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ABSTRACT
Many important questions in infectious disease epidemiology involve associations between covariates (e.g., age or vaccination
status) and infectiousness or susceptibility. Because disease transmission produces dependent outcomes, these questions are dif-
ficult or impossible to address using standard regression models from biostatistics. Pairwise survival analysis handles dependent
outcomes by calculating likelihoods in terms of contact interval distributions in ordered pairs of individuals. The contact inter-
val in the ordered pair 𝑖𝑗 is the time from the onset of infectiousness in 𝑖 to infectious contact from 𝑖 to 𝑗, where an infectious
contact is sufficient to infect 𝑗 if they are susceptible. Here, we introduce a pairwise accelerated failure time regression model for
infectious disease transmission that allows the rate parameter of the contact interval distribution to depend on individual-level
infectiousness covariates for 𝑖, individual-level susceptibility covariates for 𝑗, and pair-level covariates (e.g., type of relationship).
This model can simultaneously handle internal infections (caused by transmission between individuals under observation) and
external infections (caused by environmental or community sources of infection). We show that this model produces consistent
and asymptotically normal parameter estimates. In a simulation study, we evaluate bias and confidence interval coverage proba-
bilities, explore the role of epidemiologic study design, and investigate the effects of model misspecification. We use this regression
model to analyze household data from Los Angeles County during the 2009 influenza A (H1N1) pandemic, where we find that
the ability to account for external sources of infection increases the statistical power to estimate the effect of antiviral prophylaxis.

1 | Introduction

Many important questions in infectious disease epidemiology
involve the effects of covariates (e.g., age or vaccination status)
on the risk of transmission. Longitudinal studies of households
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and other groups of close contacts are one of the most valuable
sources of information about mechanisms and risk factors for
transmission [1, 2]. These studies have been used to understand
many recent emerging and re-emerging epidemics, including
pertussis [3], SARS coronavirus [4], 2009 pandemic influenza
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A (H1N1) [5–9], MERS coronavirus [10], Ebola virus disease [11,
12], norovirus [13, 14], hand-foot-and-mouth disease [15], cryp-
tosporidium [16], measles [17], and COVID-19 [18, 19]. Almost
all of these studies are analyzed using logistic regression or other
standard models for binary outcomes. These implicitly attribute
all subsequent infections in the household to the primary case,
failing to account for multiple generations of transmission within
the household and for the ongoing risk of infection from sources
outside the household [20].

The transmission of disease creates dependent outcomes in dif-
ferent individuals because the infection of one individual alters
the risk of infection in other individuals. These dependencies are
not accounted for in standard regression models, which assume
independent or conditionally independent outcomes in different
individuals [21]. Attempts to account for these dependencies
using robust variance are ineffective because they do not address
the bias in the underlying point estimates [20]. When exposure
to infection differs systematically in susceptible individuals
with different covariate values, estimates of covariate effects on
susceptibility that do not account for this dependence can be
biased even in randomized trials [22, 23].

In pairwise survival analysis, dependent outcomes in individuals
are handled by analyzing failure times in ordered pairs of
individuals [24, 25]. In the ordered pair 𝑖𝑗, the contact interval
is the time from the onset of infectiousness in 𝑖 to infectious
contact from 𝑖 to 𝑗, where an infectious contact is defined to
be a contact sufficient to infect 𝑗 if they are susceptible. The
survival function of the contact interval distribution can be used
to calculate the probability of infectious contact from 𝑖 to 𝑗 over
any given time interval during which 𝑖 is infectious. The prob-
ability of infectious contact with 𝑗 during the entire infectious
period of 𝑖 is called the secondary attack risk (SAR). The hazard
function of the contact interval distribution is an estimate of the
infectiousness profile, which is the relative infectiousness of 𝑖 as
a function of time elapsed since the onset of infectiousness. The
contact interval from 𝑖 to 𝑗 is right-censored if the infectious
period of 𝑖 ends prior to infectious contact with 𝑗, if 𝑗 is infected
from a source other than 𝑖, or if observation of the pair 𝑖𝑗 ends
before 𝑗 is infected. When who-infected-whom is observed,
standard parametric and nonparametric methods from survival
analysis can be used to estimate the contact interval distribu-
tion. When who-infected-whom is not observed, parametric
likelihoods can be integrated over all possible transmission
trees [25] or nonparametric estimates from all possible transmis-
sion trees can be averaged using an expectation-maximization
algorithm [26].

For transmission from an infectious individual 𝑖 to a suscep-
tible individual 𝑗, there are three possible types of covariates:
individual-level covariates for 𝑖 could affect their infectiousness,
individual-level covariates for 𝑗 could affect their susceptibility,
and pair-level covariates (e.g., type of relationship) could affect
the risk of transmission independently of the infectiousness
of 𝑖 or the susceptibility of 𝑗. Estimation of these effects can
be used to design and evaluate public health responses to
epidemics [27, 28].

To allow semiparametric estimation of covariate effects on the
hazard of transmission, Kenah [29] developed a regression model

in which the hazard of infectious contact from 𝑖 to 𝑗 was

ℎ𝑖𝑗(𝜏) = 𝑒𝛽
⊤𝑋𝑖𝑗 ℎ0(𝜏) (1)

where 𝛽 is an unknown coefficient vector, ℎ0(𝜏) is an unspec-
ified baseline hazard for the contact interval, and 𝑋𝑖𝑗 is a vec-
tor that can include individual-level infectiousness covariates for
𝑖, individual-level susceptibility covariates for 𝑗, and pair-level
covariates. Although it produces consistent and asymptotically
normal estimates of 𝛽, this model assumes that all transmissions
occur between individuals under observation. This inability to
account for external sources of infection is a fundamental limi-
tation that must be addressed before pairwise survival analysis
can become a practical tool for infectious disease epidemiology.

In this article, we develop a pairwise accelerated failure time
(AFT) regression model that allows the rate parameter of the
contact interval distribution to depend on covariates while
accounting simultaneously for the risk of infection from internal
and external sources. We use the theory of counting processes
and a simulation study to show that parameter estimates from
this model are consistent and asymptotically normal. Our sim-
ulation study also highlights the critical role of epidemiologic
study design in parameter estimation and investigates the effects
of model misspecification. We apply the pairwise AFT regression
model to household surveillance data collected by the Los
Angeles County Department of Public Health during the 2009
influenza A (H1N1) pandemic, and we find that accounting
for external infection improves statistical power to estimate the
effect of antiviral prophylaxis. The pairwise AFT model has the
potential to become an important new statistical tool in infectious
disease epidemiology, with potential applications that include
the design and analysis of vaccine trials, outbreak investigations,
and the analysis of contact tracing data or household studies.

1.1 | Stochastic S(E)IR Models

The pairwise AFT regression model is based on a general
stochastic model of transmission. At any time, each individual
𝑖 ∈ {1, … , 𝑛} is in one of four states: susceptible (S), exposed
(E), infectious (I), or removed (R). Person 𝑖 moves from S to E
at their infection time 𝑡𝑖 , with 𝑡𝑖 = ∞ if 𝑖 is never infected. After
infection, 𝑖 has a latent period of length 𝜀𝑖 during which they are
infected but not infectious. At time 𝑡𝑖 + 𝜀𝑖 , 𝑖 moves from E to I,
beginning an infectious period of length 𝜄𝑖 . At time 𝑡𝑖 + 𝜀𝑖 + 𝜄𝑖 , 𝑖
moves from I to R, after which they can no longer infect others
or be infected. The latent period 𝜀𝑖 is a nonnegative random
variable, and the infectious period 𝜄𝑖 is a strictly positive random
variable. We assume that the latent and infectious periods both
have finite mean and variance. The time elapsed since the onset
of infectiousness in 𝑖 at time 𝑡𝑖 + 𝜀𝑖 is called the infectious age of 𝑖.
An SIR model is an SEIR model with latent period 𝜀𝑖 = 0 for all 𝑖.

