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APPENDIX A
SIMULATED EXAMPLES WITH ADDITIVE NOISE

We repeat Simulated Example 1 from the main article with
additive pointwise noise, i.e., for each point cloud, we
independently generate additive noise from a zero-mean
bivariate Gaussian distribution with covariance r(0.1)2I2,
where r is the radius of the circle that underlies the ‘noise-
less’ point cloud. Two examples of point clouds and their
corresponding degree p = 1, K = 1-dimensional landscape
functions are shown in panels (a) and (c), and (b) and (d)
in Figure 1, respectively. The landscape functions for all 20
point clouds are shown in panel (e). Most of the landscapes
generated from the noisy point clouds are similar in shape
to those from the ‘noiseless’ setting. However, sometimes
there is an extremely small peak, corresponding to noise,
in some of the landscape functions. This is most visually
apparent in panel (f), where there is an extremely small
peak at t ≈ 0.25 prior to the major peak in many of the
landscape functions. Due to the small magnitude of this
noise-induced feature, additive noise appears to have little
effect on landscape alignment and mean computation. The
mean based on aligned landscapes, visualized in panel (g),
is consistent with that of a circle. There is considerable
variance reduction in the denoised/transformed persistence
diagrams in panel (j), via reparameterizations shown in (i).
Importantly, points corresponding to the main feature of the
point clouds are collapsed to a single point, while points
near the diagonal, corresponding to features created by the
additive noise, remain near the diagonal. Such clarity is
absent in the noisy persistence diagrams in (h).

Next, we repeat Simulated Example 2 from the main
article with additive noise. For point clouds in the blue
group (single circle), we independently generate additive
noise from a zero-mean bivariate Gaussian distribution with
covariance r(0.1)2I2, where r is the radius of the circle
that underlies the ‘noiseless’ point cloud. We repeat this
procedure for point clouds in the red group, but noise is
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Fig. 1. Same topology with scale and sampling variabilities as well as
additive noise: (a)&(c): Two examples, from 20, of randomly generated
point clouds on circles with randomly chosen radii, random sample sizes
and additive noise. (b)&(d): Corresponding persistence landscapes. (e)
Persistence landscapes {Λi}20i=1 of 20 point clouds. (f) Aligned persis-
tence landscapes {Λi(γi)}20i=1. (g) Mean landscape after (blue) and
without (red) alignment. (h) Noisy persistence diagrams {(bij , dij)}20i=1
from 20 point clouds. (i) Estimated reparameterizations {γi}20i=1. (j) De-
noised/transformed persistence diagrams {(γ−1

i (bij), γ−1
i (dij))}20i=1.

generated such that the covariance depends on the radius
of one of the two circles that it belongs to. A single example
of a point cloud in the blue and red groups is shown in
Figure 2(a)&(c); the corresponding degree p = 1, K = 2-
dimensional landscapes are shown in panels (b) and (d). The
shapes of the landscapes in each group are similar to those
displayed in the ‘noiseless’ setting. However, here, we notice
some differences in PCA carried out on aligned landscapes.
The first direction of variability, viewed in the top row of
panels (e)-(g) appears to be associated with scale variability
in the point cloud data; the results here are displayed in
the same manner as in Figure 6 in the main article. On
the other hand, as confirmed in the top row of panel (h),
the second direction of variability appears to be associated
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Fig. 2. Different topology with scale and sampling variabilities as well
as additive noise: (a)&(c) Two examples, from 20, of randomly gen-
erated point clouds from topologically different spaces (blue and red,
respectively, in all relevant panels). (b)&(d) Corresponding degree p = 1,
K = 2-dimensional persistence landscapes. (e) -1, (f) 0, (g) +1 standard
deviation from the mean landscape in the first PC direction, and (h)
projection of landscapes onto the first two PC directions: following align-
ment (top) and without alignment (bottom). (i) Noisy and (k) denoised
persistence diagrams. (j) Estimated reparameterizations.

with the homology of the point clouds, i.e., most of the
red point clouds, generated from two connected circles,
have a positive second PC score, while most of the blue
point clouds, generated from a single circle, have a negative
second PC score. Since noise can distort topological features,
there does appear to be some overlap between the two
classes based on the first two PC scores. This observation
is in contrast to the ‘noiseless’ setting, where the two classes
are clearly separated based on the first PC score alone.
The corresponding PC scores computed based on unaligned
landscapes, shown in the bottom of panel (h), provide no
such distinction between the two classes. A comparison of
the denoised persistence diagrams presented in Figure 2(k)
to their noisy counterparts in panel (i) shows the benefits
of our approach. While the clustering of features in panel
(k) is not as clear as in the ‘noiseless’ setting, one can still
extract useful homological information from the denoised
persistence diagrams. On the other hand, this is not possible
based on the noisy diagrams in panel (i).

