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ABSTRACT 23 

By analyzing and simulating inactive conformations of the highly-homologous dopamine D2 24 

and D3 receptors (D2R and D3R), we find that eticlopride binds D2R in a pose very similar to that 25 

in the D3R/eticlopride structure but incompatible with the D2R/risperidone structure. In addition, 26 

risperidone occupies a sub-pocket near the Na+ binding site, whereas eticlopride does not. Based 27 

on these findings and our experimental results, we propose that the divergent receptor 28 

conformations stabilized by Na+-sensitive eticlopride and Na+-insensitive risperidone correspond 29 

to different degrees of inverse agonism. Moreover, our simulations reveal that the extracellular 30 

loops are highly dynamic, with spontaneous transitions of extracellular loop 2 from the helical 31 

conformation in the D2R/risperidone structure to an extended conformation similar to that in the 32 

D3R/eticlopride structure. Our results reveal previously unappreciated diversity and dynamics in 33 

the inactive conformations of D2R. These findings are critical for rational drug discovery, as limiting 34 

a virtual screen to a single conformation will miss relevant ligands.  35 

 36 

 37 

Impact Statement 38 

The occupation of a sub-pocket near the Na+-binding site in D2R by the Na+-insensitive 39 

antagonists is the structural basis for their greater inverse agonism than that of the Na+-sensitive 40 

ligands. 41 

 42 

 43 
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INTRODUCTION 47 

G protein-coupled receptors (GPCRs) are important therapeutic targets for numerous human 48 

diseases. Our understanding of GPCR functional mechanisms has evolved from a simple 49 

demarcation of single active and inactive states to the appreciation and detection of multiple active 50 

states responsible for partial or biased agonism (Latorraca et al., 2017; Venkatakrishnan et al., 51 

2013; Weis and Kobilka, 2018). High-resolution crystal structures of these proteins are vital for 52 

structure-based (rational) drug discovery (RDD) efforts designed to tailor selectivity and efficacy 53 

(Congreve et al., 2014; Michino et al., 2015a). While considerable efforts have been directed at 54 

the development of biased agonists that couple preferentially to a particular effector pathway 55 

(Free et al., 2014; Manglik et al., 2016; McCorvy et al., 2018), less attention has been dedicated 56 

to the possibility that different antagonist scaffolds with differing efficacy of inverse agonism might 57 

lead to different receptor conformations and hence different “inactive” states. Such a possibility 58 

could have a major impact on RDD for antagonists, since a GPCR crystal structure stabilized by 59 

a particular antagonist might represent an invalid docking target for an antagonist that prefers a 60 

different inactive conformation. Although substantial differences in antagonist binding mode and 61 

position of the binding pockets have been revealed among different aminergic receptors, no 62 

conformational differences has been detected for the inactive state in any individual aminergic 63 

receptor (Michino et al., 2015a). In particular, although a number of antagonists derived from 64 

different scaffolds have been co-crystallized with the β2 adrenergic receptor, conformational 65 

differences among these crystal structures are minimal (Michino et al., 2015a).  66 

Curiously, the inactive state structures of the highly homologous dopamine D2 and D3 67 

receptors (D2R and D3R) revealed substantial differences on the extracellular side of the 68 

transmembrane domain, especially in TM6 (Figure 1), when bound with antagonists derived from 69 

different scaffolds (Chien et al., 2010; Wang et al., 2018). Specifically, the D3R structure is in 70 

complex with eticlopride, a substituted benzamide (PDB: 3PBL) (Chien et al., 2010), while the 71 

D2R structure is bound with risperidone, a benzisoxazole derivative (PDB: 6CM4) (Wang et al., 72 
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2018). The binding poses of the two ligands differ substantially. Risperidone is oriented relatively 73 

perpendicular to the membrane plane with its benzisoxazole ring penetrating into a hydrophobic 74 

pocket beneath the orthosteric binding site (OBS) of D2R; in contrast, eticlopride is oriented 75 

relatively parallel to the membrane plane and contacts the extracellular portion of TM5 in D3R, a 76 

sub-pocket that risperidone does not occupy in D2R (Sibley and Shi, 2018; Wang et al., 2018). 77 

Nemonapride, another substituted benzamide, binds in the OBS of the slightly divergent D4R 78 

(PDB: 5WIV) (Wang et al., 2017) in a manner very similar to that of eticlopride in the D3R (Sibley 79 

and Shi, 2018).  80 

Importantly, the co-crystalized ligands (risperidone, eticlopride, and nemonapride) display little 81 

subtype selectivity across D2R, D3R, and D4R (Chien et al., 2010; Hirose and Kikuchi, 2005; 82 

Silvestre and Prous, 2005; Wang et al., 2017) (also see PDSP database (Roth et al., 2000)). 83 

Given the high homology among these D2-like receptors, especially between D2R and D3R, the 84 

drastic conformational differences between the inactive state structures of these receptors may 85 

be better explained by different binding poses of antagonists bearing different scaffolds rather 86 

than inherent differences in the receptors. Thus, we hypothesized that different antagonist 87 

scaffolds may favor distinct inactive conformations of D2R. To test this hypothesis, we carried out 88 

extensive molecular dynamics (MD) simulations of D2R in complex with non-selective antagonists 89 

derived from different scaffolds to characterize the plasticity of the OBS and the extracellular loop 90 

dynamics in the inactive conformational state.  91 
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RESULTS 92 

The Ile3.40 sub-pocket is occupied by risperidone and spiperone but not eticlopride in D2R 93 

Compared to eticlopride bound in the D3R structure, risperidone in the D2R structure 94 

penetrates deeper into the binding site, with its benzisoxazole moiety occupying a sub-pocket that 95 

eticlopride does not reach. By examining the D2R/risperidone structure, we found that the 96 

benzisoxazole moiety is enclosed by 8 residues in D2R, which are identical among all D2-like 97 

receptors (i.e., D2R, D3R, and D4R): Cys1183.36 (superscripts denote Ballesteros-Weinstein 98 

numbering (Ballesteros and Weinstein, 1995)), Thr1193.37, Ile1223.40, Ser1975.46, Phe1985.47, 99 

Phe3826.44, Trp3866.48, and Phe3906.52. Notably, three of these residues (Ile1223.40, Phe1985.47, 100 

and Phe3826.44) on the intracellular side of the OBS that we previously defined (Michino et al., 101 

2015a), accommodate the F-substitution at the tip of the benzisoxazole ring in a small cavity 102 

(termed herein as the Ile3.40 sub-pocket) (Figure 2a). Both Ile1223.40 and Phe3826.44 of this Ile3.40 103 

sub-pocket are part of the conserved Pro5.50-Ile3.40-Phe6.44 motif that undergoes rearrangement 104 

upon receptor activation (Rasmussen et al., 2011), and we have found that the I1223.40A mutation 105 

renders D2R non-functional (Klein Herenbrink et al., 2019; Wang et al., 2018). Interestingly, this 106 

Ile3.40 sub-pocket is collapsed in both the D3R and D4R structures (Sibley and Shi, 2018) (Figure 107 

2b,c). We noted that this collapse is associated with rotation of the sidechain of Cys3.36: In the 108 

D2R/risperidone structure, the sidechain of Cys3.36 faces the OBS, whereas in the D3R/eticlopride 109 

and D4R/nemonapride structures, it rotates downwards to partially fill the Ile3.40 sub-pocket (Figure 110 

2a-c).  111 

To test our hypothesis that these observed differences in the crystal structures are due to the 112 

binding of antagonists bearing different scaffolds but not intrinsic divergence of D2-like receptors, 113 

we compared the binding modes of three non-selective antagonists in D2R. We reverted three 114 

thermostabilizing mutations introduced for crystallography (I1223.40A, L3756.37A, and L3796.41A) 115 

back to their WT residues, established WT D2R models in complex with risperidone, spiperone, 116 
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or eticlopride, and carried out extensive MD simulations (see Methods, Figure 1 – figure 117 

supplement 1 and Table 1). 118 

In our prolonged MD simulations of the WT D2R/risperidone complex (>65 µs, Table 1), we 119 

observed that risperidone stably maintains the binding pose captured in the crystal structure, even 120 

without the thermostabilizing mutations (Figure 2d). Thus, the I1223.40A mutation has minimal 121 

impact on the binding pose of risperidone. Interestingly, in the simulations of the WT D2R model 122 

in complex with spiperone, a butyrophenone derivative, the F-substitution on the butyrophenone 123 

ring similarly occupies the Ile3.40 sub-pocket as risperidone (Figure 2e). Note that the F-124 

substitutions in risperidone and spiperone are located at similar distances to the protonated N 125 

atoms that interact with Asp3.32 (measured by the number of carbon atoms between them, Figure 126 

1 – figure supplement 1) and these two ligands appear to be optimized to occupy the Ile3.40 sub-127 

pocket.  128 

In contrast, in our simulations of the D2R/eticlopride complex, the eticlopride pose revealed in 129 

the D3R structure (PDB: 3PBL) is stable throughout the simulations and does not protrude into 130 

the Ile3.40 sub-pocket (Figure 2f). Consistent with the difference in the crystal structures noted 131 

above (Figure 2a,b), when risperidone and spiperone occupy the Ile3.40 sub-pocket, the sidechain 132 

of Cys1183.36 rotates away with its χ1 rotamer in gauche-, while in the presence of the bound 133 

eticlopride, this rotamer is stable in trans (Figure 2 – figure supplement 1). 134 

