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ARU2-Net: A Deep Learning Approach for
Global-Scale Oceanic Eddy Detection

Junmin Geng, He Gao, Baoxiang Huang, Member, IEEE, Milena Radenkovic, Member, IEEE and Ge Chen,
Senior Member, IEEE

Abstract—Ocean eddies have a significant impact on marine
ecosystems and the climate because they transport essential
substances in the ocean. Detection of ocean eddies has become
one of the most active topics in physical ocean research. Current
eddy detection techniques only identify tiny regions and are
mostly based on conventional detection techniques. While the
proposed method has achieved satisfactory results in detecting
eddy in limited regions, its performance is not optimal in
the global domain. In this paper, a high-precision attention
residual U2-Net(ARU2-Net) model is proposed to address this
problem. The model is based on the U2-Net model in combination
with the Convolutional Block Attention Module (CBAM). By
refining the attention features, the CBAM makes the model more
attentive to the feature information of the eddy surface from both
channel and spatial perspectives, improving the performance
of the original base model while keeping the computational
cost low. In addition, we use two feature information, sea level
anomaly and sea surface temperature, to realize the fusion
input of multidimensional information. Finally, we demonstrate
the effectiveness of our approach on the global eddy dataset,
achieving a test performance of 94.926%, significantly exceeding
the results of previous models for the global region.

Index Terms—Global ocean eddy; Deep learning; Attention
mechanism; Intelligent detection; ARU2-Net Architecture;

I. INTRODUCTION

OCEANNIC eddies are rotational motions of seawater
controlled by the geostrophic eddy conservation equation

and have different forms and scales. They are highly variable
on horizontal and vertical scales, with propagation speeds on
the scale of kilometers[1], [2]. In the Northern Hemisphere,
cyclonic eddies are influenced by the Koch force, which causes
water to spread outward, creating negative anomalous sea
surface heights. Cyclonic eddies drive cold water upwards
and are known as cold eddies. On the contrary, anticyclonic
eddies cause the sea surface water to gather inside, resulting
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in positive anomaly sea surface heights. Anticyclonic eddies
carry warm water downwards and are called warm eddies.
Eddies have important effects on material cycling, energy
transport and loop coupling[3], [4]. The strong auxiliary
sinking motion within the ocean eddy drives the growth of
phytoplankton and reduces the peak chlorophyll concentration
in the subsurface layer to a certain extent[5]. The ocean eddy
facilitates vertical movement and mixing within the oceanic
layers through the exchange of matter and energy, exerting
a significant influence on global ocean circulation and air-sea
interaction[6], [7]. Hence, research on identifying ocean eddies
plays a pivotal role and has emerged as a current focal point
in ocean research.

During the initial period, eddies were identified using man-
ual visual methods, but this approach has significant limita-
tions and is susceptible to subjective differences. As a result,
individuals commenced employing mathematical knowledge to
detect mesoscale eddies. Nichol et al.[8] employed computer-
based image analysis to identify regions with similar grayscale
values and extract features that resemble eddy structures.
Due to the intricate nature of ocean remote sensing images,
extracting features for eddy detection poses significant chal-
lenges. Peckinpaugh and Holyer et al.[9] presented a method
for eddy detection using the Hough transform circle detec-
tion operator[10] based on edge detection in remote sensing
images[8]. This method relies on edge detection in remote
sensing images[11]. Because the shapes of eddies are irregular
polygons, this detection method is relatively rough. Eddies’
two- or three-dimensional structures were later used by people
to recognize them based on the physical properties of the
flow field. The main methods include the physical parameter
method[12], [13], the flow field geometric method[14], [15],
and the machine learning method[16]. The physical parameter
method detects eddy regions by calculating the gradient of
ocean physical parameters, nevertheless has a problem of
threshold selection. The flow field geometric method, based
on fluid mechanics theory, detects eddies by analyzing flow
field data and geometric shapes, but it requires smooth and
interpolate treatment for data quality.

With the widespread application of deep learning in ocean
remote sensing images in recent years[17], [18], [19], [20],
a large number of researchers have also started attempting to
use deep learning for the purpose of identifying and detecting
oceanic eddies[21]. This innovative approach has quickly
become a hot topic and has led the wave of research in the field
of ocean eddies[19]. Inspired by the U-Net[22] architecture,
Lguensat et al.[23] proposed the EddyNet network model.
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(a) (b)

Fig. 1: (a) Map of global sea level anomalies. (b) Global sea surface temperature.