In Figure 3, we illustrate the effects of increasing point-
wise noise on alignment of persistence landscapes and
denoising of the corresponding persistence diagrams. The
point cloud data considered in the left (low noise), middle
(medium noise) and right (high noise) columns in this figure
were generated by first uniformly sampling 30 points on
a circle with radius r = 1 and then adding pointwise
noise sampled from a zero-mean Gaussian distribution with
covariance (0.1)2I2, (0.25)2I2 and (0.5)2I2, respectively. For
each of the three examples, we generate 20 point clouds in
this manner, and consider their alignment and averaging
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Fig. 3. Same topology and scale with increasing pointwise noise: Point
clouds in the left, middle and right columns were generated with noise
variance of (0.1)2, (0.25)2 and (0.5)2, respectively. (a)-(c) Example of
one of the 20 point clouds with additive pointwise noise. (d)-(f) Degree
p = 1, K = 1-dimensional persistence landscapes {Λi}20i=1. (g)-(i)
Aligned persistence landscapes {Λi(γi)}20i=1. (j)-(l) Mean landscape
after (blue) and without (red) alignment. (m)-(o) Noisy persistence dia-
grams. (p)-(r) Estimated reparameterizations {γi}20i=1. (s)-(u) Denoised
persistence diagrams {(γ−1

i (bij), γ−1
i (dij))}20i=1.

using degree p = 1, K = 1-dimensional persistence land-
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Fig. 4. Same topology with scale and sampling variabilities: (a)&(c)
Two examples, from 20, of randomly generated point clouds. (b)&(d)
Corresponding persistence landscapes. The two rows correspond to
the two component functions in each landsacpe: (e) Persistence land-
scapes {Λi}20i=1 of 20 point clouds. (f) Aligned persistence landscapes
{Λi(γi)}20i=1. (g) Mean landscape after (blue) and without (red) align-
ment. (h) Noisy persistence diagrams {(bij , dij)}20i=1 from 20 point
clouds. (i) Estimated reparameterizations {γi}20i=1. (j) Denoised persis-
tence diagrams {(γ−1

i (bij), γ−1
i (dij))}20i=1.

scapes. Panels (a)-(c) display one example point cloud for
each of the noise settings. The corresponding landscapes
for all 20 observations are shown in panels (d)-(f) with
corresponding noisy persistence diagrams in panels (m)-(o).
While the underlying circle is visibly discernible in panels
(a) and (b), the noise overwhelms the structure of the data
in panel (c). This is further reflected in the corresponding
persistence landscapes, which have one prominent peak
in panels (g) and (h), but a relatively smaller prominent
peak (and another peak with similar magnitude) in panel
(i). Reparameterizations used to align the persistence land-
scapes in panels (d)-(f), resulting in the aligned landscapes
in panels (g)-(i), are shown in (p)-(r). It is evident that
alignment is effective in the low and medium noise settings
resulting in a mean that is consistent with that of a circle,
as seen in panels (j) and (k). Also, as expected, there is
considerable variance reduction in the denoised persistence
diagrams in panels (s) and (t) as compared to their noisy
counterparts shown in panels (m) and (n). As before, points
corresponding to the main feature of the point clouds are
collapsed to a single point, while points near the diagonal,
corresponding to features created by the additive noise,
remain near the diagonal. This structure is less clear in the
high noise setting. First, the mean shown in (l) contains two
clear peaks: a small peak near t = 0.3 and a much larger
peak near t = 0.5. Second, while some variance reduction is
observed when comparing the noisy diagrams in (o) to their
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Fig. 5. Same topology with scale and sampling variabilities: (a)&(c)
Two examples, from 20, of randomly generated point clouds. (b)&(d)
Corresponding persistence landscapes. With two rows corresponding to
two component landscapes: (e) Persistence landscapes {Λi}20i=1 of 20
point clouds. (f) Aligned persistence landscapes {Λi(γi)}20i=1. (g) Mean
landscape after (blue) and without (red) alignment. (h) (Rescaled) Noisy
persistence diagram {(bij , dij)}20i=1 from 20 point clouds. (i) Estimated
reparameterizations {γi}20i=1. (j) Denoised/transformed persistence dia-
gram {(γ−1

i (bij), γ−1
i (dij))}20i=1.

denoised versions in (u), alignment in this case does not
appear to be as effective in distinguishing the underlying
structure in the point clouds from noise.