To validate these computational findings regarding the occupation of the Ile3.40 sub-pocket, 135 

we mutated Ile1223.40 of WT D2R to both Trp and Ala and characterized how these mutations 136 

affect the binding affinities for spiperone, risperidone, and eticlopride (Table 2). We hypothesized 137 

that the bulkier sidechain of Trp at position 3.40 would hamper the binding of spiperone and 138 

risperidone since they occupy the Ile3.40 sub-pocket but have no effect on eticlopride binding, while 139 

the smaller Ala should not affect the binding of spiperone or risperidone. Consistent with this 140 

hypothesis, the I122W mutation decreased the binding affinities of risperidone (13-fold) and 141 

spiperone (6-fold) compared to WT but had no effect on that of eticlopride. In contrast, the I122A 142 
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mutation did not affect the affinities of spiperone or risperidone, which is consistent with our 143 

simulation results that show the I122A mutation has minimal impact on risperidone binding. In 144 

contrast, I122A caused a 3-fold increase in the affinity of eticlopride, suggesting that the I122A 145 

mutation may promote an inactive conformation of D2R that favors eticlopride binding. Together 146 

these results support our proposal that different antagonist scaffolds may favor distinct inactive 147 

conformations of D2R.  148 

Occupation of the Ile3.40 sub-pocket confers insensitivity to Na+ in antagonist binding 149 

Ligand binding in D2-like receptors can be modulated by Na+ bound in a conserved allosteric 150 

binding pocket coordinated by Asp2.50 and Ser3.39 (Michino et al., 2015b; Neve, 1991; Wang et al., 151 

2017). Note that the aforementioned Cys3.36 and Ile3.40 are adjacent to the Na+ coordinating Ser3.39; 152 

thus, we further hypothesized that the occupation of the Ile3.40 sub-pocket by spiperone or 153 

risperidone makes them insensitive to Na+. To test this hypothesis, we simulated D2R/risperidone, 154 

D2R/spiperone, D2R/eticlopride, and D2R/(-)-sulpiride complexes in the presence versus absence 155 

of bound Na+ (Table 1). Interestingly, the occupancy of the Ile3.40 sub-pocket by either spiperone 156 

or risperidone was unaffected by the presence or absence of bound Na+ (Figure 2 – figure 157 

supplement 1). In contrast, while the poses of eticlopride and (-)-sulpiride are highly stable in the 158 

presence of bound Na+, they oscillated between different poses in the absence of Na+. These 159 

oscillations are associated with the sidechain of Cys3.36 swinging back and forth between the two 160 

rotamers, suggesting an important role of Na+ binding in stabilizing the poses of eticlopride and 161 

(-)-sulpiride and the configuration of the Ile3.40 sub-pocket (Figure 2 – figure supplement 1). 162 

Interestingly, the previous MD simulations described by Wang et al. indicated that nemonapride’s 163 

binding pose in D4R is more stable in the presence of bound Na+ as well (Wang et al., 2017). 164 

Consistent with these computational results, we have previously shown that spiperone binding 165 

is insensitive to the presence of Na+, while the affinities of eticlopride and sulpiride are increased 166 

in the presence of Na+ (Michino et al., 2015b). In this study, we performed binding experiments in 167 
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the absence or presence of Na+ and found the affinity of risperidone to be unaffected, in 168 

accordance with this hypothesis (Table 2).  169 

Together these findings support our hypothesis that the ability of a ligand to bind the Ile3.40 170 

sub-pocket relates with its sensitivity to Na+ in binding, due to allosteric connections between the 171 

sub-pocket and the Na+ binding site. 172 

Functional consequences of distinct antagonist-bound inactive conformations. 173 

To further investigate the functional impact of these conformational differences surrounding 174 

the OBS, we used a bioluminescence resonance energy transfer (BRET) assay, which measures 175 

conformational changes of the Go protein heterotrimer following activation by D2R (Michino et al., 176 

2017), to evaluate the inverse agonism activities of several representative D2R ligands. These 177 

ligands can be categorized into two groups according to their sensitivities to Na+ in binding at D2R, 178 

which have been characterized either in our current study or in previous studies (Michino et al., 179 

2015b; Neve, 1991; Newton et al., 2016). While risperidone, spiperone, and (+)-butaclamol have 180 

been found to be insensitive to Na+ in binding, (-)-sulpiride, eticlopride, and raclopride show 181 

enhanced binding affinities in the presence of Na+. Using quinpirole as a reference full agonist, 182 

we found that the Na+ insensitive ligands display significantly greater inverse agonism (< -30% 183 

that of the maximal response of quinpirole) relative to the Na+ sensitive ligands (> -15% that of 184 

the maximal response of quinpirole, Figure 3). These observations are consistent with findings 185 

from earlier [35S]GTPγS binding experiments of Roberts and Strange in which (+)-butaclamol, 186 

risperidone, and spiperone were found to inhibit significantly more [35S]GTPγS binding than 187 

raclopride and (-)-sulpiride (Roberts and Strange, 2005). Of note, these [35S] GTPγS binding 188 

experiments were performed in the absence of Na+.  189 

Based on these functional data together with the different binding modes revealed by our 190 

computational simulations, we propose that ligands that occupy the Ile3.40 sub-pocket exhibit a 191 

greater level of inverse agonism as compared to those that do not. Therefore, across the tested 192 



9 
 

inverse agonists there is a negative relation between ligand sensitivity to Na+ and the extent of 193 

inverse agonism at D2R. The differential occupation of the Ile3.40 sub-pocket is the structural basis 194 

for the Na+ sensitivity, which contributes significantly to the extent of inverse agonism of the tested 195 

ligands. 196 

Plasticity of the ligand binding site propagates to affect the overall receptor conformation 197 

By occupying the Ile3.40 sub-pocket, the benzisoxazole moiety of risperidone pushes the 198 

conserved Phe6.52 away from the binding site in the D2R/risperidone structure compared to its 199 

position in the D3R/eticlopride structure. This interaction is responsible for positioning the aromatic 200 

cluster of TM6 and TM7 (Trp6.48, Phe6.51, Phe6.52, His6.55, and Tyr7.35) in D2R differently from its 201 

configurations in the D3R and D4R structures, resulting in an overall outward positioning of the 202 

extracellular portion of TM6 in D2R (Figure 4 – figure supplement 1). On the extracellular side of 203 

the OBS, the space near Ser5.42 and Ser5.43 that accommodates the bulky substitutions of the 204 

benzamide rings of the bound eticlopride and nemonapride in the D3R and D4R structures is not 205 

occupied by risperidone in D2R, which is likely associated with the inward movement of the 206 

extracellular portion of TM5 in D2R relative to those in the D3R and D4R structures (Figure 1).  207 

To evaluate whether these conformational rearrangements are due to the minor divergence 208 

in these regions of the receptors or to the ligand binding site plasticity that accommodates ligands 209 

bearing different scaffolds, we compared the resulting conformations of D2R bound with 210 

risperidone or eticlopride. We observed the same trend of rearrangements of the transmembrane 211 

segments surrounding the OBS in the resulting receptor conformations from our D2R/risperidone 212 

and D2R/eticlopride simulations (Figure 4a), i.e., an inward movement of TM6 and outward 213 

movement of TM5 in the presence of the bound eticlopride (Figure 4b,c). Without such 214 

movements in D2R/eticlopride, Ser1935.42 and Ser1945.43 would clash with the bound eticlopride 215 

(Figure 4a). These findings further support our inference that differences between the D2R and 216 

D3R inactive structures are largely due to the different scaffolds of the bound non-selective ligands. 217 
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The extracellular loop 2 (EL2) of D2R/risperidone can spontaneously unwind 218 

In addition to differences in the transmembrane segments surrounding the OBS, there are 219 

also substantial differences in the configuration of EL2 in the D2R and D3R structures. EL2 220 

between TM4 and TM5 is connected to TM3 via a disulfide bond formed between CysEL2.50 (see 221 

Methods and Figure 5 – figure supplement 1 for the indices of EL1 and EL2 residues) and Cys3.25. 222 

The conformation of EL2, the sequence of which is not conserved among aminergic GPCRs, is 223 

expected to be dynamic. Indeed, in the D2R/risperidone structure, the sidechains of residues 224 

176EL2.40, 178EL2.46, 179EL2.47, and 180EL2.48, which are distal to the OBS were not solved, likely due 225 

to their dynamic nature. Curiously, the portion of EL2 C-terminal to Cys182EL2.50 (residues 226 

182EL2.50-186EL2.54), which forms the upper portion of the OBS that is in contact with ligand, is in a 227 

helical conformation in the D2R/risperidone structure.  228 

Strikingly, in our MD simulations of D2R complexes, we found that this helical region showed 229 

a tendency to unwind (Video 1). The unwinding of EL2 involves a drastic rearrangement of the 230 

sidechain of Ile183EL2.51, which dissociates from a hydrophobic pocket formed by the sidechains 231 

of Val1113.29, Leu1704.60, Leu174EL2.38, and Phe1895.38. Specifically, the unwinding process is 232 

initiated by the loss of a hydrogen-bond (H-bond) interaction between the sidechain of Asp1083.26 233 

and the backbone amine group of Ile183EL2.51 formed in the D2R/risperidone structure (Figure 5 – 234 

figure supplement 2b, step i). When this interaction is broken, the orientation of residues 182EL2.50-235 

186EL2.54 deviates markedly from that of the crystal structure, losing its helical conformation (see 236 

below). Subsequently, the sidechain of Ile183EL2.51 rotates outwards and passes a small steric 237 

barrier of Gly173EL2.37 (Figure 5 – figure supplement 2b, step ii), and in some trajectories makes 238 

a favorable hydrophobic interaction with the sidechain of Ala177EL2.45. In a few long trajectories, 239 

Ile183EL2.51 rotates further towards the extracellular vestibule where it can make favorable 240 

interactions with hydrophobic or aromatic residues from the N terminus, or the bound risperidone 241 

(Supplementary Movie 1). Consequently, residues 182EL2.50-186EL2.54 are in a fully extended loop 242 

conformation while Ile184EL2.52 tilts under EL2 (Figure 5 – figure supplement 2b, step iii). 243 



11 
 

In the D3R structure, the aligned residue for Asp1083.26 of D2R is conserved as Asp1043.26; its 244 

sidechain forms an interaction not with Ile182EL2.51 but rather with the sidechain of Asn173EL2.39, 245 

which is also conserved in D2R as Asn175EL2.39. In the D4R, the aligned two residues (Asp1093.26 246 

and Asn175EL2.39) are conserved as well, their sidechains are only 4.3 Å away in the D4R structure, 247 

a distance slightly larger than the 3.2 Å in the D3R structure. Even though these residues are 248 

conserved in D2R, the interaction in D3R (and potentially in D4R), between Asp3.26-AsnEL2.39, is not 249 

present in the D2R structure in which the aligned Asn175EL2.39 faces lipid (Figure 5 – figure 250 

supplement 2a). However, in a few of our long D2R simulations, Asn175EL2.39 gradually moves 251 

inwards and approaches Asp1083.26 (Figure 5 – figure supplement 2b, step iv). At this point, the 252 

