0.057
1 0.090 0.102 0.097 0.090 0.054 0.087 0.094 0.091 0.085 0.056
2 0.088 0.096 0.096 0.087 0.061 0.087 0.087 0.087 0.083 0.058

4 0 0.266 0.311 0.287 0.264 0.114 0.239 0.279 0.262 0.234 0.112
2 0.263 0.290 0.277 0.244 0.125 0.229 0.261 0.249 0.216 0.119
4 0.272 0.285 0.281 0.241 0.149 0.239 0.257 0.254 0.214 0.136

6 0 0.533 0.565 0.546 0.506 0.347 0.503 0.524 0.514 0.469 0.317
3 0.534 0.546 0.537 0.488 0.362 0.491 0.503 0.497 0.449 0.323
6 0.544 0.543 0.544 0.482 0.394 0.503 0.501 0.505 0.444 0.353

8 0 0.744 0.752 0.749 0.705 0.622 0.715 0.719 0.718 0.671 0.593
4 0.739 0.744 0.743 0.691 0.632 0.712 0.707 0.712 0.656 0.605
8 0.744 0.744 0.746 0.690 0.655 0.715 0.705 0.713 0.656 0.623

10 0 0.864 0.868 0.865 0.843 0.808 0.846 0.855 0.850 0.819 0.773
5 0.864 0.865 0.862 0.838 0.809 0.846 0.848 0.846 0.809 0.781

10 0.863 0.865 0.863 0.838 0.818 0.847 0.847 0.847 0.809 0.792

Notes: 𝜏1 and 𝜏2 denote the sample fraction at which the explosive period begins and ends; 𝜏3 denotes the end of the collapse regime; c1 and c2
denote the locally explosive and collapse magnitudes; 𝜎(r) denotes the volatility function, with S(r, 𝜎1, 𝜎2, 𝜏𝜎 , 𝛾) denoting a smooth transition
function from 𝜎1 to 𝜎2 with midpoint 𝜏𝜎 and speed 𝛾 .

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12784 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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12 D. I. HARVEY ET AL.

Table V. Local asymptotic power of nominal 0.05-level tests

𝜎(r) = S(r, 1, 1∕6, 0.8, 30) 𝜎(r) = S(r, 1, 1∕3, 0.8, 30)

𝜏1 𝜏2 𝜏3 c1 c2 PSY𝜎 PSY∗
𝜎

UPSY𝜎 sPSY sPSY PSY𝜎 PSY∗
𝜎

UPSY𝜎 sPSY sPSY

0.1 0.4 0.6 2 0 0.072 0.105 0.087 0.108 0.061 0.072 0.105 0.087 0.108 0.061
1 0.068 0.091 0.079 0.098 0.070 0.068 0.091 0.079 0.098 0.070
2 0.068 0.084 0.076 0.092 0.082 0.068 0.084 0.076 0.092 0.082

4 0 0.183 0.292 0.263 0.244 0.107 0.183 0.292 0.263 0.244 0.107
2 0.181 0.268 0.242 0.222 0.136 0.181 0.268 0.242 0.222 0.136
4 0.209 0.263 0.251 0.214 0.176 0.209 0.263 0.251 0.214 0.176

6 0 0.466 0.547 0.527 0.487 0.262 0.466 0.547 0.527 0.487 0.262
3 0.469 0.524 0.512 0.464 0.306 0.469 0.524 0.512 0.464 0.306
6 0.486 0.518 0.513 0.462 0.371 0.486 0.518 0.513 0.462 0.371

8 0 0.720 0.754 0.743 0.705 0.538 0.720 0.754 0.743 0.705 0.538
4 0.715 0.735 0.728 0.684 0.560 0.715 0.735 0.728 0.684 0.560
8 0.722 0.731 0.730 0.679 0.591 0.722 0.731 0.730 0.679 0.591

10 0 0.856 0.869 0.861 0.840 0.765 0.856 0.869 0.861 0.840 0.765
5 0.854 0.861 0.856 0.832 0.776 0.854 0.861 0.856 0.832 0.776

10 0.855 0.861 0.855 0.831 0.782 0.855 0.861 0.855 0.831 0.782

0.3 0.6 0.8 2 0 0.099 0.139 0.126 0.121 0.050 0.099 0.139 0.126 0.121 0.050
1 0.100 0.126 0.120 0.111 0.066 0.098 0.126 0.119 0.111 0.065
2 0.107 0.120 0.120 0.105 0.086 0.106 0.120 0.120 0.105 0.083

4 0 0.334 0.403 0.383 0.336 0.117 0.334 0.403 0.383 0.336 0.117
2 0.338 0.384 0.369 0.315 0.176 0.337 0.384 0.368 0.315 0.172
4 0.363 0.381 0.378 0.309 0.241 0.357 0.381 0.377 0.309 0.235

6 0 0.634 0.656 0.643 0.602 0.427 0.634 0.656 0.643 0.602 0.427
3 0.633 0.641 0.632 0.587 0.469 0.631 0.641 0.632 0.587 0.467
6 0.652 0.637 0.643 0.581 0.513 0.650 0.637 0.641 0.581 0.507

8 0 0.808 0.815 0.806 0.779 0.686 0.808 0.815 0.806 0.779 0.686
4 0.803 0.806 0.800 0.767 0.706 0.803 0.806 0.800 0.767 0.705
8 0.806 0.804 0.800 0.764 0.717 0.805 0.804 0.800 0.763 0.716

