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Researchers have focused extensively on understanding the factors influencing students’ academic achievement
over time. However, existing longitudinal studies have often examined only a limited number of predictors at
one time, leaving gaps in our knowledge about how these predictors collectively contribute to achievement
beyond prior performance and how their impact evolves during students’ development. To address this, we
employed machine learning to analyze longitudinal survey data from 3,425 German secondary school students
spanning 5 to 9 years. Our objectives were twofold: to model and compare the predictive capabilities of 105
predictors on math achievement and to track changes in their importance over time.We first predicted standard-
ized math achievement scores in Years 6–9 using the variables assessed in the previous year (“next year pre-
diction”). Second, we examined the utility of the variables assessed in Year 5 at predicting future math
achievement at varying time lags (1–4 years ahead)—“varying lag prediction.” In the next year prediction anal-
ysis, prior math achievement was the strongest predictor, gaining importance over time. In the varying lag pre-
diction analysis, the predictive power of Year 5 math achievement waned with longer time lags. In both
analyses, additional predictors, including intelligence quotient, grades, motivation and emotion, cognitive strat-
egies, classroom/home environments, and demographics (including socioeconomic status), exhibited relatively
smaller yet consistent contributions, underscoring their distinct roles in predictingmath achievement over time.
The findings have implications for both future research and educational practices, which are discussed in detail.
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Educational Impact and Implications Statement
Understanding the predictors of students’ academic achievement is one of the foremost concerns in
research on education. Most studies analyze the effects of only a handful of predictors at one time.
However, in the real world, many factors likely interact and jointly contribute to explaining achieve-
ment. We use machine learning methods to model a large number of variables and their interactions
to better understand how accurately data collected from school documents, cognitive tests, and self-
report questionnaires can predict students’ math achievement, above and beyond prior achievement.
We also assess how the predictive utility of groups of variables changes over time. The insights pro-
duced are useful for understanding what data are most useful to collect when predicting math achieve-
ment, as well as when to plan interventions to be maximally effective.

Keywords: mathematics, student achievement, longitudinal survey data, machine learning, explainable
artificial intelligence
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Understanding the predictors of students’ academic achievement
has been one of the foremost concerns in research on education.
Using longitudinal panel data, research has identified numerous fac-
tors that predict math achievement over time: basic cognitive abili-
ties (Deary et al., 2007), learning/cognitive strategies (e.g., Muis
et al., 2018), motivation (e.g., Steinmayr & Spinath, 2009), the influ-
ence of teachers and schools (Hattie, 2008) as well as demographic
characteristics (e.g., Howard, 2019). However, most previous studies
focused on a selection of variables to predict math achievement, and
only a limited number of studies have examined how these factors
jointly predict achievement outcomes. More importantly, we do
not have a clear idea about how these factors jointly predict future
math achievement above and beyond current achievement scores
(i.e., predicting change in math achievement). In addition, little is
known about whether the predictive power of these factors changes
over time. In this study, we employ a machine learning approach
to analyze the entire set of variables from a large longitudinal
panel study to address these questions, especially focusing on the
development-dependent change in these factors’ importance in pre-
dicting future math achievement scores.

Factors Associated With Longitudinal Change in Math
Achievement

Existing studies looking at the predictors of achievement have most
commonly used longitudinal panel designs; that is, they assessed
many students or teachers at several time points with relatively long
time intervals in between (Blossfeld et al., 2009). Longitudinal
designs have considerable advantages over cross-sectional designs.
In research on student achievement, they allow researchers to examine
factors predicting longitudinal change in achievement scores. More
specifically, the resulting data allow researchers to analyze whether
and how variables can predict achievement scores in the future after
controlling for baseline achievement. Such predictive analyses are
often performed using sophisticated statistical models such as latent
cross-lagged panel models or variations of them (for a review, see
Usami et al., 2019).
Using these statistical methods, previous studies have identified

many factors that predict change in math achievement over time.
Studies repeatedly found motivational and emotional factors to be
important predictors (e.g., Pekrun et al., 2017). For example,

Steinmayr and Spinath (2009) showed that some motivation vari-
ables (e.g., mastery goals and perceived control) predicted students’
math achievement after controlling for prior achievement. In addi-
tion, research has found that cognitive strategies (or learning strate-
gies) make a difference in students’ subsequent math achievement
scores (e.g., Muis et al., 2018; Murayama et al., 2013). For example,
Murayama et al. (2013) showed deep processing learning strategies
positively predicted change in math achievement over 3 years.
Researchers have also demonstrated that family context (such as
parental involvement) and class context (such as teachers’ behavior)
play critical roles in the development of students’math achievement
(Hong & Ho, 2005; Kunter et al., 2013; Murayama et al., 2016). For
example, using cross-lagged panel modeling, Hong et al. (2010)
showed that reported parental value in math had positive lagged
effects on math achievement in adolescents.

These findings are encouraging, as they indicate that teachers and
parents can support students to perform better in the future. These
studies, however, usually focus on the statistical significance of the
effects from a small set of predictors, resulting in relatively small
overall effect sizes. For example, Talsma et al. (2018) conducted a
meta-analysis of cross-lagged effects of self-efficacy on academic
achievement (predominantly math achievement). They found that
the averaged standardized cross-lagged effects were .085 (short
lag) and .057 (long lag). Compared to other cross-lagged effects,
these are deemed “medium-sized” (Orth et al., 2024), but practically
speaking, they are still relatively small. This is understandable and to
be expected—it is unlikely that change in math achievement is reduc-
ible to a single factor. However, an important question is the extent to
which various factors jointly (and including their interactions) influ-
ence future math achievement above and beyond current achieve-
ment. In other words, do these factors have substantive collective
effects on change in math achievement?

In addition to looking at only a handful of possible predictors at
one time, previous work in this area has also tended to be limited
in the following two ways. Firstly, the focus is typically on grades
(rather than standardized test scores) as an outcome measure of
achievement, which can vary in how they are assessed across
schools. Secondly, previous studies have not paid explicit attention
to how the effects of predictor variables change over time, leaving it
unclear when these factors are most important in the child’s devel-
opment. However, for those considering educational interventions,
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this is important. For example, is there a critical period when educa-
tional interventions should be conducted to improve students’ math
achievement effectively?
There are, however, a few studies that can provide a clue to these

questions. For example, Bailey et al. (2014) demonstrated that for
longitudinal math achievement scores, a large proportion of the var-
iance (i.e., 55%) is explained by latent trait effects (stable factors that
influence an individual’s mathematics achievement similarly over
the course of development), and unstable components (states),
such as the influences of specific teachers, explain less variance
(i.e., 7%). These results indicate that many of the less stable factors
identified above (i.e., cognitive strategies, emotions, and classroom
context) may have a limited role in changes to achievement. Other
studies have examined how achievement changes during develop-
ment, and generally suggest that the relationship between prior
achievement and current achievement becomes stronger over the
school years (Geary et al., 2017; K. Lee & Bull, 2016; Lin &
Powell, 2022). For example, Geary et al. (2017) showed with longi-
tudinal data from 167 children that the effect of prior math achieve-
ment on subsequent math achievement (1 year apart) constantly
increased from Grade 2 to Grade 8. These results suggest the possi-
bility that the longer students study at school, the less space for other
factors to explain additional changes in math achievement. However,
these studies analyzing the stability of achievement over time did not
include other critical factors that have been shown to influence math
achievement scores (e.g., motivational and emotional variables,
classroom context, etc.) and did not assess how all these factors
collectively predict math achievement scores beyond prior achieve-
ment, nor how the predictive effects change over the child’s
development.

