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Abstract
Artificial intelligence (AI) among other digital technologies promise to deliver the next level of process efficiency of manufac-
turing systems. Although these solutions such as machine learning (ML) based condition monitoring and quality inspection
are becoming popular, these work under very limited conditions. Solutions do not scale-up in the real environment, where
there is a mix of manufacturing equipment, where the quality and quantity of data available changes frommachine to machine,
or where the process changes, changing the distribution of data (i.e. concept drift). This is particularly challenging in highly
reconfigurable and flexible environments. Having to develop machine learning models from scratch every single time is not
cost-effective, time-consuming, requires expert knowledge that is typically not available in the manufacturing environment
as well as can be challenging when data is not available in high volumes. Model robustness, reusability, adaptability and
life cycle management are the keys to scale-up this technology in the manufacturing industry. In this work, a conceptual
framework to enable simple and robust ML model development for the shop floor is introduced. Referred here as Frugal
Industrial AI, the approach takes advantage of existing models and their context to build more robust ones in a data-efficient
manner. Using a semantic knowledge base of how to construct these models for different manufacturing applications and
semi-automating the development or reuse of solutions through semantic similarity, it is demonstrated how models can be
developed in a more streamlined way. In addition, it is demonstrated how capturing process context information is important
for the effective reuse of existing models through continual learning. This is key to building more robust ML solutions that
can deal with real changing manufacturing environments, avoiding retraining from scratch as well as enabling the non-expert
to use AI effectively on the shop floor.
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1 Introduction

Rapid changes in customer demand as well as black swan
events such as theCOVID-19pandemic are pushing the limits
of current manufacturing systems. Companies are looking at
different ways of realising flexibility in their manufacturing
processes to remain competitive. Although Reconfigurable
Manufacturing Systems (RMS) offer the capability to effi-
ciently and quickly adapt to rapid changes [1], there is very
little adoption of these until today [2].Onone hand, this is due
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to the complexity it involves moving toward a more modu-
larised design of systems so thatmodules can be easily added,
removed, replaced or repurposed. On the other hand, there is
the complexity of operational decision-making. For example,
maintenance decision-making in a typical production line is
very complicated; however, it is evenmore complicatedwhen
the manufacturing system is changing [1].

Since the introduction of the Industry 4.0 initiative byGer-
many, there has been a strong interest on the digitalisation
of factories through technologies such as cyber-physical sys-
tems, smart sensors, data analytics and AI. Cyber-physical
systems such as cooperative industrial robots that are highly
integrated with sensors, are some of the technologies that
offer the modularity that is required for RMS [3]. Recon-
figurable machine tools are also being proposed to enable
different machining processes within the same equipment
[4]. Data analytics and AI offer the possibility for developing
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more intelligent decision-making algorithms in applications
such as conditionmonitoring, qualitymonitoring, and overall
process improvement [5], as well approaches for developing
more adaptive robot control such as reinforcement learning,
imitation learning and computer-vision based control [6].
Some authors start to explore architectures for integrating
reconfigurability together with AI in the design and control
of advanced production systems [7]. However, generally, AI
models are trained on very specific conditions and on a recon-
figurable environment, these may degrade their performance
very quickly. Diverse conditions, in the context of computer-
vision AI systems for example, such as lighting conditions,
a field of view distance and a variety of object types, can
considerably decrease the precision of the system [6]. In con-
dition monitoring, operation change leads to evident concept
drift which challenges the AI system to remain robust [8].
Continually adapting the AI when the physical world adapts
becomes a challenge, especially when the industry lacks the
digital skills to be maintaining, re-training and re-deploying
models.

Despite AI being promised to become one of the most
disruptive technologies in the manufacturing sector [9] and
its success from a research point of view, there are very few
real use cases in the literature, being most of them at the pilot
stage [10]. There are several factors that prevent this tech-
nology to scale-up in the shop floor. Firstly, AI solutions are
developed by a data science expert and so pipeline develop-
ment, monitoring and re-deployment of these solutions its a
skill that is currently missing in the manufacturing industry.
Second, these solutions are developed for very specific and
constrained scenarios that are typically not representative of
the complexity of the real environment. Third, there is cur-
rently no standard practice on how to manage the lifecycle
of ML solutions (e.g. MLOPs) and to link these solutions to
the manufacturing environment which is a core element for
scalability. Fourth, they typically lack of adaptation which is
necessary for an environment as complex as the shop floor.
Techniques such as continual learning that allow to incre-
mentally learn and develop more robust models in the long
term are not exhaustively explored yet in the literature. For
AI to scale in the manufacturing shop floor, there needs to be
a move toward more simplified, less data-demanding mod-
els that can adapt in an incremental fashion to changes, as
more often than not, a “complete” data set will not be avail-
able. Finally, it is difficult to reuse such solutions when data
changes from machine to machine and neither process nor
model development knowledge is captured to speed up devel-
opments. For operators to easily create and reuse solutions
there needs to be a connection between process, data and AI
solution to facilitate this.

In this context, this paper presents a novel framework
for facilitating the development of robust machine-learning
industrial solutions by the non-expert. At the core of the

framework is a semantic model, which allows to capture
both manufacturing andMLmodel development knowledge,
linking the two. By capturing these interrelationships, it is
possible to identify similar cases in which a solution exists,
but also understand how it was developed and which data it
consumes. Inferences can be made with regard to the poten-
tial of the model for using continual learning techniques
or transfer learning which is required for robustness, or for
reusing some of its pipeline steps. To identify similar cases,
a similarity metric is proposed. The paper demonstrates the
importance of identifying similar scenarios for the success of
existing continual learning techniques and presents the dif-
ferent routes that are possible for creating a new model from
existing data and models. In summary, the key contributions
of this paper are the following:

1. A semantic model that unifies existing process and asset
semantic models with new Industrial AI models that will
capture the AI life cycle and how it relates to the manu-
facturing process and environment.

2. A methodology for matching problems to ML solutions
and their pipelines which can be instantiated and orches-
trated to easily reuse an approach as well as to find
existing ML models based on process and environment
similarities.

3. A demonstration of how capturing and linking man-
ufacturing system and process to AI models supports
a better selection for developing more robust and less
data-exhaustive models that can deal with concept drift
through continual learning strategies.

The rest of the paper isorganised as follows: Sect. 2 presents
the problem context in detail and the latest existing work on
facilitating the development and operationalisation of indus-
trial AI solutions. Section3 introduces the framework and
the different components that are used to facilitate machine
learning model development and reuse. Section4 presents a
scenario to demonstrate the use of the approach, with par-
ticular focus on the use of the semantic model and how it
can support continual learning for AI model robustness, and
finally conclusions and future work are presented in Sect. 5.

2 Context and related work

Across the board, it has been demonstrated how AI, and
Machine Learning techniques in particular, can be success-
fully applied in manufacturing contexts and learn very well
patterns given a good quality dataset. For example, there is a
vast amount of work done in tool wear prediction and clas-
sification using data sets such as the 2010 PHM data set [11,
12] and NASAmilling data set [13], which captures different
machining conditions varying the material type and cutting
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parameters. However, even though very accurate models can
be created with these datasets, the scenarios captured in these
are still quite limited when looking at the real environment.
Beingmachining such an essential operation,models that can
be easily transferred to other conditions would be desirable,
or methods that can work with limited data.