10 0 0.895 0.896 0.895 0.870 0.837 0.895 0.896 0.895 0.870 0.837
5 0.890 0.893 0.889 0.866 0.844 0.890 0.893 0.889 0.866 0.844

10 0.893 0.890 0.891 0.867 0.846 0.893 0.890 0.891 0.867 0.846

0.5 0.8 1.0 2 0 0.133 0.189 0.164 0.159 0.051 0.129 0.182 0.161 0.153 0.051
1 0.294 0.165 0.270 0.146 0.203 0.160 0.160 0.168 0.139 0.103
2 0.514 0.169 0.487 0.212 0.387 0.288 0.157 0.264 0.140 0.205

4 0 0.487 0.521 0.504 0.458 0.275 0.477 0.508 0.494 0.444 0.255
2 0.696 0.504 0.677 0.495 0.574 0.550 0.486 0.531 0.431 0.400
4 0.809 0.697 0.797 0.661 0.722 0.661 0.485 0.643 0.473 0.542

6 0 0.754 0.771 0.755 0.725 0.633 0.740 0.757 0.738 0.710 0.610
3 0.877 0.786 0.869 0.777 0.808 0.785 0.744 0.771 0.702 0.699
6 0.910 0.881 0.905 0.853 0.867 0.847 0.753 0.838 0.745 0.771

8 0 0.888 0.894 0.887 0.868 0.819 0.879 0.885 0.878 0.862 0.809
4 0.936 0.908 0.933 0.906 0.910 0.899 0.879 0.895 0.864 0.861
8 0.955 0.938 0.952 0.928 0.931 0.922 0.887 0.917 0.880 0.890

10 0 0.953 0.953 0.953 0.936 0.917 0.951 0.950 0.947 0.932 0.914
5 0.977 0.964 0.975 0.954 0.958 0.955 0.945 0.950 0.933 0.934

10 0.982 0.972 0.980 0.963 0.964 0.964 0.947 0.961 0.936 0.944

Notes: 𝜏1 and 𝜏2 denote the sample fraction at which the explosive period begins and ends; 𝜏3 denotes the end of the collapse regime; c1 and c2
denote the locally explosive and collapse magnitudes; 𝜎(r) denotes the volatility function, with S(r, 𝜎1, 𝜎2, 𝜏𝜎 , 𝛾) denoting a smooth transition
function from 𝜎1 to 𝜎2 with midpoint 𝜏𝜎 and speed 𝛾 .

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
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Table VI. Local asymptotic power of nominal 0.05-level tests

𝜎(r) = S(r, 1, 3, 0.8, 30) 𝜎(r) = S(r, 1, 6, 0.8, 30)

𝜏1 𝜏2 𝜏3 c1 c2 PSY𝜎 PSY∗
𝜎

UPSY𝜎 sPSY sPSY PSY𝜎 PSY∗
𝜎

UPSY𝜎 sPSY sPSY

0.1 0.4 0.6 2 0 0.072 0.105 0.087 0.108 0.061 0.072 0.105 0.087 0.108 0.061
1 0.068 0.091 0.079 0.098 0.070 0.068 0.091 0.079 0.098 0.070
2 0.068 0.084 0.076 0.092 0.082 0.068 0.084 0.076 0.092 0.082

4 0 0.183 0.292 0.263 0.244 0.107 0.183 0.292 0.263 0.244 0.107
2 0.181 0.268 0.242 0.222 0.136 0.181 0.268 0.242 0.222 0.135
4 0.209 0.263 0.251 0.214 0.176 0.208 0.263 0.251 0.214 0.176

6 0 0.466 0.547 0.527 0.487 0.262 0.466 0.547 0.527 0.487 0.262
3 0.469 0.524 0.512 0.464 0.306 0.469 0.524 0.512 0.464 0.306
6 0.486 0.518 0.513 0.462 0.371 0.486 0.518 0.513 0.462 0.370

8 0 0.720 0.754 0.743 0.705 0.538 0.720 0.754 0.743 0.705 0.538
4 0.715 0.735 0.728 0.684 0.560 0.715 0.735 0.728 0.684 0.559
8 0.722 0.731 0.730 0.679 0.591 0.722 0.731 0.730 0.679 0.591

10 0 0.856 0.869 0.861 0.840 0.765 0.856 0.869 0.861 0.840 0.765
5 0.854 0.861 0.856 0.832 0.776 0.854 0.861 0.856 0.832 0.776

10 0.855 0.861 0.855 0.831 0.782 0.855 0.861 0.855 0.831 0.782

0.3 0.6 0.8 2 0 0.099 0.139 0.126 0.121 0.050 0.099 0.139 0.126 0.121 0.050
1 0.096 0.127 0.118 0.111 0.059 0.096 0.127 0.117 0.112 0.057
2 0.098 0.120 0.115 0.107 0.072 0.096 0.121 0.114 0.108 0.068

4 0 0.333 0.401 0.382 0.336 0.117 0.333 0.401 0.382 0.336 0.117
2 0.333 0.384 0.367 0.317 0.150 0.331 0.385 0.365 0.317 0.141
4 0.340 0.379 0.369 0.309 0.201 0.337 0.379 0.366 0.309 0.178