Leveraging Machine Learning Methods to Examine the
Predictors of Longitudinal Change in Math Achievement

To address some of the limitations of previous studies, the current
paper takes a different approach: Analyzing all of the variables
included in a large longitudinal data set to predict math achievement
over time, which we coin an “all-inclusive approach” (see also
Tamura et al., 2022). In the real world, numerous factors exist that
are likely to predict achievement simultaneously. Furthermore,
some predictors may interact, and their effects can even cancel
each other out. Therefore, to get a realistic picture of the joint predic-
tors of academic achievement, the entirety of the set of potential pre-
dictors, along with their nonlinear and complex interactions, should
ideally be modeled at once. Such a comprehensive investigation
poses a challenge to traditional statistical analysis methods due to
multicollinearity issues and the high likelihood of overfitting (i.e., fit-
ting a complex model to a sample of data that will not generalize
beyond that sample). However, the application of machine learning
methods in this context makes such an all-inclusive approach possi-
ble while also helps to ensure the results are generalizable to new data
through processes such as cross-validation and out-of-sample testing
(Hastie et al., 2009; Strobl et al., 2009).
Statistical machine learning, developed in computer science, is a

methodology that allows for simultaneously detecting complex
(nonlinear) patterns in data and helping to ensure that the results
are not caused by idiosyncratic characteristics of the sample data
(i.e., randomness, referred to as “noise” in machine learning), and
thus are generalizable to new data with the same distributional

properties (Hastie et al., 2009; Yarkoni &Westfall, 2017). A typical
(so-called “supervised”) machine learning methodology involves
the detection of relationships between a set of predictor variables
(also called features) and an outcome variable in training data via
repeatedly fitting and evaluating different models using a cross-
validation procedure1 and then evaluating the best-performing
model on a separate “test” data set (i.e., out-of-sample testing).
Importantly, this out-of-sample testing procedure, as well as certain
mechanisms in machine learning models such as regularization (see
the Method section), enables many different predictor variables to
be entered into the model while helping to protect against overfit-
ting. In traditional statistical methods (e.g., multiple linear regres-
sion), if there are many predictor variables, the model can
become unstable due to overfitting and multicollinearity (Yarkoni
& Westfall, 2017). In other words, such a model has a risk of cap-
turing peculiar features of the fitted data, and the results may not
replicate when the model is applied to new data (Babyak, 2004).
Because machine learning methods always evaluate the fitted
model on unseen test data, the risk of overfitting is attenuated (for
more details on a typical machine learning pipeline, see Lavelle-
Hill et al., 2023).

The use of machine learning methods in the social sciences
has often been criticized for primarily focusing on prediction and
not providing useful explanations (i.e., “black box” methods; Cox
et al., 2020). To overcome this limitation, various approaches have
been proposed to quantify the relative importance of the different
variables in the model and their interactions (called variable impor-
tance). These variable importance measures are, however, dependent
on the model and method for calculating importance and should be
interpreted with caution (Henninger et al., 2023; Molnar et al., 2020;
see also the General Discussion section), and ideally in combination
with relevant theories (Van Lissa, 2022). Also, given that machine
learning models can include many predictors that are likely to caus-
ally influence each other in different directions (i.e., have reciprocal
effects), these measures are also unlikely to reflect only the causal
effects of the predictors on the outcome. Nevertheless, variable
importance metrics can provide important insights into the different
predictor variables’ relative contribution to predicting an outcome,
given the model.

In educational research, machine learning methods have been
most commonly used in the field of learning analytics (LA),
described as “the measurement, collection, analysis, and reporting
of data about learners and their contexts…” (Siemens & Long,
2011), and its sister field educational data mining (EDM), which
has a greater focus on automated adaptation (e.g., task difficulty)
of interactive online learning environments (Baker & Yacef,
2009). LA tends to focus on predicting academic achievement
from an applied perspective. For example, LA can aim to identify
students who might be at risk of dropping out or failing and to pro-
vide students with personalized or “just in time” support (Wong &
Li, 2020). In addition, studies have used machine learning to predict
student grades, exercise performance, and even question correctness

1 There are many different ways to perform cross-validation (e.g.,
leave-one-out cross-validation, temporal cross-validation, jackknife cross-
validation, and nested cross-validation, see Hastie et al., 2009), but com-
monly K-fold cross-validation is used (see the Data Analysis section).
Note that cross-validation may not be necessary with sufficient data instead,
a single validation set could be used (Browne, 2000).
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(Cetintas et al., 2009; Chakrapani & Chitradevi, 2022; Hellas et al.,
2018; S. Lee & Chung, 2019)—some to better understand the learn-
ing process (e.g., Deininger et al., 2023).
LA research most commonly harnesses data from online learning

management systems (LMSs; e.g., Moodle or Canvas) or digital
learning environments such as Intelligent Tutoring Systems (but
see also Goldberg et al., 2021; Gomes et al., 2013; Rawson et al.,
2017). For this reason, the majority of LA research is conducted
with samples from higher education where more usable data are
available, for example, from LMSs (Sekeroglu et al., 2021). Such
data typically consist of a combination of administrative data and
fine-grained process or behavioral trace data collected from interac-
tions with digital learning support tools or environments (Bilal et al.,
2022; Daza et al., 2022; Picciano, 2012). Applying machine learning
and other analytic methods to this data can help to build tools to sup-
port students, teachers, and course coordinators/designers in practice
(e.g., data dashboards; Molenaar & Knoop-van Campen, 2017,
Infinite Campus; Christie et al., 2019, BrightBytes; Esbenshade
et al., 2023, and Civitas; Civitas, 2023).
Applied prediction models used in LA can produce useful insights

for practitioners. Despite this, machine learning methods are less
commonly used to inform theory in educational and developmental
psychology (Dawson et al., 2015; Rogers et al., 2016; Van Lissa,
2022). Although, there are some examples. Self-regulation theory
(Zimmerman, 2000) has been used to interpret, engineer, or organize
features in the modeling process (Fan et al., 2021; Gašević et al.,
2016; Matcha et al., 2019). Further, genetic algorithms have been
used to incorporate theory into predictive modeling (Xing et al.,
2015; Zhang et al., 2019). However, relatively few LA studies
have integrated self-report survey data with validated measures of
psychological constructs into their prediction models (Issah et al.,
2023; Wong & Li, 2020). In a systematic review, Khanna et al.
(2016) found that 69% of LA studies used prior academic achieve-
ment and demographic characteristics as the primary predictors.
Recently, it has been hotly debated whether demographics should
be included as predictors in relation to mitigating algorithm bias,
improving prediction performance equally across demographic
groups, and preventing overfitting (Baker et al., 2023; Cohausz
et al., 2023; Deho et al., 2027; Yu et al., 2021).2 To detect and under-
stand potential bias, heterogeneity, and the importance of demo-
graphics in predictive models, model interpretability and the
grounding of investigations in theory become even more relevant
(Rogers et al., 2016).
There have been a growing number of emerging studies that have uti-

lized machine learning methods to predict achievement outcomes from
cognitive and noncognitive skills, with the goal to understand better the
important predictors (Gamazo & Martínez-Abad, 2020; Kiray et al.,
2015; Martinez Abad & Chaparro Caso López, 2017; Nadaf et al.,
2021, 2022; Noetel et al., 2023; Psyridou et al., 2024; Yoo, 2018).
For example, Yoo (2018) conducted an Elastic Net regression analysis
to predict Korean fourth graders’ math achievement scores with more
than 150 predictor variables. The results suggest that somemotivational
variables (e.g., math self-confidence) have unique explanatory power
above and beyond demographic variables. Martinez Abad and
Chaparro Caso López (2017) used decision trees to predict general aca-
demic achievement in over 18,000 high school students in Mexico.
They found that personal factors (particularly learning strategies, self-
esteem, drug use, coexistence violence, and resources at home), fol-
lowed by school-related and social factors, were the most important

predictors. However, all of these studies used cross-sectional data
sets, providing little information on whether these factors predict
change in math achievement and how the predictors change over a
child’s development.

Current Study

The current study addresses the following two research questions.
First, we aimed to examine the extent to which math achievement
scores can be jointly explained by the extensive set of predictor var-
iables identified in the literature (i.e., cognitive ability, motivation
and emotion, cognitive strategies, family context, classroom context,
and demographic information) above and beyond prior math achieve-
ment scores. In other words, how do these predictors explain the
change in math achievement relative to prior achievement? Second,
we aimed to investigate how the predictive power of these predictors
changes as students progress through the school years. To address the
research questions, a machine learning methodology was chosen,
given its advantage of being able to analyze a large number of pos-
sible predictors while also helping to protect against overfitting.
Using machine learning, we analyzed the entire set of variables
included in the longitudinal PALMA data set—project for the anal-
ysis of learning and achievement in mathematics (Pekrun et al.,
2007). The PALMA study investigated adolescents’ development
in mathematics during secondary school in Germany. The present
analysis focuses on data fromYears 5 to 9. The data include an exten-
sive set of variables (reported by students, parents, and teachers) that
were considered to be relevant to mathematics competence by experts
in educational psychology andmathematics education. Thus, the data
is well-suited to address the research questions of the current study.

To examine developmental change in predictive relationships, we ana-
lyzed the data in two different ways. In the first analysis (called “next year
prediction” analysis),we predictedmath achievement scores at timeT+ 1
from all variables (including priormath achievement scores) at time T and
examined how this relationship changed as students developed (i.e., we
compare the results for predictors at different times T, where T=Year
5 up untilYear 8). Thus, this analysis addresses the developmental change
in the proximal predictive power of different variables in the data set. As
previously noted, several studies have indicated that mathematics compe-
tence becomes more stable over time, and these findings suggest that the
relative importance of other factors may decrease over time.