Subsequently, Lguensat[24] developed the EddyResNet based
on the ResNet[25] architecture, a residual neural network,
and created the EddyVNet, which incorporates eddy evolution
during the detection process using a structure similar to V-
Net[26]. By adopting more advanced architectural designs,
the eddy identification performance has been further improved
compared to EddyNet. However, these models only achieve
significant classification results in the eddy-rich South Atlantic
region, showing only moderate performance in global scale
assessments. The reason may be the differences in the charac-
terization and distribution of eddies in other regions compared
to the South Atlantic region. In addressing the segmentation
challenges posed by multi-scale ocean eddies, the Pyramid
Scene Parsing Network (PSPNet)[27] can integrate semantic
and detailed features from various layers. This integration
enables the effective detection of a multitude of eddies, partic-
ularly small-scale ones, within the North Pacific Subtropical
Countercurrent[28]. Zhao et al.[29] introduced the Pyramid
Separated Attention (PSA) eddy detection structure (PSA-
EDUNet). Through non-linear connections, this architecture
ensures minimal loss of feature information and incorpo-
rates PSA modules to enhance feature extraction. This model
achieved excellent detection results in the Kuroshio Extension
(KE) and the Southwestern Atlantic region, particularly in the
detection of eddy boundaries and small-scale eddies. Subse-
quently, Huang et al. combined Convolutional Neural Network
(CNN) and XGBoost to extract representative vertical features
and identify eddies from profile feature information, thereby
extending the capability to identify eddies based on altimeter
data[30], [31], [32]. But the current vertical profile dataset are
not sufficient, placing some limitations on the accuracy and
reliability of eddy identification.

These above-mentioned methods have shown satisfactory
results in regions with dense eddy distribution, but given the
global ubiquity of ocean eddies, these methods have been
unable to accurately learn the complex and variable features of
the sea surface. The contribution of this paper can be outlined
as follows.

1) A high-accuracy deep learning model named ARU2-
Net is proposed for global ocean eddy detection. The
advantage of this model is that it can capture the global
information of the vortex surface at different scales by
mixing different receptive fields in the ARU module.

2) The Convolutional Block Attention Module(CBAM)[33]
is integrated into the ARU2-Net model. The CBAM has
the ability to focus on the characteristics of eddy sur-
faces from both a channel and spatial perspectives. This
addresses complex and diverse eddies while improving
the efficiency of the initial foundational model with low
rise in computing expenditure.

3) Extensive experimetnal results demonstrate that the pro-
posed method can achieve promising detection results
on global scale of eddies.

Algorithm 1 Eddies labeling algorithm

Require: XAE, XCE

Ensure: Label matrix E
1: datas← XAE +XCE

2: E[0 : 720, 0 : 1440] = 0;
3: for n = 0 tolen(datas) do
4: Edge lon = datas[9:29];
5: Edge lat = datas[29:49];
6: minx, maxx, miny, maxy = get extremum(Edge lon,

Edge lat);
7: X0 = Point x(minx, 0); X1 = Point x(maxx, 1);
8: Y0 = Point y(miny, 0); Y1 = Point y(maxy, 1);
9: judge x, judge y = get allPoint(X0, X1, Y0, Y1);

10: for L = 0 to len(judge x) do
11: Pnpoly(len(Edge lon), Edge lon, Edge lat,

judge x[L], judge y[L]);
12: if Pnpoly = True and Edge flag =′ AE′ then
13: f [L] = 1;
14: else if Pnpoly = True and Edge flag =′ CE′

then
15: f [L] = 2;
16: else
17: f [L] = 0;
18: end if
19: E[x axis(judge x[L]), y axis(judge y[L])] =

f [L];
20: E[x axis(Edge lon), y axis(Edge lat)] =

f [L];
21: end for
22: end for
23: return E

The remainder of the paper is orgnized as follows. The
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Fig. 2: Architecture of ARU2-Net.

dataset and the preprocessing procedure are discussed in
Section II. The architecture of the proposed ARU2-Net is
described in section III. Section IV, the results of eddy iden-
tification by different models are compared. Finally, Section
VI summarizes this study and highlights the future research
direction.