APPENDIX B
ADDITIONAL MEAN ESTIMATION EXAMPLES

In Figure 4, we consider mean estimation based on degree
p = 1, K = 2-dimensional persistence landscapes computed
from 20 point clouds that consist of uniformly sampled
points along two circles with different radii. The point
clouds in this example are generated in the same way as the
data in the red group in Simulated Example 3 in the main
article. Panels (a) and (c) show two examples of randomly
generated point clouds with their corresponding landscapes
in panels (b) and (d). Panels (e)-(g) show all 20 k = 1 (top)
and k = 2 (bottom) landscape component functions, their
alignment, and a comparison of the mean before (red) and
after (blue) alignment, respectively. The proposed alignment
procedure results in a mean landscape that better preserves
the major features along both landscape components. On
the other hand, the unaligned mean landscape destroys the
prominent two peak structure in the first component. In
panel (j), the points in the denoised persistence diagrams,
corresponding to the two loops in the point clouds, form
two separate clusters making the presence of these features
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(b) (c)

Fig. 6. (a) Correlation and scatterplot of total artery length versus age.
Correlations and scatterplots of PC 1 (top) and PC 2 (bottom) estimated
using (b) aligned and (c) unaligned landscapes, computed from original
persistence diagrams, versus age.

in the data much clearer; the noisy diagrams shown in panel
(h) do not provide such a distinction.

In Figure 5, we consider mean estimation based on
degree p = 1, K = 2-dimensional persistence landscapes
computed from 20 point clouds that consist of 1000 points
sampled uniformly on a ringed torus. The major radius of
each torus is sampled from a |N(2, .32)|, while the minor
radius is a proportion Beta(10, 10) of the major radius. Two
example point clouds are shown in panels (a) and (c). We
preprocess the persistence diagrams used to compute the
persistence landscapes by disregarding all points except for
the two with longest persistence, as these points correspond
to the two loops formed by the torii that underlie the point
clouds. The landscapes corresponding to point clouds in
(a) and (c) are shown in (b) and (d), respectively. Clearly,
the estimated landscapes can vary widely depending on the
relationship between the major and minor radii. Panels (e)-
(g) show the k = 1 (top) and k = 2 (bottom) landscape
component functions, their alignment, and a comparison
of the mean before (red) and after (blue) alignment. The
first landscape function is automatically weighted higher
during alignment due to the relatively large magnitude of
the peak as compared to the second landscape function. In
panel (j), the points in the denoised persistence diagrams,
using the reparameterizations shown in (i), concentrate to
make the presence of the features more clear; the two
detected features describe the two loops. In comparison, the
noisy diagrams shown in panel (h) do not provide a clear
distinction.

APPENDIX C
CORRELATION BETWEEN AGE AND TOPOLOGICAL
STRUCTURE OF BRAIN ARTERY TREES BASED ON
UNSCALED PERSISTENCE DIAGRAMS

Finally, we repeat the analysis conducted in Section 4.2 in
the main article, but using p = 1, K = 100-dimensional
persistence landscapes derived from persistence diagrams
that were not rescaled using total artery length. First, in
Figure 6(a) we show a scatterplot of total artery length
versus age; it is clear that they are significantly correlated
with total artery length generally decreasing with age. In
Figure 6(b), we show the scatterplots of the first (top) and
second (bottom) PC scores, derived from aligned persistence
landscapes. Figure 6(c) shows the same, but based on un-
aligned landscapes. It appears that the first PC in panel (c)
captures scale differences rather than topological ones (there
is a high correlation with age, which is also highly correlated
with total artery length). On the other hand, the first PC
in panel (b) does not capture such scale differences as the
correlation with age is low.