In the second analysis (called “varying lag prediction” analysis), we
predicted future math achievement scores at different time intervals.
Specifically, we compared how the initial assessment point (Year 5)
variables predict math achievement scores at later time points (Years
6–9). Thus, this analysis addresses the change in the predictive
power of variables assessed at the start of secondary school (Year 5)
over different prediction intervals (i.e., assessing their temporal stabil-
ity). Given that math achievement scores are not perfectly stable over
time, we can naturally expect that the predictive power of the initial
math achievement scores would decrease as the time intervals become
larger. However, there has been little research comparing the predictive
power of various antecedent variables (e.g., motivation and emotion
variables) at different time intervals, and therefore, there were no
specific expectations about these results.

2 A subsequent review of EDM literature found that only 15% of studies
included demographic features in their analyses (Paquette et al., 2020)
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Method

Participants and Design

The data in this study were from the longitudinal PALMA study
(Pekrun et al., 2007) (see also Arens et al., 2022; Frenzel et al.,
2009, 2010; Marsh et al., 2022, 2019; Murayama et al., 2013,
2016; Pekrun et al., 2017, 2023, 2019), which included annual
assessments of students in German secondary schools from Year 5
to Year 10. Samples were representative of the student population
in the state of Bavaria (Germany) and included students from all
three school types within the German public school system:
vocational-track schools (Hauptschule), intermediate-track schools
(Realschule), and academic-track schools (Gymnasium). In Bavaria,
students typically enter these schools in Year 5 (i.e., the start of the
PALMA study). Students in academic and intermediate-track schools
tend to stay at least until Year 10, whereas compulsory vocational-
track schooling ends after Year 9. Thus, we decided to focus only
on data from Years 5 to 9 (see Murayama et al., 2013, 2016 for a sim-
ilar approach).
Each year, students, teachers, and parents responded to survey ques-

tions toward the end of the school year. Students took an intelligence
quotient (IQ) test and a standardized mathematics achievement test
as part of the assessment. The Data Processing and Research Center
of the International Association for the Evaluation of Educational
Achievement conducted the sampling and the assessments. Trained
external test administrators administered all assessments in the stu-
dents’ classrooms. Active parental consent was obtained for participat-
ing in the study. Participants were not provided any incentives. The
studies of the PALMA project received Institutional Review Board
approval from the Bavarian State Ministry for Education, Science,
and the Arts (Reference: III/5-S4200/4–6/68 908).
In Year 5, there were 2,070 students from 42 schools (49.6%

female, Mage= 11.7 years). Proportions of students in vocational,
intermediate, and academic track schools were 37.2%, 27.1%, and
35.7%, respectively. In each subsequent year, the study tracked
those who had participated in the previous assessment(s) and incor-
porated those who had not yet participated in the study but had
become members of PALMA classrooms at the time of the assess-
ment. As a result, the sample sizes from Year 6 to Year 9 changed
in the following manner (Pekrun et al., 2007): 2,059 (50.0% female,
Mage= 12.7 years), 2,397 (50.1% female,Mage= 13.7 years), 2,410
(50.5% female, Mage= 14.8 years), and 2,528 students (51.1%
female, Mage= 15.6 years). Across all five assessments, a total of
3,425 students (50.0% female) and one of their parents, as well as
the mathematics teachers of the participating classes (N= 419 teach-
ers; 65.7%male) participated in the study. The actual sample sizes of
students used in the present study for each analysis, as well as the %
missing and % female, can be found in Table 1. Note that these are
the final analysis data sets after preprocessing (i.e., dropping vari-
ables that had .50% missing data; see the Data Preprocessing sec-
tion), and so the%missing constitutes the data that was later imputed
as part of the machine learning pipeline (see the Data Analysis
section).

Measures

The outcome variable of the current study is the standardized math
achievement test score (see below). We then attempted to use all the
remaining variables in the data set as predictor variables. Some

predictors were excluded, however, if they were either (a) not consis-
tently assessed from Year 5 to Year 9 (except for the time-constant
variables, e.g., sex), (b) had more than 50%3 missing data for any
type of analysis we conducted, or (c) were superfluous (i.e., a recod-
ing of an existing variable). When Pearson r correlations between
variables were ..7, and it made conceptual sense to combine
them, the mean score of the correlated variables was used to avoid
unnecessary multicollinearity. All such aggregations are noted in
the following subsections. In cases where it did not make conceptual
sense to combine or remove variables based on collinearity (i.e., if by
removing a variable, we would remove theoretically relevant infor-
mation), variables were left in, and the possibility of multicollinearity
affecting the interpretation of the model was dealt with at a later stage
in the analysis (see the Model Interpretation section below). We had
88 predictors before dummy coding (see the Data Analysis section)
and 105 predictor variables after.

The predictor variables were further classified into the following
categories: (nonverbal) intelligence, motivation and emotion, cogni-
tive strategies, student-rated classroom context, teacher-rated class-
room context, family context, demographics and socioeconomic
status (SES), and school track.We decided the groupings using a the-
oretical perspective (e.g., categories that are typically used in educa-
tional psychology) and the empirical data. Specifically, we aimed to
ensure that Pearson r correlations between variables across different
groups were not above .7 (this is important when interpreting the
models; see the Model Interpretation section). Our approach repre-
sents a combination of “knowledge-driven” and “data-driven” strate-
gies as defined in Au et al. (2022). We provide succinct explanations
of the variables in each group below and a summary table in the
online supplemental materials. When a construct was assessed
using multiple items, we computed the average of the item scores
(after accounting for reverse-coded items).

Math Achievement Scores

Mathematics achievement was measured using the PALMA
Mathematical Achievement Test (Pekrun et al., 2007). This test com-
prises multiple-choice and open-ended items. It assesses students’
modeling algorithmic competencies in arithmetics, algebra, and
geometry. Importantly, the scores were scaled using Rasch model-
ing, which enabled longitudinal comparisons between different
school years. The test had different versions for each school year.
It was constructed using multimatrix sampling with a balanced
incomplete block design (e.g., see PISA, 2018). Anchor items that
were repeated across years were included to allow for the linkage
across the five waves. To facilitate interpretation, we standardized
all achievement scores (M= 100 and SD= 15) in relation to scores
at Wave 1. Prior work has confirmed the test scores’ unidimension-
ality and longitudinal measurement invariance (see, e.g., Murayama
et al., 2013).

Motivation and Emotion Variables

The variables in this category included students’ self-reports of
noncognitive variables related to motivation and emotions, most of

3 The threshold of 50% was chosen so that the imputation model had at
least the same amount of data to make predictions as predictions needed to
be made, akin to a 50:50 train:test split in machine learning.
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which were contextualized around math. Specifically, these were
competence beliefs in mathematics (16 items), achievement motiva-
tion (a total of eight items, comprising both performance-approach
motivation and performance-avoidance motivation with four items
each), intrinsic motivation (five items), interest (six items), and
instrumental future-oriented motivation (three items). Furthermore,
we assessed multiple mathematics-related values, including percep-
tions of the importance of math performance (five items), utility
value (two items), intrinsic value (three items), and holistic value
of mathematics (two items). Next, we assessed flow (six items) and
task-irrelevant thinking tendencies (seven items), as well as effort
(seven items). In addition, therewere multiple scales measuring emo-
tions associated with mathematics. For the present analysis, we
grouped these scales as positive emotions (total of 17 items, compris-
ing joy [nine items] and pride [eight items]) and negative emotions
(total of 43 items, comprising anxiety [15 items], anger [eight
items], shame [eight items], hopelessness [six items], and boredom
[six items]). Lastly, we included one domain-general noncognitive
variable, namely general self-esteem (six items).

Cognitive Strategies

This group comprised of student’s self-reports on strategies used
to learn math, including students’ self-regulation of learning in
mathematics (six items), external regulation of learning in math
(six items), and different facets of elaboration, including procedural
elaboration in terms of transfer of known task solution strategies
(three items), declarative elaboration in terms of transfer of prior
knowledge within mathematics (three items), and across other sub-
jects or real life (three items). In addition, this group comprised
mathematics study habits, including memorization of rules and
task solution approaches (three items), rehearsal of rule application
(three items), and creative problem solving (four items).

Student-Rated Classroom Context

The PALMA project measured both teacher and student ratings,
withmany constructs having parallel itemwordings. As in prior studies
(Murayama et al., 2013; Pekrun et al., 2023, 2007), teacher and student
ratings of the same variables were not highly correlated (see Figure 2).
Hence, we divided them into two groups. The first group included stu-
dent reports on teacher behaviors and classroom experience. We

assessed the following student-perceived teaching behaviors: auton-
omy support in task solving in math (five items), support of self-
regulated problem solving (five items), excessive versus adaptive pac-
ing (two and four items), scaffolding and teaching to transfer (11
items), achievement pressure (six items), positive reinforcement
(three items), punishment and support after failure (three and four
items), variety in instruction (three items), and teacher enthusiasm
(five items). In addition, students rated the degree to which mathemat-
ics class was disrupted (five items), time was wasted (four items), and
students in the class had a positive attitude toward math (three items).