II. DATA PREPARATION

The global Sea Level Anomaly (SLA) data used in
this study were estimated by Copernicus Maritime Services
(CMEMS) using an optimal interpolation method, combining
L3 along orbit measurements from different altimeter missions
available. Global Sea Surface Temperature (SST) data comes
from the National Oceanic and Atmospheric Administration
(NOAA)[34], [35], [36]. The altimetric Mesoscale Eddy Tra-
jectory Atlas product META3.2 DT allsat[37] was produced
by SSALTO/DUACS and distributed by AVISO+ with support
from CNES, in collaboration with IMEDEA. This atlas was
downloaded the February 2023, and covers the period from
January 1993 to February 2022[38]. Because of the huge
amount of global eddy data, the data from January 2018
to December 2020 is selected as the training set for this
experiment, and the data from 2017, and 2021 is used as the

test set. The distribution of SLA and SST in the global ocean
is shown in Fig.1 .

The input data is preprocessed before Eddy detection, and
this preprocessing mostly entails the following steps:

1) For the global SLA and SST data, the value of land area
is set to a specific value as a mask, so as to exclude the
influence of land on the detection of eddies.

2) To ensure the comparability of data, the SLA and SST
data are normalized respectively to avoid the impact of
too large a span.

3) The normalized SLA and SST data are combined into a
set of two-channel feature data, which is used as input
for eddy detection.

To meet the requirement of deep learning models for
real eddy dataset, the construction process of real eddy data
labels can be summarized in Algorithm 1. The edge position
information of AE and CE eddies is used as input to determine
the threshold value of the longitude and latitude of the eddies,
and the eddy region is restricted in a rectangular box. Then,
the labeling process is summarized in all test points on the
edge and inside of the rectangular box are obtained with the
spatial resolution of 0.25°. Since the eddy can be regarded as
an irregular polygon, number of intersections plus one when
the point to be tested is above the edge and the ray has an
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Fig. 3: Architecture of CBAM block

intersection with the edge. Next, if the number of intersections
is odd, the points are inside the polygon, otherwise the points
are outside the polygon. Finally, the contours and internal
points of each eddy are labeled by category. Where ”1” is
labeled as anticycloncic eddy, ”2” is labeled as cycloncic eddy,
and ”0” is labeled noneddy.

III. METHODOLOGY

Despite the U2-Net[39] model’s outstanding performance
in the area of picture semantic segmentation, the model’s
overall segmentation performance suffers when it encounters
complex multiple category images because of segmentation
errors. The CBAM can weight the feature map in both
spatial and channel dimensions, which better accommodates
targets of different scales and shapes, and also allows the
model to better focus on regions of interest. So to solve the
problem of model performance decrease when the U2-Net
model segmentation target is complex, this paper proposes a
high-precision network model ARU2-Net based on the U2-Net
network, which is a double-nested U-Net network structure,
as shown in Fig.2. The ARU L and ARU 4F modules are
located in the inner layer, which has a U-shaped structure on its
outer layer. Where the ARU L module (L denotes the number
of layers encoded) captures contextual eddy surface feature
information at multiple scales by adding residual connectivity
and cascade pooling[40]. Thus, the model enables efficient
sense-field expansion with a small number of parameter ad-
ditions. The CBAM integrated into the ARU L module is an
attention mechanism operating along two dimensions, channel
and spatial, designed to direct the model’s focus towards
crucial features within the input data (SST and SLA), thereby
enhancing detection efficiency. Different with the ARU L
module, the ARU 4F module replaces ordinary convolution
with dilated convolution[41], which ensures that the feature
map resolution remains the same to continue to obtain richer
information about the eddy context features. The final pre-
diction’s results are fulfiled by fusing the features from one
encoding stage and five decoding stages through a saliency
map fusion module[42]. Additionally, the following section
briefly explains all the substructures.

A. ARU L module

The SST and SLA data are fused into a two-channel feature
data x(H×W×Cin) as input. This input undergoes transfor-
mation through common convolution layers, normalization

(a)

(b)

Fig. 4: Performance of the six models: (a) Changes in
training losses; (b) Accuracy curves for the six models in the

2021 test set.

layers, and RELU activation function layers to create a feature
map F(x) with a middle channel of Cmid. Subsequently,
F(x) is inputed the CBAM to obtain the feature map F ′

(x)
focusing on important features. Then, a symmetric encoding
and decoding structure with an L-layer height is used to extract
multi-scale eddy context information U(F ′

(x)). A larger L
implies more pooling, expanding the range of the receptive
field, and enriching local and global eddy surface feature
information. Finally, the feature map F(x) and U(F ′

(x)) are
fused together through a residual connection, as shown in the
following equation:

x = F(x) + U(F
′
(x)) (1)

B. ARU 4F module

It is similar to the overall structure of ARU L module. The
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difference is that ARU 4F module no longer carries out up and
downsampling. Following the downsampling to this module,
the input feature map has a size of (H8 ×

H
8 × Cmid) with

a relatively low resolution. Upsampling and downsampling
thereafter would result in an abundant loss of information,
thereby affecting the model’s training effectiveness. Therefore,
ARU 4F module has four layers of encoding and decoding,
and the first layer still uses ordinary convolution. The latter
three layers use dilated convolution, the size of the convolution
kernel is 3× 3 and the dilate rate is multiplied by 2, 4 and 8,
respectively.