There are four key challenges for machine learning-based
industrial solutions to scale-up and be robust to the changing
manufacturing environment:

1. Isolated learning — monitoring assets (e.g. energy con-
sumption, vibrations, forces) typically relies on the
assumption that the process running in the equipment
is repetitive. In a RMS where an asset may either per-
form a different capability, may be handling a different
material type, or working with a new set of parameters,
the patterns expected in the data may drift (i.e. concept
drift). Existing off-the-shelf techniques cannot handle
this drift, and this is reflected on an eventual decrease
in accuracy [14]. Off-the-shelf ML models, particularly
those based on neural architectures, cannot continuously
learn and remain accurate in old and new data, unless
they are trained from scratch (i.e. stateless retraining).
This is due to a well-known problem of techniques such
as deep learning called catastrophic forgetting, where the
trained model loses accuracy on previously trained tasks
as it is trained with only new data [15, 16]. In the context
of RMS, a single asset may be performing different tasks
or encountering unseen conditions whilst performing the
same task forwhich stateless retraining is not ideal. There
is a need for more stateful training (training with mostly
newdatawithout losing accuracy in old data) approaches.

2. Models developed by ML domain experts — effec-
tive ML-based solutions require both the data science
expert knowledge on data processing andmodel selection
and parameterisation as well as manufacturing process
knowledge to ensure the best ML design decisions are
taken. Understanding the manufacturing problem and
how it translates into a definition of the machine learn-
ingproblem (i.e., classificationor regression challenge) is
key to the success of the solution [17]. Although there are
some recent efforts on the use of predefinedMLpipelines
for creating models, these are still domain-specific [18,
19]. To avoid “re-inventing the wheel” every time a new
industrial solution is created, a systematic capture ofwhat
works (e.g. sensors, data frequency, features, models)
for which application could enable a quicker solution
development and potentially model reuse. For machine
learning models to scale-up in the shop floor, there needs
to be a way to streamline the development or reusability
of models so that these can be easily deployed by the
manufacturer without having to rely on the data scientist.

3. Data availability — choosing a suitable model and design-
ing its structure depends directly on the amount and
diversity of the data available. For example,most research
literature comprise datasets of small- and medium-size
for machining monitoring with very limited conditions
[20]. Deep learning models trained with large image data
sets such as ImageNet for example [21], have been suc-
cessful to some extent in some industrial applications
thanks to techniques such as transfer learning. Using
this technique, it is possible to distill learnt features and
speed up the learning process when presented with new
data. This is particularly useful when there is limited data
available. However, there is still a lack of large models
that could be easily reused across multiple manufactur-
ing problems. In one hand, this is due the lack of large
manufacturing data sets available to create these manu-
facturing foundation models with (e.g. sensor data), but
also due to the lack of standards for how companies
can systematically capture and safely share data or offer
trained models. Some models such as timeGPT start to
emerge [22, 23], but applications in the manufacturing
context are still limited.

4. ML model operationalisation — changing environments
need for models to be monitored, re-trained and re-
deployed. To understand when this re-training needs to
happen would depend on defining the set of metrics that
can allow themonitoring process to detect the drift. These
metrics could be related to drifts on the model accuracy,
or on the data itself [17]. MLOps practices for industrial
AI solutions are starting to emerge in some of the litera-
ture, but more work on this area is essential to scaling AI
in the shop floor, particularly on safety-critical applica-
tions. Further developments of AI in RMS need to look
at continuous monitoring and re-redeployment as a key
and integral element of AI solutions.

Given this context, the following subsections present some
of the latest work that attempts to address some of these
challenges.

2.1 Industrial model development pipelines

There have been some recent efforts in the research com-
munity on the development of frameworks to facilitate the
development and management of industrial models and
data. From the model development point of view, there are
some recent works on the development of ML pipelines
in the manufacturing context. For example, Frye et al.
present a methodology for supporting decision-making dur-
ing four main steps of the development of machine learning
models; data preparation, model building, model deploy-
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ment and model certification. The approach is based on
an rule-based expert system and validated specifically in
the model-building step, where hyper-parameters for model
training are recommended according to what has worked
in similar use cases [24]. Zhou et al. present a framework
for the development of ML solutions through four different
predefined pipelines [25, 26]. Using semantic models, the
framework can identify the most appropriate pipeline to use
and so it can automate the development through a predefined
set of preprocessing steps which include statistical feature
extraction, selection, and training two or three predefined
models depending on the end application. One of the main
limitations, in addition having a limited set of predefined
models and architectures, is that it relies on the availability
of an initial well-bounded data set expected to be a good rep-
resentation of all possible future scenarios. In practice, this is
almost never the case for dynamic environments. Even when
data is coming from the same machine carrying out the same
operation (concept drift), and so it is not possible to know a
priori the bounds of such data set. In this context, it is not
practical to assume data for thatmachine is available; instead,
it is important to know if there is another model from another
machine that has been trained in a similar scenario and use
that as a starting point or employ techniques that work better
with limited data sets before the model can then be updated
with a more robust one once more data is available.

2.2 Manufacturing andML knowledge capture

There have been several works on the capture of manufac-
turing knowledge to support decision-making in industrial
contexts. Mourtzis and Doukas for example create a knowl-
edge base using a Case Base Reasoning (CBR) approach
to capture and reuse knowledge when solving design and
planning problems (e.g. scheduling) in amanufacturing plant
[27]. The approach is demonstrated on a moulding-making
process, where the knowledge base is queried for finding
cases of orders of similar product variants and understanding
from past experience what worked well in terms of schedul-
ing of the operations andmachines involved in the production
of such product variant and for estimating a delivery time to
the customer.

There are a number of ontological approaches for knowl-
edge capture and management that have been proposed in
the literature. A strong focus has been put into modelling
products, processes and capabilities. Jarvenpäa et al. devel-
oped an ontology for capturing manufacturing capabilities
to support the automation of matching assets capabilities to
processes needed to manufacture a product [28, 29]. Mo et
al. expanded on Järvepäa’s ontologies to include semantic
models that capture system re-configuration with the aim to

match process requirements to changes in the physical sys-
tem and so enable faster reconfiguration in robotic cells [30].

With regard to capturing machine learning knowledge,
Braga et al. propose an ontology, MLOnto, to describe the
domain knowledge that encompasses the domain of machine
learning [31]. The ontology was created based on a literature
review focused at incorporating concepts of the Autonomous
Systems sub-domain. This is one of the few efforts so far
attempting to formalise the machine learning knowledge
domain. How to apply these techniques and build machine
learning pipelines is a domain knowledge that still needs to be
formalised in order to start automating ML model develop-
ment, and particularly for solving manufacturing problems.
A few works start to emerge in this direction [26, 32] but
more general frameworks need to be developed to link man-
ufacturing to ML knowledge.

2.3 Industrial MLmodel operationalisation

From the model management perspective, there have been
several technologies that have been proposed to support the
operationalisation of Industrial AI solutions. With the suc-
cess of continuous software engineering practices (DevOps),
there has been an increase interest in the rapid deployment of
machine learning models, referred as MLOps [33]. It mim-
ics DevOps practices with additional actions that are specific
to machine learning such as model monitoring and model
retraining. In the literature, general architectures based on
MLOps have been proposed for industrial contexts. Zhao for
example, proposes an MLOps architecture for industrial set-
tings integrating technologies such as Data Version Control
(DVC) for data andmodel versioning, AmazonWeb Services
(AWS) for data storage, MLFlow for pipeline implementa-
tion [34]. Raffin et al propose a cloud-edge architecture for
the operationalisation of machine learning models in manu-
facturing shop floors [35]. The architecture is based on five
components: data storage and management, edge manage-
ment, cloud, model development and versioning and model
monitoring. The authors stress the importance of the cor-
rect management of complex data as this enables successful
improvement of machine learning models in the long term.
Although the main architectural elements are proposed, it is
not clear how data, models and processes can all be linked to
ensure an effective reusability or further training ofMLmod-
els. Elements such as meta data, code repository and feature
store can really help to shorten the transition of models from
prototype to production [36]. Applying MLOps approaches
in an Industry 4.0 context is mainly challenging due to the
heterogeneity of the environment, having many individual
AI solutions involved. A full MLOps architecture must cover
the whole environment of the cyber-physical system and its
context [37].
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The Asset Administration Shell (AAS) has been recently
proposed to life cycle manage AI solutions. AASs can be
digital twins not only of physical objects but also of software
programs. As proposed by Rauh et al., AI solutions can be
described as an AI artifact or instance with three life cycle
stages: before training to a data set, after training, and during
runtime [38]. After the training, the model instance is frozen.
As a result, a simple hierarchical structure is used to capture
all the relevant changes of the AI model. The AAS is an
obvious way to be able to linkMLmodel to the physical asset
it is supporting; however, it is not clear how this can enable
future model reuse across other assets. In addition, the paper
does not consider the monitoring of the model’s performance
after deployment, which is key for the continuous update and
re-deployment of models.