Teacher-Rated Classroom Context

This group contains teacher reports on classroom context and
instructional behavior, teachers’ collaboration with parents and col-
leagues, as well as information on the teacher’s gender and job expe-
rience. Parallel to the students, the teachers rated autonomy support in
task solving (five items), support of self-regulated problem solving
(five items), adaptive pacing (two items), scaffolding and teaching
to transfer (11 items), positive reinforcement (three items), punish-
ment versus support after failure (three and eight items), variety in
instruction (two items), and their own teaching and subject enthusi-
asm (eight items). Teachers also rated the degree to which mathemat-
ics class was disrupted (five items) and timewas wasted (three items).
In addition, the teachers rated their efforts in providing adaptive and
comprehensible instruction (four items) and the degree to which they
applied an individual (rather than social) frame of reference in judg-
ing students’ work (four items). Finally, teachers reported on the
quality of collaboration within the math department at their school
(six items) and with parents (seven items).

Family Context

The PALMA project measured students’ and their parents’ ratings
of the home environment, partly operationalized with parallel item
wordings. When Pearson correlations across parallel-worded parent
and student reports were larger than .70, they were combined using
the mean. Generally, this group contains variables on parental atti-
tudes, expectations, and activities in mathematics. Variables for
which parallel-worded parent and student reports were combined
included the expected and aspired math grade (one item each), the
importance of the aspired grade (single items), parental instructional

Table 1
Descriptives of Analysis Data Sets

Analysis N % Female % Teacher missing % Parent missing % All missing

Next year prediction
Year 5→ Year 6 1,822 50 6 5 3
Year 6→ Year 7 1,732 50 13 9 5
Year 7→ Year 8 2,168 51 31 14 9
Year 8→ Year 9 2,188 51 26 19 10

Varying lag prediction
Year 5→ Year 6 1,822 50 6 5 3
Year 5→ Year 7 1,579 50 6 5 3
Year 5→ Year 8 1,471 50 6 5 3
Year 5→ Year 9 1,398 50 6 5 3

Note. We show the percentage of missing data across the teacher variables, parent variables, and all
variables (student, parent, and teacher). Note that the percentages of missing data are the same (when
rounded) for the varying lag analysis due to the data sets being subsets of the same data (Year 5) and
dropout not affecting the distribution of missingness across variables.
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support (six items each), and parental skill and enthusiasm for math
(four items for student report and five items for parent report).
Variables for which parallel-worded parent and student reports were
used separately included parental autonomy support (five items
each), family activities in math (six items parent report and five
items student report), and positive attitude toward the math domain
in the family (items each). Finally, there were four family context var-
iables reported by students only, including parental achievement pres-
sure in math (six items), parental positive reinforcement in math (two
items), parental support after failure in math (three items), and general
(nonmath-related) and joint cultural activities (four items).

Intelligence (Nonverbal)

Nonverbal intelligencewasmeasured using the 25-item nonverbal
reasoning subtest of the German adaptation of Thorndike’s cognitive
abilities test (Kognitiver Fähigkeitstest [KFT 4-12+R]; Heller &
Perleth, 2000).

Demographics and SES

This variable group included age, sex, early, or later entry into ele-
mentary school (i.e., entering school already at 5 years or later at 7
years, based on parents’ and the elementary school’s/kindergarten’s
joint decision), members of the household (categorical, as reported
by both parents and students4), whether the student switched school
track or not during the study, whether the students and their parents
were born in Germany or not (as separate variables), whether the
language spoken at home was German or not, and family SES.
SES was assessed by parent report using the Erikson–Goldthorpe–
Portocarero classification (Erikson et al., 1979), which consists of
six ordered parental occupational status categories. We coded scores
so that higher values represent higher family SES.

School Track

School track is a single categorical variable denoting which of
the three school types within the German public school system
the student belonged to vocational-track schools (Hauptschule), inter-
mediate-track schools (Realschule), and academic-track schools
(Gymnasium). Note that some students change track within the study
time frame (typically initiated by teachers/schools). However, most
changes from the vocational track to the intermediate-track from
Year 6 to Year 7 were system-implied (i.e., defined by changes to
the tracking system at the state level).

Data Preprocessing

We constructed different data sets required for our next year pre-
diction and varying lag prediction analyses (see Figure 1), ensuring
that variables were consistent across all data sets. We also ensured
that the variables in each data set only enabled forward prediction
in time. For example, in the next year prediction analysis, only
grade information from 1 year before could be used as a predictor.
We removed individuals who did not have data for the outcome var-
iable for each data set. As described above, some aggregations of
correlated variables were made when it made conceptual sense.
These aggregations were made consistently across all data sets,
even if the correlations exceeded the threshold in only one data
set. Therefore, all data sets included the same variables. The

remainder of the preprocessing steps (imputation, categorical vari-
able coding, and scaling) were performed within the analysis pipe-
line (see the Data Analysis section) to avoid information from the
test data used to evaluate the models contaminating the data used
to train the models (Lavelle-Hill et al., 2023).

Data Analysis

An overview of the analyses can be seen in Figure 1.We performed
two different analyses, using either stable 1-year lags or varying time
lags between the predictors and the outcome variable. For the first
analysis, next year prediction, the time lag was always 1 year with a
sliding window of 1 year (variables from Year 5 predicting the out-
come at Year 6, Year 6 variables predicting the outcome at Year 7,
etc.). This created four different data sets for the first analysis. In
the second analysis, varying lag prediction, we used the Year 5 predic-
tors to predict the outcome variable at Years 6, 7, 8, and 9 (lag= 1, 2,
3, and 4 years, respectively). For the second analysis, we created four
further data sets. Note that there is one completely overlapping anal-
ysis in these two sets of analyses (predicting Year 6 achievement
scores from Year 5 predictors). Thus, the results from these analyses
are identical (but we display both for visual purposes).

Themachine learning procedurewas applied in a consistentmanner
across all eight analysis data sets. It consisted of the following steps:
(a) splitting the data into a training set (80% of the full data) and a test
(20%) set; (b) performing five-fold cross-validation5 on the training
data to find the optimal model hyperparameters for two different
machine learning models (Elastic Net model and Random Forest
model, for more details see below); (c) predicting the 20% hold-out
test data to evaluate the predictive performance on unseen data; and
finally (d) interpreting themodel using variable importance estimation
methods to find the most predictive variables (or groups of variables).
The machine learning pipeline was run separately for each data set.
Here, we note that, like most common machine learning methods,
we do not explicitly account for the hierarchical structure of the data
(i.e., students nested within classes). Because the main reason we
account for nested structures in traditional statistical approaches is
the underestimation of sampling errors, and in the machine learning
analysis, we do not use standard errors, we chose not to explicitly
model the hierarchical data structure (for further discussion on this
point, see Lavelle-Hill et al., 2023). To further support this decision,
we note that the intraclass correlations of the outcome variable, after
controlling for the school track and classroom context variables
(which are predictors in our model), were low (Year 5: .08; Year 6:
.05; Year 7: .09; Year 8: .09; and Year 9: .17).6

We chose two different machine learning models to predict our out-
come variable: an Elastic Net model (Zou & Hastie, 2005) and a
Random Forest model (Breiman, 2001). These models were chosen
because they both allow the internal selection of only the most

4 There were some discrepancies between student and parent reports and
thus both variables were retained in the model.

5 Five-fold cross-validation involves splitting the data randomly into five
folds (or subsets). A model is then fit on four folds and tested on the remain-
ing fold. This is then repeated five times so that each fold is the hold-out test
data (often called “validation data”) once.

6 These calculations were made using the residuals of a regression model
using school track and classroom context variables to predict the outcome
variable. Intraclass correlations were calculated using a mixed effects linear
model, as there were unequal numbers of students in each class.
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important variables from a large pool of possible variables. Thus, a pri-
ori variable selection or variable reduction methods are not needed.
The Elastic Net model uses linear regression that combines the
Lasso (L1 norm) and ridge (L2 norm) regularization penalties. Lasso
encourages sparsity by imposing a penalty on small absolute magni-
tudes of regression coefficients (McNeish, 2015). This effectively per-
forms variable selection, eliminating irrelevant or redundant predictors
from the model. Ridge regularization, on the other hand, applies a pen-
alty to the squaredmagnitudes of the regression coefficients. This helps
to control for multicollinearity by shrinking the respective coefficients
toward zero (Hastie, 2020). By combining both regularization tech-
niques, the Elastic Net regression provides a flexible balance between
variable selection and coefficient shrinkage. Therefore, the Elastic Net
regression allows fine-tuning the strength of the regularization (α
parameter) and a mixing parameter (the ratio of L1:L2 penalties) to
define the type of regularization. The mixing parameter allows
for a greater fine-tuning of the model based on the specific data

characteristics (Zou & Hastie, 2005). The grid of the hyperparameter
options considered, as well as the optimal values selected, can be
found in the online supplemental materials.

