
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, MONTH YEAR 1

Topo-Geometric Analysis of Variability in Point
Clouds using Persistence Landscapes
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Abstract—Topological data analysis provides a set of tools to uncover low-dimensional structure in noisy point clouds. Prominent
amongst the tools is persistence homology, which summarizes birth-death times of homological features using data objects known as
persistence diagrams. To better aid statistical analysis, a functional representation of the diagrams, known as persistence landscapes,
enable use of functional data analysis and machine learning tools. Topological and geometric variabilities inherent in point clouds are
confounded in both persistence diagrams and landscapes, and it is important to distinguish topological signal from noise to draw
reliable conclusions on the structure of the point clouds when using persistence homology. We develop a framework for decomposing
variability in persistence diagrams into topological signal and topological noise through alignment of persistence landscapes using an
elastic Riemannian metric. Aligned landscapes (amplitude) isolate the topological signal. Reparameterizations used for landscape
alignment (phase) are linked to a resolution parameter used to generate persistence diagrams, and capture topological noise in the
form of geometric, global scaling and sampling variabilities. We illustrate the importance of decoupling topological signal and
topological noise in persistence diagrams (landscapes) using several simulated examples. We also demonstrate that our approach
provides novel insights in two real data studies.

Index Terms—Topological data analysis, Persistence landscapes, Amplitude-phase separation.
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1 INTRODUCTION

It is difficult to draw statistical insights from datasets where
each observation corresponds to an object with rich struc-
ture. Consider the data shown in Figure 1, where panels (a)
and (b) correspond to three-dimensional brain artery trees
of different subjects, previously studied by [1] to understand
how demographic factors are associated with brain struc-
ture; panels (c) and (d), on the other hand, display two ex-
ample prostate gland biopsy images, which were studied by
[2] to aid prostate cancer prognosis. The visual differences
between the observations within each of the two studies
are striking. However, formally quantifying the differences
between these objects, to enable statistical analysis, is a chal-
lenging and important problem. Topological Data Analysis
(TDA) focuses on applying tools from (algebraic) topology
to summarize and quantify the structure in complex data
objects. In essence, TDA can be viewed as a general toolbox
that enables discovery of topological and geometric features
in complex data that can be used for subsequent analysis
using existing statistical and machine learning methods.

Persistence homology is a prominent tool within TDA
that provides a multi-resolution view of the topological and
geometric features of data represented as point clouds in Rd,
e.g., samples of points on the brain artery trees or outlines of
prostate glands shown in Figure 1. As a resolution parame-
ter changes, so do the features of the data, and these changes
are recorded in persistence diagrams. Statistical analysis of
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Fig. 1. Left: Brain artery trees for (a) 20 year old and (b) 79 year old
subjects from [1]. Right: Images of a prostate biopsy with (c) benign and
(d) malignant carcinoma from [2].

samples of persistence diagrams are based on distances,
such as the Wasserstein distance or bottleneck distance,
which enable computation of descriptive statistics [3, 4, 5]
and confidence regions [6]. Carrying out statistical analysis
directly on the space of persistence diagrams is difficult
since they are multisets of planar points. This motivates
using functional representations (summaries) of diagrams
that are more amenable for statistical analysis [2] using tools
from functional data analysis [7]. In this paper, we analyze
persistence landscapes [8], although it will become clear
that the proposed methods can be used on other functional
summaries, e.g., silhouettes [9], density estimates [10], rank
functions [11], persistence entropy functions [12], persis-
tence intensity functions and images [13, 14], with suitable
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modifications. Importantly, features extracted from persis-
tence diagrams as well as the aforementioned functional
summaries of diagrams have utility in modern machine
learning approaches [15].

For point cloud data in Rd generated from a distribution
with support on a lower-dimensional manifold M , persis-
tence diagrams are typically computed by constructing geo-
metric simplicial complexes based on an open cover of met-
ric balls centered at data points with respect to the Euclidean
distance on Rd. The construction engenders noise in persis-
tence diagrams that is complementary to topological signal
in the point cloud, since distances between data points in Rd
are sensitive to, mainly, three choices: (i) arbitrary (global)
scaling of the point cloud; (ii) geometric configuration of
the point cloud in Rd with respect to the manifold M ; (iii)
sampling variability, or density, of the points. The choices
are linked to an implicit geometry of M : they imply an
embedding M ↪→ Rd, under which a diffeomorphism of
M , which preserves its topology, affects distances between
points in M when measured using the Euclidean distance in
the image of the embedding in Rd. This results in different
persistence diagrams for point clouds sampled from topo-
logically identical manifolds M . Since the map that takes a
persistence diagram to a persistence landscape is invertible
[8], it is natural to query how such ‘topological noise’ mani-
fests in a persistence landscape, and whether it is possible to
exploit structure of the space of landscapes to mitigate noise
and amplify topological signal. The resulting amplification
of topological signal has the potential to enhance statistical
or machine learning analyses.