2.4 Model reusability and continual learning

Achieving generalisation of machine learning models in
manufacturing contexts is very challenging due to the chang-
ing environment. Data sets are typically not representative
of all possible changes that may happen or they are highly
imbalanced (e.g. the case of anomaly detection). There are
several ways in which this challenge can be addressed. One
way is to use data augmentation techniques. Ruediger-Flore
et al., for example, create synthetic image data from CAD
models in order to develop inspection systems based on
Deep Learning when dealing with a shopfloor that is con-
stantly handling new “unseen” products [39]. Lyu et al. use
a technique based on Gaussian Noise and Signal Stretch-
ing techniques to augment vibration sensor data for motor
fault diagnosis, improving accuracywhen data sets are highly
imbalanced [40]. Some work using Generative AI for aug-
menting sensor signals has been proposed as well [41, 42].

Another way of addressing this is looking at existing
models developed in similar conditions and perform trans-
fer learning to distill some of the learnt features and further
train them, obtaining a model that is now good for the new
conditions. This is particularly useful when data available of
the new conditions is limited. Wang and Gao explore the use
of foundation models used in image and object recognition
for transfer learning inmachine conditionmonitoring and the
authors stress the need to further understand what the bound-
aries for effectivemodel transferability are, particularlywhen
using pre-trained models with non-manufacturing-specific
data [43]. Giannetti and Essien demonstrate the effectiveness
of transfer learning for predicting operational parameters of
can body maker machines [44]. The authors propose the use
of the F-score measure to select the model to use for transfer
learning from a set of multiple models that were developed
from similar machines. Their main finding was that the train-
ing strategy that is most effective depends on the data, and

so contextual information of the process to understand the
differences in the data is useful to ensure the effectiveness of
transfer learning.

Another way to address this challenge is developing
continual learning frameworks [45]. Continual learning is
different from transfer learning as it focuses on sustaining
good performance on previous knowledge, which can be for-
gotten as the model is trained only with new incoming data.
In the continual learning context, new datamightmean a drift
on the data whilst the task and classes within that task remain
the same— domain incremental learning , new data as a new
task that needs to be learnt — task incremental learning —
or new data as a new class that needs to be learnt within an
existing task— class incremental. Both class and task incre-
mental learning require architecture changes, as new output
nodes are added to the last layer. Themain advantage of using
continual learning strategies is to avoid re-training a model
from scratch every time there is a change on the data or the
task changes. This is very particularly beneficial because it
reduces time and computing power as training sets become
larger and larger. It also takes advantage of the knowledge
already acquired (like in transfer learning) but with the ben-
efit that it also retains the previous knowledge, being able to
incrementally deal with old and new data contexts.

Trinh et al. introduce a continual learning framework for
a ML model that is supporting a robot on carrying out differ-
ent milling processes. The model is used to predict the robot
joint torque and it is demonstrated how it can incrementally
learn to predict this torque whilst the robot is performing
new tasks. Applying two different techniques of continual
learning, elastic weight consolidation (EWC) and synaptic
intelligence, the authors show an improvement on the reten-
tion of knowledge when the prediction model is trained in a
task incremental way. The authors explore a short-term (2–3
months) retraining approach, highlighting the need to under-
stand how these techniques could perform when the drift is
larger between training iterations to account for the natural
wear of the system.

Despite the current efforts in different directions, there is
not a clear approach for how the industry will operationalise
AI if the current ML approaches proposed are focusing on
large complex and data-intensive models that are not robust
to change and that are so complex to develop. It is also clear
from the literature that semantic models offer a good oppor-
tunity for better decision support for system reconfiguration.
These could be leveraged to not only capture the physical
world but the ML approaches that are linked to them to sup-
port their operationalisation. There are still “missing links”
in these models: (1) from how the manufacturing system and
process links to the data characteristics that can support a
better model selection for transfer or continual learning, (2)
from the operator that understands the process and that can
play an essential role in the design of a successful solution,
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(3) from the choices made during the ML model develop-
ment process (i.e. ML pipeline), which is typically in hands
of the data science expert, and finally (4) from the model
itself, capturing development metrics to support ML model
redeployment and reusability. All of these pieces of informa-
tion play an essential role on the success of the scalability
and robustness of ML solutions.

To tackle this major challenge, this paper proposes a
framework to support the development and scaling up of
robust ML solutions. By linking manufacturing system and
process to data and ML solution, it is possible to stream-
line future developments of a similar solution on a different
asset as well as to manage the life cycle of such solution.
With an ontology model at its core, that leverages some
of the existing semantic manufacturing models and expand-
ing these further, intrinsic knowledge that is involved in the
development of ML solutions can be defined, standardised
and captured; from Asset, Process, and Capability to cap-
ture manufacturing knowledge, to Sensor, Data, Algorithm,
Model and its metrics, to capture data science knowledge. By
using the semantic links between manufacturing processes
and AI solutions, which currently do not exist in practice nor
in the literature, inference and similarity measures can be
used to automate the identification of existing ML models
or elements of the model development to be reused in a new
context, either through transfer learning, continual learning
andAutomatedMachine Learning (AutoML) tools. Having a
way to identify existingmodels or data/pipelines from similar
industrial AI solutions can speed up development, avoiding
to create solutions from scratch. It is also an effective way

to deal with limited data, as models deployed across other
machines can be used for machines with low data availabil-
ity and then further improved as data becomes available from
the new machine. Additionally, the approach can enable the
non-experts in the factory floor to not only create these solu-
tions but also understand how they work and why they work;
understand what approaches work best for which type of
problems and when does it make sense to reuse models or
create them from scratch.

In the following sections, an overview of the proposed
framework will be presented with a particular focus on
the semantic models and how they can be used to support
effectively continual learning. Particularly, the experimental
sectionwill demonstrate how semantic similarity is an impor-
tant factor for the identification of similar models and data,
which has an impact on the level of success of the training
approaches.

3 Framework for robust Frugal Industrial AI

To address the aforementioned challenges, a framework
based on semantic models and advanced ML learning tech-
niques together with the latest approaches in AutoML, AAS
and aMLOps architecture is proposed (Fig. 1). The underpin-
ning philosophy of the framework is based on the assumption
that not all data is available at one time for robust models to
be created, but rather sequentially available in time, enabling
this way Frugal AI. This is particularly important as the real
world, in particular, the manufacturing shop floor, deals with

Fig. 1 Framework for the development and management of Industrial AI solutions
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this challenge [46, 47]. It is then important that the frame-
work is also underpinned by stable algorithms that can learn
from such real environment. Continual Learning is a learning
strategy that is necessary when a model needs to learn from
a continuous stream of data that may change through time
but it is not know how or when. In addition to the computa-
tional efficiency that a continual learning approach provides,
the framework makes use of data augmentation techniques
to handle both reduced data sets was well unbalanced data
sets. The complete framework is comprised by the following
components:

• MLOps workflow — This component encapsulates four
main elements. The first one is the Knowledge Represen-
tation. Based on semanticmodels, this element underpins
the framework providing a way to capture knowledge
with regard to ML development as well as manufactur-
ing process knowledge, and linking the two. As it will be
presented in detail in Sect. 3.1, this allows to identify rel-
evant models, data and existing pipelines that can be used
for different industrial AI solutions. Second is the Stor-
age, which includes models and data to support model
training (transfer or continual learning according to the
application). Third is theMLModelOrchestration, which
contains the functionalities to execute AutoML pipelines
through MLFlow and Ray Tune based on the knowl-
edge extracted from the semantic model. Finally, the ML
Model Deployment component containerises a trained
model and any other elements of the Industrial AI Solu-
tion such as visualisation, Key Performance Indicator

(KPI) monitoring and data storage containers. Using the
Docker environment, it integrates these and prepares the
necessary configuration for the solution to be published.
The solution can then be published by the publisher into
an edge device through the device’s AAS.