The Random Forest model comprises an ensemble of decision trees
(Breiman, 2001), where each tree is built on a different random sample
of the data and uses a different pool of possible predictors to select from
at each split point (to maximize the variance between the trees). The
predictions from all the trees are then combined through averaging or
voting. Using binary decisions, each tree partitions the data into smaller
and smaller subgroups (or “nodes”) to maximize the between-group
variance and minimize the within-group variance. Thus, only the
most optimal variables for splitting the data are used. Random Forest
models are advantageous as they can automatically detect and model
any nonlinearities, interactions, and subgroup effects within the
data—without becoming too sculpted (or “overfitting”) to a particular
sample (Breiman, 2001). The hyperparameters we tuned were the num-
ber of trees, the maximum depth of the trees, the minimum number of

Figure 1
The Full Analysis Pipeline Predicting Achievement Scores in Mathematics (Ach.)

Note. Two core analyses were carried out: “next year prediction” predicting 1 year ahead using a sliding window of one year (i.e., from Year T to T+ 1), and
“varying lag prediction,”which used only the predictor variables (IVs) fromYear 5 to predict the outcome at varying time lags into the future (e.g., fromYear 5
to Year 9 is a lag of +4 years). Both analyses used the same machine learning pipeline to train and test predictive models for each data set (ds) and the same
variable importance analysis for model interpretation. The prediction and variable importance results for each time point were presented together to identify
temporal patterns. Ach.= achievement; T=measurement time for the predictors; T+1=measurement time for the predictors plus one year; ds= data set;
IV= independent variable; CV= cross-validation; SHAP values= Shapley additive explanations values (Lundberg & Lee, 2017; see the Model
Interpretation section). See the online article for the color version of this figure.
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samples needed to make a split, and the number of predictors available
for selection at each split point (see the online supplemental materials
for the full grid and the final values that were selected).
Before training the models, some additional preprocessing steps

were carried out as part of the machine learning pipeline. We applied
these steps within each separate training and test (or “validation”) set to
prevent possible information leakage between the data sets. These pre-
processing steps included “dummy” (or “one-of-K”) encoding of cat-
egorical variables, data imputation, and data scaling. For the Elastic
Net model, one category was always dropped as a reference class to
eliminate the perfect dependencies between the dummy encoded

variables. This is not required for the Random Forest model, so all cat-
egories were retained in this analysis. We used two different prediction
models to performmultivariate imputation to impute the missing data.7

Figure 2
Predictor Pearson r Correlations Sorted by Variable Groups

Note. Ach.= achievement; Demo= demographic; SES= socioeconomic status; IQ= intelligence quotient; Motiv.=motivation; Emot.= emotion;
Fam.= family; S, P = both student- and parent-reported variables; Cog. Strat.= cognitive strategies; S= student-reported; T= teacher-reported. See the
online article for the color version of this figure.

7 Multivariate imputation was performed using the scikit-learn function
iterative_imputer (Pedregosa et al., 2011a). The function was inspired by
the multivariate imputation by chained equations (MICE) package available
in R (Van Buuren & Groothuis-Oudshoorn, 2011), but only returns a single
imputed value instead of multiple imputations (this is common in machine
learning methodology when standard errors are not being estimated—for
more discussion on this, see Lavelle-Hill et al., 2023).
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We used a ridge regression for numerical variables, and for categorical
variables, a Random Forest classifier.8 A multivariate imputation
method iterates over the columns in a round-robin fashion, predicting
the missing values in the target column using the other variables in the
data (Pedregosa et al., 2011b). Note that no missing values from the
math achievement scores were imputed. This is because, by imputing
the missing outcome variable, machine learning models can learn the
function used to impute the missing data (rather than the true relation-
ships between the predictors and outcome for the data that is present)
(Lavelle-Hill et al., 2023). So, if a student did not have outcome infor-
mation, they were dropped from our sample. Data were then centered
and scaled using Z-score transformations (where themean is subtracted
from each data point, and the result is divided by the standard
deviation).

Model Interpretation

To understand which variables (or groups of variables) are impor-
tant predictors and how these change over time, we computed variable
importance estimates using Shapley additive explanations (SHAP)
values (Lundberg & Lee, 2017). SHAP is a post hoc model-agnostic
method for interpreting predictionmodels. SHAP is based on Shapley
values from cooperative game theory, used to assign payouts to play-
ers depending on their contribution (Shapley, 1997). SHAP calculates
the contribution of each variable to the overall prediction. This is done
by calculating the marginal average contribution of the variable across
all possible (ordered) combinations of variables in a model. A SHAP
value is initially calculated for each instance (in our case, an instance is
an individual) in the data. These instance-wise SHAP values are direc-
tional (i.e., a positive value indicates a positive relationship with the
predicted outcome). The absolute SHAP values can also be summed
over all instances in the data set to provide an overall measure of
importance for each variable in the model. This overall measure of
predictor importance is the primary focus of the present analysis,
although instance-wise SHAP values are also subsequently presented
to analyze heterogeneity in the effects (see below).
Although there are alternative model-agnostic methods to compute

predictor importance, such as permutation importance (Altmann et al.,
2010) or local interpretable model-agnostic explanations (LIME)
(Ribeiro et al., 2016), we argue that SHAP values have three key ben-
efits: (a) They indicate the direction inwhich each predictor contributes
to the prediction (i.e., whether there is a positive or negative predictive
relationship); (b) SHAP values are calculated first on the level of each
data instance (i.e., here, each individual student), enabling an analysis
of whether the variable has the same predictive effect for all individuals
or whether there is heterogeneity (e.g., for some individuals, the vari-
able pushes the prediction up, and for others down); (c) they are addi-
tive, and can easily be aggregated to produce an explanation at the level
of the whole sample.
To facilitate the interpretation of the results (and further reduce the

impact of multicollinearity), we decided to analyze the importance of
individual predictors and groups of similar variables. We computed
the absolute SHAP importance for each group of variables as defined
in the Measurement section (i.e., motivation and emotion variables,
cognitive strategies, student-rated classroom context, etc.). This way,
we derive a set of interpretable importance values for each group of pre-
dictors. The group importance was calculated by first calculating the
importance of each predictor in the model across all individuals and
then summing up the absolute SHAP values for all variables within

the group to get a combined group SHAP importance score. These
more stable group variable importance scores are the main focus of
our results.

Transparency and Openness

All code required to rerun the data preprocessing as well as the anal-
yses can be found on GitHub: https://github.com/Rosa-Lavelle-Hill/
palma-ml-open. The raw data and the survey questions (in German)
can be made available upon request.

Results

Before running the machine learning analysis, we first checked
whether our variable aggregation and grouping worked empirically
with regard to the issue of multicollinearity. Figure 2 provides a heat-
map of the correlations between predictors (averaged across data
sets). As can be seen, the correlations between groups are generally
smaller than the correlations within groups, supporting our process of
grouping predictor variables using conceptual similarity and Pearson
r correlation values.

Next Year Prediction

The first analysis, next year prediction, used all predictor variables,
including prior math achievement, to predict math achievement 1 year
ahead. The predictive performance of two models (an Elastic Net
model and a Random Forest model) can be found in Figure 3.
Panel A shows the model performance using prediction R-squared
values. This is similar to R-squared values in standard regression,
but it quantifies the degree to which the machine learning model
can predict math achievement scores for new observations
(Scheinost et al., 2019). Note that a prediction R-squared value of 0
is equivalent to the performance of a naive model using only the
mean of the outcome variable in the training data to predict the out-
come in the test data. We found that the best machine learning
model could predict future achievement scores well, with the predic-
tion R-squared values: Year 5→ 6= .70 (mean absolute error
[MAE]9= 34.99), Year 6→ 7= .73 (MAE= 34.44), Year 7→ 8
= .78 (MAE= 32.74), and Year 8→ 9= .77 (MAE= 35.97). Note
that the MAE should be interpreted in relation to baseline measures;
for the MAE plotted next to the mean and prior performance base-
lines, see the online supplemental materials.