C. Saliency Map Fusion module

This module mainly plays the role of feature fusion. By
collecting the output of the last layer of the encoder and each
layer of the decoder, we can get a series of feature result
maps. Then these feature maps are fed into a regular 3 × 3
convolutional layer with an output channel number set to 3.
The feature map is then resized to the original feature map’s
size using the bilinear interpolation approach. Ultimately, the
fused eddy probability outcome map was generated by splicing
and processing the six feature maps using a 1×1 convolution
layer and softmax activation function.

D. Convolutional Block Attention Module (CBAM)

The effect is more effective than only focusing on the chan-
nel attention mechanism[43]. The CBAM is a kind of attention
mechanism module for visual recognition tasks, which can
remarkablely map important features and suppress irrelevant
noise by weighting channel attention and spatial attention to
feature maps, as shown in Fig.3. Specific details are described
below.

Firstly, to improve the sensitivity to different features, the
feature correspondences of the SST and SLA channels are
adjusted using the channel attention mechanism. Specifically,
the input feature maps F ∈ RC×H×W undergo max-pooling
and average-pooling to aggregate global features across each
channel, generating feature maps Fc

max and Fc
avg. Following

that, they get connected to a shared network with a single
Multilayer Perceptron (MLP) hidden layer at its core. Next, the
MLP features are weighted and the sigmoid function activates
them to produce the channel attention feature Mc ∈ RC×1×1.
Finally, the feature map needed by the spatial attention module
can be produced by multiplying the channel attention feature
Mc by the input feature map F . In short, the channel attention
is computed as:

Favg = AvgPool(F) (2)
Fmax = MaxPool(F) (3)

Mc(F) = σ(MLP (Favg) +MLP (Fmax)

= σ
(
W1

(
W0

(
Fc

avg

))
+W1 (W0 (F

c
max))

) (4)

F
′
= Mc(F)⊗ F (5)

Where σ denotes the sigmoid function, W0 ∈ RC/r×C , and
W1 ∈ RC×C/r. The MLP weights W0 and W1 of the two
inputs are shared. ⊗ denotes element-wise multiplication.

Fig. 5: Map of the number of eddy detection global on
January 1, 2021. AE for anticyclone, CE for cyclone.

Secondly, spatial attention mechanisms are employed to
adaptively adjust the feature responses at different spatial loca-
tions of the eddies, enhancing sensitivity to various positions.
More specifically, the input feature map for the module is
the output feature map from the channel attention module.
The first phase creates a 2D feature map Fs

avg ∈ R1×H×W

and Fs
max ∈ R1×H×W using a channel based on the average

pooling and maximum pooling operation. We then create our
2D spatial attention map by concatenating and convolving
those using a standard convolution layer. Finally, multiplying
the spatial attention feature and the input feature map of this
module to obtain the final generated feature map F ′. In short,
the spatial attention is computed as:

Ms(F) = σ
(
f7×7([Favg;Fmax])

)
= σ

(
f7×7

([
Fs

avg;F
s
max

])) (6)

F
′′
= Ms(F

′)⊗ F′ (7)

Where f f7×7 denotes a convolution operation using a 7×7
filter size.

E. Dilated convolution

The resolution of the feature map decreases after multiple
downsampling and further downsampling will result in the
abundant loss of information about the eddy surface features.
Hence, we use dilated convolutions to increase the receptive
field while preserving the feature map resolution without
adding extra parameters. By introducing the dilate rate based
on standard convolution, dilated convolution expands the con-
volutional kernel’s receptive field. If the standard convolution
kernel is K0 and the dilate rate is R, then the dilated
convolution kernel is:

Kc = R× (k0 − 1) + 1 (8)

Naturally, a larger receptive field leads to richer spatial
information, which improves experimental results.
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IV. EXPERIMENTAL RESULTS

A. Experiment Setting

All the experiments in this study were carried out on the
dataset described in the second part. These programs are run
on Ncidia GeForce RTX 3090 GPU using the PyTorch frame-
work. We used the cross entropy function as a loss function
and set the learning rate to 1e-3 in the RMSprop optimizer.
When the loss of the validation set stops decreasing for 10
consecutive epoches, the early stop strategy will be adopted
to avoid overfitting and improve the model’s generalization
ability.