After becoming infectious at time 𝑡𝑖 + 𝜀𝑖 , person 𝑖 makes infec-
tious contact with 𝑗 ≠ 𝑖 at time 𝑡𝑖𝑗 = 𝑡𝑖 + 𝜀𝑖 + 𝜏∗

𝑖𝑗
. The infectious

contact interval 𝜏∗
𝑖𝑗

is a strictly positive random variable with 𝜏∗
𝑖𝑗
=

∞ if infectious contact never occurs. Because infectious contact
can only occur while 𝑖 is infectious, we always have 𝜏∗

𝑖𝑗
∈ (0, 𝜄𝑖] or

𝜏∗
𝑖𝑗
= ∞. Because we define infectious contact to be sufficient to

infect a susceptible person, 𝑡𝑗 ≤ 𝑡𝑖𝑗 for all 𝑖 and 𝑗.
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FIGURE 1 | Notation for the stochastic SEIR model natural history (top) and infectious contact process (bottom) [29]. Here, we have 𝜏∗
𝑖𝑗
= 𝜏𝑖𝑗

because 𝜏𝑖𝑗 ≤ 𝜄𝑖 . Otherwise, we would have 𝜏∗
𝑖𝑗
= ∞ and 𝑡𝑖𝑗 = ∞ so infectious contact from 𝑖 to 𝑗 never occurs.

An internal infection occurs when an individual is infected by
another individual in the observed population. For each ordered
pair 𝑖𝑗, let 𝐶𝑖𝑗 = 1 if infectious contact from 𝑖 to 𝑗 is possible and
𝐶𝑖𝑗 = 0 otherwise. For example, 𝐶𝑖𝑗 could be an entry in the adja-
cency matrix for a contact network through which infection is
transmitted. We do not assume that 𝐶𝑖𝑗 = 𝐶𝑗𝑖 , so this network
could contain directed edges. For simplicity, we have written 𝐶𝑖𝑗

as a constant. However, our methods extend to time-varying con-
tact patterns where 𝐶𝑖𝑗 is a function of time (e.g., a dynamic con-
tact network).

The infectious contact interval 𝜏∗
𝑖𝑗

is generated as follows: a
contact interval 𝜏𝑖𝑗 is drawn from a failure time distribution with
hazard function ℎ𝑖𝑗(𝜏). If 𝜏𝑖𝑗 ≤ 𝜄𝑖 and 𝐶𝑖𝑗 = 1, then 𝜏∗

𝑖𝑗
= 𝜏𝑖𝑗 . Oth-

erwise, 𝜏∗
𝑖𝑗
= ∞. The hazard function ℎ𝑖𝑗(𝜏) is the instantaneous

infectiousness of 𝑖 at time 𝜏 after the onset of infectiousness. The
cumulative hazard function is 𝐻𝑖𝑗(𝜏) = ∫ 𝜏

0 ℎ𝑖𝑗(𝑢) d𝑢, and the
secondary attack risk is 1 − 𝑆𝑖𝑗(𝜄𝑖), where 𝑆𝑖𝑗(𝜏) = exp(−𝐻𝑖𝑗(𝜏))

is the survival function. Figure 1 illustrates an example trajectory
in individual 𝑖 and an infectious contact from 𝑖 to 𝑗.

An external infection occurs when an individual is infected from
a source outside the observed population, such as an environ-
mental source or a community source (i.e., an individual who
is not under observation). Let 𝐶0𝑗 indicate whether individual
𝑗 is at risk of external infectious contact. Let the external infec-
tious contact time 𝑡∗0𝑗 denote the first time that an individual 𝑗
receives infectious contact from outside the observed population,
with 𝑡∗0𝑗 = ∞ if this never occurs. We assume that the external
infectious contact time is generated as follows: an external con-
tact interval 𝜏0𝑗 is drawn from a failure time distribution with
hazard function ℎ0𝑗(𝑡). If 𝐶0𝑗 = 1, then 𝑡∗0𝑗 = 𝜏0𝑗 . Otherwise, 𝑡∗0𝑗 =
∞. For simplicity, we assume the external source is always infec-
tious so 𝑡0 = 𝜀0 = 0 and 𝜄0 = ∞. This assumption could be relaxed
by defining an infectiousness onset time 𝑡0 + 𝜀0 and infectious
period 𝜄0 for the external source.

1.2 | Exposure and Infectious Sets

For each internal infection 𝑗, let 𝑣𝑗 denote the index of his or
her infector. Let 𝑣𝑗 = 0 if 𝑗 is an external infection and 𝑣𝑗 = ∞

if 𝑗 is not infected. When 𝑣𝑗 is observed for all infected 𝑗, we

say that who-infected-whom is observed. Otherwise, we say that
who-infected-whom is not observed even if 𝑣𝑗 is observed for a
subset of infected 𝑗. The exposure set of an individual 𝑗 is

𝑗 = {𝑖 < ∞ ∶ (𝑡𝑖 + 𝜀𝑖 < 𝑡𝑗 or 𝑖 = 0) and 𝐶𝑖𝑗 = 1} (2)

which is the set of all sources of infection to whom 𝑗 was exposed
while susceptible. The infectious set of individual 𝑗 is the set of
all possible 𝑣𝑗 , which we denote 𝑗 . Given 𝐶𝑖𝑗 and transfer times
between the states (S, E, I, and R), we must have

𝑗 ⊆ {𝑖 < ∞ ∶ (𝑡𝑖 + 𝜀𝑖 < 𝑡𝑗 ≤ 𝑡𝑖 + 𝜀𝑖 + 𝜄𝑖 or 𝑖 = 0) and 𝐶𝑖𝑗 = 1}
(3)

If the infector of 𝑗 is known, then 𝑗 = {𝑣𝑗}. If 𝑗 was not infected,
then 𝑗 = Ø (the empty set).

1.3 | Infectious Disease Data

The contact interval 𝜏𝑖𝑗 can be observed only if 𝑗 is infected by 𝑖

at time 𝑡𝑖𝑗 = 𝑡𝑖 + 𝜀𝑖 + 𝜏𝑖𝑗 . This can happen only if 𝐶𝑖𝑗 = 1 and the
pair 𝑖𝑗 is at risk of transmission at time 𝑡𝑖𝑗 . Contact intervals can
be right-censored by the end of infectiousness in 𝑖, by the infec-
tion of 𝑗 from a source other than 𝑖, or by the end of observation.
For 𝑖 ≠ 0, let 𝑖(𝑡) = 𝕀𝑡−𝑡𝑖−𝜀𝑖∈(0,𝜄𝑖 ] indicate whether 𝑖 remains infec-
tious at time 𝑡, and let 0(𝑡) indicate whether external infectious
contact is possible at time 𝑡. Let 𝑗(𝑡) = 𝕀𝑡≤𝑡𝑗 indicate whether 𝑗
remains susceptible at time 𝑡, and let(𝑡) = 𝕀𝑡≤𝑇 indicate whether
observation is ongoing at time 𝑡. Since 𝑖(𝑡), 𝑗(𝑡), and (𝑡) are
right-continuous, the process

𝑌𝑖𝑗(𝑡) = 𝐶𝑖𝑗𝑖(𝑡)𝑗(𝑡)(𝑡) (4)

is right-continuous and equals one when there is a risk of an
observed infectious contact from 𝑖 to 𝑗 at time 𝑡. The assumptions
made in the stochastic S(E)IR model above ensure independent
right censoring and left truncation of 𝜏𝑖𝑗 and 𝜏0𝑗 .

Our epidemiologic data contain the times of all S → E (infection),
E → I (infectiousness onset), and I → R (removal) transitions in
the observed population between time 0 and a time 𝑇 that is a
stopping time with respect to the observed data. For all ordered
pairs 𝑖𝑗 in which 𝑖 is infected or 𝑖 = 0, we observe 𝐶𝑖𝑗 . For each

3 of 17

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10226 by W
asiur K

hudaB
ukhsh - U

niversity O
f N

ottingham
 , W

iley O
nline L

ibrary on [03/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ordered pair 𝑖𝑗 that was at risk of an observed transmission from
𝑖 to 𝑗, we need a starting time when this risk began, a stopping
time when this risk ends, and an event indicator 𝛿𝑖𝑗 that equals
one 𝑖 is a possible infector of 𝑗 (i.e., 𝑖 ∈ 𝑗) and zero otherwise.
As we explain below, the data for each pair 𝑖𝑗 can contain
individual-level covariates for 𝑖, individual-level covariates for 𝑗,
and pair-level covariates.