6 0 0.634 0.655 0.642 0.602 0.426 0.633 0.655 0.642 0.601 0.424
3 0.626 0.641 0.630 0.587 0.446 0.626 0.640 0.629 0.588 0.438
6 0.637 0.637 0.634 0.580 0.473 0.633 0.635 0.632 0.581 0.457

8 0 0.808 0.814 0.806 0.778 0.686 0.808 0.814 0.806 0.777 0.685
4 0.803 0.806 0.799 0.768 0.692 0.801 0.805 0.799 0.767 0.685
8 0.805 0.804 0.800 0.764 0.704 0.804 0.804 0.798 0.763 0.700

10 0 0.895 0.896 0.894 0.870 0.837 0.895 0.896 0.893 0.870 0.837
5 0.889 0.893 0.888 0.867 0.840 0.889 0.892 0.887 0.866 0.837

10 0.892 0.890 0.889 0.865 0.843 0.891 0.890 0.887 0.865 0.841

0.5 0.8 1.0 2 0 0.106 0.146 0.129 0.126 0.047 0.098 0.131 0.120 0.116 0.046
1 0.102 0.137 0.125 0.119 0.047 0.096 0.126 0.118 0.113 0.045
2 0.100 0.134 0.122 0.117 0.049 0.094 0.124 0.115 0.109 0.043

4 0 0.366 0.414 0.395 0.351 0.135 0.313 0.376 0.353 0.318 0.111
2 0.356 0.401 0.383 0.338 0.136 0.305 0.365 0.344 0.308 0.108
4 0.352 0.396 0.378 0.334 0.141 0.303 0.359 0.339 0.305 0.110

6 0 0.640 0.668 0.651 0.605 0.433 0.585 0.622 0.599 0.548 0.355
3 0.631 0.658 0.641 0.594 0.431 0.580 0.613 0.591 0.541 0.353
6 0.629 0.654 0.638 0.592 0.433 0.578 0.611 0.588 0.538 0.353

8 0 0.822 0.833 0.822 0.791 0.708 0.772 0.797 0.776 0.740 0.636
4 0.817 0.827 0.815 0.782 0.708 0.768 0.791 0.770 0.733 0.633
8 0.816 0.825 0.813 0.781 0.709 0.765 0.785 0.767 0.731 0.633

10 0 0.908 0.909 0.905 0.890 0.847 0.885 0.888 0.884 0.865 0.801
5 0.905 0.907 0.903 0.888 0.846 0.883 0.887 0.881 0.860 0.800

10 0.904 0.906 0.903 0.888 0.848 0.882 0.886 0.881 0.859 0.800

Notes: 𝜏1 and 𝜏2 denote the sample fraction at which the explosive period begins and ends; 𝜏3 denotes the end of the collapse regime; c1 and c2
denote the locally explosive and collapse magnitudes; 𝜎(r) denotes the volatility function, with S(r, 𝜎1, 𝜎2, 𝜏𝜎 , 𝛾) denoting a smooth transition
function from 𝜎1 to 𝜎2 with midpoint 𝜏𝜎 and speed 𝛾 .

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12784 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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14 D. I. HARVEY ET AL.

(late small upward shift in volatility) and S(r, 1, 6, 0.8, 30) (late large upward shift in volatility) the results are once
more similar to the homoskedastic case, where PSY∗

𝜎
represents the best performing test.

On the basis of our asymptotic simulations, what is clear is that for any given DGP, the better performing of
the new PSY𝜎 and PSY∗

𝜎
tests dominates the better performing of the sPSY and sPSY tests, with gains of up

to about 0.13 (outside of very low power cases where very small losses of up to 0.01 are observed). Between
PSY𝜎 and PSY∗

𝜎
, there is no clear winner unless we are prepared to take a stance on a particular form of bubble

and/or volatility DGP setting being present in the data. This might seem counterintuitive since PSY𝜎 involves
fitting what might be considered a redundant intercept term. In reality though, these matters are not easily resolved
because PSY𝜎 and PSY∗

𝜎
are based on the double-supremum of DF𝜎(𝜆1, 𝜆2) and DF∗

𝜎
(𝜆1, 𝜆2), and the magnitude

and locations of the double-supremum involves a very complex (essentially intractable) interaction of the values
of the parameters c1, c2, 𝜏1, 𝜏2, 𝜏3 and the volatility path 𝜎(r). Given that each test offers power gains over the other
for some areas of the parameter constellation considered, and the particular parameter settings would be unknown
to a practitioner, it makes sense to consider a procedure that aims to harness the higher power that is available
from PSY𝜎 and PSY∗

𝜎
in any particular DGP setting by employing a union of rejections strategy. We detail this

approach in the next section.

5. A UNION OF REJECTIONS BASED STRATEGY

We now consider a union of rejections testing strategy based on inference from both PSY𝜎 and PSY∗
𝜎
, in line

with the initial work on this approach in Harvey et al. (2019) in the context of left-tailed unit root testing under
uncertainty regarding the presence or otherwise of a linear trend. Specifically, denoting the asymptotic 𝜉 level null
critical value of PSY𝜎 by cv𝜉 (from the G0,0,𝜎 distribution) and that of PSY∗

𝜎
by cv∗

𝜉
(from the G∗

0,0,𝜎 distribution),
a union of rejections strategy can be written as the decision rule

Reject H0 if
{

PSY𝜎 > 𝜓𝜉cv𝜉 or PSY∗
𝜎
> 𝜓𝜉cv∗

𝜉

}
,

where 𝜓𝜉 is a scaling constant that ensures the decision rule yields an asymptotic size of 𝜉 under H0. Defining a
single statistic UPSY𝜎 as

UPSY𝜎 ∶= max

(
PSY𝜎,

cv𝜉
cv∗

𝜉

PSY∗
𝜎

)
,

the decision rule is then equivalent to

Reject H0 if UPSY𝜎 > 𝜓𝜉cv𝜉 .