B. Evaluation metrics

The paper suggested approach is compared to other eddy
detection methods. This approach is assessed quantitatively
using the mean pixel accuracy (MPA), accuracy, maximal
F β, and weighted mean dice coefficient (WMDC) indicators.
MPA refers to the average proportion of the number of
correctly classified pixels per class; Accuracy is the proportion
of correctly classified pixels to the total number of pixels in
the entire image.

MPA =
1

N

∑
i

pii
ti

(9)

Precision =
TP

(TP + FP )
(10)

Recall =
TP

(TP + FN)
(11)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(12)

The total number of class i pixels in the real image is
denoted by ti, and the number of correctly predicted class i
pixels is represented by Pii. N is the total number of classes in
the real image. TP represents the number of matches between
accurately predicted Class i eddies and real labeled Class i
eddies; FP represents the sum of the number of incorrectly
predicted Class i eddies and true non-class i eddies; FN
represents the sum of the number of incorrectly predicted
non-i eddies and true i eddies; TN indicates the number
of accurately predicted non-Class i eddies matched with the
real label non-class i eddies. Fβ is used for comprehensive
evaluation of accuracy and recall rate. Set β to 1 for a perfect
balance of accuracy and recall.

Fβ =
((1 + β)2 × Precision×Recall)

(β2 + Precision+Recall)
(13)

Furthermore, we assess the degree of similarity between
the real labels and the predicted results using the similarity

TABLE I: Performance in 2021 as a test set on six
models(%). Bold indicates the optimal value.

U-Net DeepLabV3+ EddyNet PSA-EDUNet U2-Net ARU2-Net
Accuracy 89.215 85.674 90.916 92.141 94.473 94.946

MPA 72.874 64.398 74.379 79.318 87.069 88.147
Fβ 75.060 66.680 78.176 81.807 87.774 88.785

DCN 93.586 91.645 94.633 95.314 96.684 96.954
DCA 61.694 51.513 65.786 71.826 81.467 82.924
DCC 69.900 56.882 74.110 78.123 85.173 86.477

WMDC 88.667 84.958 90.373 91.742 94.315 94.784

TABLE II: Performance in 2017 as a test set on six
models(%). Bold indicates the optimal value.

U-Net DeepLabV3+ EddyNet PSA-EDUNet U2-Net ARU2-Net
Accuracy 89.201 85.830 90.894 92.122 94.835 94.951

MPA 77.478 64.409 74.532 79.342 88.713 88.268
Fβ 78.292 66.687 78.178 81.754 88.689 88.826

DCN 94.147 91.645 94.622 95.314 96.894 96.971
DCA 67.726 51.519 66.234 71.825 82.901 83.116
DCC 72.977 56.896 73.680 78.123 86.270 86.392

WMDC 89.938 84.960 90.256 91.716 94.712 94.805

coefficient.

DCN(N,G0) =
(2× (N

⋂
G))

(|N |+ |G0|)
(14)

DCA(A,G1) =
(2× (A

⋂
G))

(|A|+ |G1|)
(15)

DCC(C,G2) =
(2× (C

⋂
G))

(|C|+ |G2|)
(16)

WMDC = 0.82×DCN + 0.08×DCA (17)
+0.1×DCC (18)

Where, G is the real data, N , A and C represent non-
cyclonic, anticyclone and cyclone respectively while G0, G1

and G2 are the corresponding real data. The weights in the
WMDC formula correspond to the normalized occurrence
frequencies of non-cyclones, anticyclones and cyclones respec-
tively.