The machine learning models’ prediction R-squared values are
compared to two baseline models in Figure 3A. The first baseline
is the prior achievement-only model, which predicts math achieve-
ment scores only using prior achievement (on the same standardized
math test). The second baseline additionally includes information on
the school track. Both baseline models use ordinary linear regression
analysis. By comparing the full model with the baseline models, we
identified the extent to which the other predictor variables collec-
tively predicted the T+ 1 math achievement scores (the outcome
variable) above and beyond the prior math achievement scores (at
T ). As can be seen from the pink bar in Figure 3A, prior math

8 This method is akin to the missForest package in R (Stekhoven &
Bühlmann, 2012).

9 Note that the MAE is simply the absolute mean of the residual error (cal-
culated as actual values in the test data minus the values predicted by the
model).
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achievement scores predict future achievement scores with a predic-
tion R-squared of .58 (Year 5→ Year 6), .65 (Year 6→ Year 7), .65
(Year 7 → Year 8), and .75 (Year 8 → Year 9), respectively. The
increasing trend suggests that prior math achievement has increasing
predictive power as students progress through secondary school—
this finding is further confirmed in the variable importance analysis
(see below). School track has some added prediction power (blue bar
in Figure 3A). Importantly, the other predictor variables also seem to
have added predictive value. These additional effects appear to be
the smallest in the model predicting the final year outcome. More

specifically, by comparing the prior performance and school track
baseline model to the best-performing machine learning model, self-
report data, grades, and cognitive tests add an additional prediction
R-squared of .07 (Year 5 → Year 6), .06 (Year 6 → Year 7), .08
(Year 7 → Year 8), and .02 (Year 8 → Year 9), respectively.

We computed group SHAP values to analyze the importance of
groups of predictors of math achievement and how they change
over time. We did this for both the Elastic Net and Random Forest
models. For simplicity, we present just the Elastic Net model results
here because it is the simplest and best-performing model for three

Figure 3
The Prediction and Variable Importance Results

Note. (A, B) The analysis predicting 1 year ahead (next year prediction) with a sliding window of 1 year; (C, D) The analysis with a varying time lag (varying
lag prediction). (A) and (C) The prediction performance of the Elastic Net model and Random Forest model to two baseline models: only the prior math
achievement scores at the time the predictor variables were measured (without any other questionnaire data); and prior math achievement combinedwith school
track. (B) and (D) The interpretation of the best Elastic Net model at each time point using SHAP variable importance values aggregated to the group level.
Ach. = achievement; SHAP= Shapley additive explanations; T= teacher-reported; S= student-reported; S, P= both student and parent-reported variables;
SES= socioeconomic status; IQ= intelligence quotient. See the online article for the color version of this figure.
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out of four time points. The variable importance results are illus-
trated in Figure 3B. There are a few notable observations. First,
prior math achievement appears to be one of the strongest predictors
of math achievement across all intervals. Second, consistent with
Figure 3A, the influence of prior math achievement indeed becomes
stronger over time, indicating that the interindividual stability of
achievement scores increases as students progress through the school
years. Third, aside from the school track being highly important for
Year 7 predicting Year 8, classroom context rated by teachers is the
strongest predictor among the other predictor variables and takes on
a “U”-shaped trend (being most predictive at the start and end of sec-
ondary school). Finally, while other factors (motivation and emo-
tion, cognitive strategies, and family context) have relatively small
contributions, the effects are relatively temporally stable, despite
the importance of prior achievement becoming stronger over time.10

We also analyzed the effect of each variable at the individual level
by plotting the SHAP values of individual students in Figure 4 (for
more details on how these are calculated, see Lundberg & Lee,
2017). For this analysis, we used the Random Forest model, which
enabled us to identify any potential nonlinear relationships. It is
important to highlight here that the Random Forest model is not
the same as the model depicted in Figure 3B (Elastic Net regression).
Due to the different underlying model mechanisms, the two models
(Elastic Net model and Random Forest model) will use the features
differently, thus likely producing slightly different predictions and
variable importance rankings. Therefore, an exact mapping of the
results cannot be made between the two figures.
In Figure 4, each panel is a different prediction year, moving for-

ward in time from top to bottom. The x axis represents the grouped
predictors. For each predictor, a dot represents an individual student
in the data. The dot’s color represents the predictor’s value for that
individual (red= high positive; blue= high negative, as data were
centered on zero). SHAP values are depicted along the y axis,
which is essentially the gain or loss (compared to the overall
mean) in predicted math achievement for that individual when that
predictor variable is in the model. Note that the SHAP value scores
plotted in Figure 3B and 3D are simply the sum of the absolute
SHAP values from all the individuals and the variables in the
group—but for the Elastic Net model, not the Random Forest model.
There are two important pieces of information we can derive from

the plot. First, if many of the dots are highly positive or negative on
the y axis, the predictor makes a strong contribution to the outcome
variable (either positively or negatively). This means that higher or
lower achievement scores were predicted for individuals as a result
of the value of this predictor. Second, if the color of the dots for a
certain predictor does not change smoothly from high (positive) val-
ues to low (negative) values (i.e., red [dark gray] to yellow [light
gray] to blue [dark gray]) or vice versa, this is an indication of poten-
tial nonlinear effects. This is because the change of the predictor var-
iable would not be linearly associated with the gain or loss in the
math achievement score.
We observe that, in general, the effects appear linear and homoge-

neous, and there is no strong indication of nonlinear main effects,
which is likely why the Elastic Net model (i.e., the linear machine
learning model) performed so well. Nevertheless, Figure 3A
shows that the Random Forest model was superior to the Elastic
Net model for Year 7→Year 8. However, using Figure 4, we cannot
immediately identify a nonlinear main effect. Therefore, it is likely
that the superiority of the Random Forest model for Year 7 →

Year 8 comes from other sources of nonlinearity that are not depicted
in this graph, such as the modeling of interaction effects.

As Figure 4 displays the importance values for individual features,
we can see that the single classroom context variables on their own
do not appear to be highly predictive. Instead, the importance is dis-
tributed fairly evenly among the variables in the group, and it is their
combined effect that matters. This is in contrast to IQ, which is mea-
sured using multiple items but recorded as one variable in our data.
Figure 4 shows that, in the Random Forest model, IQ as a single var-
iable is more predictive than any of the class context variables on
their own.

Another observation from Figure 4 is that the individual variable
importance measure that varies the most between the years is stu-
dents’ math grades. In Year 5→ Year 6, math grade is an important
linear predictor, where a higher prior grade strongly predicts higher
math achievement. This relationship becomes less clear as time goes
on, and by the final prediction (Year 8→ Year 9), the effects are not
obvious (in fact, grade in music, the variable to the left, is more
important). It is likely that as time passes and prior math achieve-
ment becomes more important, the predictive capacity of math
grade will already be captured by prior achievement. In other
words, in the later years, there is less additional predictive utility
in math grades when prior achievement is in the model.

Varying Lag Prediction

To better understand the different variables’ predictive capabili-
ties when predicting further into the future, we varied the number of
years ahead of time that math achievement was predicted. For this
analysis, the same set of predictor variables from Year 5 were
used to predict math achievement at Years 6, 7, 8, and 9. The pre-
diction performance can be found in Figure 3C. The best machine
learning model could predict future achievement scores with predic-
tion R-squared values of Year 5 → Year 6= .70 (MAE= 34.99),
Year 5 → Year 7= .68 (MAE= 34.52), Year 5 → Year 8= .67
(MAE= 39.48), and Year 5 → Year 9= .63 (MAE= 43.16).
Note, again, that the error should be interpreted in relation to base-
line measures; for the MAE plotted next to the mean and prior per-
formance baselines, see the online supplemental materials. As can
be seen by the pink bar in Figure 3C, the predictive power of
prior achievement (i.e., achievement at Year 5) decreases as the
interval between the predictors and outcome becomes longer,
with a particular drop for Year 5→Year 8 (lag= 4). The prediction
R-squared values for the prior achievement baseline are .58, .57,
.48, and .50, respectively. These findings indicate that it is more dif-
ficult to predict future math achievement scores solely from the Year
5 achievement when the time interval is larger, specifically 3 years
or longer. The analysis also showed that the school track added
additional predictive power, which somewhat increased in later
years. Finally, the analysis demonstrates the additional predictive
utility of other predictors (i.e., survey data, grades, and IQ)
was greatest at the longer time lags. Interestingly, the additional

10 Note that there is not a direct relationship between the prediction
R-squared values in Figure 3A and the SHAP importance in Figure 3B
because (i) in Figure 3A, the model performance includes not just the sum
of predictive utility of the individual variables, but also their interactions;
and (ii) SHAP importance is just one way of measuring importance, and is
not directly related to the final prediction R-squared of the model.
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predictive benefit of the other variables, beyond prior achievement
and school track, seems to be relatively stable regardless of the time
lag: .07 (lag= 1), .09 (lag= 2), .10 (lag= 3), and .07 (lag= 4).