An application of the continuous mapping theorem along with the results in Theorem 2 shows that

UPSY𝜎 ⇒ max

(
Gc1,c2,𝜎

,
cv𝜉
cv∗

𝜉

G∗
c1,c2,𝜎

)
.

Note that there is no need to explicitly calculate the scaling constant 𝜓𝜉 as, for a given value of cvs
𝜉
∕cv𝜉 , all we

require is the critical value cvU
𝜉
∶= 𝜓𝜉cv𝜉 which can be obtained directly from the limiting null distribution of

UPSY𝜎; that is, max(G0,0,𝜎 , (cv𝜉∕cv∗
𝜉
)G∗

0,0,𝜎). Asymptotic and finite sample critical values for cvU
𝜉

are provided in
Table I.

The asymptotic local power results for UPSY𝜎 are also given in Tables II–VI. Throughout, we see that the local
powers of UPSY𝜎 track very closely the better power that is available from PSY𝜎 and PSY∗

𝜎
individually. Indeed,

across the whole of Tables II–VI, the mean power loss for UPSY𝜎 compared to the better of PSY𝜎 and PSY∗
𝜎

is

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12784
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NEW HETEROSKEDASTICITY-ROBUST TEST 15

only 0.010 with a standard deviation of less than 0.008, and the largest power deficit is only 0.033. Given that the
performance of the union of rejections strategy is so close to that of the best of PSY𝜎 and PSY∗

𝜎
, it is unsurprising

to see that UPSY𝜎 dominates the better performing of the sPSY and sPSY tests across almost all parameter settings
(the only exceptions being cases where all tests have very low power).

6. FINITE SAMPLE SIMULATIONS

We now turn to an examination of the finite sample properties of the tests. Our simulations are based on the model
in (1)- (3) with T = 200. We set 𝜇 = 0 (without loss of generality) and u1 = 𝜀1, where 𝜀t = 𝜎tzt with the zt

generated as NIID(0, 1) random variates. Here the limit volatility functions 𝜎(r) are discretised to 𝜎t(t∕T) over 200
steps. In the non-parametric variance estimator 𝜎̂2

t used in constructing xt for PSY𝜎 and PSY∗
𝜎

we again employ
the Gaussian kernel for K(⋅) and set the bandwidth to h = 0.1T−0.25. We use finite sample critical values for all
tests, i.e. those in Table I for PSY𝜎 , PSY∗

𝜎
and UPSY𝜎 , and critical values simulated in the same way for sPSY and

sPSY . Table S1 reports 0.05-level finite sample sizes and powers over the same set of volatility patterns as for the
asymptotic power analysis of Tables II–VI; for the powers we consider the same constellation of bubble/collapse
parameter settings as Tables II–VI.

First we note that throughout Table S1, the sizes of all tests are close to the nominal level across the different
volatility patterns. Some very modest over-size is observed in the case of PSY𝜎 , up to 0.058, but even this feature
is largely absent when considering the union of rejections strategy UPSY𝜎 , which has a maximum size of 0.053.
The sPSY and sPSY sizes are invariant to 𝜎t here, since the statistics are based on sign(Δyt) = sign(𝜀t) = sign(zt)
under the null.

Turning to finite sample power, it is clear from a comparison of Tables II–VI and S1 that, in the main, the finite
sample rejection frequencies bear a very close resemblance to the corresponding local asymptotic results. There
are some individual settings for which the correspondence deviates from this general pattern, but these are rare.
Hence, the overall patterns of results, the rankings of the tests for different volatility patterns and bubble/collapse
timings, and the magnitudes of the relative power differences are largely the same as in the local asymptotic case.
In particular, the powers of UPSY𝜎 are very close to the better power that is available from PSY𝜎 and PSY∗

𝜎
, with

the mean power loss for UPSY𝜎 compared to the better of PSY𝜎 and PSY∗
𝜎

only 0.007 across the Table S1 results,
with a SD of less than 0.008, and a largest power deficit of 0.037. In these finite sample results, UPSY𝜎 power
continues to dominate the better performing of the sPSY and sPSY tests across almost all parameter settings, as
with the corresponding asymptotic local power results in Tables II–VI.