• Local environment — the local environment compre-
hends the set of hardware and software that are at the
factory floor or “at the edge” of the process. This will
include the asset itself (e.g. robot, computer numerical
control (CNC) machine), the edge device on which the
ML solution is deployed into and an instance of an asset
administration shell that serves as the two-way access
point of data from and into the rest of the framework.
From this local environment data from the sensors as
well as ML solution outputs and ML monitoring KPIs
are gathered through the AAS. The asset administration
shell has references to the instance of themodel deployed
locally through semantic identification (ID), being able
that way to infer all the information related the creation
and deployment of suchmodel. In the sameway, theAAS
has semantic IDs for the physical asset and sensors that
are generating the data locally. This can be used to ensure
data can be semantically linked when it is stored in the
data warehouse.

3.1 Semantic models

At the core of the framework are the semantic models. For
automating or supporting the automation of the development

Fig. 2 Semantic models for the developing and managing AI solutions in manufacturing environments
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of Industrial AI solutions, it is essential to formalise the
different elements of knowledge that need to be captured
and for these to be machine-interpreted. Building from the
work from Järvenpää et al. [29] on the Process and Resource
Models, the work from Janowicz et al. [48] on Sensors and
Samples, and the Algorithms and Application models from
Braga et al. [31], newmodels are introducedwhich aim to link
AI methods to Industrial AI solutions that are then seman-
tically linked to one or multiple manufacturing problems.
These additional models are Manufacturing Application, AI
Pipeline and Data processing. A general view and intercon-
nections of the eightmodels that comprise this framework are
presented in Fig. 2. Each of these semantic models support
in different ways the development, identification and reuse
of ML models:

1. Resource model — this semantic model captures all data
related to an asset (e.g. robot, CNC machine, operator).
The asset is linked to a process that is or has been carried
out and to the sensors installed on it. From this, the data
that is produced from that asset for a particular process
can be inferred. This helps identify the best ML models
to be used for transfer learning or for its data to train other
models. This is particularly useful when data is limited.

2. Manufacturing application model — this captures the
specific industrial ML solutions and how they are linked
to the process. For example, a vision inspection solution
may support/control the quality of a 3D printing process,
or a condition monitoring solution may be related to a
machining process. Capturing the industrial solution is
essential for querying the ontology for similar ML mod-
els.

3. Manufacturing process model — defines common pro-
cesses that are needed to deliver a product, and which
are linked to the capabilities of assets. A process is char-
acterised by its parameters as well as by metrics that
are used to monitor such process, which provide context
when selecting models to be reused.

4. Application model — defines a solution or industrial
problem from an ML perspective as either a classifica-
tion or prediction problem. These classes help to linkML
applications to industrial solutions as well as to the ML
techniques that can be used to solve such application,
supporting the design of ML pipelines.

5. Algorithm model — captures AI/ML approaches and
their parameters. The same approach might be linked to
multiple Manufacturing Applications the same way that
a Manufacturing Application may be solved by different
algorithms.

6. Data processing model — defines all the different pro-
cessing steps that are involved in a machine learning
pipeline.Themodel links certain data types to techniques,
supporting the automation of the pipeline.

7. Sensor data model — captures characteristics of measu-
ring devices on assets as well as enables semantic anno-
tation of the samples gathered from the device. It is then
possible to infer which process is connected to the data
through the links between sensors, assets and process.

8. AI pipelinemodel—brings together all the elements that
are used for the development of an industrial solution
and to track its performance. This supports future model
development by using complete or partial pipelines of
existing models from similar process/machines as well
as model monitoring for continuous adaptation.

Fig. 3 (Left) Drag and Drop environment developed in Blockly. The
environment uses the concepts defined on the semanticmodels and offer
the user the possibility to use these as blocks to define instances related

to the manufacturing environment and models. (Right) Owl-formatted
output generated by the blockly tool
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Fig. 4 Machine learning template pipeline, instance and linked implementation for performing process health monitoring through time series
classification. Code modules are independent, allowing for other instance pipelines to use these

3.1.1 Instance creation

From the defined semantic models, instances for existing
assets on the shop floor can be created. Although these are
typically created manually using tools like Protégé, a drag
and drop approach using Blockly has been created to facil-
itate any user to create these instances. Figure3 presents a
snapshot of the tool developed to facilitate this task.

In regard toML pipelines, a startingpoint is to build template
pipelines. Template pipelines provide a blue print for creating
instances of ML pipelines for solving specific problems and
link those instance pipelines to actual snippets of reusable
code. Rather than “reinventing the wheel”, the current state-
of-the-art research literature on the most common successful
applications of AI in manufacturing is used. For this paper,
particularly process health monitoring pipelines are defined.
Munaro et al. provide an exhaustive classification of AI tech-
niques used for tool wear monitoring with details on the data
used, such as sensor signals, material type, cutting parame-
ters, type of machining operation (e.g. drilling, milling and
turning) and the most common features in the time and fre-
quency domains used [49]. These can then be used with
AutoML tools to fine tune them for a particular data set. As
it can be seen at the bottom of Fig. 4, a template pipeline
defines that the problemofprocesshealthmonitoringin this case
can be solved by doing time series classification, using time
series data augmentation as an strategy to deal with condi-
tions where the asset that will be deployed to has limited
data. Other template pipelines may contain class balancing
through removal of the majority class as a different approach
to the same problem. The template pipeline in the figure indi-

cates that for time series classification a metric of precision
and recall (as they will be defined later on in Sect. 4) can
be used to monitor the accuracy of the model. In the middle
section of Fig. 4, an instance of such template pipeline is
depicted, that corresponds to an actual existing implementa-
tion of that template pipeline. The instance pipeline provides
a link to the actual snippets of code that are produced for each
of the pipeline steps, which can then be executed and reused
across multiple MLFLow projects. MLFlow allows to write
general main code structures that calls different snippets of
code for the different steps of the pipeline.

Figure 5 presents an extract of semantic instances of a
pipeline created based on the template pipeline of Fig. 4. The
concepts presented in the figure are linked to the case study
that will be further introduced in Sect. 4. To describe Fig. 5,
concepts linked to the semantic model are presented start-
ing with capital letter whilst instances are in typewriter
font. The instance processMonitoring01 is of type
ProcessHealthClassification which is a type of Industri-
alAISolution. This solution is usedBy Resource M01. It can
be solvedwith a time series classification (TS_Classification)
approach with a DeepLearning Algorithm such as a Convo-
lutional Neural Networks (CNN) [11, 50–52] and can also
be solved with a Regression approach which according to
the literature can be addressed with a DeepLearning Algo-
rithm such as Long Short Term Memory (LSTM) approach
[53–55]. ThemodelCNNM01Modeldeveloped forResource
M01 is linked toProcessMonitoring01which supports
ProcessOP01which is related to capability StepDrilling. The
model has been produced by the M01Pipeline instance of
type MLPipeline.
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Fig. 5 Extract of instances from the semantic model. Colours differentiate the class to which the instances belong to