The results from the variable importance analysis in Figure 3D con-
firm the aforementioned observations. First, prior math achievement
scores become less important when predicting math achievement

Figure 4
Graphs Showing the Directional and Individual Level Effect of the Variables on the Prediction of Math Achievement for the “Next Year
Prediction” Analysis

Note. Here, the Random Forest model is used to enable a visual analysis of potential nonlinear effects. Each dot represents a different individual. The y axis
depicts the directional SHAP value so that a positive SHAP value represents a predicted increase in math achievement, and a negative value indicates a pre-
dicted decrease. The color bar indicates the predictor variable’s value, where red (dark gray) is a high positive value, yellow (light gray) is a value close to zero,
and blue (dark gray) is a high negative value. The (school) track and the demographic and SES predictors are binary with values 1 (orange [medium gray]) and
0 (yellow [light gray]); all other variables’ values are normalized and centered on 0. Ach.= achievement; Demo= demographic; SES= socioeconomic status;
IQ= intelligence quotient; Motiv.=motivation; Emot.= emotion; Fam.= family; S, P= both student and parent-reported variables; Cog. Strat.= cognitive
strategies; S= student-reported; T= teacher-reported; SHAP= Shapley additive explanations. See the online article for the color version of this figure.
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further into the future. Instead, school track in Year 5 is an important
predictor of math achievement, particularly for predicting Year 8 and
Year 9 math achievement (lags= 3–4). Classroom context in Year 5
(as reported by the teacher) is also important, although less so when
predicting Year 7 achievement. Classroom context (as measured by
both the teachers and students) shows a drop in importance when pre-
dicting Year 7 achievement, the year where the students in the sample
had the greatest changes in teachers. Notably, groups of variables mea-
sured using self-report questionnaires and cognitive tests (motivation
and emotion, IQ, family context, and cognitive strategies) continue
being important in predicting math achievement up to 4 years into
the future, even when the overall predictive power of the model
drops off.
Figure 5 allows us to look for any nonlinear effects or changes in

how the model uses the individual predictors over time. Each panel
represents a different year’s math achievement being predicted, with
the time lag increasing from top to bottom. As with the next year pre-
diction analysis, the effects appear mostly linear. However, there is
some heterogeneity across individuals, represented as “outlier” dots.
Specifically, there are some individuals for whom grades were more
predictive than their peers. A second observation related to the bot-
tom panel (Year 5 → Year 9, lag= 4) is that the classroom context
variables (as reported by the teacher) are more predictive relative to
other time lags. This can also be seen in Figure 3D, where the class-
room context (T) group, denoted by the yellow line, is highly impor-
tant when predicting four years into the future. Teachers’ enthusiasm
is particularly important, as indicated in Figure 5. Therefore, we can
infer that the higher importance of classroom context when predict-
ing achievement 4 years into the future is largely attributable to the
teacher’s enthusiasm in Grade 5.

General Discussion

This study used a machine learning approach to predict and better
understand the development of math achievement in secondary
school using longitudinal survey data. Overall, we find that math
achievement can be predicted to a high degree of accuracy, even up
to 4 years into the future. Importantly, we gained several interesting
observations by examining the predictive utility of different groups of
predictors, which we discuss below.

Substantive Implications

When predicting the subsequent year’s math achievement, the
results show that as students go through the school years, prior
math achievement becomes more important as a predictor. This indi-
cates that the interindividual stability of achievement scores increases
as students progress through secondary school. Previous study find-
ings have aligned with this trend (Geary et al., 2017; K. Lee &
Bull, 2016; Lin & Powell, 2022). Our results confirm this with a
large representative sample of longitudinal panel data. This trend is
also consistent with common findings that the genetic influence on
achievement scores increases across school years (Selzam et al.,
2017; von Stumm et al., 2020). In fact, increased genetic effects
would be expected to lead to increased stability. Genetic effects
can increase stability because genetics are stable and can exert stable
effects over time, while environmental effects are unstable and can
lead to increased variability. Importantly, with the increased stability
of achievement scores, the relative contribution of other predictors

(e.g., cognitive, motivational, affective, and parental factors)
decreases (e.g., Figure 3A). These findings suggest that educational
interventions (i.e., remedial tutoring) may be most effective when
provided early on when the link between existing achievement and
future achievement is still relatively weak. Thus, in relation to the
question of whether there is a “critical period” when interventions
should be conducted to improve students’ math achievement, our
results suggest that the earlier in secondary school, the better.

In the next year prediction analysis, the influence of school track
was strongest where Year 7 was predicting Year 8. At the time of
the PALMA study, a policy change was being made in Bavaria.
The old policy implied that by the end of Year 4, the high-performing
students would be sent directly to Gymnasium, while all other stu-
dents were educated in a comprehensive system, and the differentia-
tion between intermediate-track and vocational-track only happened
after Year 6. The new policy implied that students would be streamed
into either intermediate or occupational track directly after Year
4. The PALMA sample comprised students from both policies. In
regions where the old policy was still in place, new intermediate
schools were recruited after Year 6 if they took on a considerable
number of PALMA cohort students. As a result, many students in
the PALMA sample changed track between Year 6 and Year 7
(from comprehensive—coded as vocational—to intermediate). This
could explain why the school track became more predictive when
predicting next year’s math achievement after this reshuffle period.
However, as we cannot know which track changes resulted from
the policy change and which were initiated by the school/teacher, it
is difficult to hypothesize further about these results.

Second, the next year prediction model also shows that teacher-
reported classroom context is the strongest group of predictors of
math achievement after prior math achievement and school track.
This is an important finding, as it is also a highly changeable predic-
tor, which could be manipulated in practice (compared to more sta-
ble variables such as prior achievement). Classroom context
includes various instructional strategies that teachers use during a
class. The importance of teaching and instructional quality has
been previously documented in educational research (e.g.,
Kunter et al., 2013), and our results corroborate these findings.
Interestingly, the classroom context variables were more important
than the home environment, motivation, and emotion variables. It
is worth noting, however, that these findings emerged in the present
study, which had mathematics as the focal domain. Formal learning
at school is clearly the predominant driver of secondary-level math-
ematics skill development. In contrast, home environments are less
likely to provide informal learning opportunities for those skills—
this might be different for other domains, such as the literature or
the arts. The effects of classroom context on math achievement
were strongest at the beginning and end of secondary school (Year
5 → Year 6 and Year 8 → Year 9). In Bavaria, at the time of the
data collection, Year 7 is when students had their largest changes
in teachers (i.e., students were more likely to have the same teachers
in Years 7 through to 9, which would be different from those they
had for Years 5 and 6). This could explain the “U”-shape in the
importance of the classroom context variables across secondary
school years.

Moreover, the teacher-reported classroom context was much more
predictive than students’ reports about the classroom, even though
most of the measures used the same items for teacher and student
reports. Furthermore, student reports were not highly correlated with
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teacher reports (see Figure 2). This suggests that useful and important
information about teaching and classroom environment can be col-
lected from teachers rather than students. However, one possible

methodological reason why teacher-reported variables were especially
predictive could be that teacher reports—unlike student reports—were
not highly correlated with other student-reported predictors in the

Figure 5
Graphs Showing the Directional and Individual Level Effect of the Variables on the Prediction of Math Achievement for the “Varying Lag
Prediction” Analysis

Note. Here, the Random Forest model is used to enable a visual analysis of potential nonlinear effects. Each dot represents a different individual. The y axis
depicts the directional SHAP value so that a positive SHAP value represents a predicted increase in math achievement, and a negative value indicates a pre-
dicted decrease. The color bar indicates the predictor variable’s value, where red (dark gray) is a high positive value, yellow (light gray) is a value close to zero,
and blue (dark gray) is a high negative value. The (school) track and the demographic and SES predictors are binary with values 1 (orange [medium gray]) and
0 (yellow [light gray]); all other variables’ values are normalized and centered on 0. Ach.= achievement; Demo= demographic; SES= socioeconomic sta-
tus; IQ= intelligence quotient; Motiv.=motivation; Emot.= emotion; Fam.= family; S, P= both student and parent-reported variables; Cog. Strat.= cog-
nitive strategies; S= student-reported; T= teacher-reported; SHAP= Shapley additive explanations. See the online article for the color version of this figure.
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model, allowing them to explain additional variance in the achievement
scores. For example, Figure 2 shows student-reported classroom
instruction variables were correlated with students’ motivation, emo-
tions, and use of learning strategies (see also Jaekel et al., 2021). In
order to rigorously test the utility of teacher versus student reports, how-
ever, the teacher-reported variables should be pitted against the
student-reported variables aggregated at the classroom level. Overall,
the findings suggest that teacher-reported information has a unique pre-
dictive value and highlight the advantages of gaining information from
different stakeholders’ perspectives.
For the varying lag prediction analysis (i.e., Year 5 math achieve-