In addition to these finite sample results that use i.i.d errors, we also investigate finite sample size robustness
under departures from this assumption. First, we consider the case where zt is a conditionally heteroskedastic
GARCH(1,1) process, with zt =

√
ht𝜂t, where 𝜂t ∼ NIID(0, 1), and ht = 0.1+0.1z2

t−1 +0.8ht−1 (with h0 = z0 = 0).
Sizes are simulated for the same volatility functions as considered in Table S1, using simulated finite sample critical
values obtained under conditional and unconditional homoskedasticity. The results are presented in Table S2 for
T = 200 and T = 400. Reliable finite sample size is generally observed for the new procedures across the different
DGPs, particularly for PSY∗

𝜎
. Some modest over-size is displayed, but this reduces with the sample size, as would

be expected. As in Table S1, the sPSY and sPSY sizes are exactly 0.05 since here sign(Δyt) = sign(𝜂t).
The second departure from i.i.d errors that we consider is serial correlation in 𝜀t, using the AR(1) specification

𝜀t = 𝜃𝜀t−1 + 𝜎tzt. In line with the discussion in Remark 3.3, we augment the subsample regression (6), and
its without-intercept equivalent respectively, with one lagged difference term Δxt−1 and construct xt as in (5)
continuing to use the first-differences based estimator given in (4).5 The comparator sign-based tests are also
adjusted for serial correlation using the recursive prewhitening method outlined in HLZ. Finite sample critical
values for the lag-augmented/prewhitened tests are simulated using NIID(0, 1) errors. The results are presented
in Table S3 for T = 200 and T = 400. We see that the new procedures generally display decent finite sample
size control under these serial correlation settings. Some modest over-size is seen, particularly when 𝜃 = 0.4 and

5 We also considered the analogous tests based on the residual-based alternative to the first-differences-based estimator discussed in
Remark 3.3, but found these to display inferior finite sample performance to the reported tests.
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16 D. I. HARVEY ET AL.

T = 200, although the over-size reduces for T = 400 as expected. The sign-based comparator procedures also
display some over-size, with the degree broadly in line with that observed for the new tests.

7. CONCLUSIONS

In this article, we have proposed modified versions of the seminal bubble detection methods developed in Phillips
et al. (2015) that work effectively in the presence of non-stationary volatility. The modification purges uncondi-
tional heteroskedasticity from the data under the null by re-scaling the first differences of the data by a kernel
estimate of volatility and then recumulating. The procedures developed in Phillips et al. (2015) are then applied
to this recumulated data, rather than the original data. Simulations indicate that our new tests perform well rela-
tive to extant bubble detection tests that allow for non-stationary volatility. A union of rejections procedure based
on versions of our statistics from regressions with and without an intercept was found to perform especially well
across a wide range of simulation settings.
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APPENDIX A

A.1. Lemma 1 and Proof

We begin by stating and proving a preparatory lemma that will subsequently be required for the proof of Theorem 1.

Lemma 1. Let the conditions of Theorem 1 hold. Then,

T∑
j=2

(
𝜎̂

2
j − 𝜎

2
j

)2 = Op(h−1) + op(T).

Proof. Defining 𝜎̃2
t ∶=

∑T
j=2wt,j(𝜎jzj)2 and 𝜎2

t ∶=
∑T

j=2wt,j𝜎
2
j , notice first that

T∑
j=2

(
𝜎̂

2
j − 𝜎

2
j

)2 ⩽ 3

(
T∑

j=2

(
𝜎̂

2
j − 𝜎̃

2
j

)2 +
T∑

j=2

(
𝜎̃2

j − 𝜎
2
j

)2 +
T∑

j=2

(
𝜎

2
j − 𝜎

2
j

)2

)
.

Using the same argument as used by Harvey et al. (2019) in deriving equation (9) in the proof of their Theorem
1, we obtain that

∑T
j=2(𝜎̂

2
j − 𝜎̃

2
j )

2 = Op(T−1). By Lemma S.1 (b) of CNT,
∑T

j=2(𝜎̃
2
j − 𝜎

2
j )

2 = Op(h−1). Using the
argument as in the proof of Lemma S.1 (a) of CNT and lemma A(l) of Xu and Phillips (2008), we have that∑T

j=2

(
𝜎

2
j − 𝜎

2
j

)2 = op(T). In summary, the first term is dominated by the second and third terms, while the relative

magnitude of the second and the third terms is indeterminate, and so
∑T

j=2

(
𝜎̂

2
j − 𝜎

2
j

)2 = Op(h−1) + op(T). ◾

A.2. Proof of Theorem 1

Under H1 we can write

T−1∕2x⌊Tr⌋ = T−1∕2
⌊Tr⌋∑
j=2

uj − uj−1

𝜎̂j

= T−1∕2
⌊Tr⌋∑
j=2

(𝜌j − 1)uj−1

𝜎̂j

+ T−1∕2
⌊Tr⌋∑
j=2

𝜎jzj

𝜎̂j

.

To establish the limit of T−1∕2x⌊Tr⌋ stated in (8), we will first show that for r > 0,

sup
0⩽r⩽1

||||||T−1∕2
⌊Tr⌋∑
j=2

(𝜌j − 1)uj−1

𝜎̂j

− T−1∕2
⌊Tr⌋∑
j=2

(𝜌j − 1)uj−1

𝜎j

|||||| = op(1), (A.1)

and

sup
0⩽r⩽1

||||||T−1∕2
⌊Tr⌋∑
j=2

𝜎jzj

𝜎̂j

− T−1∕2
⌊Tr⌋∑
j=2

zj

|||||| = op(1), (A.2)

J. Time Ser. Anal. (2024) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12784 Journal of Time Series Analysis published by John Wiley & Sons Ltd.