3.1.2 Similarity measure and inference

When a new model needs to be developed either for a new
asset or when an existing model needs to be updated due to
changes in the process running in the asset (e.g. change in
process parameters), it is useful to identify models from a
similar context scenario to use transfer learning as a way to
speed up development, or identifying existing models from
the same context scenario where applying continual learn-
ing strategies makes sense to build model robustness. Two
models may be similar, either because they are used for the
same Manufacturing Application, but there are other fac-
tors that might contribute to similarity such as algorithm
type, architecture, input data and more importantly, process
parameters. Semantic similarity is a challenging problem for
which multiple metrics have been proposed in the literature
and which typically aimed at word sense disambiguation,
machine translation, and information retrieval [56]. Accord-
ing to [57], semantic similarity metrics are typically either
path-based or information-content related and are usually
aimed at word similarity. Edge or Path-based metrics such as
the Shortest Path [58], the Weighted Link [59] and the Hirst
and St-Onge Measure [60] algorithms calculate the similar-
ity of two instances based on how closely connected they are
or the topology of the graph to which the instances belong to.
Information content may use hierarchy on the model struc-
ture to determine “ambiguity” or look at the attributes and
neighbours. The Resnik metric [61], for example, defines
that two concepts are more similar if they present a more
shared information, and the information shared by two con-

cepts C1 andC2 is indicated by the information content of the
concepts that subsume them in the taxonomy (concepts they
have a hierarchical link with). In the context of ML model
or IndustrialAISolution similarity, there are several factors
that need to be taken into account. High similarity between
two concepts would mean that they share not only the same
values in their attributes, but that they contain the higher
number of similar neighbours through their object proper-
ties. Figure6 shows a very simplified example of what this
similarity means. From the three instances of Asset shown,
twoof themnot only show to have a higher (3) number of sim-
ilar object properties, but such properties define the asset as a
machine tool or an asset withmachining capabilities, making
themsemantically closer for the purpose of IndustrialAISolu-
tion search. This is particularly important, as although assets
might be performing the “same process” (e.g. drilling ) the
type of drill bit would have an influence on the vibration
patterns, and so on the potential similarity of the data which
is important for transfer and continual learning. Formally,
based on [62, 63] similarity between two concepts is then
defined as:

sim(C1,C2) = f (C1 ∩ C2,C1 − C2,C2 − C1) (1)

where the similarity increases as the intersection of the fea-
tures increases and the distinctive features (features that
belong to one concept and not the other) decreases. To move
into the range of 0 to 1, the ratio is used:

In the context of asset, process, AI model and data, sim-
ilarity take into account the characteristics of the asset, of
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Fig. 6 Assets and related object properties that determine the assets’ capabilities as well as the similarity of concepts

the process running in the asset, the type of sensor data col-
lected from that asset, its feature distributions and the type of
ML model/IndustrialAISolution that is implemented in such
context.

3.2 Model retrieval andML pipeline instantiation

The semantic similarity as defined in the previous subsec-
tion is then used when performing the search for existing
models or pipelines. Using Protégé and TopBraid, a series
of SPARQL and SPIN rules were implemented to define a
search logic. This search logic is based in the following gen-
eral steps:

1. In scenarios where an IndustrialAISolution exists for the
desired asset but the process has changed (e.g. machine
carrying out a new operation which leads to concept
drift), an existing model can be directly retrieved from
the semantic model.

(a) Continual learning can be used with the existing
model when it is important for the model to be accu-
rate both for the old process conditions as well as the
new ones. However, continual learning only makes
more sense when knowledge from the previous learnt
task is useful for the new task [64]. This is currently
a challenge as there is no effective way to anticipate
if the new task will be closely related in terms of data
patterns; however, here is where the process contex-
tual information and similarity is useful to support
the decision of using the same model or create a new
one for the new process conditions.

(b) If data from the already existing model exists and
there is no computational constraint, then instead
of applying continual learning, a new model can be
developed from scratch using previous and new data
using the same pipeline from the existing model to
speed up model development.

(c) In the case of a completely new task and not having
the possibility of training from scratch, a new model
can be created using the previous model as a starting
point for transfer learning. These can be useful to
reduce training time and potentially not having to
rely on large amounts of data being available for the
new process conditions.

2. In scenarios where no model exists for the given asset,
then it is useful to identify existing solutions in other
assets. A good candidate asset would be such that can
provide the same capabilities, particularly if they share
the same physical features and if the sensor/data that is
collected from it is similar.

(a) Given the identified assets (and potential data found),
a search onmodels related to the IndustrialAISolution
of interest is performed on the ontology.

(b) Models identified would be trained under specific
process conditions. And so, similar process type and
parameters would be preferred.

(c) If process parameters are not the same but the type
of data available has the same characteristics (sen-
sor type, frequency), then transfer learning is a good
option for speeding up development.

3. In scenarios where no model exists for similar assets but
a different asset has a solution to the IndustrialAISolu-
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tion of interest, the pipeline for such model can be used
and AutoML architecture and hyperparameter optimisa-
tion can be used to automate the search for the optimal
model. The pipeline concepts in the semantic model pro-
vide a link to the snippets of reusable code, which can
be executed using MLFlow Projects. MLFLow Projects
provides a way to execute in python different pipeline
snippets of code once a main file is defined which defines
different entry points, each of these entry points being the
steps in the pipeline that need to be executed. An example
of a MLFlow structure is presented in Listing 1.

1 name: mlflow_pipeline
2

3 conda_env: conda.yaml
4

5 entry_points :
6

7 load_raw_data :
8 command: ‘ ‘python preprocess .py’ ’
9

10 train :
11 command: ‘ ‘python trainHPTuning .py’ ’
12

13 validate :
14 command: ‘ ‘python test .py’ ’
15

16 main:
17 command: ‘ ‘python main.py’ ’

Listing 1 Example of MLFlow Project file

4. If none of the previous steps could be followed, then
a template pipeline can be used, provided the data
available meet the characteristics needed for the data pre-
processing steps of the pipeline.

3.3 Model deployment

Once a newmodel is created or re-trained, semantic informa-
tion needs to be updated before preparing it for deployment.
The steps for model deployment include the following:

1. A new model requires the creation of a new instance in
the ontology, and add all the necessary semantic links to
it (e.g. process, asset, data).

2. Based on the process metric captured in the semantic
model, as well as statistical features of the data used to
trained the model, a ML model metric can be defined
within the IndustrialAISolution to be used in the user
interface. The user then would have a way to feedback
into the solution the accuracy of the model as well as the
data shift, and this way perform continuous monitoring
once deployed.

3. AnAASfile (if it does not exist yet for the intended asset)
for the IndustrialAISolution is created with the corre-
sponding semanticID of the solution.

Fig. 7 Industrial AI Solution Deployment Architecture

4. Although out of the scope of this work, the ontology
model can also contain concepts regarding the visuali-
sation preferences for each IndustrialAISolution and for
each user. The trainedmodel can the be containerised and
coupled with a containerised visualisation solution and a
data storage container (see Fig. 7).

5. Once the solution is packaged, it can be published to a
device running a container platform like Docker.

A summary of the methodology of how the proposed
framework is implemented in this work is shown in Fig. 8.