EL2 conformation of D2R is highly similar to that of D3R (Figure 5 – figure supplement 2c), 253 

suggesting that EL2 is dynamic and can exist in both conformations. 254 

We evaluated the tendency of the EL2 helix to unwind in each of the simulated D2R complexes 255 

by measuring the stability of the backbone H-bond between Ile183EL2.51 and Asn186EL2.54, a key 256 

stabilizing force of the helix (Figure 5a). When we plotted the Ile183EL2.51-Asn186EL2.54 distance 257 

against the Asp1083.26-Ile183EL2.51 distance for each D2R complex (Figure 5b), we found that the 258 

loss of the Asp1083.26-Ile183EL2.51 interaction increases the probability of breaking the Ile183EL2.51-259 

Asn186EL2.54 H-bond, i.e., the unwinding of EL2. Interestingly, in all our simulated D2R complexes, 260 

EL2 has a clear tendency to unwind, regardless of the scaffold of the bound ligand (Figure 5c,d, 261 

Videos 1 and 3). Note that in the D3R/eticlopride simulations, the aligned residues Ser182EL2.51 262 

and Asn185EL2.54 do not form such a H-bond, and EL2 is always in an extended conformation 263 

(Figure 5b-d). This tendency of EL2 to transition towards the extended conformation is also 264 

present in our simulations of D2R in complex with a partial agonist, aripiprazole, whereas EL2 in 265 

the D3R complexes with partial agonists (R22 and S22) remains in the extended conformation 266 

(Table 1 and Figure 5 – figure supplement 3). Interestingly, Asp1043.26 and Ser182EL2.51 can move 267 

into interacting range in the D3R/eticlopride simulations, and the Ser182EL2.51-Asn185EL2.54 268 

interaction can sporadically form in the D3R/R22 simulations – both raise the possibility that the 269 
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extended conformation of D3R EL2 may transition to a helical conformation.  270 

Interestingly, in one of our long MD trajectories of the D2R/risperidone complex, EL2 evolved 271 

into a conformation that has a helical N-terminal portion and an extended C-terminal portion 272 

(Video 4 and Figure 5 – figure supplement 4). This conformation is not observed in either of the 273 

D2R/risperidone and D3R/eticlopride structures but is similar to that of the 5-HT2AR/risperidone 274 

structure, further demonstrating the dynamics of this loop region (Figure 5 – figure supplement 4). 275 

In marked contrast to the obvious trend toward unwinding of EL2 in all our simulated D2R 276 

complexes, in our recent simulations of MhsT, a transporter protein with a region found by 277 

crystallography to alternate between helical and unwound conformations (Malinauskaite et al., 278 

2014), we failed to observe any spontaneous unwinding over a similar simulation timescale (with 279 

the longest simulations being ~5-6 µs) when the region was started from the helical conformation 280 

(Abramyan et al., 2018; Stolzenberg et al., 2017). This shows how difficult it can be to capture 281 

known dynamics in simulations and suggests that the C-terminal helical conformation of EL2 in 282 

D2R represents a higher energy state than the extended conformation, which allows for 283 

observation of the transitions in a simulation timescale not usually adequate to sample 284 

folding/unfolding events (Piana et al., 2011). 285 

Both the EL2 conformation and ligand scaffold affect the EL1 conformation. 286 

We have previously shown that the divergence in both the length and number of charged 287 

residues in EL1 among D2R, D3R, and D4R is responsible for the selectivity of more extended 288 

ligands (Michino et al., 2013; Newman et al., 2012). Another striking difference in the D2R, D3R, 289 

and D4R structures is the position of the conserved TrpEL1.50 in EL1. Trp100EL1.50 is in a much more 290 

inward position in the D2R structure, making a direct contact with the bound risperidone (Figure 291 

6a), Trp101EL1.50 in D4R interacts with the bound nemonapride that has an extended structure, 292 

whereas Trp96EL1.50 in D3R is not in contact with eticlopride (Figure 6b). Thus, we asked whether 293 

these distinct positions of TrpEL1.50 are due to the divergence in EL1 among these receptors 294 
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(Michino et al., 2013) or due to the multiple inactive conformations that differentially accommodate 295 

the binding of non-selective ligands of divergent scaffolds.  296 

When residues 182EL2.50-186EL2.54 of EL2 are in a helical conformation, in the D2R/risperidone 297 

simulations, we found that there is more room in the extracellular vestibule and the position of 298 

Trp100EL1.50 is flexible and can adopt several positions and orientations (Figure 6c,e,f). In the 299 

D2R/eticlopride simulations, Trp100EL1.50, which cannot interact with eticlopride, shows more 300 

flexibility than that observed in the presence of risperidone and can move to a similar position like 301 

that of Trp96EL1.50 in the D3R structure (Figure 6 – figure supplement 1 and Video 2). Interestingly, 302 

in this position, the conformation of TrpEL1.50 can be stabilized by the disulfide bond of EL2 (Ioerger 303 

et al., 1999) (as shown in Video 2) or by interaction with the N terminus, which was truncated in 304 

the receptor construct used in the determination of the crystal structure. In the D2R/spiperone 305 

simulations, the phenyl substitution on the triazaspiro[4.5]decane moiety protrudes towards the 306 

interface between TM2 and TM3, and contacts Trp100EL1.50, which is flexible as well and can 307 

adopt a position that is even further away from the OBS than that of Trp96EL1.50 in the D3R structure 308 

(Figure 6 – figure supplement 1). 309 

In contrast, when EL2 is in an extended conformation like that in D3R, it restricts the flexibility 310 

of Trp100EL1.50 (Video 3). This trend is consistent with the D3R/eticlopride simulations in which we 311 

do not observe any significant rearrangement of Trp96EL1.50 (Figure 6d,e,f).  312 

Thus, we infer that the distinct conformation of Trp100EL1.50 in the D2R structure is a combined 313 

effect of the helical EL2 conformation and the favored interaction that Trp100EL1.50 can form with 314 

the bound risperidone in the crystal structure, the latter of which however, has a limited influence 315 

on the binding affinity of risperidone (Wang et al., 2018), consistent with the unstable interaction 316 

between risperidone and Trp100EL1.50 in our simulations (Figure 6, Video 2). Indeed, in the fully 317 

extended EL2 conformation in which Ile183EL2.51 rotates to face the extracellular vestibule, 318 

Ile183EL2.51 makes a direct contact with the bound risperidone, whereas Trp100EL1.50 loses its 319 

interaction with the ligand entirely (Video 1). Nevertheless, risperidone retains all other contacts 320 
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in the OBS. In the recently reported 5-HT2AR/risperidone structure (PDB: 6A93) (Kimura et al., 321 

2019), risperidone has a very similar pose in the OBS as that in the D2R structure, occupying the 322 

Ile3.40 sub-pocket as well. However, on the extracellular side of the OBS, EL2 in the 5-323 

HT2AR/risperidone complex is in an extended conformation and the EL2 residue Leu228EL2.51 324 

contacting risperidone aligns to Ile183EL2.51 of D2R, whereas the conserved Trp141EL1.50 does not 325 

interact with risperidone in the 5-HT2AR. It is tempting to speculate that the EL2 and EL1 dynamics 326 

we observe in the D2R/risperidone simulations represents a more comprehensive picture, as the 327 

divergent interactions shown in the extracellular loops of the 5-HT2AR/risperidone and 328 

D2R/risperidone structures may not result from differences in the protein sequences of this 329 

dynamic region between these two receptors but rather two different static snapshots due to 330 

differences in the crystallographic conditions (Note risperidone has similarly high affinities for both 331 

D2R and 5HT2AR (Kimura et al., 2019; Wang et al., 2018)).  332 

Thus, the plasticity of the OBS and the dynamics of the extracellular loops appear to be two 333 

relatively separated modules in ligand recognition. To the extent of our simulations, we did not 334 

detect strong ligand-dependent bias in the EL2 dynamics as we did for the OBS. However, when 335 

EL2 is helical, the EL1 dynamics are sensitive to the bound ligand (compare Figure 6 and Figure 336 

6 – figure supplement 1); when EL2 is extended, it restricts EL1 dynamics (Figure 6). 337 

The Ile184EL2.50-Trp100EL1.50 interaction is not critical for risperidone binding. 338 

To further investigate the dynamics and coordination of EL2 and EL1 loops, we mutated 339 

Leu942.64, Trp100EL1.50, and Ile184EL2.50, and evaluated the effects of the L94A, W100A, and I184A, 340 

mutations on the binding affinities of eticlopride, risperidone, and spiperone. As shown in Figure 341 

6 – figure supplement 2, Leu942.64 and Trp100EL1.50 are closely associated in both the D2R and 342 

D3R structures, while Ile184EL2.50 interacts with Trp100EL1.50 only in the D2R structure. In our time-343 

resolved energy transfer (Tr-FRET) binding experiments, using a fluorescently labelled spiperone 344 

derivate (spiperone-d2) as a tracer ligand, we found that both L94A and W100A significantly 345 
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reduced the affinities of all antagonists, whereas I184A only reduced the affinity of eticlopride 346 

while it improved that of risperidone (Table 3). Thus, the effects of the L94A and W100A mutations 347 

have similar trends, which appear independent of the effect of I184A. Indeed, for Trp100 to switch 348 

between the positions in the D2R and D3R structures, it must pass the steric hinderance of the 349 

sidechain of Leu94; thus, some effects of the L94A mutation may reflect its perturbation of the 350 

positioning of Trp100, and vice versa. 351 

These findings support our conclusions that the close interaction between Ile184EL2.50 and 352 