 14679892, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12784 by T

est, W
iley O

nline L
ibrary on [22/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fjtsa.12784&mode=


18 D. I. HARVEY ET AL.

and then derive

T−1∕2
⌊Tr⌋∑
j=2

(𝜌j − 1)uj−1

𝜎j

+ T−1∕2
⌊Tr⌋∑
j=2

zj ⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩

W(r) r ⩽ 𝜏1

W(r) + c1∫ r

𝜏1

V1(s)
𝜎(s)

ds 𝜏1 < r ⩽ 𝜏2

W(r) + c1∫ 𝜏2

𝜏1

V1(s)
𝜎(s)

ds − c2∫ r

𝜏2

V2(s)
𝜎(s)

ds 𝜏2 < r ⩽ 𝜏3

W(r) + c1∫ 𝜏2

𝜏1

V1(s)
𝜎(s)

ds − c2∫ 𝜏3

𝜏2

V2(s)
𝜎(s)

ds r > 𝜏3

. (A.3)

From (A.1) to (A.3), (8) then follows.
For (A.1), we only demonstrate the result when r > 𝜏3; for r in other regimes the results can be shown in a

similar way and, hence, are omitted. Notice that, from the definition of 𝜌j,

sup
r>𝜏3

||||||T−1∕2
⌊Tr⌋∑
j=2

(𝜌j − 1)uj−1

𝜎̂j

− T−1∕2
⌊Tr⌋∑
j=2

(𝜌j − 1)uj−1

𝜎j

||||||
⩽
||||||c1T−3∕2

⌊T𝜏2⌋∑
j=⌊T𝜏1⌋+1

uj−1

(
1
𝜎̂j

− 1
𝜎j

)|||||| +
||||||c2T−3∕2

⌊T𝜏3⌋∑
j=⌊T𝜏2⌋+1

uj−1

(
1
𝜎̂j

− 1
𝜎j

)||||||
=∶ A1 + A2.

Using the Cauchy–Schwarz inequality,

A1 ⩽
|||||||c1T−3∕2

( ⌊T𝜏2⌋∑
j=⌊T𝜏1⌋+1

u2
j−1

)1∕2( ⌊T𝜏2⌋∑
j=⌊T𝜏1⌋+1

(
1
𝜎̂j

− 1
𝜎j

)2
)1∕2|||||||

⩽ c1T− 3
2

(
min⌊T𝜏1⌋+1⩽j⩽⌊T𝜏2⌋ |𝜎̂j𝜎j(𝜎̂j + 𝜎j)|)−1

( ⌊T𝜏2⌋∑
j=⌊T𝜏1⌋+1

u2
j−1

) 1
2
( ⌊T𝜏2⌋∑

j=⌊T𝜏1⌋+1

(𝜎̂2
j − 𝜎

2
j )

2

) 1
2

.

Using the argument in the proof of Lemma A(h) and A(j) in Xu and Phillips (2008), we have that
(min⌊T𝜏1⌋+1⩽j⩽⌊T𝜏2⌋ |𝜎̂j𝜎j(𝜎̂j + 𝜎j)|)−1 = Op(1). It is also straightforwardly seen that

∑⌊T𝜏2⌋
j=⌊T𝜏1⌋+1

u2
j−1 = Op(T2). Using

Lemma 1 we have
∑⌊T𝜏2⌋

j=⌊T𝜏1⌋+1

(
𝜎̂

2
j − 𝜎

2
j

)2 = Op(h−1)+op(T). In total, A1 = op(1). Similarly we also have A2 = op(1),
and so (A.1) is verified.

To establish (A.2), consider the decomposition

T−1∕2
⌊Tr⌋∑
j=2

(
𝜎jzj

𝜎̂j

− zj

)

= T−1∕2
⌊Tr⌋∑
j=2

(
𝜎jzj

𝜎̂j

−
𝜎jzj

𝜎̃j

)
+ T−1∕2

⌊Tr⌋∑
j=2

(
𝜎jzj

𝜎̃j

−
𝜎jzj

𝜎j

)
+ T−1∕2

⌊Tr⌋∑
j=2

(
𝜎jzj

𝜎j

− zj

)
=∶ B1 + B2 + B3.

For the first term, B1, we have that

|B1| ⩽ T−1∕2 max
1⩽j⩽⌊Tr⌋

|||||
𝜎j

𝜎̂j𝜎̃j(𝜎̃j + 𝜎̂j)

|||||
(⌊Tr⌋∑

j=2

(𝜎̃2
j − 𝜎̂

2
j )

2

)1∕2(⌊Tr⌋∑
j=2

z2
j

)1∕2

. (A.4)
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From the proof of Lemma 1, we have that
∑⌊Tr⌋

j=2

(
𝜎̃2

j − 𝜎̂
2
j

)2 = Op(T−1). It is also straightforwardly seen that∑⌊Tr⌋
j=2 z2

t = Op(T) and max2⩽j⩽⌊Tr⌋ |||| 𝜎j

𝜎̂j𝜎̃j(𝜎̃j+𝜎̂j)

|||| = Op(1). It then follows that B1 = op(1) for all 0 ⩽ r ⩽ 1. This result

can be strengthened to be uniform over the same interval by noticing that the magnitude of the right-hand side of
(A.4) is non-decreasing in r, and so sup0⩽r⩽1 |B1| = op(1).