2 | Methods

Although any parametric failure time distribution could be used
in this model, we focus on the following three because they have
simple closed-form survival and hazard functions: the exponen-
tial distribution with rate 𝜆, the Weibull distribution with rate
𝜆 and shape 𝛾, and the log-logistic distribution with rate 𝜆 and
shape 𝛾. The internal and external transmission models can
use the same failure time distribution or different distributions.
Let the parameters of the internal failure time distribution
be (𝜆int, 𝛾int) and the parameters of the external distribution
be (𝜆ext, 𝛾ext), where the shape parameters are omitted for the
exponential distribution.

The internal and external transmission models generally work on
different time scales (i.e., with different time origins). In a pair 𝑖𝑗
with 𝑖 ≠ 0, the time origin is the onset of infectiousness in 𝑖, which
can differ from pair to pair. A pair 0𝑗 is at risk of transmission
when 𝑗 is susceptible and external infectious contact is possible.
Typically, a common time origin will be specified for all external
pairs in a single population under observation.

2.1 | Internal and External Rate Parameters

When 𝑖 ≠ 0, the rate parameter of the contact interval distribution
in the pair 𝑖𝑗 is

𝜆𝑖𝑗 = 𝑒𝛽
⊤
int𝑋𝑖𝑗 𝜆0 (5)

where 𝛽int is an unknown coefficient vector, 𝜆0 is a baseline
rate parameter, and 𝑋𝑖𝑗 is a covariate vector that can include
infectiousness covariates for 𝑖, susceptibility covariates for 𝑗,
and pair-level covariates. Each component of 𝛽int is the log rate
ratio for a one-unit increase in the corresponding covariate
while holding all others constant. Because 𝜆0 > 0, it will be
estimated using an intercept ln 𝜆0. This model is equivalent to an
AFT model where exp(−𝛽T

int𝑋𝑖𝑗) is the acceleration factor [30].
We prefer to define the model in terms of rate ratios because
the rate ratio is a more common measure of association in
epidemiology [31, 32].

The rate parameter for the external contact interval for
individual 𝑗 is

𝜆0𝑗 = 𝑒𝛽
⊤
ext𝑋0𝑗 𝜇0 (6)

where 𝛽ext is an unknown coefficient vector, and 𝜇0 is the base-
line external rate parameter, and 𝑋0𝑗 is a covariate vector that can
include susceptibility covariates for 𝑗 and environmental or com-
munity covariates. Like 𝛽int, the components of 𝛽ext are log rate
ratios and estimation of 𝜇0 will be done using an intercept ln𝜇0.

There may be overlap between the internal coefficient vector 𝛽int
and the external coefficient vector 𝛽ext. For example, vaccination
status could affect the rate parameters for both models. To handle
this, we parameterize the combined model as

𝜆𝑖𝑗 = 𝑒𝛽
⊤𝑋𝑖𝑗 𝜆

1−𝕀𝑖=0
0 𝜇

𝕀𝑖=0
0 (7)

where the coefficient vector 𝛽 includes coefficients unique
to the internal model, coefficients unique to the external
model, and shared coefficients. The components of 𝑋𝑖𝑗 used
only in the internal model are set to zero when 𝑖 = 0, and
the components of 𝑋𝑖𝑗 used only in the external model are
set to zero when 𝑖 ≠ 0. The distinction between internal and
external rows in the data set is maintained using an external
pair indicator 𝜁 = 𝕀𝑖=0. If a covariate in 𝑋𝑖𝑗 is shared by the
internal and external transmission models, it can be allowed to
have different coefficients in the two models by including an
interaction term with 𝜁. We call these external interaction terms.
The parameter vector 𝑋𝑖𝑗 can include time-varying covariates,
which are handled in the same way as in standard survival
analysis [30, 33].

2.2 | Maximum Likelihood Estimation

The likelihood and its score process can be derived in a manner
similar to that of Kenah [25]. Let 𝜃 be a coefficient vector contain-
ing the log rate ratios 𝛽, the log baseline rate parameters ln 𝜆0 and
ln𝜇0, and the log shape parameters ln 𝛾int and ln 𝛾ext as needed.
Let ℎ𝑖𝑗(𝑡, 𝜃) and 𝑆𝑖𝑗(𝑡, 𝜃) be the hazard and survival functions for
the contact interval distribution with rate 𝜆𝑖𝑗 from Equation (7).
The parametric family may be different for 𝑖 ≠ 0 and 𝑖 = 0, which
is implemented using the external row indicator 𝜁. Let 𝜃0 denote
the true value of 𝜃.

2.2.1 | Who-Infected-Whom Observed

Let 𝑖𝑗(𝑡) = 𝕀𝑡≥𝑡𝑖𝑗 count the first infectious contact from 𝑖 to
𝑗. Assume 𝑗 is susceptible at time 𝑡 = 0, so 𝑖𝑗(0) = 0. Then
𝑖𝑗(𝑡, 𝜃0) is a mean-zero martingale, where

𝑖𝑗(𝑡, 𝜃) = 𝑖𝑗(𝑡) − ∫
𝑡

0
ℎ𝑖𝑗(𝑢 − 𝑡𝑖 − 𝜀𝑖, 𝜃)𝐶𝑖𝑗𝑖(𝑢) d𝑢 (8)

and we let 𝑡0 = 𝜀0 = 0. We observe infectious contacts from 𝑖

to 𝑗 only while 𝑗 is still susceptible and the pair 𝑖𝑗 is under
observation, which gives us the observed counting process

𝑁𝑖𝑗(𝑡) = ∫
𝑡

0
𝑌𝑖𝑗(𝑢) d𝑖𝑗(𝑢) (9)

Similarly, let

𝑀𝑖𝑗(𝑡, 𝜃) = ∫
𝑡

0
𝑌𝑖𝑗(𝑢) d𝑖𝑗(𝑢, 𝜃) (10)

Then 𝑀𝑖𝑗(𝑡, 𝜃0) is a mean-zero martingale because it is the inte-
gral of a predictable process with respect to the mean-zero mar-
tingale 𝑖𝑗(𝑢, 𝜃0).
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When we observe infectious contacts from 𝑖 to 𝑗 between time 0
and time 𝑇, we get the log likelihood

𝓁∗
𝑖𝑗
(𝜃) = ∫

𝑇

0
lnℎ𝑖𝑗(𝑢 − 𝑡𝑖 − 𝜀𝑖, 𝜃) d𝑁𝑖𝑗(𝑢)

− ∫
𝑇

0
ℎ𝑖𝑗(𝑢 − 𝑡𝑖 − 𝜀𝑖, 𝜃)𝑌𝑖𝑗(𝑢) d𝑢

(11)

This is a standard log likelihood for right-censored and
left-truncated data: the first term is a log hazard if 𝑖 infects
𝑗 and zero otherwise, and the second term is the negative
cumulative hazard of infectious contact. The score process is

𝑈∗
𝑖𝑗
(𝑡, 𝜃) = ∫

𝑡

0

(
𝜕

𝜕𝜃
lnℎ𝑖𝑗(𝑢 − 𝑡𝑖 − 𝜀𝑖, 𝜃)

)
d𝑀𝑖𝑗(𝑢, 𝜃) (12)

which is a mean-zero martingale when 𝜃 = 𝜃0.

Now fix 𝑗. If we observe all pairs 𝑖𝑗 from time 0 until time 𝑇, the
log likelihood is

𝓁∗
⋅𝑗(𝜃) =

∑
𝑖∶𝑖≠𝑗

𝓁∗
𝑖𝑗
(𝜃) (13)

with score process

𝑈∗
⋅𝑗(𝑡, 𝜃) =

∑
𝑖∶𝑖≠𝑗

𝑈∗
𝑖𝑗
(𝑡, 𝜃) (14)

which is a mean-zero martingale because it is a sum of mean-zero
martingales.