C. Result analysis

The proposed method is compared with the existing PSA-
EDUNet, EddyNet, U-Net and DeepLabV3+[44] technologies.
The effectiveness of the proposed model is fully verified. The
results of the comparison experiments are shown in Table I
and in Fig.4(b). In the global region, the accuracy is 94.926%,
which is 2.875%, 4.010%, 5.731% and 9.096% higher than
PSA-EDUNet, EddyNet, U-Net and DeepLabV3+ models,
respectively. We visualize the number of anticyclones and
cyclones detected by the different methods in Fig.5, where
AE represents the number of anticyclones and CE represents
the number of cyclonic. The ARU2-Net model proposed in
this paper finds more eddy currents than other methods. This
shows that the ARU2-Net model has the ability to detect
smaller sized eddy currents with high performance. To better
illustrate the feasibility of the model, we did further test
validation by randomly selecting 2017 SST and SLA data as
a new test set, as shown in Table II. The results remarkablely
show that this set of test data is generally consistent with the
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(c)

(d) (e)

(f) (g)

(b)

(a)

Fig. 6: Visualization of eddy detection results in 2021. (a)Ground truth; (b)U-Net; (c)DeepLabV3+; (d)EddyNet;
(e)PSA-EDUNet; (f)U2-Net; (g)ARU2-Net. AEs(red); CEs(blue).

performance of the 2021 test results, further validating the
robustness of the model. Meanwhile, we conducted ablation
experiments on the CBAM and presented the results in Table I
and Table II, proving the effectiveness of adding the CBAM
module. Additionally, Fig.4(a) shows the learning curves of
six model architectures on the same train set. Blue, brown,
orange, purple, green and red represent the learning curves

of U-Net, DeepLabV3+, EddyNet, PSA-EDUNet, U2-Net and
ARU2-Net, respectively. From Fig.4(a), it is evident that the
loss decreases progressively with increasing epochs. The loss
value obtained by the ARU2-Net model on this curve is lower
than that of the other five models. This observation indicates
that the ARU2-Net model has the strongest learning ability
to capture the feature information of various eddy surfaces in
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(a)

(b)

(c)

Fig. 7: Distribution of SLA data for newly detected eddies.(a)Detailed map of ARU2-Net network architecture testing results;
AEs(red); CEs(blue); new AEs(orange); new CEs(green) (b)New Eddy AE; (c)New Eddy CE.

the dataset. We can also see from Fig.4(b) that the ARU2-
Net model has little fluctuation in the test results for each day
on the test set, and the accuracy is much higher than that of
the other models, which further indicates that the model has
a strong generalization ability. These results jointly prove the
superiority of the ARU2-Net model proposed in this paper.

We visualized the detection results for the first day of 2021.
Fig.6 plots the detection results for all models in the global
region. Compared to the true value, it is easy to see that the
U-Net and DeepLabV3+ models miss many eddies and falsely
detect some additional eddies. Although the detection results
are similar on the U2-Net model and the ARU2-Net model,
by looking closely at the visual details, you will find that the
CBAM added to the basic U2-Net architecture is more accurate
than the U2-Net model detection, especially in the detection
of small-scale eddies.

Comparison of the real eddies revealed that the ARU2-Net
model can detect eddies that had not been detected in real

dataset. To determine the correctness of the newly detected
eddies, we select a small region with more newly detected
eddies from the global region, as shown in Fig.7(a). Then,
we match the new eddies with the SLA data, and find that
the height of the eddy-centered sea surface of AE is higher
than the height of the surrounding sea surfaces. Similarly, the
height of the eddy-centered sea surfaces of CE is lower than
the height of the surrounding sea surfaces. These observations
fully align with the surface characteristics of eddies. The SLA
data distribution for newly discovered eddies is shown in
Fig.7(b), (c).

V. CONCLUSIONS

This study presents a novel eddy detection model called
ARU2-Net, which has been developed specifically for global
scale. ARU2-Net is distinct from current eddy detection mod-
els as it utilizes a double-nested U-Net structure. Each sub-
module in this architecture incorporates CBAM to enhance the
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features, enabling the model to prioritize the feature informa-
tion of the eddy. In order to assess the detection capabilities
of ARU2-Net, we performed experiment using a publically
accessible dataset and compared its performance to that of
various eddy detection models. When comparing quantitative
and qualitative data, it is evident that the suggested architecture
consistently outperforms current deep learning algorithms in
terms of accuracy and similarity for eddy detection.

Nevertheless, the ARU2-Net model does possess specific
constraints. Initially, while studying the attributes of eddy, the
model could unintentionally acquire inaccurate feature data
because of the indistinct features found in the periphery of
the eddy. This might lead to less than ideal edge detection
outcomes. Furthermore, due to the double-nested U-Net struc-
ture of the ARU2-Net model, the detection process is relatively
time-consuming.

Future research will prioritize the development of stream-
lined methods for extracting features, followed by the im-
plementation of suitable approaches to enhance the detection
effectiveness of the model.
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