Trp100EL1.50 revealed by the D2R/risperidone crystal structure is not necessary for the stabilization 353 

of the risperidone pose. Indeed, in our simulations, EL2 has significant intrinsic dynamics and 354 

transitions from the helical to unwound conformation independent of the bound ligands (see 355 

above). When it is in an extended conformation, Ile184 is dissociated from Trp100. 356 

The clustering of the binding site conformations. 357 

Virtual screening has been widely used as an initial step in drug discovery for novel ligand 358 

scaffolds. To this end, we found that D2R can significantly change its binding site shape to 359 

accommodate antagonists bearing different scaffolds, while EL2 is intrinsically dynamic. Thus, it 360 

is necessary to comprehensively consider the binding site conformations in virtual screening 361 

campaigns against D2R, because limiting the screening to only a single conformation will miss 362 

relevant ligands. Indeed, the strategy of ensemble docking, in which each ligand is docked to a 363 

set of receptor conformers, has been adapted in recent virtual screening efforts (Amaro et al., 364 

2018).  365 

To characterize the OBS conformational ensemble sampled by D2R in complex with ligands 366 

bearing different scaffolds in the context of EL2 dynamics, we clustered the OBS conformations 367 

in our representative D2R/eticlopride and D2R/risperidone MD trajectories in which EL2 368 

transitioned from helical to unwound conformations (see Methods). As expected, the OBS 369 

conformations in these two complexes are significantly different and can be easily separated into 370 
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distinct clusters. For the clustering results shown in Table 4, the average pairwise RMSDs of the 371 

OBS residues (apRMSDs, see Methods) between the D2R/eticlopride and D2R/risperidone 372 

clusters are >1.1 Å, which are similar to that between the D2R and D3R structures (1.2 Å), while 373 

the apRMSDs within each cluster is smaller than those between any two clusters (Figure 7). 374 

Interestingly, at this level of clustering, when the two clusters for each complex are ~0.8-0.9 Å 375 

apRMSD away from each other, the extended and helical conformations of EL2 are always mixed 376 

in a cluster (Table 4). This observation suggests that the helical versus extended EL2 377 

conformations are not closely associated with the OBS conformations. 378 

Thus, while the centroid frames from each cluster can form an ensemble for future virtual 379 

screening for the primary scaffold occupying the OBS, in order to discover novel prolonged 380 

ligands that protrude out of the OBS to interact with EL2 and EL1 residues (Michino et al., 2015a), 381 

additional frames that cover both helical and extended EL2 conformations from each cluster will 382 

have to be used to screen for the optimal extensions of the primary scaffold.  383 
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DISCUSSION 384 

Our results highlight unappreciated conformational complexity of the inactive state of GPCRs 385 

and suggest that the risperidone bound D2R structure represents only one of a number of possible 386 

inactive conformations of D2R. Critically, this conformation is incompatible with the binding of other 387 

high affinity D2R ligands such as eticlopride. While distinct conformational states responsible for 388 

functional selectivity have garnered great attention, the potential existence of divergent inactive 389 

conformations is of critical importance as well. By combining in silico and in vitro findings, we 390 

propose that occupation of the Ile3.40 sub-pocket by antagonists confers a distinct D2R 391 

conformation that is associated with both a greater degree of inverse agonism and Na+ 392 

insensitivity in binding, such that Na+ sensitivity is negatively related with the extent of inverse 393 

agonism for the tested ligands. However, other structural elements may also contribute to the 394 

extent of inverse agonism (Zhang et al., 2014). Regardless, the distinct inactive conformations 395 

stabilized by antagonists with different scaffolds may reflect different degrees of inactivation.  396 

In addition to advancing our mechanistic understanding of receptor function, our findings have 397 

implications for high-throughput virtual screening campaigns, as important hits would be missed 398 

by focusing on a single inactive state captured in a crystal structure that is stabilized by an 399 

antagonist bearing a specific scaffold. Moreover, rational lead optimization requires rigorous 400 

physical description of molecular recognition (Beuming and Shi, 2017), which depends on 401 

adequate understanding of the conformational boundary and flexibility of the targeted state. We 402 

have shown previously that both dopamine receptor subtype selectivity and modulation of agonist 403 

efficacy can be achieved through the design of ligands that extend from the OBS into an 404 

extracellular secondary binding pocket (SBP) (Michino et al., 2015a; Newman et al., 2012). We 405 

now show that one might consider the occupation of the Ile3.40 sub-pocket in the process of 406 

decorating an D2R antagonist scaffold to attain a desired level of inverse agonism. Our findings 407 

also reveal allosteric communication between the IIe3.40 sub-pocket and the Na+ binding site. Thus, 408 

Na+ sensitivity in antagonist binding may provide useful mechanistic insights as part of such efforts.  409 
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The mutation of Trp100EL1.50 in D2R to alanine, leucine or phenylalanine cause substantial 410 

increases in both the association and dissociation rate of risperidone (Wang et al., 2018). 411 

Curiously, both the dissociation and association rates of D2R antagonists used as antipsychotics 412 

have been proposed to determine their propensity to cause extrapyramidal side-effects and 413 

hyperprolactinaemia (Seeman, 2014; Sykes et al., 2017). Our results indicate that both the EL2 414 

conformation and antagonist scaffolds may influence the dynamics of Trp100EL1.50, which in turn 415 

controls ligand access and egress to and from the OBS. Thus, understanding the relationship 416 

between the distinct inactive D2R conformations stabilized by different antagonist scaffolds and 417 

these kinetic parameters will likely be important to facilitate the design of D2R antagonists with an 418 

optimal kinetic profile that minimizes the risk of side effects. 419 

Previously, using the substituted-cysteine accessibility method (SCAM) in D2R (Javitch et al., 420 

2000; Shi and Javitch, 2004), we found that G173EL2.37C, N175 EL2.39C, and I184EL2.52C were 421 

accessible to charged MTS reagents and that this accessibility could be blocked by the bound 422 

Na+-sensitive antagonist sulpiride, consistent with their water accessibility and involvement in 423 

ligand binding and not with a static orientation facing lipid, whereas A177EL2.45C and I183EL2.51C 424 

were accessible but not protected by sulpiride. Curiously, in the D2R/risperidone structure, 425 

Ile184EL2.52 is only marginally in contact with the ligand, Ile183EL2.51 blocks the accessibility of 426 

Gly173EL2.37 to the OBS and is itself buried in a hydrophobic pocket, whereas Asn175EL2.39 faces 427 

lipid, where it would be much less reactive. In the D3R/eticlopride structure, Ile183EL2.52 is in close 428 

contact with the bound ligand, Ser182EL2.51 faces the extracellular vestibule, whereas the 429 

sidechain of Asn173EL2.39 is oriented towards the OBS (Figure 5 – figure supplement 5). Thus, our 430 

analysis shows that the accessibility pattern of EL2 revealed by previous SCAM studies in D2R 431 

are more consistent with the extended EL2 conformation revealed by the D3R/eticlopride structure 432 

but not with the D2R/risperidone structure. Indeed, we observed spontaneous transitions of EL2 433 

from a helical to extended conformation in our D2R simulations, which suggests that EL2 of D2R 434 

exists in an ensemble of structured and unwound conformations, with substantial occupation of 435 
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the configuration found in the D3R structure. Such dynamics of EL2 suggest that the drastically 436 

different conformations between the D2R and D3R structures near EL2 are not related to the 437 

divergence of the receptors. Thus, the D2R EL2 appears to have quite dramatic dynamics that 438 

are not captured by the crystal structure.  439 

Taken together, our findings reveal that both the plasticity of the transmembrane domain in 440 

accommodating different scaffolds and the dynamics of EL2 and EL1 are important considerations 441 

in RDD targeting the inactive conformation of D2R.  442 
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METHODS 443 

Key Resources Table 444 

Reagent type 
(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

cell line 
(Cricetulus 
griseus) 

FlpIn CHO Invitrogen Cat# R75807    

transfected 
construct 
(human) 

SNAP-D2SR Cisbio Cat# pSNAPD2   

transfected 
construct 
(human) 

D2R 
GαoA-RLuc8 
Gβ1 
Gγ2-Venus 

Michino et al., 
2017 

N/A   

commercial assay 
or kit 

Spiperone-d2 
SNAP-Lumi4-Tb  
5x SNAP/CLIP 
labelling medium 

Cisbio Cat# L0002RED 
Cat# SSNPTBX 
Cat# LABMED 

  

chemical 
compound, drug 

Na bisulfite 
Glucose 
(+)-Butaclamol 
Risperidone 
Haloperidol  

Sigma Aldrich Cat# 243973 
Cat# D9434 
Cat# D033 
Cat# R3030 
Cat# H1512 

 

chemical 
compound, drug 

Spiperone Cayman 
chemicals 

Cat# 19769  

chemical 
compound, drug 

Eticlopride HCl 
Raclopride  
(-)-Sulpiride 
Quinpirole 

Tocris 
Bioscience 

Cat# 1847 
Cat# 1810 
Cat# 0895 
Cat# 1061 

 

chemical 
compound, drug 

[3H]spiperone Perkin Elmer Cat# 
NET1187250UC 

 

chemical 
compound, drug 

Polyethylenimine Polysciences Cat# 23966  

chemical 
compound, drug 

Coelenterazine-h NanoLight 
Technology 

Cat# 301-5  

software, 
algorithm 

Prism GraphPad v7.0 and v8.2.1 
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Residue indices in EL1 and EL2 445 

Based on a systematic analysis of aminergic receptors, we found a Trp in the middle of EL1 446 

and the disulfide-bonded Cys in the middle of EL2 are the most conserved residues in each 447 

segment, and defined their residue indices as EL1.50 and EL2.50, respectively (Michino et al., 448 

2015a), In this study, for the convenience of comparisons among D2R, D3R, and D4R, and 5-449 

HT2AR, based on the alignments of EL1 And EL2 shown in Figure 5 – figure supplement 1, we 450 

index the EL1 and EL2 residues of each receptor in the same way as the Ballesteros-Weinstein 451 

numbering, e.g., the residues before and after the EL2.50 are EL2.49 and EL2.51, respectively. 452 