When we observe who-infected-whom, the log likelihood
is 𝓁∗(𝜃) =

∑𝑛

𝑗=1𝓁
∗
⋅𝑗(𝜃) and its score process is 𝑈∗(𝑡, 𝜃) =∑𝑛

𝑗=1𝑈
∗
⋅𝑗(𝑡, 𝜃). Because it is a sum of mean-zero martingales,

𝑈∗(𝑡, 𝜃0) is also a mean-zero martingale. Differentiating 𝓁∗(𝜃)

twice, evaluating at 𝜃0, and taking expectations yields

𝔼
[
−

𝜕2

𝜕𝜃2 𝓁∗(𝜃)
|||𝜃=𝜃0

]
= 𝔼 [⟨𝑈∗(𝜃0)⟩(𝑇)] (15)

where ⟨𝑈∗(𝜃0)⟩(𝑡) is the predictable variation process of𝑈∗(𝑡, 𝜃0).
Under our regularity conditions, this implies that the variance
of the maximum likelihood estimator �̂� can be estimated consis-
tently using the observed information.

2.2.2 | Who-Infected-Whom Not Observed

When who-infected-whom is not observed, we cannot see each
𝑁𝑖𝑗(𝑡). Instead, we see 𝑁⋅𝑗(𝑡) =

∑
𝑖≠𝑗 𝑁𝑖𝑗(𝑡). The total hazard of

infectious contact with 𝑗 at time 𝑡 is

ℎ⋅𝑗(𝑡, 𝜃) =
∑
𝑖∶𝑖≠𝑗

ℎ𝑖𝑗(𝑡 − 𝑡𝑖 − 𝜀𝑖, 𝜃)𝐶𝑖𝑗𝑖(𝑡) (16)

so the process

𝑀⋅𝑗(𝑡, 𝜃) = 𝑁⋅𝑗(𝑡) − ∫
𝑡

0
ℎ⋅𝑗(𝑢, 𝜃)𝑗(𝑢)(𝑡) d𝑢 =

∑
𝑖≠𝑗

𝑀𝑖𝑗(𝑡, 𝜃)

(17)

is a mean-zero martingale when 𝜃 = 𝜃0. When 𝑗 is observed from
time 0 to time 𝑇, the log likelihood is

𝓁⋅𝑗(𝜃) = ∫
𝑇

0
lnℎ⋅𝑗(𝑢, 𝜃) d𝑁⋅𝑗(𝑢) − ∫

𝑇

0
ℎ⋅𝑗(𝑢, 𝜃)𝑆𝑗(𝑢) d𝑢 (18)

and its score process is

𝑈⋅𝑗(𝑡, 𝜃) = ∫
𝑡

0

(
𝜕

𝜕𝜃
lnℎ⋅𝑗(𝑢, 𝜃)

)
d𝑀⋅𝑗(𝑢, 𝜃) (19)

which is a mean-zero martingale when 𝜃 = 𝜃0.

The complete-data log likelihood when we do not observe
who-infected-whom is 𝓁(𝜃) =

∑𝑛

𝑗=1𝓁⋅𝑗(𝜃) with score process
𝑈(𝑡, 𝜃) =

∑𝑛

𝑗=1𝑈⋅𝑗(𝑡, 𝜃). Because it is a sum of mean-zero mar-
tingales, 𝑈(𝑡, 𝜃0) is also a mean-zero martingale. Differentiating
𝓁(𝜃) twice, evaluating at 𝜃0, and taking expectations yields

𝔼[− 𝜕2

𝜕𝜃2 𝓁(𝜃) |||𝜃=𝜃0
] = 𝔼 [⟨𝑈(𝜃0)⟩(𝑇)] (20)

where ⟨𝑈(𝜃0)⟩(𝑡) is the predictable variation process of 𝑈(𝑡, 𝜃0).
Under our regularity conditions, this implies that the variance of
�̂� can be estimated consistently using the observed information.

2.2.3 | Pairwise Asymptotics, Optimization,
and Inference

The arguments above establish the consistency and asymptotic
normality of the maximum likelihood estimator �̂� as the number
of observed infections 𝑚 → ∞ as long as the rate of increase
in the number of susceptibles at risk of infection is at least as
fast as the rate of increase in the number of pairs at risk of
transmission [25, 29].

Maximization of the log likelihood can be done using a range
of numerical methods. The TranStat package in R allows the
use of any of the optimization methods available in the optim
function, including Nelder-Mead [34], BFGS (Broyden, Fletcher,
Goldfarb, and Shanno) [35], and simulated annealing [36]. In
analyses of simulated data, we have seen situations where one
method was unstable while another method easily found a
maximum of the log likelihood. These have been rare, and the
choice of optimization method does not consistently affect the
practical performance of the model.

Similarly, the log likelihood can be used to conduct Wald, score
or likelihood ratio hypothesis tests and to calculate the corre-
sponding confidence intervals. The TranStat package currently
includes p-values and confidence intervals based on Wald and
likelihood ratio tests. Likelihood ratio confidence intervals are
more difficult to calculate, but (as expected [37]) they perform
slightly better in terms of coverage probability and width than
Wald confidence intervals.

3 | Simulations

The proposed pairwise AFT regression model was tested through
2000 network-based simulations for each of two different

5 of 17

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10226 by W
asiur K

hudaB
ukhsh - U

niversity O
f N

ottingham
 , W

iley O
nline L

ibrary on [03/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



baseline internal contact interval distributions: exponential
(𝜆 = ln(− ln 0.8)) and log-logistic(𝛾 = 2, 𝜆 = 0.5). The infectious
period was fixed to one time unit, so the household secondary
attack risk was 0.2 in a pair with both covariates equal to zero.
In all simulations, the external contact interval distribution was
exponential with rate 𝜆ext = 0.5 ln(− ln 0.8).

In each simulation, we generated an undirected network repre-
senting 300 households of size five. Each household was a com-
plete graph of size five, and the households were not connected to
each other. Once a household member was infected, other mem-
bers of the household could be infected by transmission within
the household or by an external source. Each epidemic was fol-
lowed until 500 infections occurred, which guaranteed at least
200 infections in individuals who were not primary cases (i.e.,
the first case in a household).

Each individual 𝑖 was assigned an independent Bernoulli(0.5)
covariate 𝑋𝑖 . The rate parameter for the contact interval
distribution in the pair 𝑖𝑗 was

𝜆𝑖𝑗 = exp
(
𝛽inf𝑋𝑖 + 𝛽sus𝑋𝑗 + 𝕀𝑖≠0 ln 𝜆0 + 𝕀𝑖=0 ln𝜇0

)
(21)

where we set 𝑋0 = 0. For each simulation, the true values of
𝛽inf and 𝛽sus were independent samples from a uniform(−1, 1)
distribution.

In each simulation, we analyzed data sets under four different
epidemiologic study designs. Analysis of within-household
transmission is the same for all study designs, but they differ in
their inclusion of person-time from individuals at risk of external
infectious contact (i.e., pairs 0𝑗). The first two study designs are
“valid” in the sense that their inclusion of pair-time at risk of
transmission includes external sources and is predictable with
respect to the observed data, so they do not generate immortal
time bias [38]. The valid study designs are:

Complete cohort: Follow-up for all 2500 individuals starts at
time zero, which is the time origin for external infectious contact
intervals.

Contact tracing (CT) with delayed entry: Follow-up of each
individual begins at the infection time of the index case in his or
her household. Time at risk of external infectious contact prior to
the start of follow-up is left-truncated, and individuals in house-
holds with no infections are excluded from the study.

The second two study designs are “flawed” in the sense that
their inclusion of pair-time at risk of transmission either gen-
erates immortal time bias or fails to include external sources of
infection. The flawed study designs are:

CT without delayed entry: Follow-up of all members of house-
holds where at least one infection occurs starts retroactively
at time zero. Individuals in households with no infections are
excluded from the study.

Ignoring external infection: All pairs 0𝑗 are excluded from the
study. This is equivalent to assuming that, in each household, all
infections after the primary case are caused by within-household
transmission (but not necessarily by the primary case).