4 Industrial case study

In this section, a proof of concept of the framework is
implemented and presented. Particular focus is given to the
ontology models and how they enable robust model develop-
ment using continual learning in a limited data scenario. In
this case study, new data becomes available in an onlineman-
ner and learning happens incrementally. Only new incoming
data is used for training, delivering a more computationally
efficient approach as well as taking advantage of existing
knowledge to overcome the need for large amounts of data
being available at a single time. This is particularly important,
as real flexible and reconfigurable manufacturing environ-
ments will be dealing with unexpected changes in process
type, process parameters as well as natural wear, all which
cause concept drift. Using a continual learning approach it is
possible to assure the delivery of more robust models in the
longer term, which is key for scalability of the technology.
The experimental work is divided into two parts. First, given
an industrial scenario, the ability to query and identify solu-
tions in the form of trainedmodels or existing pipelines based
on process context is presented. Then it is demonstrated how
the contextual information is key to develop effective con-
tinual learning solutions for model robustness.
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Fig. 8 Summary of the methodology that is implemented based on the proposed framework

To achieve this, the Bosch process monitoring through
spindle vibrations case study presented in [8] is used. This
data set is the first of its kind which has been gathered from
machining centres in a real manufacturing environment over
a long period of time (3 years). Due to its nature, it presents
the following complexities: there is high process variation in
terms of types of operations, process parameters and types
of tools, as well as part type variation in terms of geometries.
This level of change introduces multiple environmental chal-

Table 1 Operations and cuttingparameters performedby the threeCNC
machines in [8]

Tool Description Speed Feed Duration
Operation [Hz] [mms−1] [s]

OP00 Step drill 250 ≈ 100 ≈ 132

OP01 Step drill 250 ≈ 100 ≈ 29

OP02 Drill 200 ≈ 50 ≈ 42

OP03 Step drill 250 ≈ 330 ≈ 77

OP04 Step drill 250 ≈ 100 ≈ 64

OP05 Step drill 200 ≈ 50 ≈ 18

OP06 Step drill 250 ≈ 50 ≈ 91

OP07 Step drill 200 ≈ 50 ≈ 24

OP08 Step drill 250 ≈ 50 ≈ 37

OP09 Straight flute 250 ≈ 50 ≈ 102

OP10 Step drill 250 ≈ 50 ≈ 45

OP11 Step drill 250 ≈ 50 ≈ 59

OP12 Step drill 250 ≈ 50 ≈ 46

OP13 T-slot cutter 75 ≈ 25 ≈ 32

OP14 step drill 250 ≈ 100 ≈ 34

lenges as frequent mounting and unmounting of tools may
lead to different process failures such as tool misalignment,
chip clamping, chip in chuck and tool breakage in addition to
natural ageing of components. This last factor is particularly
challenging as slight deterioration would not affect the pro-
cess quality initially, but would certainly affect the sensor
data by causing additional noise. The Bosch data set con-
sists of three brownfield CNCmachining centres (M01, M02
andM03) which perform 15 different operations (i.e. OP00 -
OP14) in different order according to the part, different dura-
tion and with different tools using different combinations of
feeds and speeds. These details can be seen in Table 1. All
machines have a low-cost tri-axial accelerometer mounted
on the spindle that samples at 2KHz. The set up is shown in
Fig. 9.

Fig. 9 Example of brownfield machining centre with tri-axial
accelerometer mounted on the spindle to monitor the health of the pro-
cesses running in such machining centre
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Fig. 10 Infrastructure at Bosch
to collect data from the
machining centres in a
publish/subscribe approach

Data is collected from October 2018 to August 2021 in
periods of 6 months. The data collection architecture imple-
mented at Bosch is presented in Fig. 10. The data collected
from the sensor is published to a message bus (enabled via
MQTT) to which a machine learning and storage modules
are subscribed to. The machine learning module provides a
preliminary automated label (e.g.“OK” and “NOOK” corre-
sponding to the health of the process) to the raw signal which
is later on checkedmanually after product quality inspection.

Once it is checked by the expert, then the fragment is sent
for final storage at the cloud.

This use case is particularly complex because of the differ-
ence in patterns (1) across operations in the same machine
(see Fig. 11), (2) across two machines for the same oper-
ation (Fig. 12), as well (3) across the years for the same
machine and operation (Fig. 13). In the case of (1), although
a model could be built using all the operations in one time, in
a real scenario it is not possible to ensure all possible oper-
ations and parameters are available. So ideally algorithms

Fig. 11 Signal signatures of
acceleration in x across four
different operations 8,9,11 and
12 in machine M02. It is shown
how different operations on the
same time period have very
different signatures
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Fig. 12 Signal signatures of
acceleration in x across
machines M01 and M02
carrying out the same operation.
The blue colour corresponds to
the “OK” process and the
orange colour corresponds to a
“NOT OK”

need to be able to incrementally learn signal signatures from
new processes. In the case of (2), as the same operation
shows different signatures across machines, a model cannot
be used straight away in the new machine as it will inher-
ently decrease its accuracy. The model, though, could still
be used for transfer learning, requiring less data to be used
in the new machine. In the case of (3), there is an evident
concept drift in both operations 10 and 11 when looking at
a signal from February 2019 (blue) to a signal from August
2019 (orange). Although a model could be re-trained with
regular backpropagation as the new data becomes available,
this would decrease its accuracy for old data, for which sig-
natures could still appear later in the future once changes
such as maintenance are done to the machine (i.e. decreasing
model robustness). In this case either the model is trained
with all the data, old and new, or an strategy such as contin-
ual learning is implemented to retrain the model in the most
effective way to ensure model robustness.

4.1 Initial semantic model and pipeline code
snippets setup

Given the scenario described above, instances for assets, pro-
cesses, sensors and data were created in the ontology (some

of these shown in Fig. 14). Each of the 15 operations have
different duration and are executed multiple times during the
3 year period. Due to this difference in duration, data needed
several pre-processing steps before it could be used formodel
training. For this, a pre-processing pipeline code snippet was
written in python which takes each run of each operation and
segments it into equally sized samples (4096 data points per
sample), which roughly corresponds to two seconds accord-
ing to the sampling rate. This ensures a sample contains at
least one complete cycle. As this information is known from
the process, it is possible to write this pipeline code snippet
that can be reused for different data sampling rates.

Other essential code building blocks for the pipeline are
feature extractionmethods. Statistical features as well as Fast
Fourier Transform (FFT) blocks were created. Although the
implemented classification algorithms in the following sub-
sections work with the raw data directly, these features are
used for semantic similarity, to help understand what model
or data is potentiallymore useful in a given scenario. To show
this, Fig. 15 presents FFT results of samples from four dif-
ferent operations OP08, OP10, OP11, OP12. Although they
have the same process parameters (see Table 1), some addi-
tional frequencies appear in some operations. For example,
Operations 10 and 12 show a particular peak before the 200

Fig. 13 Accelerometer signals acquired at different time periods for an “OK” process. There is a clear drift on both operations 10 and 11 despite
the process still rendering a good quality part
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Fig. 14 Instances of three CNC
machines with their
corresponding low-level
capabilities, which are used to
infer if the machines have
drilling capabilities

Hz which is not that obvious on OP08 and OP11. Although
the nature of that frequency might be different in both opera-
tions, it can be helpful for knowledge transfer during training,
speeding it up but alsomaking the learning processmore data
efficient.

Another important building block of the pipeline is data
augmentation. In the case of the Bosch data set, due to the
imbalanced nature of the data, with a higher number of
“OK” samples, which is common on the manufacturing shop
floor, the Soft Dynamic Time Warping (DTW) method was
implemented using the tslearn python package as another
pre-processing pipeline module. This allows to produce an
equivalent number of samples across classes for training.
DTW is a method for measuring the similarity of two time
series signals. This method is used for data augmentation in

the following way [65]: starting with a random initial time
series chosen from a data set, aweight equal to 0.5 is assigned
to it. From the selected time series, its 5 nearest neighbors
are identified using the DTW distance. From these neigh-
bour signals 2 are randomly selected and assigned a weight
of 0.15 each, making thus the total sum of assigned weights
till now equal to 0.5+ 2× 0.15 = 0.8. To have a normalized
sum of weights (equal to 1), the rest of the time series of
the neighbourhood will share the rest of the weight 0.2. This
weighting allows to derive a new time series that follows a
similar distribution. The soft DTW method has been a very
successful time series augmentation method; however, other
methods could be used and added to the semantic model as
a different instance of the Data Augmentation concept.

Fig. 15 Fast Fourier Transform on samples from four operations in machine M02
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Fig. 16 CNN architecture used for Process Health Monitoring (Time Series Classification)

As an initial pipeline to be stored on the semantic model,
a typical solution for process health classification using a
CNN architecture is modeled using the well-known LeNet5,
as used in [11]. This model architecture is shown in Fig. 16.

