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Abstract. Reconfigurable manufacturing systems are becoming the only
viable option to respond to changing product volumes and product spec-
ification, which are currently major challenges for the manufacturing
industry. Part of this adaptation requires vision systems to be quickly
updated to handle new unseen products. For deep learning-based vision
systems, this means re-training on images that might not be available.
Although there is some existing work on synthetic image generation in
manufacturing contexts using a variety of domain randomisation tech-
niques, there is a lack of understanding of which domains are critical in
the effectiveness of the resulting trained model. There are currently no
open tools to systematically conduct such ablation studies. This paper
presents a tool based on Blender and CAD models to enable the study of
domain randomisation in the generation of synthetic-only datasets that
can yield accurate object recognition models. Preliminary results to val-
idate the implemented domain randomisation techniques and the ability
to generate the synthetic images are presented. Once generated, synthetic
data sets are used to train a YOLOv8 model for object detection as a
second tool validation step. Future work will look at performing ablation
studies and expanding the range of domain randomisation methods to
further study the capabilities of synthetic images.
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1 Introduction

Reconfigurable manufacturing systems (RMS) are starting to get more atten-
tion as a viable option to improve responsiveness and resilience of current man-
ufacturing systems [1]. With the current advancements of object detection and
segmentation using Machine Learning (ML) [2], it is possible for these systems
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to flexibly perform different tasks such as pose estimation for object pick and
place [3], quality inspection [4], among others. To train such ML models, a large
number of labelled images need to be available, with enough variability (noise,
background, rotation, obstruction) to achieve generalisation. With a changing
manufacturing environment and new product specifications, it is challenging to
have large amounts of real labelled images available. Although pre-trained mod-
els can be leveraged [5], some real images of the new object are needed. One way
to address this challenge is to use synthetic images. Recent works have shown
that domain-randomised, synthetic training images can yield object detection
accuracy equivalent to real training images. However, there is a lack of under-
standing of which domains are critical for generating a fully synthetic data set
that can yield such results. To understand this, more exhaustive and systematic
ablation studies need to be performed across multiple manufacturing scenarios.
There is currently no open implementation tool that can support such studies.
Domain randomisation methods can be implemented in various ways and so open
implementations need to be available to ensure comparability of ablation studies.
With this context, this paper presents an open tool for the automatic generation
of synthetic images and conduction of ablation studies. The tool is developed in
a modular way to easily incorporate additional domain randomisation methods.
To validate the implementation of the tool, tests of image generation and ini-
tial training of an object detection model using YOLOv8 have been performed.
The rest of the paper is organised as follows. Section 2 provides a state-of the
art on current developments in domain randomisation for synthetic images. Sec-
tion 3 introduces the methodology proposed for implementing different domain
randomisation techniques using Blender to manipulate the virtual scene. Pre-
liminary results on the implementation validation of the tool are presented in
Section 4 and Section 5 presents conclusions and future work.