Under each of the four study designs, data were analyzed both
with and without observation of who-infected-whom. In all eight
analyses of each simulation, we obtained maximum likelihood
point estimates of 𝛽inf , 𝛽sus, ln 𝜆0, ln 𝛾int, and ln𝜇0. For all param-
eters, we calculated 95% Wald confidence intervals. All regression
models used an exponential distribution for external rows and a
specified parametric family (exponential, Weibull, or log-logistic)
for internal rows.

The epidemic simulations were conducted at the Ohio Super-
computer Center (https://www.osc.edu) using Python version
3.9.12 with SciPy version 1.7.3 (https://www.scipy.org) [39],
NetworkX version 2.7.1 (https://www.networkx.org) [40], and
pandas version 1.4.2 (https://www.pandas.pydata.org) [41, 42].
The Python simulations use a network-based epidemic simu-
lation script called transtat_models version 0.2.0 (https://www
.github.com/ekenah/transtat_models). The analysis of data
from each simulated epidemic was done using R version 4.3.0
(https://www.cran.r-project.org) [43] with the packages survival
version 3.5-5 (https://www.github.com/therneau/survival) [44]
and reticulate version 1.31 (https://www.rstudio.github.io
/reticulate/) [45]. The pairwise AFT models in R are imple-
mented in the package TranStat version 0.3.7 (https://www
.github.com/ekenah/TranStat), which allows pairwise AFT
models to be specified using standard R model syntax. The sim-
ulation data was analyzed on a laptop using R version 4.3.2 [43]
with the packages dplyr version 1.1.2 (https://www.dplyr
.tidyverse.org) [46], stringr version 1.5.0 (https://www.stringr
.tidyverse.org) [47], and xtable version 1.8-4 (https://www.xtable
.r-forge.r-project.org) [48]. All of these software packages are
free and open-source thanks to the work of many individuals.
The Python and R code for the simulations, the simulation data,
and the R code for the simulation data analysis (with instructions
for use) are available in the Supporting Information.

3.1 | Simulation Results

Figure 2 shows scatterplots of the bias 𝛽sus − 𝛽sus versus 𝛽sus
for correctly-specified pairwise AFT models fit to data gener-
ated with exponential internal contact interval distributions.
In the valid study designs (top two panels), estimates when
who-infected-whom was observed (gray dots) and estimates
when who-infected-whom was not observed (black dots) are
nearly identical, indicating that observing who-infected-whom
makes little difference to estimation of 𝛽sus. Intuitively, esti-
mation of 𝛽sus depends mostly on who was infected, not on
who infected them. In all four study designs, the smoothed
means (dashed for who-infected-whom observed and solid for
who-infected-whom not observed) show almost no bias across
the range of 𝛽sus, indicating that estimation of 𝛽sus is quite
robust. A similar pattern was seen in estimates of 𝛽sus from
correctly-specified pairwise AFT models fit to data generated
with log-logistic internal contact interval distributions (see
Figure S1).

Figure 3 shows scatterplots of the bias 𝛽inf − 𝛽inf versus 𝛽inf
for the same simulations. In the valid study designs (top two
panels), the gray dots (who-infected-whom observed) have
visibly smaller variance than the black dots (who-infected-whom
not observed), indicating that observing who-infected-whom

6 of 17 Statistics in Medicine, 2024

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10226 by W
asiur K

hudaB
ukhsh - U

niversity O
f N

ottingham
 , W

iley O
nline L

ibrary on [03/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.osc.edu
https://www.osc.edu
https://www.scipy.org
https://www.scipy.org
https://www.networkx.org
https://www.networkx.org
https://www.pandas.pydata.org
https://www.pandas.pydata.org
https://www.github.com/ekenah/transtat_models
https://www.github.com/ekenah/transtat_models
https://www.github.com/ekenah/transtat_models
https://www.cran.r-project.org
https://www.cran.r-project.org
https://www.github.com/therneau/survival
https://www.github.com/therneau/survival
https://www.rstudio.github.io/reticulate/
https://www.rstudio.github.io/reticulate/
https://www.rstudio.github.io/reticulate/
https://www.github.com/ekenah/TranStat
https://www.github.com/ekenah/TranStat
https://www.github.com/ekenah/TranStat
https://www.dplyr.tidyverse.org
https://www.dplyr.tidyverse.org
https://www.dplyr.tidyverse.org
https://www.stringr.tidyverse.org
https://www.stringr.tidyverse.org
https://www.stringr.tidyverse.org
https://www.xtable.r-forge.r-project.org
https://www.xtable.r-forge.r-project.org
https://www.xtable.r-forge.r-project.org


FIGURE 2 | The bias 𝛽sus − 𝛽sus versus the true 𝛽sus for correctly-specified exponential pairwise AFT models fit to simulated data under all four
study designs. Gray dots represent analyses where who-infected whom was observed, and black dots represent analyses where who-infected-whom was
not observed. In each plot, the dashed locally-weighted polynomial regression (LOWESS) line represents the smoothed mean of the gray dots, and the
solid LOWESS line represents the smoothed mean of the black dots [56]. The dashed lines are sometimes obscured by the solid lines.

improves the precision of 𝛽inf estimates. Intuitively, estimation of
𝛽inf depends on who caused the observed infections, not just who
was infected. The smoothed means from the valid study designs
show almost no bias across the range of 𝛽inf whether or not
who-infected-whom was observed. In the flawed study designs
(bottom two panels), the smoothed means show little bias when
who-infected-whom is observed but severe bias toward the null
when who-infected-whom is not observed. Estimating 𝛽inf is
more sensitive to epidemiologic study design than estimating
𝛽sus, but information about who-infected-whom can make
estimation of 𝛽inf more robust. A similar pattern was seen in
estimates of 𝛽inf from correctly-specified pairwise AFT models
fit to data generated with log-logistic internal contact interval
distributions (see Figure S2).

For all parameters, Table 1 shows the coverage probabili-
ties for Wald 95% confidence intervals for correctly-specified

exponential and log-logistic pairwise AFT models. The valid
study designs produce nominal coverage probabilities for all
parameters whether or not who-infected-whom is observed.
When who-infected-whom is observed, the flawed study designs
produce near-nominal coverage probabilities for 𝛽inf , 𝛽sus, and
the log-logistic ln 𝛾0 but very low coverage probabilities (or
no estimates at all) for ln𝜇0. When who-infected-whom is not
observed, the flawed study designs produce low coverage proba-
bilities for all parameters except 𝛽sus, but the correctly-specified
log-logistic model performed substantially better than the
correctly-specified exponential model.

We also analyzed each set of simulation results using pair-
wise AFT models with (possibly) misspecified internal contact
interval distributions. The top two panels of Figure 4 shows
the bias 𝛽sus − 𝛽sus from log-logistic and Weibull pairwise AFT
models fit to data generated with exponential internal contact
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FIGURE 3 | The bias 𝛽inf − 𝛽inf versus the true 𝛽inf for correctly-specified exponential pairwise AFT models fit to simulated data under all four
study designs. Gray dots represent analyses where who-infected whom was observed, and black dots represent analyses where who-infected-whom was
not observed. In each plot, the dashed LOWESS line represents the smoothed mean of the gray dots and the solid LOWESS line represents the smoothed
mean of the black dots [56]. The dashed lines are sometimes obscured by the solid lines.

intervals and the contact tracing with delayed entry design.
The log-logistic model is misspecified, but the Weibull model
is correctly specified because the exponential distribution is a
special case of the Weibull with shape 𝛾 = 1. The two models
produced remarkably similar estimates, and the smoothed
means show that both models estimated 𝛽sus with almost no bias
whether (gray dots) or not (black dots) who-infected-whom is
observed. The bottom of Figure 4 shows the bias 𝛽sus − 𝛽sus from
exponential and Weibull pairwise AFT models fit to data gener-
ated with log-logistic internal contact intervals and the contact
tracing with delayed entry design. The exponential model, which
has only rate parameters, produced estimates that are severely
biased away from the null 𝛽sus = 0. The Weibull model, which
has rate and shape parameters, produced estimates that with
only slight bias toward the null. This suggests that estimation
of 𝛽sus can be robust to model misspecification when the fitted
model is sufficiently flexible. In all four panels, observation of

who-infected-whom made little difference to estimation of 𝛽sus.
A similar pattern was seen with a complete cohort study design
(see Figure S3).