A CNN is a deep learning approach with two main build-
ing blocks: the convolution layer and the pooling layer. A
convolution layer is formed by a series of neurons that are
connected to neurons of a previous layer based on the their
receptive field. For example, in the first convolution layer
for time series classification, each neuron is not connected
to each individual sample point of the input sensor signal,
but to only those data points within a receptive field (high-
lighted in green in Fig. 16. The first convolution layer learns
to detect the lower-level features of the signal, and further
convolutions assemble these features into higher-level ones.
The process of learning at each convolution layer allows the
model to tune, or find the best weights (i.e. filter) of a neu-
ron to be able to identify those features that are useful for
classification. The pooling layer downscales the output of
the convolution, thus reducing dimensionality, the local sen-
sitivity of the network and computational complexity.

The architecture shown in Fig. 16 receives as input a 3-
channel vector, where each channel is the vibration signal in
each axis. The architecture then has stacks blocks of convo-
lution + ReLU (layer used to speed up training) + Pooling to
then flatten the output before doing the final classification.
There are two output nodes for “OK” and “NOT OK”. Once
again code snippets for the architecture, defined as a python
class tsCNN, as well as for the training process using Ray
Tune for hyperparameter optimisation, Avalanche for contin-
ual learning algorithms and Hydra for training monitoring,
logging and management of output files where implemented
and semantic model concepts were updated with the gener-
ated snippets.

To create an starting point for the experiments presented in
the next section, two process health classification models for
Machine 02 following the aforementioned pipeline building
blocks were created, one for OP08 (M02_OP08) and one for
OP10 (M02_OP10). In both cases, all the data available for

that operation was splitted in 70% for training and 30% for
testing. For modelM02_OP08 that meant using a total of 822
sample signals, from which 761 correspond to “OK” process
and 61 to “NOT OK”. As it is a very imbalanced data set,
once it was split on train and test sets, the training set was
augmented to achieve samenumber of samples for each class.
Hyper parameters used for thesemodels are shown inTable 2.

As this is an imbalanced classification problem, several
metrics are used tomeasure the accuracy of themodels. First,
Precision, Recall and Accuracy which are three common
metrics of classification problems were implemented. These
are calculated based on the number of True Positive (correct
classification of the Positive class), True Negatives (correct
classification of the Negative class), False Positive (num-
ber of incorrect classification to the Positive class) and False
Negatives (number of incorrect classifications of belonging
to the Negative class). Precision quantifies the number of
positive class predictions that actually belong to the positive
class. Recall is a metric that quantifies the number of cor-
rect positive predictions made out of all positive predictions
that could have beenmade. Accuracy is the proportion of cor-
rect classifications out of the complete number of predictions
made. Finally, the F-Measure is also used as this is a better
reflection of accuracy when having the Positive class as a
minority class. It provides a way to combine both precision

Table 2 Hyperparameters used for developing models M02_OP08 and
M02_OP10

Hyperparameter Value

Optimiser Stochastic Gradient Descent (SGD)

Learning Rate 0.0001

Momentum 0.9

Batch Size 10

Number of Epochs 20

Training Set Size OP08 575 sample signals

Training Set Size OP10 742 sample signals

Length of Input Signal 4096
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Table 3 Results of initial
models from M02 on their test
sets for operations OP08 and
OP10

Model test size TN TP FN FP Precision Recall Accuracy F-Measure

M02_OP08 247 216 24 1 6 0.8 0.96 0.9716 0.8727

M02_OP10 318 307 7 2 2 0.77 0.77 0.9874 0.77

TP: True Positives (“NOT OK”, TN: True Negatives (“OK”), FP: False Positives, FN: False Negatives

and recall into a single measure that captures both properties.
In the context of process health classification, True Nega-
tives correspond to “OK” cases and True Positives to “NOT
OK” cases. Accuracy results for both M02 models trained
are shown in Table 3. As it can be observed both models are
generally good at classifying the “NOTOK” class despite the
highly imbalanced data set. In further experiments, a special
attention will be put to understanding if this performance
can be maintained once these models are used for further
incremental learning.

At this stage, an initial semantic model with instances
that captures the Bosch use case from an asset, data and ML
solution point of view has been created. Two initial models
have been created for two operations in machine M02. The
following sections present the use of this semantic model for
solution identification and for effective model learning.

4.2 Identifyingmodels according to similarity using
SPARQL

There are two scenarios that will be demonstrated through
querying the ontology: (a) the case of a new operation being
carried by a currently monitored machine and (b) the case
where no model exists for a machine but a similar machine
is searched for.

(a)Existingmodel—assuming a newprocess calledOP11
starts in M02, the ontology is queried to retrieve existing
models of M02. The query to obtain the models is shown in
Algorithm 1, and the result is shown in Fig. 17. In the case
of M02, the two aforementioned models for OP08 and one
for OP10, are found.

Looking at the process parameters, both are operations
that run at the same speeds and feeds. However, other simi-
larities need to be taken into account for an effective selection

Fig. 17 Available models for M02 with their corresponding Industrial
Application and process

Algorithm 1ML Model Matching.
Input: Solution Type
Output: Models

SELECT {
?asset ?solutiontype ?model ?process ?pt .

WHERE {
?asset resourceModel:usesSolution ?application .
?application rdf:type ?solutiontype .
?application :supportsProcess ?process .
?process rdf:type ?pt .
?pt rdfs:subClassOf* pt:Drilling .
?solutiontype rdfs:subClassOf*:ManufacturingAIApp .
?application :canBeSolvedBy ?aiapplication .
?aiapplication :canBeSolvedBy ?model
}

of the model for “reuse”. There are several distance metrics
in the literature with regard to data features that can be used
to establish how different is the distribution of new incoming
data [66]. Distance of features such as frequency are incor-
porated into the semantic similarity measure of the proposed
approach. This allows to identify OP10 as a better candidate
as its frequency features are closer to OP11. OP10 shows
higher amplitudes for “NOT OK” classes compared to OP08
which does not have any notably differences in frequencies
[8]. Results to demonstrate the difference in the effectiveness
of carryingout continual learning fromOP08 than fromOP11
will be presented in the next subsection.

(b) Models from similar machines — in the case where
there are no existingmodels, for example case ofM03, as this
asset has a drilling capability, other assetswith the same capa-
bility are searched for. To do this, inference runs the query
in Algorithm 2 to obtain all assets with a similar capability.
This is useful when there are other device combinations on
the shop floor that might be using the same IndustrialAISolu-
tion despite not having the same physical machine features.
Figure18 shows the result of the inference. From this result,
another query running the similarity metric will search for
the best candidate assets which run a similar type of pro-
cess and parameters. From these either a linked ML model
or data available can be used for developing a new model
instantiating one of the existing pipelines. These results will
be presented in the following subsection.
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Fig. 18 Inferred drilling capabilities on the three machines

4.3 Continual learning on similar process contexts

Following from the model in OP10 identified in Subsec-
tion 4.1 (a), a continual learning strategy is used and the
cnn_Model_OP10 was further trained on OP11 and then in
a second experience it was trained on OP12. Each experi-
ence represents a future batch of new incoming data which
has a new unseen data distribution. The continual learning
framework was implemented in Avalanche python library
using Elastic Weight Consolidation (EWC), with an opti-
mised (Ray Tune) hyperparameter λ = 102. EWC is a recent
continual learning approach for neural architectures that con-
straints how weights that are relevant for the accuracy of the
current task are changed in future experiences [15]. These
constraints allow to “retain” old knowledge, whilst at the
same time, accommodate for new knowledge given the new
incoming data. The results of applying this technique for
incrementally learning from OP10 to OP11 and OP12 are
presented in Table 4, where experience 1 corresponds to
the initial training of the model done with OP10, the sec-
ond experience corresponds to only presenting samples from
OP11 to the trained model, and finally the third experience
corresponds to only presenting samples from OP12. The
accuracy at each experience learning of the model on the

Algorithm 2 Drilling Capability Inference SPIN Rule.
Input: Individual Assets and Capabilities
Output: Inferred Drilling Capabilities

CONSTRUCT {
?this resourceModel:hasCalculatedCapability _:b0 .
_:b0 a capabilityModel:Drilling .