ment predicting future math achievement with varying time lags,
from 1 to 4 years), not surprisingly, the further into the futurewe pre-
dicted, the less important Year 5 math achievement became. This
simply means that future prediction of math achievement from
achievement in Year 5 becomesmore difficult as the prediction inter-
val increases. Instead, the school track students were in at Year 5
became more important as the time lag increased. Importantly, how-
ever, other groups of predictors, such as motivational, emotional,
cognitive, classroom, and family factors, remained stable in their
predictive importance regardless of the time lag, up to 4 years into
the future. As a result, the effects of these predictors became more
important relative to prior achievement. Therefore, it is likely that
these processes are slower to take effect but are still critically impor-
tant long-term, or when the effect of prior achievement is reduced.
This is consistent with many findings in psychology that have
many smaller cumulative effects (Götz et al., 2022) as well as theo-
retical perspectives indicating that motivational and socio-emotional
factors can have long-lasting effects (e.g., Murayama, 2022; Yeager
& Walton, 2011). However, while some studies suggest the impor-
tance of these factors for long-term rather than short-term prediction
(e.g., Murayama et al., 2013), to our knowledge, little research has
systematically examined the stability of the effects of these factors
on math achievement. In fact, many of the statistical models that
researchers typically use in longitudinal data analysis (e.g., lag-1
cross-lagged panel models) implicitly assume that the effects of
these factors would decrease over time. Future studies may want
to investigate the relative longevity of the effects of various student
and context factors on math achievement.
Finally, although the main goal of this article was to produce the-

oretical insights to be used in research in educational psychology, we
highlight that such insights could also be useful for practitioners and
other stakeholders who might design interventions. For example, we
find that the relationship between past and future performance
increases as students progress through the school years, suggesting
that educational interventions are likely most efficient early on.
However, for several reasons, we do not envisage our predictive
model being directly used as a tool by schools in practice. First,
most schools outside of the context of this study would not have
access to the vast amounts of questionnaire data used to train our
model. Second, even within the sample of schools in this study,
data would ideally need to be collected and updated annually,
which would be extremely resource-intensive. Our results do, how-
ever, suggest that resources might be best directed toward collecting
data from teachers about the classroom context. Finally, there are
additional ethical questions that are raised when models are applied
in practice, particularly in relation to the use of demographic vari-
ables and potential biases present in the data (Baker et al., 2023;
Cohausz et al., 2023; Deho et al., 2027; Yu et al., 2021).

Interestingly, our model does not appear to overly rely on demo-
graphic features to make its predictions. This could be due to prior
achievement, school track, and the classroom context variables
being able to explain any differences between demographic groups.
However, if our model were to be deployed in practice, its perfor-
mance would need to be evaluated across different demographic
groups to check for fairness and possible bias.

Methodological Implications

Inmost cases, we found that the linearmodel (the Elastic Netmodel)
was the better-performing machine learning model. This, alongside
analyzing the patterns of SHAP importance in Figures 4 and 5, sug-
gests that the relationships between the predictors in the data set and
math achievement are linear and independent—the impact of nonlinear
or interaction effects appeared limited. Similar results have been
observed before for survey data using machine learning methods
(e.g., Jacobucci & Grimm, 2020; Lavelle-Hill et al., 2020; Salganik
et al., 2020). The detection of interaction effects in survey data is
often underpowered (McClelland & Judd, 1993), which may be why
we did not observe strong interaction effects. However, it is important
to note that we only compared one linear and one nonlinear model in
our analysis. Thus, a different nonlinear model (such as an XGBoost
algorithm; Chen & Guestrin, 2016) may have performed better than
the RandomForest algorithmwe used. Despite this, we decided against
training more complex models after we noticed the superiority of the
simpler linear model—in line with the recent discourse of “simple is
better” when producing explanations from machine learning models
(Rudin, 2019).

Regardless of the reason for the superiority of the linear model in
our analysis, the present results imply that the utility of a machine
learning approach in this kind of data set may be less in modeling
nonlinear effects and interactions but in being able to consider
many different predictors at once, while also guarding against over-
fitting. Importantly, we combined the data-driven approach of
machine learning methods with theory-driven survey design
(using reliable and valid measures of psychological constructs),
data collection, and variable grouping (plus a rigorous methodology
for interpretation). We believe that this type of hybrid approach
could be an important pathway forward for applying machine learn-
ing methods to educational data, helping to answer the call for
greater integration of theory with predictive modeling in educational
research (Rogers et al., 2016).

When interpreting our findings, it is important to highlight that
our predictive models are constructed in a data-driven manner rather
than top-down using causal inference, and therefore, like with other
regression models, we should not interpret the findings as causal.
Although variables were only input into the model if there was
some theoretical reasoning about their possible causal relationship,
with machine learning, it cannot be specified how the model should
use the variable (e.g., specify mediation or moderation in a path anal-
ysis). This point is particularly important given that we have many
predictors in the model. It is possible that some predictors that had
a causal effect on the outcome did not receive much credit because
mediators of their effects were also included in the model, which
may have reduced their direct effects. For example, the importance
of IQ for predicting math achievement appeared to be relatively
low, in contrast to some earlier findings (e.g., Sternberg et al.,
2001). We hypothesize that in our analysis, the effect of IQ is
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dampened due to the inclusion of prior achievement as a predictor,
which is more proximal to the outcome variable than IQ. In our
data, IQ and prior achievement were correlated (Pearson r= .63).
Combined with the relatively small predictive effect of IQ on the out-
come variable, this pattern of findings suggests that the effect of IQ
was mediated through prior achievement. This interpretation aligns
with evidence that measures of fluid intelligence are more predictive
of academic success when children are younger and have less prior
knowledge (Alloway & Alloway, 2010). Furthermore, the effect of
motivation on math attainment may have been mediated by the
choice of cognitive strategy, whichmay have reduced the main effect
of motivation. Our predictive models are also unidirectional and thus
do not explicitly model any of the reciprocal effects of math achieve-
ment that have been observed in prior studies (Arens et al., 2017;
Hong et al., 2010; Marsh et al., 2022; Pekrun et al., 2017, 2023).
Although our methodology has many advantages, it also has its lim-

itations. First, while our data aimed to incorporate most of the relevant
variables related to math achievement based on expert inputs, certain
predictors were not included. For example, some studies have indicated
the importance of students’ belief about effort in predicting math
achievement (e.g., mindset; Blackwell et al., 2007), but we did not
have these variables in the PALMA data. Therefore, it is possible
that some results could change by including overlooked variables.
Second, some of the findings should be interpreted in the context

of the German school system, which has a specific way of putting
students in tracks. While we used an out-of-sample cross-validation
procedure to test generalizability, this method ensures generalizabil-
ity only for the population from which the sample was drawn. In
other words, we cannot be sure that our findings generalize to
other study populations (e.g., students from different countries
with different cultural or institutional contexts). Future studies
could examine whether and how the present approach can be helpful
in cross-cultural research on students’ achievement.
Finally, it is also important to recognize that, as is often the casewith

big data analyses in psychology and education, our analysis is a second-
ary data analysis. Thismeans that some of the variable transformations,
including the Rasch modeling of the outcome variable, had already
been performed before we received the data. This has implications
for potential information leakage, as strictly speaking, any data transfor-
mations should be made within the model training phase instead of
being performed on the full data set. This is to prevent information
about the test data from leaking into the training data. However, in
the current investigation, any possible effects of leakage are expected
to be minimal. The reason is that competence scores were estimated
solely based on the student’s answers to the mathematics test items,
independent from the predictor variables. Therefore, information
about the outcome is not confounded with information about the pre-
dictors. However, it is important to highlight this limitation in light
of the ongoing discourse around transparency, “human-in-the-loop”
overfitting (Hofman et al., 2017), and replicability of machine learning
analyses (Gibney, 2022; Verstynen & Kording, 2023).
This analysis aimed to model all features simultaneously to see how

important the different feature groups arewhen controlling for all other
variables in the model. This “all-inclusive” approach was chosen as it
most closely mimics the real-world scenario where many variables are
interrelated and jointly contribute to achievement. We acknowledge
that our approach is not the simplest, nor necessarily the most intuitive,
but we believe it best captures the nuances that exist when predicting
students’ math achievement.

Conclusions

In summary, we utilized a longitudinal machine learning method-
ology to predict standardized math achievement scores in German
secondary school students. Our approach enabled the simultaneous
modeling of 105 different predictors and achieved high accuracy,
validated on data unseen by the model. We also identified key
temporal trends in the predictors’ importance, most noticeably the
increasing predictive power of prior achievement on future achieve-
ment. In addition, we found that data collected from surveys and cog-
nitive tests added additional prediction accuracy beyond prior
achievement and that their relative importance increased when pre-
dicting further into the future. Moreover, we found that classroom
context was highly predictive when reported by the teachers (but
not by the students). These results are particularly useful and appli-
cable for researchers and practitioners whowant to gauge the relative
importance of many predictors of achievement, to identify when
they matter most, and from whom to collect relevant data.
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