The top of Figure 5 shows the bias 𝛽inf − 𝛽inf from log-logistic
and Weibull pairwise AFT models fit to data generated with
exponential internal contact intervals under the contact tracing
with delayed entry design. The gray dots (who-infected-whom
observed) have visibly smaller variance than the black dots
(who-infected-whom not observed), indicating that observing
who-infected-whom improves the precision of 𝛽inf estimates.
Both models estimated 𝛽inf with almost no bias whether or
not who-infected-whom was observed, and their estimates are
remarkably similar in both cases. The bottom of Figure 5 shows
estimates of 𝛽inf from exponential and Weibull pairwise AFT
models fit to data generated with log-logistic contact intervals.
Both models are misspecified, and the exponential model has
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TABLE 1 | 95% confidence interval coverage probabilities for correctly-specified pairwise AFT models with exponential and log-logistic contact
intervals.

Contact intervals Study design 𝜷sus 𝜷inf ln𝝀0 ln 𝜸int ln𝝁0

Who-infected-whom observed
Exponential Complete cohort 0.936 0.951 0.947 — 0.953

CT with delayed entry 0.952 0.951 0.946 — 0.958
CT without delayed entry 0.959 0.951 0.947 — 0.000

Ignoring external infection 0.954 0.950 0.943 — —
Log-logistic Complete cohort 0.945 0.947 0.947 0.938 0.915

CT with delayed entry 0.949 0.948 0.944 0.936 0.960
CT without delayed entry 0.950 0.949 0.943 0.936 0.000

Ignoring external infection 0.948 0.947 0.941 0.939 —

Who-infected-whom not observed
Exponential Complete cohort 0.937 0.955 0.952 — 0.945

CT with delayed entry 0.952 0.963 0.959 — 0.938
CT without delayed entry 0.952 0.785 0.341 — 0.196

Ignoring external infection 0.951 0.740 0.224 — —
Log-logistic Complete cohort 0.948 0.950 0.943 0.941 0.919

CT with delayed entry 0.954 0.948 0.936 0.934 0.915
CT without delayed entry 0.949 0.929 0.911 0.716 0.894

Ignoring external infection 0.950 0.928 0.911 0.711 —
Note: The flawed study designs are in italics.

one fewer parameter than a pairwise log-logistic AFT model.
The exponential model, with only rate parameters, produced
estimates that are clearly biased away from the null, and the
bias is clearly worse when who-infected-whom is observed.
The Weibull model, with rate and shape parameters, produced
estimates that are only slightly biased toward the null, with
slightly less bias when who-infected-whom is observed. For
estimation of log rate ratios for infectiousness, it appears to
be more important that a pairwise AFT model have sufficient
flexibility than it is to choose exactly the right parametric family.
A similar pattern was seen with a complete cohort study design
(see Figure S4).

Table 2 shows coverage probabilities from pairwise AFT models
with Weibull and log-logistic internal contact intervals analyzing
simulated data generated with exponential internal contact inter-
vals. Because the exponential distribution is a special case of the
Weibull distribution, the Weibull model produces results similar
to the correctly-specified pairwise AFT models in Table 1 (except
for ln𝜇0 when who-infected-whom is not observed). In particular,
the coverage probability for the Weibull shape parameter (with
true value 𝛾 = 1) is near-nominal for all study designs. Because
the exponential distribution is not a special case of the log-logistic
distribution, the log-logistic model is misspecified. There is no
true value for the log-logistic log shape ln 𝛾, and ln 𝜆0 has a
different interpretation in the two models. Nonetheless, the cov-
erage probabilities for 𝛽sus are near-nominal for all study designs,
and the coverage probabilities for 𝛽inf are near-nominal for all
study designs when who-infected-whom is observed and for the
valid study designs when who-infected-whom is not observed.

The log-logistic model, with both rate and shape parameters,
has more flexibility to mimic the exponential distribution than
vice versa.

Table 3 shows coverage probabilities from pairwise AFT models
with exponential and Weibull internal contact intervals analyz-
ing simulated data generated with log-logistic internal contact
intervals. Because the log-logistic distribution is not a special case
of the Weibull distribution, both of these models are misspeci-
fied. The exponential model produced low coverage probabilities
when who-infected-whom was observed and a mixture of low
and abnormally high coverage probabilities (suggesting high
variance) when who-infected-whom was not observed. The
Weibull model produced near-nominal coverage probabilities
for 𝛽sus and 𝛽inf under the valid study designs whether or not
who-infected-whom was observed. Under the flawed study
designs, it produced near-nominal coverage probabilities for
𝛽sus but substantially lower coverage probabilities for 𝛽inf . The
Weibull model produced consistently low coverage probabilities
for ln 𝜆0 and ln 𝛾int, which have different interpretations in the
log-logistic and Weibull distributions.

Because so little is known about infectiousness profiles of com-
municable diseases, a parametric family for the contact interval
distribution will usually need be chosen empirically. Table 4
shows that the correctly-specified model usually had the lowest
Akaike information criterion (AIC) [49], suggesting that the
choice of a parametric model can be guided by the AIC or other
measures of model fit.
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FIGURE 4 | The bias 𝛽sus − 𝛽sus versus the true 𝛽sus for pairwise AFT models under the contact tracing with delayed entry study design. In the top
two panels, the simulated data was generated using exponential internal contact intervals, so the log-logistic model is misspecified but the Weibull model
is correctly specified. In the bottom two panels, the simulated data was generated using log-logistic internal contact intervals, so the exponential and
Weibull models are both misspecified. Gray dots represent analyses where who-infected whom was observed, and black dots represent analyses where
who-infected-whom was not observed. In each plot, the dashed LOWESS line represents the smoothed mean of the gray dots and the solid LOWESS
line represents the smoothed mean of the black dots [56]. The dashed lines are sometimes obscured by the solid lines.

4 | Los Angeles County Influenza a (H1N1)
Data

To give an example of pairwise AFT modeling of infectious
disease transmission data, we analyze influenza A (H1N1)
household surveillance data collected by the Los Angeles
County Department of Public Health (LACDPH) in April
and May, 2009. The data was collected using the following
protocol [50]:

1. Between April 14 and May 18, nasopharyngeal swabs and
aspirates were taken from individuals who reported to
the LACDPH or other local health care providers with
acute febrile respiratory illness (AFRI), defined as a fever

≥ 37.8∘C plus at least one of cough, sore throat, or rhi-
norrhea (runny nose). These specimens were tested for
influenza using reverse transcriptase polymerase chain
reaction (RT-PCR).

2. Patients whose specimens tested positive for pandemic
influenza A (H1N1) or for influenza A of undetermined
subtype were invited to participate in a phone interview.
These interviews used a standard questionnaire developed
by the LACDPH to collect information about his or her
household contacts, including sex, age, and antiviral pro-
phylaxis use. For index cases under 18 years of age, an adult
proxy was interviewed.

3. The initial interview and, when necessary, a follow-up inter-
view were used to obtain the symptom onset dates of AFRI

10 of 17 Statistics in Medicine, 2024
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FIGURE 5 | The bias 𝛽inf − 𝛽inf versus the true 𝛽inf for pairwise AFT models under the contact tracing with delayed entry study design. In the top
two panels, the simulated data was generated using exponential internal contact intervals, so the log-logistic model is misspecified but the Weibull model
is correctly specified. In the bottom two panels, the simulated data was generated using log-logistic internal contact intervals, so the exponential and
Weibull models are both misspecified. Gray dots represent analyses where who-infected whom was observed, and black dots represent analyses where
who-infected-whom was not observed. In each plot, the dashed LOWESS line represents the smoothed mean of the gray dots and the solid LOWESS
line represents the smoothed mean of the black dots [56]. The dashed lines are sometimes obscured by the solid lines.

episodes in the household up to 14 days after the symptom
onset date of the index case. All interviews were completed
between April 30 and June 1.

For simplicity, we assume all AFRI episodes among household
members were caused by influenza A (H1N1). All index cases are
assumed to be external infections, and all other household mem-
bers are assumed to be at risk of infection from both household
members and external sources. This study design corresponds to
contact tracing with delayed entry in the simulation study above.