Note the indices for the shorter sequences are not be consecutive, given the gaps in the alignment. 453 

Molecular modeling and docking 454 

The D2R models in this study are based on the corrected crystal structure of D2R bound to 455 

risperidone (PDB: 6CM4) (Wang et al., 2018). We omitted T4 Lysozyme fused into intracellular 456 

loop 3. Three thermostabilizing mutations (Ile1223.40A, L3756.37A, and L3796.41A) were reverted to 457 

their WT residues. The missing N terminus in the crystal structure was built de novo using Rosetta 458 

(Bradley et al., 2005), and then integrated with the rest of the D2R model using Modeller (John 459 

and Sali, 2003). Using Modeller, we also extended two helical turns at the TM5 C terminus and 460 

threes residues at the TM6 N terminus of the structure and connected these two ends with a 9 461 

Gly loop, similar to our experimentally validated treatment of D3R models (Michino et al., 2017). 462 

The position of the Na+ bound in the canonical Na+ binding site near the negatively charged Asp2.50 463 

was acquired by superimposing the Na+ bound structure of adenosine A2A receptor (Liu et al., 464 

2012) to our D2R models. 465 

The binding poses of risperidone and eticlopride were taken according to their poses in the 466 

D2R (Wang et al., 2018) and D3R (Chien et al., 2010) structures, respectively. Docking of 467 

spiperone in our D2R model was performed using the induced-fit docking (IFD) protocol (Sherman 468 

et al., 2006) in the Schrodinger software (release 2017-2; Schrodinger, LLC: New York NY). 469 
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Based on our hypothesis regarding the role of the Ile3.40 sub-pocket in the Na+ sensitivity (see 470 

text), from the resulting poses of IFD, we choose the spiperone pose with the F-substitution on 471 

the butyrophenone ring occupying the Ile3.40 sub-pocket. Note that in risperidone and spiperone 472 

the F-substitutions have similar distances to the protonated N atoms that interact with Asp3.32 473 

(measured by the number of carbon atoms between them, Figure 1 – figure supplement 1). 474 

Molecular dynamics (MD) simulations 475 

MD simulations of the D2R and D3R complexes were performed in the explicit water and 1-476 

palmitoyl-2-oleoylphosphatidylcholine (POPC) lipid bilayer environment using Desmond MD 477 

System (version 4.5; D. E. Shaw Research, New York, NY) with either the OPLS3e force field 478 

(Roos et al., 2019) or the CHARMM36 force field (Best et al., 2012; Klauda et al., 2010; MacKerell 479 

et al., 1998; MacKerell et al., 2004) and TIP3P water model. For CHARMM36 runs, the eticlopride 480 

parameters were obtained through the GAAMP server (Huang and Roux, 2013), with the initial 481 

force field based on CGenFF assigned by ParamChem (Vanommeslaeghe et al., 2010). The 482 

system charges were neutralized, and 150 mM NaCl was added. Each system was first minimized 483 

and then equilibrated with restraints on the ligand heavy atoms and protein backbone atoms, 484 

followed by production runs in an isothermal–isobaric (NPT) ensemble at 310 K and 1 atom with 485 

all atoms unrestrained, as described previously (Michino et al., 2017; Michino et al., 2015b). We 486 

used Langevin constant pressure and temperature dynamical system (Feller et al., 1995) to 487 

maintain the pressure and the temperature, on an anisotropic flexible periodic cell with a constant-488 

ratio constraint applied on the lipid bilayer in the X-Y plane. For each condition, we collected 489 

multiple trajectories, the aggregated simulation length is ~392 μs (Table 1). 490 

While the majority of our D2R simulations in this study used the OPLS3 force field, to compare 491 

with the D3R simulations using CHARMM36 that have been continued from the previously 492 

reported shorter trajectories (Michino et al., 2017; Michino et al., 2015b), we carried out the 493 

D2R/eticlopride simulations using both the OPLS3 and CHARMM36 force fields (see Table 1). We 494 
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did not observe significant differences and pooled their results together for the analysis. 495 

Conformational analysis 496 

Distances and dihedral angles of MD simulation results were calculated with MDTraj (version 497 

1.8.2) (McGibbon et al., 2015) in combination with in-house Python scripts.  498 

To characterize the structural changes in the receptor upon ligand binding, we quantified 499 

differences of structural elements between the D2R/eticlopride and D2R/risperidone conditions 500 

(using last 600 ns from a representative trajectory for each condition), by applying the previously 501 

described pairwise interaction analyzer for GPCR (PIA-GPCR) (Michino et al., 2017). The 502 

subsegments on the extracellular side of D2R were defined as following: TM1e (the extracellular 503 

subsegment (e) of TM1, residues 31-38), TM2e (residues 92-96), TM3e (residues 104-113), 504 

TM4e (residues 166-172), TM5e (residues 187-195), TM6e (residues 364-369), and TM7e 505 

(residues 376-382). 506 

For the PIA-GPCR analysis in Figure 4 and the distance analysis in Figure 6, we used the set 507 

of ligand binding residues previously identified by our systematic analysis of GPCR structures. 508 

Specifically, for D2R, they are residues 91, 94, 95, 100, 110, 111, 114, 115, 118, 119, 122, 167, 509 

184, 189, 190, 193, 194, 197, 198, 353, 357, 360, 361, 364, 365, 367, 368, 376, 379, 380, 383, 510 

384, 386, and 387; for D3R, they are residues 86, 89, 90, 96, 106, 107, 110, 111, 114, 115, 118, 511 

165, 183, 188, 189, 192, 193, 196, 197, 338, 342, 345, 346, 349, 350, 352, 353, 362, 365, 366, 512 

369, 370, 372, and 373. 513 

For the clustering of the OBS conformations, we used representative D2R/eticlopride and 514 

D2R/risperidone MD trajectories in which EL2 transitioned from the helical to unwound 515 

conformations. For each complex, using the Ile183-Asn186 distance as a criterion to differentiate 516 

the EL2 conformation (Figure 5), 1000 MD frames with helical EL2 conformations and another 517 

1000 frames with extended EL2 conformations were randomly selected. For these 4000 frames, 518 

the pair RMSD of the backbone heavy atoms of the OBS residues defined in (Michino et al., 519 
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2015a), except for Ile184EL2.50, were calculated. The resulting 4000x4000 matrix was used to 520 

cluster these frames using the k-mean algorithm implemented in R. We chose nstart to be 20 to 521 

assure the convergence of cluster centroids and boundaries. We chose the clustering level to be 522 

4, so that the average pairwise RMSDs (apRMSDs) between the D2R/eticlopride and 523 

D2R/risperidone clusters are similar to that between D2R and D3R structures (1.2 Å), while all the 524 

apRMSDs within a cluster are smaller than those between any given two clusters. The same 525 

frame selection and clustering procedure was repeated to 20 times. The average of these 20 runs 526 

were reported in Table 4.  527 

Markov State Model (MSM) analysis 528 

The MSM analysis was performed using the pyEMMA program (version 2.5.5) (Scherer et al., 529 

2015). To characterize the dynamics of EL2 of D2R, specifically the transitions between helical 530 

and extended conformations of its C-terminal portion, we focused on a key hydrogen bond formed 531 

in the helical conformation between the backbone carbonyl group of Ile183 and the backbone 532 

amine group of Asn186. Thus, for each of the simulated conditions, the distance of Ile183-Asn186 533 

(Ser182-Asn185 in D3R) was used as an input feature for the MSM analysis. We discretized this 534 

feature into two clusters – distances below and above 4 Å (i.e. EL2 forming a helical conformation 535 

and unwinding). Implied relaxation timescale (ITS) (Swope et al., 2004) for the transition between 536 

these clusters was obtained as a function of various lag times. Convergences of ITS for the MSMs 537 

for all conditions was achieved at a lag time of 300 ns (Figure 5 – figure supplement 6), which we 538 

further used to estimate Bayesian Markov models with 500 transition matrix samples 539 

(Trendelkamp-Schroer and Noe, 2013). The maximum likelihood transition matrix was used to 540 

calculate the transition and equilibrium probabilities (π) shown in Figure 5 and Figure 5 – figure 541 

supplement 3. 542 

Cell culture and cell line generation 543 

Site directed mutagenesis was performed using the Quickchange method using 544 
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pEF5/DEST/FRT plasmid encoding FLAG-SNAP-D2SR as the DNA template. The mutagenesis 545 

was confirmed, and the full coding region was checked using Sanger sequencing at the DNA 546 

Sequencing Laboratory (University of Nottingham). Stable cell lines were generated using the Flp-547 

In™ recombination system (Invitrogen).  548 

[3H]spiperone binding assay 549 

FlpIn CHO cells (Invitrogen) stably expressing WT or mutant SNAP-D2s cells were cultured 550 

before the preparation of cell membrane as described before (Klein Herenbrink et al., 2019). 551 

All stable cell lines were confirmed to be mycoplasma free. For saturating binding assays cell 552 

membranes (Mutant or WT SNAP-D2s-FlpIn CHO, 2.5 µg) were incubated with varying 553 

concentrations of [3H]spiperone and 10 µM haloperidol as a non-specific control, in binding 554 

buffer (20 mM HEPES, 100 mM NaCl, 6 mM MgCl2, 1mM EGTA, and 1mM EDTA, pH 7.4) to 555 

a final volume of 200  µL and were incubated at 37 °C for 3 h. For competition binding assays 556 

cell membranes (SNAP-D2s-FlpIn CHO, 2.5 µg) were incubated with varying concentrations of 557 

test compound in binding buffer containing 0.2 nM of [3H]spiperone to a final volume of 200 µL 558 

and were incubated at 37 °C for 3 h. Binding was terminated by fast-flow filtration using a 559 

Uniplate 96-well harvester (PerkinElmer) followed by five washes with ice-cold 0.9% NaCl. 560 

Bound radioactivity was measured in a MicroBeta2 LumiJET MicroBeta counter (PerkinElmer). 561 