Turning next to B2, using the equality p−1 − q−1 = (q − p)q−2 + (q − p)2p−1q−2, consider the following
decomposition

B2 = T−1∕2
⌊Tr⌋∑
j=2

𝜎jzj

(
1∕𝜎̃2

j − 1∕𝜎2
j

)
= T−1∕2

⌊Tr⌋∑
j=2

𝜎jzj

(
𝜎

2
j − 𝜎̃

2
j

)
𝜎
−4
j + T−1∕2

⌊Tr⌋∑
j=2

𝜎jzj

(
𝜎

2
j − 𝜎̃

2
j

)2
𝜎
−4
j 𝜎̃

−2
j

=∶ B21 + B22.

Consider first B21. We evaluate

E|B21|2 = T−1E

(⌊Tr⌋∑
j=2

𝜎jzj

(
T∑

i=2

wj,i𝜎
2
i

(
z2

i − 1
))
𝜎
−4
j

)2

= T−1E

(⌊Tr⌋∑
j=2

T∑
i=2

wj,i𝜎j𝜎
2
i 𝜎

−4
j zj

(
z2

i − 1
))2

= T−1E
⌊Tr⌋∑
j,j′=2

T∑
i,i′=2

wj,iwj′ ,i′𝜎j𝜎j′𝜎
2
i 𝜎

2
i′𝜎

−4
j 𝜎

−4
j′

(
zjzj′

(
z2

i − 1
)(

z2
i′ − 1

))
⩽ T−1

T∑
j,j′=2

T∑
i,i′=2

wj,iwj′ ,i′𝜎j𝜎j′𝜎
2
i 𝜎

2
i′𝜎

−4
j 𝜎

−4
j′
||E(zjzj′

(
z2

i − 1
)(

z2
i′ − 1

))||.
Using Assumption 1 and applying the standard formula representing joint moments by summation of different
products of joint cumulants (see section 1.3 of Novak, 2014 and section 2.3 of Brillinger, 2001), we can show that

T∑
j,j′=2

T∑
i,i′=2

|E(zjzj′ (z2
i − 1)(z2

i′ − 1))| = O(T2).

It then follows that EB2
21 = O(1∕(Th2)) = o(1). Notice that the above derivation also goes through for

sup0⩽r⩽1 |B21|2 and it follows that sup0⩽r⩽1 B21 = Op(1∕(Th2)) = op(1).
For B22, using the Cauchy–Schwarz inequality for the sum we have

||||||T−1∕2
⌊Tr⌋∑
j=2

𝜎jzj

(
𝜎

2
j − 𝜎̃

2
j

)2
𝜎
−4
j 𝜎̃

−2
j

|||||| ⩽ C

(
1
T

⌊Tr⌋∑
j=2

(𝜎jzj)2
)1∕2(⌊Tr⌋∑

j=2

(
𝜎

2
j − 𝜎̃

2
j

)4

)1∕2

.

It is straightforwardly seen that sup0⩽r⩽1 T−1∑[𝜏T]
j=2 (𝜎jzj)2 = Op(1). Notice that sup0⩽r⩽1

∑⌊Tr⌋
j=2

(
𝜎

2
j − 𝜎̃

2
j

)4 =∑T
j=2

(
𝜎

2
j − 𝜎̃

2
j

)4
, which is Op

(
1

Th2

)
by Lemma S.1 (e) accompanying CNT. Therefore we have that sup0⩽r⩽1 |B22| =

op(1). In total, we therefore have that sup0⩽r⩽1 |B2| = op(1).
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Turning finally to B3, using the fact that the 𝜎j and 𝜎j are both deterministic, we have that

E|B3|2 = E

(
T−1∕2

⌊Tr⌋∑
j=2

1
𝜎j(𝜎j + 𝜎j)

(
𝜎

2
j − 𝜎

2
j

)
zj

)2

= T−1
⌊Tr⌋∑
j=2

1

𝜎
2
j (𝜎j + 𝜎j)2

(
𝜎

2
j − 𝜎

2
j

)2
Ez2

j

⩽ max
2⩽j⩽⌊Tr⌋ 1

𝜎
2
j (𝜎j + 𝜎j)2

T−1
⌊Tr⌋∑
j=2

(
𝜎

2
j − 𝜎

2
j

)2
.

From the proof of Lemma 1, we have that T−1∑⌊Tr⌋
j=2

(
𝜎

2
j − 𝜎

2
j

)2 = o(1) and so maxj
1

𝜎
2
j (𝜎j+𝜎j)2

is clearly O(1) and

hence E|B3|2 = o(1). It follows from the Markov inequality that B3 = op(1) and the result is also uniform over
0 ⩽ r ⩽ 1, and so (A.2) is verified.

We next establish (A.3). First, by a standard MDS FCLT (see, e.g., Hall and Heyde, 1980), we have that
T−1∕2∑⌊Tr⌋

j=2 zj ⇒ W(r), r ∈ [0, 1], where W(r) is a standard Brownian motion. For T−1∕2∑⌊Tr⌋
j=2

(𝜌j−1)uj−1

𝜎j
, the limit will

depend on the regime r lies in. Again here we only give the derivation of the result when r > 𝜏3; the derivation
of the results for r in the other regimes is similar and therefore omitted. When r > 𝜏3, by approximation of the
Riemann integral,

T−1∕2
⌊Tr⌋∑
j=2

(𝜌j − 1)uj−1

𝜎j

= c1T− 3
2

⌊T𝜏2⌋∑
j=⌊T𝜏1⌋+1

uj−1

𝜎j

− c2T− 3
2

⌊T𝜏3⌋∑
j=⌊T𝜏2⌋+1

uj−1

𝜎j

⇒ c1∫
𝜏2

𝜏1

V1(s)
𝜎(s)

ds − c2∫
𝜏3

𝜏2

V2(s)
𝜎(s)

ds.