The primary analysis assumed an incubation period of 2 days, a
latent period of 0 days, and an infectious period of 6 days. These
natural history assumptions are adapted from Yang et al. [51].
Households were identified upon clinical presentation of an

index case, so household members were considered to be at risk
of infection from the infection time of the index case (which
depends on the assumed incubation period) until 14 days after
the infection time of the index case. In a sensitivity analysis, we
varied the assumed latent and infectious periods.

The covariates used in our analysis were sex (male = 1 for
males and male = 0 for females), age category (adult = 1
for ages ≥ 18 years and adult = 0 otherwise), and antiviral
prophylaxis. Antiviral prophylaxis was assumed to be initiated
on the day following the symptom onset of the index case in each
household, so it was handled as a time-dependent covariate.
Each pair had covariate values for the infectious individual
(male_inf, adult_inf, and proph_inf) and for the suscep-
tible individual (male_sus, adult_sus, and proph_sus). In
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TABLE 2 | 95% confidence interval coverage probabilities for pairwise AFT models fit to exponential contact intervals.

Model Study design 𝜷sus 𝜷inf ln𝝀0 ln 𝜸int ln𝝁0

Who-infected-whom observed
Log-logistic Complete cohort 0.934 0.948 0.748 — 0.956

CT with delayed entry 0.954 0.947 0.749 — 0.959
CT without delayed entry 0.957 0.947 0.745 — 0.000

Ignoring external infection 0.952 0.947 0.763 — —
Weibull Complete cohort 0.933 0.945 0.942 0.946 0.954

CT with delayed entry 0.951 0.944 0.939 0.950 0.958
CT without delayed entry 0.954 0.946 0.940 0.947 0.000

Ignoring external infection 0.951 0.946 0.933 0.948 —

Who-infected-whom not observed
Log-logistic Complete cohort 0.933 0.950 0.801 — 0.837

CT with delayed entry 0.954 0.963 0.817 — 0.929
CT without delayed entry 0.948 0.830 0.128 — 0.195

Ignoring external infection 0.945 0.782 0.073 — —
Weibull Complete cohort 0.930 0.956 0.925 0.940 0.785

CT with delayed entry 0.949 0.959 0.946 0.952 0.930
CT without delayed entry 0.950 0.793 0.583 0.949 0.196

Ignoring external infection 0.953 0.749 0.470 0.951 —
Note: The flawed study designs are in italics.

TABLE 3 | 95% confidence interval coverage probabilities for pairwise AFT models fit to log-logistic contact intervals.

Model Study design 𝜷sus 𝜷inf ln𝝀0 ln 𝜸int ln𝝁0

Who-infected-whom observed
Exponential Complete cohort 0.693 0.645 0.000 — 0.854

CT with delayed entry 0.637 0.646 0.000 — 0.928
CT without delayed entry 0.664 0.645 0.000 — 0.000

Ignoring external infection 0.624 0.645 0.000 — —
Weibull Complete cohort 0.916 0.922 0.034 0.013 0.911

CT with delayed entry 0.912 0.924 0.043 0.015 0.959
CT without delayed entry 0.906 0.923 0.045 0.015 0.000

Ignoring external infection 0.913 0.923 0.044 0.016 —

Who-infected-whom not observed
Exponential Complete cohort 0.687 0.894 0.000 — 0.860

CT with delayed entry 0.621 0.972 0.000 — 1.000
CT without delayed entry 0.620 0.972 0.000 — 0.898

Ignoring external infection 0.620 0.972 0.000 — —
Weibull Complete cohort 0.935 0.936 0.077 0.072 0.918

CT with delayed entry 0.936 0.919 0.119 0.105 0.991
CT without delayed entry 0.935 0.894 0.118 0.004 0.897

Ignoring external infection 0.936 0.894 0.118 0.004 —
Note: The flawed study designs are in italics.

external pairs, all infectiousness covariates were set to zero. We
considered exponential, Weibull, and log-logistic distributions
for the internal and external contact interval distributions.
All models were fit using the Broyden, Fletch, Goldfarb, and
Shanno algorithm (BFGS in the R function optim) with starting

parameter values taken from an initial fit using exponential
internal and external contact intervals.

Statistical analysis was conducted inR version 4.4.1 (https://www
.r-project.org) using TranStat version 0.3.7 (https://www.gihub

12 of 17 Statistics in Medicine, 2024

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10226 by W
asiur K

hudaB
ukhsh - U

niversity O
f N

ottingham
 , W

iley O
nline L

ibrary on [03/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.r-project.org
https://www.r-project.org
https://www.r-project.org
https://www.gihub.com/ekenah/TranStat
https://www.gihub.com/ekenah/TranStat


TABLE 4 | Proportion of fitted models with the lowest Akaike information criterion (AIC) under valid epidemiologic study designs.

Contact intervals Study design Exponential Weibull Log-logistic

Who-infected-whom observed
Exponential Complete cohort 0.727 0.105 0.168

CT with delayed entry 0.734 0.104 0.162
Log-logistic Complete cohort 0.000 0.058 0.942

CT with delayed entry 0.000 0.059 0.942

Who-infected-whom not observed
Exponential Complete cohort 0.728 0.112 0.161

CT with delayed entry 0.734 0.110 0.157
Log-logistic Complete cohort 0.000 0.059 0.942

CT with delayed entry 0.000 0.059 0.941

.com/ekenah/TranStat). The data set and analysis code (with
instructions on use) are available in the Supporting Information.

4.1 | Data Analysis Results

The household data collected by the Los Angeles County Depart-
ment of Public Health included 299 individuals in 58 households.
There were 99 probable influenza infections, of which 62 were
index cases—four households had co-primary cases with symp-
tom onsets on the same day. There were three people missing data
on sex, four people missing data on age, and 56 people missing
data on antiviral prophylaxis. The 62 individuals with missing
data came from 17 households with 36 infections, of which 19
were index cases. Because we assume all household members can
infect or be infected by other household members, we excluded
the entire household if any of its members was missing data. In
the complete-cases data set, we have 41 households with 63 infec-
tions, of which 43 were index cases.

Using the complete-cases data set, we fit a model with main
effects for all six covariates using all nine possible combina-
tions of internal and external contact interval distributions. All
models were fit using the BFGS algorithm for optimization as
in the simulations, which is the default in TranStat. Table 5
shows the resulting AIC values. The three minimum AIC values
occur for exponential internal contact intervals. Among these
three, the lowest AIC occurs for log-logistic external contact
intervals. Using exponential internal contact intervals and
log-logistic external contact intervals, we built a model using
backwards selection to achieve the minimum AIC. This removed
all covariates except for three: age category for infectiousness
(adult_inf), age category for susceptibility (adult_sus),
and prophylaxis by susceptibles (proph_sus). The AIC of this
model was 203.59.

We then checked for external interaction terms, which allow
a covariate to have different coefficients in the internal and
external transmission models. An external interaction term with
adult_sus had a p-value of 0.89 and increased the AIC to
205.57. An external interaction term with proph_sus had a
p-value of 0.87 but reduced the AIC to 202.37. A joint likelihood
ratio test for the main effect and external interaction term for

TABLE 5 | AIC values for regression models including all available
covariates.

Internal contact
intervals

External contact intervals

Exponential Weibull Log-logistic

Exponential 207.74 208.01 207.66
Weibull 209.25 209.87 209.58
Log-logistic 209.22 209.82 209.52

proph_sus in this model yielded a p-value of 0.008, which
is consistent with the p-value of 0.012 for proph_sus in the
model with no interaction term. For simplicity, we did not keep
this interaction term in the model.

Our final model is summarized at the top of Table 6. The coeffi-
cients for covariates are log rate ratios, intercept = ln 𝜆0 (the
log baseline internal rate parameter), xintercept = ln𝜇0 (the
log baseline external rate parameter), and xlogshape = ln 𝛾ext
(the external log-logistic shape parameter). The BFGS algorithm
did not find an upper 95% likelihood ratio confidence limit for
adult_inf, so we calculated this upper limit by refitting the
model using the Nelder-Mead algorithm. Both algorithms pro-
duced nearly identical point and interval estimates for all other
parameters in the model.