Data were collected from at least 3 separate experiments performed in triplicate and analysed 562 

using non-linear regression (Prism 7, Graphpad software). For radioligand saturation binding 563 

data, the following equation was globally fitted to nonspecific and total binding data: 564 

 565 

 𝑌𝑌 = 𝐵𝐵max[𝐴𝐴]
[𝐴𝐴]+𝐾𝐾𝐴𝐴

+𝑁𝑁𝑁𝑁[𝐴𝐴]         (1)  566 

Where Y is radioligand binding, Bmax is the total receptor density, [A] is the free radioligand 567 

concentration, KA is the equilibrium dissociation constant of the radioligand, and NS is the 568 

fraction of nonspecific radioligand binding. The Bmax of the SNAP-tagged D2SRs we as follows; 569 
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WT = 7.95 ± 1.63 pmol.mg-1, 6.39 ± 1.04 pmol.mg-1, 4.37 ± 0.92 pmol.mg-1, 2.61 ± 0.50 pmol.mg-570 

1. 571 

For competition binding assays, the concentration of ligand that inhibited half of the 572 

[3H]spiperone binding (IC50) was determined by fitting the data to the following equation:  573 

𝑌𝑌 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵+(𝑇𝑇𝑇𝑇𝑇𝑇−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)
1+10(𝑋𝑋−𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼50)𝑛𝑛𝐻𝐻

         (2) 574 

Where Y denotes the percentage specific binding, Top and Bottom denote the maximal and 575 

minimal asymptotes, respectively, IC50 denotes the X-value when the response is midway 576 

between Bottom and Top, and nH denotes the Hill slope factor. IC50 values obtained from the 577 

inhibition curves were converted to Ki values using the Cheng and Prusoff equation. No 578 

statistical methods were used to predetermine sample size. 579 

Bioluminescence resonance energy transfer (BRET) assay 580 

The Go-protein activation assay uses a set of BRET-based constructs previously described 581 

(Michino et al., 2017). Briefly, HEK293T cells were transiently co-transfected with pcDNA3.1 582 

vectors encoding i) D2R, ii) GαoA fused to Renilla luciferase 8 (Rluc8; provided by Dr. S. Gambhir, 583 

Stanford University, Stanford, CA) at residue 91, iii) untagged Gβ1, and iv. Gγ2 fused to mVenus. 584 

Transfections were performed using polyethyleneimine (PEI) at a ratio of 2:1 (PEI:total DNA; 585 

weight:weight), and cell culture was maintained as described previously (Bonifazi et al., 2019). 586 

After ~48 h of transfection, cells were washed with PBS and resuspended in PBS + 0.1% glucose 587 

+ 200 µM Na Bisulfite buffer. Approximately 200,000 cells were then distributed in each well of 588 

the 96-well plates (White Lumitrac 200, Greiner bio-one). 5 μM Coelenterazine H, a luciferase 589 

substrate for BRET, was then added followed by addition of vehicle and test compounds using an 590 

automated stamp transfer protocol (Nimbus, Hamilton Robotics) from an aliquoted 96-well 591 

compound plate. Following ligands were used – quinpirole, eticlopride, raclopride, and (-)-sulpiride 592 

(Tocris Bioscience), (+)-butaclamol, dopamine, and risperidone (Sigma Aldrich), and Spiperone 593 

(Cayman chemicals). mVenus emission (530 nm) over RLuc 8 emission (485 nm) were then 594 
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measured after 30 min of ligand incubation at 37°C using a PHERAstar FSX plate reader (BMG 595 

Labtech). BRET ratio was then determined by calculating the ratio of mVenus emission over RLuc 596 

8 emission.  597 

Data were collected from at least 9 independent experiments and analyzed using Prism 7 598 

(GraphPad Software). Drug-induced BRET, defined by BRET ratio difference in the presence and 599 

absence of compounds, was calculated. Concentration response curves (CRCs) were generated 600 

using a non-linear sigmoidal dose-response analyses using Prism 7 (GraphPad Software). CRCs 601 

are presented as mean drug-induced BRET ± SEM. Emax bar graphs are plotted as the percentage 602 

of maximal drug-induced BRET by (+)-Butaclamol ± SEM. 603 

Tr-FRET ligand binding  604 

Materials: Spiperone-d2, SNAP-Lumi4-Tb and 5x SNAP/CLIP labelling medium were purchased 605 

from Cisbio Bioassays. Eticlopride hydrochloride was purchased from Tocris Bioscience. Saponin 606 

was purchased from Fluka/Sigma-Aldrich. Bromocriptine, haloperidol, risperidone, spiperone, 607 

pluronic-F127, Gpp(NH)p, DNA primers, Hanks Balanced Salt Solution H8264 (HBSS) and 608 

phosphate buffered saline (PBS) was purchased from Sigma-Aldrich.  609 

Terbium cryptate labelling and membrane preparation: Terbium cryptate labelling of the SNAP-610 

tagged receptors and membrane preparation was performed with minor changes to previously 611 

described methods (Klein Herenbrink et al., 2016). Flp-In CHO-K1 cells stably expressing the 612 

mutant SNAP-D2SR constructs were grown in T175 flasks to approximately 90% confluency. Cell 613 

media was aspirated, and the cells were washed twice with 12mL PBS. The cells were then 614 

incubated with terbium cryptate labelling reagent in 1xSNAP/CLIP labelling medium for one hour 615 

at in a humidified cell culture incubator with 5% CO2 at 37°C. The terbium cryptate labelling 616 

reagent was then removed and the cells were washed once with 12mL PBS. The labelled cells 617 

were then harvested in 10mL PBS by cell scraping. Harvested cells were then collected by 618 

centrifugation at 300g for 5 minutes and removal of the supernatant. The cell pellets were then 619 
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frozen at -80°C for later membrane preparation. For cell membrane preparation, each cell pellet 620 

was removed from the -80°C freezer and thawed on ice. The pellet was then resuspended in 621 

10mL of ice-cold Buffer 1 (10mM HEPES 10mM EDTA pH7.4). The pellet was then homogenised 622 

(IKA works T 10 basic Ultra-Turrax® homogeniser) with eight bursts of three seconds on setting 623 

4. The homogenised cells were transferred to an ultra-fast centrifuge tube and an additional 10mL 624 

of Buffer 1 was added. The tube was then centrifuged at 48,000g for 30 minutes at 4°C. The 625 

supernatant was discarded, 20mL of Buffer 1 was added and the pellet was resuspended. The 626 

resuspension was then centrifuged a second time at 48,000g for 30 minutes at 4°C. The 627 

supernatant was then removed, and the cell membrane pellet was collected by resuspension in 628 

2mL ice-cold Buffer 2 (10mM HEPES 0.1mM EDTA pH 7.4). The resuspended membranes were 629 

then put through a syringe with a BD precision glide 26-gauge needle to make the solution uniform. 630 

Membrane protein concentration was determined by bicinchonic acid (BCA) assay detecting the 631 

absorbance at 562nm on a CLARIOstar plate reader (BMG Labtech) using bovine serum albumin 632 

(BSA) as the protein standard. The cell membrane solution was then aliquoted and frozen at -633 

80°C. 634 

TR-FRET binding assay: All ligands were diluted in Binding Buffer (Hanks Balanced Salt Solution 635 

(Sigma H8264), 20mM HEPES, 0.02% Pluronic-F127, 1% dimethyl sulfoxide, pH 7.4 (with KOH)). 636 

For competition kinetic binding experiments; 10μL of spiperone-d2 in Binding Buffer was added 637 

to each well of a 384-well white optiplate LBS coated (PerkinElmer) at varied concentrations 638 

depending on the SNAP-D2SR mutant. 10μL of increasing concentrations of unlabelled ligands 639 

were then added into the 10μL of fluorescent ligand and mixed. A final concentration of 100μM 640 

haloperidol was used to determine non-specific binding. Cell membranes were diluted to 641 

0.075μg/μL in Binding Buffer supplemented with 50μg/mL saponin and 100μM Gpp(NH)p.  642 

TR-FRET measurements were acquired on a PHERAstar FS plate reader (BMG Labtech) at 643 

37°C. The optiplate containing the ligand cocktails in the wells was incubated in the instrument 644 

for 6 minutes. The cell membrane solution was primed into the on-board injection system and 645 
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incubated for 5 minutes. 20μL of cell membrane solution was injected at 400μL/s into the ligand 646 

cocktail wells to initiate the binding reaction. After 30 minutes incubation, the HTRF optic filter 647 

module was used to perform an excitation at 337nm and simultaneous dual emission detection at 648 

620nm (terbium cryptate donor) and 665nm (fluorescent ligand acceptor). The focal height was 649 

set to 10.4mm. All experiments were performed in singlet wells. The TR-FRET binding values 650 

were determined by dividing the by the fluorescent ligand acceptor channel values by the terbium 651 

cryptate donor channel values and multiplying by 10,000. These values were then subtracted by 652 

the non-specific binding values determined in each experiment to give the specific HTRF ratio x 653 

10,000. The data was then analysed with GraphPad Prism 8.2.1 using equations 1 and 2.  654 

  655 
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TABLES 664 

Table 1. Summary of molecular dynamics simulations. 665 

receptor ligand 
bound 

Na+ 

number of 

OPLS3 

trajectories 

Number of 

CHARMM36 

trajectories 

accumulated 

simulation time 

(ns) 

D2R 

risperidone 
+ 12  28410 

- 11  42240 

spiperone 
+ 22  42000 

- 17  29550 

eticlopride 
+ 5 12 51540 

- 7  11280 

(-)-sulpiride 
+ 3  4500 

- 3  3600 

aripiprazole + 40  66660 

D3R 

eticlopride 
+  3 13200 

-  4 6240 

R22 +  7 33600 

S22 -  7 59400 

Total 120 33 392220 
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Table 2. The effect of mutations on the binding affinities of selected D2R ligands. The affinities of 666 

[3H]spiperone were determined in saturation experiments at WT or mutant SNAP-tagged D2SRs 667 

stably expressed in FlpIn CHO cells. Binding affinity values for risperidone and eticlopride were 668 

obtained in competition binding experiments. Means of n independent experiments performed in 669 

triplicate are shown with 95% confidence intervals.  670 

 [3H]spiperone  

saturation binding 

[3H]spiperone  

competition binding  

SNAP-

D2SR 

pKd  

(Kd, nM) 