2 Related Work

Automated pipelines for developing manufacturing-relevant synthetic images is
an area of research that has got recent attention. An emerging way to generate
synthetic data is through the use of generative models. Jain et al, for example,
use Generative Adversarial Models to generate new images from existing real
images of hot-rolled steel strips for surface defect detection [6]. Another way is
through computer-aided design (CAD) models. Synthetic object data for nearly
all manufactured parts is available in the form of a CAD file. Although this
opens the door to automatic synthetic image generation, there is a reality gap;
a model trained using synthetic images only will learn to recognise the syn-
thetic object and not its real-life counterpart. One way to overcome this is to
make the synthetic images as realistic as possible using object textures, colours,
and scene lighting that matched the real object and scene [7]. Alexopoulos et
al. present an automated pipeline for synthetic data generation using digital
twins [8], introducing details of the real manufacturing environment to make the
resulting images more realistic from a context/background point of view. These
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approaches assume some of the working environment is known, which may still
be able to yield general deep learning models provided such models do not pick
up on features of the environment itself. A contrary approach is using synthetic
images that utilise the full range of visual variation that can be achieved synthet-
ically, this is referred as domain randomisation. Conceptually, a model trained
under such high synthetic variation will see the real world as just another one of
these environments [9]. Dekhtiar et al. propose a methodology based on the use
of CAD models and several domain variations such as random rotation, back-
ground, saturation, contrast, brightness and blurring [10]. The authors success-
fully leveraged pre-trained models to classify objects from the synthetic images.
The authors implement some of the known domain randomisation techniques.
These works, however, do not focus on the study of the randomisation tech-
niques and their influence in object detection accuracy. Manettas et al. propose
a synthetic image generation pipeline focusing on only top and bottom views of
the object and focusing on varying the rotation achieving very good accuracy
from only those view points [11]. The studies presented by Tobin et al, Hinster-
stoisser et al. and Trembaly et al. [9, 12, 13], present a more in depth study on the
influence of different domain randomisation techniques in object detection accu-
racy. Through a series of ablation experiments, all these three studies conclude
that the resultant models outperform their real image-trained counterparts. In
each methodology, one or more of the domain randomisation parameters are ex-
cluded/weighted differently for each training data set and results are compared.
Hinterstoisser et al. found that blurring and light colour are the most influen-
tial factors in detection accuracy. By varying the weight of randomisation types,
Toby et al. found that the object detection accuracy was reliant on all domains
except for noise. Finally, Tremblay et al. excluded randomisation types one at
a time and found lighting position and textures to have the greatest effect on
object detection accuracy. Overall, the three studies combined do not agree on a
clear answer to the importance of each domain randomisation type. It is consis-
tent, however, that lighting randomisation has a substantial effect on accuracy
relative to other domains.

3 Methodology

In this work, a methodology for generating and labelling synthetic images using
CAD models is introduced. As shown in Figure 1, there are for image generation
steps, followed by a ML model development step to enables the ablation study.
The automation pipeline was developed in the 3D physics simulator Blender [14].
Within Blender, a CAD part and a virtual camera can be manipulated in a 3D
environment to capture images (Step 1). Here, object, background, and lighting
are fully customisable, making this software a good option for implementing
modularised domain randomisation methods. This is important for allowing the
user full customisation of each domain during ablation studies (source available
in [15]).
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Fig. 1. Synthetic image generation pipeline used for the proposed tool using domain
randomisation (DR) techniques.

3.1 Camera Positioning

For positioning the camera, the various angles from which to take the images
must be decided. One potential approach is to use the 12 vertices of an icosa-
hedron as the camera positions [12]. More vertices can be created by repeatedly
splitting each face of the icosahedron to create additional vertices [16]. Although
this method provides equal coverage of angles, it limits the number of angles.
A more randomised approach is used by Tobin et al. [9]. Here, the position
and orientation of the camera are randomised within the 3D space for each im-
age. However, images are only captured from above the objects. In this study,
a method similar to the one proposed by Dekhtiar et al. is implemented [10].
Here, the camera moves around the object on a primary axis. Each time this axis
intercepts a rotation axis, the camera then follows the rotation axis, taking a set
number of images of the part along the way. By allowing the user to define the
number of rotation axes and image points, a unique angle can be used for every
image regardless of the number of images. In addition, this approach, compared
to having a fixed camera and a rotating object, avoid restraining the variation
in the lighting between images.

3.2 Lighting

With the camera in position, the remaining domain randomisation features need
to be set before the image is captured (Figure 1, phase 3). Lighting is the most
influential domain randomisation type for object detection accuracy according
to the literature. Tobin et al. varies three light domains: number of lights, colour
and position [9]. The same study also restricts the lighting conditions to those
that are offered by the lights within the software. Lighting in the real world
is far more complex than that generated by spotlights. In this study, a more
diverse lighting method was used: high dynamic range images (HDRIs). HDRIs
are a type of 360-degree image containing complex lighting [17] that can be
wrapped around the scene in Blender. When used as a background, they impart
the full range of lighting conditions from that image onto the object. For the
tool, a random HDRI background is automatically loaded into the scene for
every image taken. Each HDRI imparts lighting of varied position, colour, and
intensity on the object, having complex bright and shaded areas. Thus, all three
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lighting domain types are randomised using one HDRI loading function. With
this, and all remaining domain randomisation types added (i.e. random colour,
background, texture, position and distance), the image is captured and ready
for labelling.