A.3. Proof of Theorem 2

In the following, we detail the proof for the without-intercept version PSY∗
𝜎
. The with-intercept version result for

PSY𝜎 can be derived analogously and, hence, is omitted.

Using Theorem 1, the stated result for the without-intercept version follows if we can show that ŝ2(𝜆1, 𝜆2)
p
−→1.

By definition of the variance estimator ŝ2(𝜆1, 𝜆2) and the least squares estimator 𝜙̂(𝜆1, 𝜆2), we have the following
expansion,

ŝ2(𝜆1, 𝜆2) = (⌊𝜆2T⌋ − ⌊𝜆1T⌋ − 1)−1
⌊𝜆2T⌋∑

t=⌊𝜆1T⌋+1

(Δxt − 𝜙̂(𝜆1, 𝜆2)xt−1)2

= (⌊𝜆2T⌋ − ⌊𝜆1T⌋ − 1)−1

⎛⎜⎜⎜⎝
⌊𝜆2T⌋∑

t=⌊𝜆1T⌋+1

(Δxt)2 −

(∑⌊𝜆2T⌋
t=⌊𝜆1T⌋+1

Δxtxt−1

)2

∑⌊𝜆2T⌋
t=⌊𝜆1T⌋+1

x2
t−1

⎞⎟⎟⎟⎠.
From (8) it is easily seen that

∑⌊𝜆2T⌋
t=⌊𝜆1T⌋+1

Δxtxt−1 = Op(T) and
∑⌊𝜆2T⌋

t=⌊𝜆1T⌋+1
x2

t−1 = Op(T2), and we therefore have that

(⌊𝜆2T⌋ − ⌊𝜆1T⌋ − 1)−1

(∑⌊𝜆2T⌋
t=⌊𝜆1T⌋+1

Δxtxt−1

)2

∑⌊𝜆2T⌋
t=⌊𝜆1T⌋+1

x2
t−1

= op(1).
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Notice also that

⌊𝜆2T⌋∑
t=⌊𝜆1T⌋+1

(Δxt)2 =
⌊𝜆2T⌋∑

t=⌊𝜆1T⌋+1

(
Δut

𝜎̂t

)2

.

Using the same argument as we used in deriving (A.1), we therefore have that

1⌊𝜆2T⌋ − ⌊𝜆1T⌋ − 1

||||||
⌊𝜆2T⌋∑

t=⌊𝜆1T⌋+1

(
Δut

𝜎̂t

)2

−
⌊𝜆2T⌋∑

t=⌊𝜆1T⌋+1

(
Δut

𝜎t

)2|||||| = op(1).

Then, by the definition of ut, we have that

Δut =

⎧⎪⎪⎨⎪⎪⎩
𝜀t t ⩽ ⌊𝜏1T⌋
(c1∕T)ut−1 + 𝜀t ⌊𝜏1T⌋ < t ⩽ ⌊𝜏2T⌋
(−c2∕T)ut−1 + 𝜀t ⌊𝜏2T⌋ < t ⩽ ⌊𝜏3T⌋
𝜀t t > ⌊𝜏3T⌋

.

It is then straightforward to show that (⌊𝜆2T⌋ − ⌊𝜆1T⌋ − 1)−1∑⌊𝜆2T⌋
t=⌊𝜆1T⌋+1

(
Δut

𝜎t

)2 p
−→ 1. Consequently,

ŝ2(𝜆1, 𝜆2) = (⌊𝜆2T⌋ − ⌊𝜆1T⌋ − 1)−1
⌊𝜆2T⌋∑

t=⌊𝜆1T⌋+1

(
Δut

𝜎t

)2

+ op(1)
p
−−→ 1.

We are now in a position to derive the distribution of the DF statistic over the (𝜆1, 𝜆2) sub-sample. To that end,

DF∗
𝜎
(𝜆1, 𝜆2) =

T−1x2⌊𝜆2T⌋ − T−1x2⌊𝜆1T⌋ − T−1∑⌊𝜆2T⌋
t=⌊𝜆1T⌋+1

(Δxt)2

2
√

ŝ2(𝜆1, 𝜆2)T−2
∑⌊𝜆2T⌋

t=⌊𝜆1T⌋+1
x2

t−1

⇒
(𝜆2)2 − (𝜆1)2 − (𝜆2 − 𝜆1)

2
√

∫ 𝜆2

𝜆1
(r)2dr

. (A.5)

The large sample result in (A.5) holds formally only for fixed 𝜆1, 𝜆2. However, following the same approach
(which is based on the proof strategy adopted by Zivot and Andrews, 1992, to prove their Theorem 1) as that used
to establish equation (A.6) on p. 1072 in the proof of Theorem 1 in PSY (pp. 1072–1075), the stated result for
the limiting null distribution of the PSY∗

𝜎
statistic can be shown to follow by means of the Continuous Mapping

Theorem from the fixed 𝜆1, 𝜆2 representation in (A.5).
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