(95% CI)  

n Risperidone 

pKi (Ki, nM) 

(95% CI) 

n Eticlopride 

pKi (Ki, nM) 

(95% CI) 

n 

WT 9.74 (0.18)  

(9.36 – 10.14) 

3 8.55 (2.8) 

(8.07 – 9.04) 

8 9.84 (0.14) 

(9.10 - 10.58)  

3 

WT -Na+ 9.70 (0.20)  

(9.09 – 10.32) 

3 8.96 (1.1) 

(8.84 – 9.08) 

6 -  

I1223.40A 9.74 (0.18)  

(9.09 – 10.38) 

3 8.14 (7.9)  

(7.97 – 8.32)  

8 10.33 (0.04) 

(10.22 – 10.44)  

3 

I1223.40W 8.95 (1.15) 

(8.59 – 9.30) 

3 7.43 (37)  

(7.11 – 7.75) 

5 9.61 (0.25) 

(9.33 – 9.89)  

4 
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Table 3. The effect of mutations on the binding affinities of selected D2R ligands as determined in Tr-FRET binding experiments. The 671 

affinities of the fluorescently labelled spiperone derivative (Spiperone-d2) or unlabelled antagonists were determined in saturation 672 

experiments at WT or mutant SNAP-tagged D2SRs stably expressed in FlpIn CHO cells. Binding affinity values for risperidone and 673 

eticlopride were obtained in competition binding experiments. Means of n independent experiments are shown with 95% confidence 674 

intervals (CIs).  * = significantly different from WT value, P < 0.05, one-way ANOVA with Dunnett’s post-hoc test 675 

 

 Spiperone-d2 

saturation binding 

Spiperone-d2 

Competition binding  

SNAP-
D2SR 

pKd  

(Kd, nM) 

(95% CI)  

n Mut/WT Eticlopride 

pKi (Ki, nM) 

(95% CI) 

n Mut/WT Risperidone 

pKi (Ki, nM) 

(95% CI) 

n Mut/WT Spiperone 

pKi (Ki, nM) 

(95% CI) 

n Mut/WT 

WT 8.54 (2.88)  

(8.32 – 8.77) 

9 1.0 10.06 (0.09) 

(9.90 – 10.21) 

8 1.0 8.47 (3.34) 

(8.15 – 8.80)  

7 1.0 9.96 (0.11) 

(9.76 – 10.18)  

8 1.0 

L94A 7.71 (19.5)  

(7.41 – 8.00)* 

5 6.8 9.08 (0.83) 

(8.91 – 9.08)* 

4 9.2 8.02 (9.54) 

(7.86 – 8.17)* 

5 2.9 8.36 (4.37) 

(8.21 – 8.50)* 

5 39.7 

W100A 7.39 (40.7)  

(7.21 – 7.56)* 

9 14.1 8.06 (8.71) 

(7.78 – 8.32)* 

4 96.8 7.60 (25.1) 

(7.41 – 7.79)* 

7 7.5 8.39 (4.07) 

(8.19 – 8.59)* 

7 37.0 

I184A 8.79 (1.62)  

(8.58 – 9.00) 

5 0.6 9.34 (0.45)  

(8.94 – 9.75)* 

4 5 9.33 (0.47) 

(9.18 – 9.48)*  

5 0.1 9.78 (0.17) 

(9.51 – 10.05)  

5 1.6 
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Table 4. Clustering results of the OBS conformations sampled in the D2R/eticlopride and 676 

D2R/risperidone simulations. The compositions in each cluster are shown as percentages of the 677 

frames randomly extracted for each complex (see Methods), when sorted by either 678 

receptor/ligand complex or EL2 conformation.  679 

cluster 
ID 

percentage (%) 
complex EL2 conformation 

D2R/eticlopride D2R/risperidone extended helical 
mean sd mean sd mean sd mean sd 

1 38.4 0.7 0.0 0.0 4.9 0.4 33.5 0.5 
2 61.6 0.7 0.0 0.0 45.1 0.4 16.5 0.6 
3 0.0 0.0 43.7 1.0 2.5 0.4 41.3 0.8 
4 0.0 0.0 56.3 1.0 47.5 0.4 8.7 0.8 
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FIGURES AND FIGURE LEGENDS 828 

Figure 1. The structures of homologous D2R, D3R, and D4R show different conformations in the 829 

extracellular vestibules. Superpositioning of D2R, D3R, and D4R structures shows that the binding 830 

of eticlopride (ETQ, cyan) in D3R and nemonapride (NEMO, pale cyan) in D4R result in outward 831 

and inward rearrangements of the extracellular portions of TM5 and TM6, respectively, compared 832 

to the binding of risperidone (RISP, orange) in D2R. 833 
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Figure 2. Divergent occupations of the Ile3.40 sub-pocket by non-selective ligands from different 834 

scaffolds. In the D2R structure (a), the F-substitution on the benzisoxazole ring of risperidone 835 

occupies the Ile3.40 sub-pocket (dotted circle) enclosed by conserved Ile3.40 (mutated to Ala in the 836 

crystal structure to thermostabilize the receptor), Phe5.47, and Phe6.44. The same viewing angle 837 

shows that in the D3R (b) and D4R (c) structures, Cys3.36 rotates to fill in the Ile3.40 sub-pocket, and 838 

the substituted benzamides eticlopride and nemonapride cannot occupy the aligned sub-pockets. 839 

In our D2R/risperidone simulations (d), risperidone maintains its pose revealed by the crystal 840 

structure. In the D2R/spiperone simulations (e), the Ile3.40 sub-pocket is similarly occupied as in 841 

D2R/risperidone. In the D2R/eticlopride simulations (f), the Ile3.40 sub-pocket is collapsed as in the 842 

D3R (b) and D4R (c) structures (this trend is independent of the force field being used in the 843 

simulations). 844 
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Figure 3. The extent of inverse agonism is negatively related with the Na+ sensitivity of ligand 845 

binding. In a D2R-Go BRET assay, the maximal responses of the indicated ligands are normalized 846 

to that of the reference full agonist quinpirole. The ligands that are insensitive to Na+ in D2R 847 

binding display significantly higher inverse agonism (in each case, **P<0.0001 using ordinary 848 

one-way ANOVA followed by Tukey’s multiple comparisons test) than the Na+-sensitive ligands; 849 

however, within the Na+-sensitive group, raclopride is significantly different from eticlopride 850 

(P=0.005). 851 
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Figure 4. The different conformations in the extracellular vestibules of D2R and D3R are likely due 852 

to binding of non-selective ligands from different scaffolds. (a) superpositioning of representative 853 

frames of the D2R/ETQ and D2R/RISP simulations shows a similarly trend of the outward and 854 

inward movements of TM5 and TM6, respectively, in the presence of the bound ETQ, even when 855 

the simulations were started from the D2R conformation stabilized by RISP. Note Ser1935.42 and 856 

Ser1945.43 would clash with the bound eticlopride if there was conformational adjustment. (b, c) 857 

PIA-GPCR analysis (see Methods) comparing the D2R/ETQ and D2R/RISP conformations. The 858 

analysis of the pairwise-distance differences among the subsegments (b) indicates that TM6e 859 

moves inward (smaller distance to TM2e, dark red pixel), while TM5e moves outward (larger 860 

distances to TM7e, dark blue pixel) in the D2R/ETQ simulations. The analysis of pairwise-distance 861 

differences among the C⍺ atoms of the ligand binding residues (c) indicates significant changes 862 

near residues Phe1895.38, Ser1935.42, Asn3676.58, and Ile3686.59 (darker colored pixels). 863 
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Figure 5. The helical conformation of EL2 in the D2R/risperidone structure has a tendency to 864 

unwind in our simulations, regardless of the bound ligand. (a) The Ile183EL2.51-Asn186EL2.54 865 

backbone H-bond and the Ile183EL2.51-Asp1083.26 interaction in D2R and their aligned interactions 866 

in D3R. (b) the scatter plots of the two distances in the indicated D2R and D3R complexes. The 867 

orange and cyan crosses indicated the distances in the D2R/risperidone and D3R/eticlopride 868 

structures, respectively. (c) The distributions of the EL2.51-EL2.54 distances in the indicated 869 

simulations. These distances were used to evaluate the tendency to unwind using Markov state 870 

model (MSM) analysis in d. (d) The MSM analysis of the transition between the helical and 871 

extended conformational states of EL2. The area of each disk representing a state is proportional 872 

to the equilibrium probability (π) in each simulated condition. The values from the maximum 873 

likelihood Bayesian Markov model for π and transition rates from 500 Bayesian Markov model 874 

samples are shown. Thus, EL2 in all the D2R complexes show significant tendencies to unwind, 875 

while that in D3R/eticlopride remains extended. 876 
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Figure 6. The EL2 conformation affects the EL1 conformation. Divergent EL1-EL2 interfaces 877 

among the D2R (a), D3R, and D4R (b) structures. In the D2R structure, the Trp100EL1.50 in EL1 only 878 

forms a weak interaction with Ile184EL2.52; while the aligned Trp96EL1.50 of D3R and Trp101EL1.50 in 879 

D4R are stabilized by their interactions with the disulfide bond – their passages towards the 880 

position of Trp100EL1.50 in D2R are blocked by the extended EL2. In our simulations, Trp100EL1.50 881 

in D2R shows significant flexibility and can adopt multiple positions and orientations in 882 

D2R/risperidone (c), while Trp96EL1.50 in D3R is highly stable in D3R/eticlopride (d). (e) The χ1 and 883 