WHERE {
?this a resourceModel:RealDeviceCombination .
?this resourceModel:hasIndividualDeviceOrDeviceCombination
?spindle .
?this resourceModel:hasCapability ?drillBit .
?drillBit a capabilityModel:DrillBitFunction .
?spindle resourceModel:hasCapability ?spinning .
?spinning a capabilityModel:SpinningTool .
}

three operations is shown to demonstrate how the accuracy
of the model is generally well kept despite not seeing old
samples during later training experiences.

Looking at the percentage of “NOT OK” correctly classi-
fied during testing after the three experiences, OP10 obtained
9 out of 9 correct, for OP11 13 out of 15 and for OP12 12
out of 12. Results are shown in Fig. 19 as a confusion matrix,
which is another way to visualise the total number of True
Positives, True Negatives, False Positives and False Nega-
tives.

To validate the selection ofOP10 as a startingmodel rather
thanmodelOP08, another continual learning experimentwas
done using OP08 as starting model. The results are shown in
Table 5.

As it can be seen, although generally new tasks perform
well in the last experience, accuracy decreases for OP08.
Figure20 shows the confusion matrices for the three opera-
tions throughout the continual learning experiment.Although
the overall accuracy of models is high, it is important to
look at how it performs particularly on the minority class,
which are the cases where the process is NOT OK and for
which there are less samples. Compared to the results from
OP10,OP08 decreases its performance for theminority class.
Although from a practical point of view a larger data set con-
taining the three operations, or even the four of them could
be developed and possibly achieve a 100% accuracy, what
it is important to note here is that when accuracy matters to
a high degree and it is not possible to be re-training from
scratch every single time, then it is important to understand
to what extent data available can be useful for ensuring the
robustness of the model.

Table 4 Accuracy of model after incrementally learning to classify the
process for OP10, OP11 and OP12

Training Accuracy Accuracy Accuracy
Experience in OP10 in OP11 in OP12

EXP1 98.74% − −
EXP2 97.79% 99.83% −
EXP3 99.37% 99.27% 100%

The bolded values indicate the best accuracy obtained, which coincides
with the last learning experience
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Fig. 19 Confusionmatrices on test sets when learning operations incre-
mentally through a continual learning approach. During experience one,
the model learns to classify the health of the process from only using
Operation 10. Experience two takes the existing trained model which

in trained further only with data coming from Operation 11. Finally,
during experience three, the existing model is only trained on data from
Operation 12

To further demonstrate the relevance of context to effec-
tiveness of training, a second continual learning experiment
was done using a different set of operations. This time, it
was trained using M01 and M02 and tested in M03, to not
only verify the effectiveness of the continual approachwithin
the same machine, but across machines. For this experiment,
experience one corresponded to all samples from OP01,
experience two corresponded to all samples from OP02,
experience three fromOP04 and experience four fromOP07.
Accuracy results can be seen in Table 6.

These four operations have different combinations of cut-
ting parameters. OP01 and OP04 share the same speed=250
and feed=100, and OP02 and OP07 have speed=200 and
feed=50. It can be seen in the results table that after
experience 3 (OP4) the accuracy in OP01 increases signifi-
cantly, and the same for OP02 which is noticeably improved
after experience 4. This indicates the highly correlation of
process parameters with the distribution of the data, and so
improving through time the accuracy of the model. In this
way it can be seen how using this information can be impor-
tant to ensure adequate training and ensuring the model can
improve in time. It is worth noting that although accuracy
results are not as high as in the first experiment, after the
four experiences, the true positives for OP02 and OP04 are

Table 5 Accuracy of model after incrementally learning to classify the
process for OP08, OP11 and OP12

Training
Experience

Accuracy
in OP08

Accuracy
in OP11

Accuracy
in OP12

EXP1 97.16% − −
EXP2 97.16% 99.63% −
EXP3 90.28% 96% 100%

The bolded values indicate the best accuracy obtained, which coincides
with the last learning experience

100% correctly classified, for OP01 61% and for OP07 62%.
Both OP01 and OP07 generally through the four learning
experiences had difficulties with true positives, but were able
to achieved the highest result in the last experience. Com-
pared to the first experiment where all operations had the
same parameters, here it is demonstrated how indeed process
parameters play a role in effecting knowledge acquisition.
However, going back to the results from experiment one,
where the expectation is that because operations have the
same process parameters, all should be equally useful for
robustness is not always true. And that is because signals
signatures represent all sorts of different issues that may be
occurring in amachine, creating a range of noise and changes
to signals even when a process is healthy. For this reason, it is
important that then a combined approach of process knowl-
edge as well as data characteristics is used to make the best
possible selection of training data or model to do continual
learning on and deliver robust models.

These results are critical, as the major challenge in a man-
ufacturing shop floor is to build robustness over time without
compromising accuracy in “old conditions” as well as avoid-
ing having to retrain an algorithmwith continuously growing
data set. The latter is an unfeasible approach, and so it is
imperative to start moving toward less complex more flex-
ible learning approaches rather than continuing developing
large complex models on limited data sets that cannot adapt.

Once of the challenges of building robust models is that
it is difficult to anticipate all the different ways in which a
process may change. On the one hand, new approaches in
the literature need to be able to deal incrementally with these
unexpected changes. On the other hand, new methods need
to help the decision maker on how deployed models should
be further trained to maintain the expected robustness. That
decision needs to be an informed decision, to ensure the best
possible outcome. That means understanding better the con-
ditions in which existing and new data are generated, to then
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Fig. 20 Confusionmatrices on test sets when learning operations incre-
mentally through a continual learning approach. During experience one,
the model learns to classify the health of the process from only using
Operation 08. Experience two takes the existing trained model which

in trained further only with data coming from Operation 11. Finally,
during experience three, the existing model is only trained on data from
Operation 12

decide when re-training an existing model is the best option
of when creating a completely new one is best. The more
these two processes can be automated, the closer industry
can be from operationalising ML on the shop floor.

5 Conclusions and future work

This paper presents a framework andmethodology to develop
and reuse existing AI Industrial solutions to ensure their
robustness to various types of concept drift. By capturing
knowledge about the asset, the process and the ML model
development, it is possible to identify approaches that work
well for certain type of IndustrialAISolutions and use that
to automate to some extent the development of such solu-
tions. It was demonstrated in two experiments how having
context information of process, asset and data is relevant
to the quality of the results of the model during training
as well as for building robustness over time in an efficient
way by using a continual learning approach. Making the link
between the manufacturing process and the AI solution is
key and critical to AI scalability. A conceptual approach of
how then to deploy and monitor these models is introduced.
Future work will include the full integration with the AAS

Table 6 Accuracy of model after incrementally learning to classify the
process for OP01, OP02, OP04 and OP07

Training
Experience

Accuracy
in OP01

Accuracy
in OP02

Accuracy
in OP04

Accuracy
in OP07

EXP1 84.04% − − −
EXP2 88.9% 88.8% − −
EXP3 87.20% 88.95% 71.99% −
EXP4 89.57% 93.14% 84.16% 97.8%

The bolded values indicate the best accuracy obtained, which coincides
with the last learning experience

to deploy, monitor and re-deploy the models. Further exper-
iments will include other continual learning techniques such
as synaptic intelligence to determine the capabilities of such
approaches when learning data that is more further apart in
terms of distribution. Additional workwill also look atmodel
reusabilitywhen data quality changes (e.g. frequency) aswell
as studying transfer learning when changing the type of asset
or completely different manufacturing operation.
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