The model suggests that adults were more infectious and less
susceptible than children, but the small number of transmission
events observed makes these results inconclusive. The predicted
rate ratio for susceptibility associated with antiviral prophylaxis
is 0.34 (0.10, 0.76), so the model strongly suggests that antiviral
prophylaxis in susceptibles reduced their risk of infection. We
found no clear evidence of differences in infectiousness or
susceptibility by sex, and we found no clear evidence of an effect
of antiviral prophylaxis on infectiousness.

Table 7 shows the predicted household SAR by the age of the
infectious individual, the age of the susceptible individual, and
antiviral prophylaxis in the susceptible individual. The higher
infectiousness and lower susceptibility of adults is apparent,
as is the protective effect of antiviral prophylaxis. Because the
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TABLE 6 | Coefficient estimates from final model with likelihood ratio confidence limits and p-values.

Coefficient Estimate 95% confidence interval p-value

Accounting for external infection
Intercept −4.90 (−22.92, −3.38) < 0.001
Adult (infectiousness) 1.36 (−0.36, 6.47) 0.131
Adult (susceptibility) −0.48 (−1.46, 0.18) 0.138
Prophylaxis (susceptibility) −1.06 (−2.26, −0.28) 0.012
External intercept −4.10 (−6.04, −3.59) 0.021
External log shape 0.80 (−0.76, 1.50) 0.191

Ignoring external infection
Intercept −4.10 (−5.46, −3.04) < 0.001
Adult (infectiousness) 0.76 (−0.45, 2.10) 0.218
Adult (susceptibility) −0.77 (−1.87, 0.37) 0.178
Prophylaxis (susceptibility) −0.83 (−2.14, 0.30) 0.155

TABLE 7 | Predicted household secondary attack risks with Wald confidence intervals.

Transmission
From To Estimate 95% confidence interval

Child Child untreated 4.4% (0.5%, 34.6%)
Child on prophylaxis 1.5% (0.2%, 13.7%)

Child Adult untreated 2.7% (0.3%, 20.1%)
Adult on prophylaxis 0.9% (0.1%, 7.9%)

Adult Child untreated 15.9% (6.4%, 36.5%)
Child on prophylaxis 5.8% (2.0%, 15.9%)

Adult Adult untreated 10.2% (4.3%, 22.8%)
Adult on prophylaxis 3.6% (1.2%, 10.5%)

TABLE 8 | Log rate ratios with likelihood ratio confidence intervals and p-values from sensitivity analysis.

Coefficient

Accounting for external infection Ignoring external infection

Estimate 95% CI p-value Estimate 95% CI p-value

Latent period = 1 day
Adult (infectiousness) 0.08 (−1.24, 1.37) 0.894 0.06 (−0.99, 1.09) 0.909
Adult (susceptibility) −0.63 (−1.52, 0.07) 0.074 −0.58 (−1.61, 0.52) 0.286
Prophylaxis (susceptibility) −1.05 (−2.26, −0.23) 0.013 −0.95 (−2.24, 0.13) 0.087

Infectious period = 5 days
Adult (infectiousness) 1.73 (−0.43, 4.96) 0.140 0.58 (−0.68, 1.95) 0.366
Adult (susceptibility) −0.41 (−1.40, 0.20) 0.167 −0.91 (−2.08, 0.25) 0.121
Prophylaxis (susceptibility) −1.02 (−2.18, −0.29) 0.011 −0.69 (−2.02, 0.47) 0.246

Infectious period = 7 days
Adult (infectiousness) 0.29 (−0.99, 1.73) 0.649 0.20 (−0.88, 1.28) 0.707
Adult (susceptibility) −0.57 (−1.38, 0.15) 0.103 −0.44 (−1.44, 0.64) 0.406
Prophylaxis (susceptibility) −0.90 (−1.96, −0.12) 0.026 −0.73 (−1.89, 0.30) 0.167
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predicted household SAR depends on multiple parameters in the
regression model, we used Wald confidence intervals.

To see how accounting for external sources of infection affected
our analysis, we re-fit our final model using only data on
infectious-susceptible pairs within households. This model is
summarized at the bottom of Table 6. The two models give simi-
lar results, but accounting for external infection gave us greater
statistical power to estimate the effects of age and antiviral
prophylaxis. Using a two-parameter contact interval distribution
did not restore the statistical power lost by ignoring external
sources of infection. Refitting the final model without external
rows using Weibull or log-logistic contact intervals instead of
exponential contact intervals yielded a p-value of 0.160 for the
coefficient on antiviral prophylaxis in susceptible individuals.

Table 8 shows the results of a sensitivity analysis where we varied
assumptions about the latent and infectious periods. The infec-
tiousness rate ratio for age category and its p-value are highly
sensitive to the assumed latent and infectious periods. The sus-
ceptibility rate ratio for age category and its p-value are somewhat
more stable. The susceptibility rate ratio for antiviral prophylaxis
and its p-value are remarkably stable. The rate ratio varies from
0.35 to 0.41, and its p-value varies from 0.011 to 0.026. The loss of
statistical power when we fail to account for external sources of
infection is consistent throughout the sensitivity analysis.

5 | Discussion

Our simulation results showed that the pairwise AFT model
produces reliable point and interval estimates of parameters
for the internal and external contact interval distributions
when correctly specified. In particular, it produced reliable
estimates of rate ratios for infectiousness and susceptibil-
ity under valid epidemiologic study designs whether or not
who-infected-whom was observed. When who-infected-whom
was observed, these rate ratio estimates were surprisingly robust
to flawed epidemiologic study design. Estimates of rate ratios
for infectiousness were more sensitive to both observation
of who-infected-whom and epidemiologic study design than
estimates of rate ratios for susceptibility. A sufficiently flexible
pairwise AFT model can accurately estimate rate ratios even
when it is slightly misspecified (e.g., a Weibull model used
for data generated with log-logistic contact intervals). It is
likely that the simulation results would have been even better
if we had used likelihood ratio confidence intervals or taken
steps to identify a good starting point for maximization of
the likelihood.

There are several limitations of the LACDPH household data
analysis that point toward future research topics. In the inter-
est of simplicity, the handling of missing data was crude. We
removed entire households when any member was missing
a covariate, and we assumed fixed incubation, latent, and
infectious periods to avoid treating these times as missing.
Multiple imputation or data-augmented Bayesian methods [52]
would be a more principled way to handle missing data, but
their implementation needs to account for the dependencies
induced by disease transmission. With no clear scientific basis
for choosing parametric families for the internal and external

contact interval distributions, we compared models using the
AIC. Although our simulations suggest this can be a reliable
approach when the available parametric families include the
true distributions, an extension of the semiparametric model of
Kenah [29] that could handle external sources of infection would
not require a choice of parametric families. Finally, the pairwise
AFT model showed occasional numerical instability. Although
we dealt successfully with this problem ad hoc, it deserves more
systematic investigation.

The pairwise AFT model can be viewed as an extension of the
longitudinal chain-binomial model [53, 54] to continuous time.
Like these models, it accounts for dependent events and for
infection from external sources even when who-infected-whom
is not observed. Unlike these models, it allows flexibility in
the infectiousness profile without a large number of nuisance
parameters, and it can be specified, fit, and interpreted in a
manner similar to standard regression models. The simulation
study showed that it produces accurate point and interval
estimates when the epidemiologic study design is valid and
the chosen parametric models have the flexibility to mimic the
true internal and external contact interval distributions. The
analysis of the LACDPH influenza A (H1N1) household data
showed that the model can produce insights relevant to public
health and that accounting for external sources of infection is
important. When who-infected-whom is observed (which occurs
rarely in practice), estimation of rate ratios for susceptibility
and infectiousness is remarkably robust to flawed epidemio-
logic study design. This suggests that pathogen phylogenies,
which provide partial information on who-infected-whom,
could improve precision and reduce bias [55]. With or without
pathogen genome sequences, pairwise AFT regression models
can generate detailed insights about the transmission of infec-
tious diseases from longitudinal studies of close contact groups
or from contact tracing data. These insights can help us design
efficient and effective public health interventions to control
future epidemics.
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