χ2 dihedral angles of Trp100EL1.50 in the subset of the D2R/risperidone simulations in which EL2 884 

is still in a helical conformation (orange), are more widely distributed than those of Trp96EL1.50 in 885 

the D3R/eticlopride simulations in which EL2 remains in extended conformations (cyan). These 886 

dihedral angle values in the D2R and D3R structures are indicated with the orange and cyan stars, 887 

respectively. (f), For the same two sets of simulations in e, the distance between the center of 888 

mass (COM) of the sidechain heavy atoms of Trp100 in D2R and the COM of the Cα atoms of the 889 

ligand binding site residues (excluding Trp100, see Methods for the list of the residues) has wider 890 

distributions than the corresponding distance between Trp96EL1.50 in D3R and its ligand binding 891 

site. These distances in the D2R and D3R structures are indicated with the orange and cyan dotted 892 

lines, respectively. 893 
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Figure 7. The average pairwise RMSDs of the clusters of the OBS conformations. The clustering 894 

level was chosen to be 4, so that the average pairwise RMSDs (apRMSDs) between the 895 

D2R/eticlopride clusters (1 and 2, see Table 4 for the composition of each cluster) and 896 

D2R/risperidone clusters (3 and 4) are similar to that between D2R and D3R structures (1.2 Å), 897 

while all the apRMSDs within a cluster are smaller than those between any given two clusters. 898 
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SUPPLEMENTARY INFORMATION 899 

Figure 1 – figure supplement 1. Chemical structure alignments of the non-selective D2-like 900 

receptors ligands. The moieties that occupy the Ile3.40 sub-pocket are colored in orange. 901 
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Figure 2 – figure supplement 1. Allosteric communication between the Ile3.40 sub-pocket and 902 

the Na+ binding site. Risperidone (a, b) and spiperone (d, e) similarly occupy the Ile3.40 sub-pocket 903 

in both the presence and absence of Na+ bound at the Asp802.50 site. In the eticlopride (g, h) and 904 

(-)-sulpiride (j, k) bound conditions, the Ile3.40 sub-pocket is not occupied, and Cys3.36 shows 905 

flexibility in the absence of bound Na+. (c, f, i, and l) Distributions of the χ1 rotamer of Cys3.36 in 906 

the D2R simulations in the presence of different bound ligands. 907 
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Figure 4 – figure supplement 1. The occupation of the Ile3.40 pocket by risperidone is associated 908 

with outward movement of the extracellular portion of TM6. (a) superpositioning of the 909 

D2R/risperidone and D3R/eticlopride structures shows the occupation of the Ile3.40 pocket by the 910 

benzisoxazole moiety of risperidone directly affects the positioning of Phe6.52, the impact of which 911 

propagates to affect overall conformation of the extracellular portion of TM6. (b) Similar impact 912 

was observed in the comparison of the results from the D2R/risperidone and D2R/eticlopride 913 

simulations. 914 
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Figure 5 – figure supplement 1. Sequence alignment and residue indices of EL1 and EL2 for 915 

the receptors being compared in this study. The positions with identical residues are in dark grey 916 

shade, the conserved positions are in light grey shade. 917 
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Figure 5 – figure supplement 2. The helical region of EL2 of D2R can spontaneously unwind to 918 

an extended conformation similar to that of D3R. (a) Residues 182EL2.50-186EL2.54 in the D2R/RISP 919 

structure are in a helical conformation. EL2 is connected to TM3 via a disulfide bond (Cys182EL2.50-920 

Cys1073.25), while the backbone of Ile183EL2.51 forms an interaction with Asp1083.26 (magenta 921 

dotted line). (b) The key events in the EL2 unwinding pathway (for each step, a number of 922 

representative frames are shown): the ionic interaction between Asp1083.26 and Ile183EL2.51 has 923 

to dissociate first (i), which allows the sidechain of Ile183 to rotate towards lipids and pass through 924 

a minor barrier formed by Gly173EL2.37 (ii); then the sidechain of Ile183EL2.51 rotates towards the 925 

extracellular vestibule while that of Ile184EL2.52 tilts under EL2 (iii); these changes allow 926 

Asn175EL2.39 to move from facing lipid to facing the binding site (iv). The resulting conformation of 927 

EL2 of D2R is similar to that of D3R for all the aforementioned residues (c). In particular, 928 

Asn173EL2.39 of D3R, which aligns to Asn175EL2.39 of D2R, forms an H-bond interaction with 929 

Asp1043.26. 930 
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Figure 5 – figure supplement 3. The MSM analysis of Ile183-Asn186 distance in the simulations 931 

of the D2R/aripiprazole, D3R/S22, and D3R/R22 complexes (Table 1). The early stage of D3R/S22 932 

and D3R/R22 simulations has been reported previously (Michino et al., 2017). The representation 933 

and color scheme is the same as that for Figure 5. 934 
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Figure 5 – figure supplement 4. The distinct D2R EL2 conformations revealed by the MD 935 

simulations are similar to those of homologous receptors. The C-terminal helical EL2 936 

conformation in the D2R structure (d) can be maintained in the simulations (a). the C-terminal 937 

extended conformation (b) is similar to those in the D3R structure (e). The N-terminal helical 938 

conformation (c) is reminiscent of that in the 5-HT2AR/risperidone structure (g), and those in β1 939 

and β2 adrenergic receptors structures (not shown). 940 
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Figure 5 – figure supplement 5. The accessibility pattern of EL2 revealed by previous SCAM 941 

studies in D2R is more consistent with an extended EL2 conformation similar to that in the 942 

D3R/eticlopride structure. The accessible residues are in green, the protected residues are in cyan. 943 

In the D2R/risperidone structure (a), Ile183EL2.51 blocks the accessibility of Gly173EL2.37 to the OBS, 944 

while Asn175 faces lipid. In the D2R/eticlopride simulations (b) and D3R/eticlopride structure (c), 945 

AsnEL2.39 rotates to point inward, while Ile183EL2.51 in D2R and Ser182EL2.51 in D3R rotates to face 946 

the extracellular vestibule of the receptors. 947 
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Figure 5 – figure supplement 6. Implied timescales (ITS) for the MSM analysis. The implied 948 

timescales (ITS) of the transition between the two states in each of the D2R conditions shown in 949 

Figure 5 and Figure 5 – figure supplement 3 are plotted against various lag times. ITSs were not 950 

computed for D3R conditions because there was not transition between two states. The ITS of the 951 

maximum likelihood Bayesian Markov model is shown in a blue solid line, whereas the means 952 

and the 95% confidence intervals (computed by Bayesian sampling) are shown in dashed and 953 

shaded areas, respectively. Timescales smaller than the lag time are shown in grey-shaded area. 954 

A lag time of 300 ns was chosen for our analysis.  955 
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Figure 6 – figure supplement 1. EL1 is dynamic in the D2R/eticlopride and D2R/spiperone 956 

simulations when EL2 is helical. Trp100 shows significant flexibility and can adopt multiple 957 

positions and orientations in D2R/eticlopride (a-c) and D2R/spiperone (d-f) simulations. Their χ1 958 

and χ2 dihedral angles of Trp100 (b, e) and the distance between Trp100 and the ligand binding 959 

site (c, f) have wide and different distributions. These dihedral angle values in the D2R and D3R 960 

structures are indicated with the orange and cyan stars, respectively. The distances in the D2R 961 

and D3R structures are indicated with the orange and cyan dotted lines, respectively. 962 
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Figure 6 – figure supplement 2. TrpEL1.50 is closely associated with Leu2.64 regardless of the EL2 963 

conformation. In the D2R structure (a), the Trp100EL1.50 in EL1 forms a weak interaction with 964 

Ile184EL2.52 when EL2 is helical, while the aligned Trp96EL1.50 in the D3R structure does not form 965 

such an interaction with Ile183EL2.52 and is stabilized by their interactions with the disulfide bond 966 

of the extended EL2 (b). In both structures, Trp100EL1.50 is in close association with Leu2.64.  967 
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Video 1. A movie of a 4.2 µs D2R/risperidone trajectory collected using the OPLS3 force field 969 

shows spontaneous unwinding of EL2. The conformation of EL2 gradually transitions to an 970 

extended configuration similar to that in the D3R structure. See Figure 5 – figure supplement 2 971 

for the pathway of unwinding. Note that the extended conformation of EL2 stabilizes Trp100EL1.50. 972 

The Cα atom of Gly173EL2.37, the sidechains of Trp100EL1.50, Ile183EL2.51, and Ile184EL2.52 and the 973 

bound risperidone are shown as spheres. Asp1083.26 and the disulfide bond between Cys1073.25 974 

and Cys182EL2.50 are shown as sticks. The carbon atoms of Gly173EL2.37 and Ile184EL2.52 are 975 

colored in cyan, those of Ile183EL2.51 are in green, those of Trp100EL1.50, Cys1073.25, Asp1083.26, 976 

Asn175EL2.39, and Cys182 EL2.50 are in dark grey; those of the bound ligand risperidone are in 977 

orange. 978 

Video 2. A movie of a 4.2 µs D2R/eticlopride trajectory shows the dynamics of Trp100EL1.50 when 979 

the C-terminal portion of EL2 is in a helical conformation. Note that Trp100EL1.50 can be stabilized 980 

by interacting with the disulfide bond. The presentation and color scheme are similar to those in 981 

Video 1, except that the bound carbon atoms of the ligand eticlopride are colored in cyan. 982 

Video 3. A movie of a 3.6 µs D2R/eticlopride trajectory collected using the CHARMM36 force field 983 

shows another example of unwinding of EL2. Thus, considering the similar unwinding pathway 984 

as that in Video 1 (Figure 5 – figure supplement 2), the unwinding does not depend on the force 985 

field used in the simulations or the identity of the antagonist bound in the OBS. Note the sidechain 986 

of Asn175EL2.39 rotates inward and approaches Asp1083.26 in this trajectory. The presentation and 987 

color scheme are the same as those in Video 2. 988 

Video 4. A movie of a 4.5 µs D2R/risperidone trajectory shows the N-terminal portion of EL2 can 989 

transition into a helical conformation when the C-terminal portion is extended. This is a novel EL2 990 

conformation that has not been revealed by the D2R, D3R or D4R structures but similar to those 991 

in the 5-HT2AR/risperidone (Figure 5 – figure supplement 4f), β2AR and β2AR structures. The 992 

presentation and color scheme are the same as those in Video 1. 993 
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