3.3 Labelling

Accompanying all images used for training object detection models must be an
image label (Figure 1, phase 4). In this study, image label data was retrieved
using the Python library OpenCV. To avoid background interference, a duplicate
image is taken with the object in an identical position, but against a black
background. This duplicate image is then processed using OpenCV to extract
labelling information. After phase 2 (Figure 1), the position of the object in the
camera frame is unchanged. Hence, the label extracted from the duplicate image
can be directly used as the label for the final image.

4 Tool Validation and Verification

To validate and verify the implemented domain randomisation techniques and
the tool as whole, a test to generate a set of synthetic images given a CAD model
of a real part was performed followed by the development of a deep learning
model for detecting the part in a real environment. The testing of the image
generation process starts with inputting first the parameters for each of the
domains to be randomised. This is done via a simple Python-built user interface,
where domains to randomise in the images can be selected by entering either
1 (select) or 0 (deselect), and introducing the number of images to generate.
Finally, a set of background images, HDRI lighting images, and part(s) to be
used by the tool are uploaded to the working directory. Once this is set up,
images are generated by the tool. The following parameters were selected for
verifying the correctness of the domain methods implementation:

– The number of axes for positioning the camera was 45, with 45 images being
taken on each axes (45*45 = 2025 images)

– Distance was randomly selected using a set of 4 different camera focal length
values. These range from the focal length where the object fills the image,
to one 40mm less ( -10mm, - 20mm, -30mm, -40mm).

– The object roughness, how reflective it is, and colour were randomised.
– Backgrounds that depict different examples of tables available on this github

project [18] were used and selected randomly for each generated image. It is
worth noting that there is no intention to replicate the real environment in
the synthetic data.

– The lighting is randomly selected from a set of 3 HDRI images: a studio lit
room, an indoor lit house, and a lit town at night.

– The object position is randomised in both X and Y directions.
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Fig. 2. Examples of images generated randomising background, lighting, position, dis-
tance and texture.

Once generated, the images were visually inspected to verify each domain
was rendering the expected results according to their implementation. Figure 2
shows some examples of the generated images. As it can be observed, changes in
rotation, texture, distance are present. Texture does not seems to be particularly
noticeable, but reflective properties of the object can be observed.

Fig. 3. Box, classification and distribution focal loss and precision during training
on the training (top) and validation (bottom) sets. Validation shows mean average
precision at different intersection over union thresholds.

After this, the images were used to train a YOLOv8 model (Ultralytics
Python Library). This model was chosen for being a widely used and efficient
model when working in real time [19]. The complete set of 2025 images were used
for training and further 100 images were generated and used as a validation set.
For testing, 20 real images taken within a robotics cell at University of Notting-
ham Robotics Lab where used, which contain white and black 3D printed parts
corresponding to the CAD model. For using YOLOv8, the last layer was modi-
fied to introduce the class “Sensor Lid”. The pre-trained model was then trained
for 30 epochs as it was observed on the training/validation curves (Figure 3) that
accuracy results in the validation set were already reaching the highest precision.
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The resulting model was tested on the real images (some of them shown in Fig-
ure 4). The model was able to detect 47% of the white lids but failed to detect
any of the black lids. Although the colour is highly varied in the training images
and is not expected to play a factor in detection, it is evident that the model
struggles with this particular colour. This may be related to the YOLOv8 model
itself using the colour and contrast of the object. Also, some particular angles
seem to be difficult to detect. It is worth noting that no particular pose strategy
was used in this initial test, which according to Hintertoisser et al. can highly
increase the accuracy of the model. Despite the low accuracy, it was possible to
successfully validate the implementation which then will allow thorough ablation
studies to be carried out. The results highlight why it is indeed important to
understand the importance of domains and suggest that some domains are more
useful to be randomised and others to be more strategically used.

Fig. 4. Examples of tested real images with their corresponding bounding boxes.

5 Conclusions and Future Work

Advancing the object detection accuracy that can be achieved by using domain
randomisation is the next step in facilitating object detection, and enhanced
flexibility in manufacturing. In this work, a tool for testing domain randomisa-
tion for the creation of synthetic images in manufacturing is presented. The lack
of consistency between the domains randomised in recent studies, and the lim-
ited industrial testing of synthetically trained deep learning models demand for
a novel range of domain randomisation types, combining all of those previously
tested. Preliminary results have provided an initial validation of the implemen-
tation. Future work will look at performing different ablation studies as well as
to implement distractor objects.
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