We refer to topological noise as any variation in the data
that is complementary to topological information, although
we emphasize that the terminology does not imply that geo-
metric features resulting from the above-mentioned choices
are of no use in downstream statistical tasks. The situation
is similar in spirit to Kendall’s definition of landmark shape
as all geometric information that remains after accounting
for translation, scale and rotation variabilities [16]; in this
setting, position, global scale and orientation of a set of
landmark points are viewed as variation complementary
to geometric shape. However, in many applications, these
features of an object may be valuable descriptors [17]. Thus,
the main focus in Kendall’s shape analysis lies in separat-
ing geometric shape information from the other sources of
variability, and using them as complementary features of
landmark configurations in downstream analyses. From this
perspective, in the present setting, the only true source of
nuisance variation is measurement error, which in general,
is confounded with geometric and topological information.

A persistence diagram for a point cloud in Rd is a
multiset of points on the plane that offers a multi-resolution
summary of the homology of the data, constructed using
geometric filtered complexes on Rd based on balls of ra-
dius t > 0 around each datum; the radius t acts as the
resolution parameter in the sense that as it is increased,
births and deaths of topological features of the point cloud
are encoded in the corresponding persistence diagram. A
persistence landscape is a collection of triangular functions
t 7→ λ(t) ≥ 0, and is a bijective multivariate functional
summary of a persistence diagram. As such, how the value
of t is increased is a data analytic artefact, and should not

affect the topological signal in the point cloud. In practice,
however, increasing t at different rates will result in different
persistence diagrams, and hence, persistence landscapes.
In particular, we focus on establishing a relationship be-
tween topological signal/noise and the two main sources
of variation in a functional dataset consisting of persistence
landscapes: amplitude or shape1, which captures y-axis
variation, and phase, which tracks variation in the relative
timing of shape features, e.g., extrema. We further show that
phase variation in persistence landscapes is tied to the rate
of increase of the resolution parameter t. In functional data
analysis, the perils of not accounting for both sources of
variation when computing summaries such as the mean or
exploring dominant directions of variation via (functional)
principal component analysis (PCA) are well-documented
[see e.g., 18, 19]. Evidently, such perils plague analysis of
persistence landscapes, when viewed as points in a Banach
space equipped with the Lp norm: the pointwise mean of
a sample of persistence landscapes can fail to be one, and
this affects interpretability of the corresponding persistence
diagram. Instead, computing a mean landscape using only
the amplitude components of a sample of landscapes by
registering, or aligning, them will better preserve shape, and
mitigate effects of topological noise. In such a setting, our
main contributions are as follows.

• We establish an explicit link between the rate of increase
of the resolution parameter t in a simplicial filtration
that generates a persistence diagram and magnitude of
phase variation present in the component functions λk,
as captured through a reparameterization s 7→ γ(s) of
the landscape Λ(s) = (λ1(s), . . . , λK(s)). Specifically, we
show how γ is related to variation in persistence diagrams
induced by (i) (global) scaling of the data (Figure 3), and
(ii) sampling variability of data (Figure 4).

• We show that alignment of landscapes {Λi}ni=1 by de-
termining optimal reparameterizations {γi}ni=1 leads to
an average landscape that better preserves the structure
of the sample of landscapes. This induces a separation
of variability in persistence landscapes into amplitude or
shape, which captures the topological information in a
dataset, and phase, which captures leftover variation due
to geometric, global scaling and sampling variabilities. A
key consequence is the ‘denoising’ of points in the cor-
responding persistence diagrams by transforming them
using {γi}; therefore, computing persistence diagrams
for datasets {Xi} using simplicial filtrations with balls
of transformed radii {t → γi(t)} enhances topological
information in persistence diagrams (Figure 6).

• We demonstrate that the proposed approach for statistical
analysis of landscapes offers new insight, and adds sub-
stantially, to the analyses of the brain artery tree data in
[1] (Section 4) and prostate cancer data in [2] (Section 5).

To the best of our knowledge, this is the first work in the
literature to establish a concrete link between misalignment
of persistence landscapes, and topological noise in persis-
tence diagrams. However, in a certain sense, our approach

1. The mathematical definitions of amplitude and shape are different
in functional data analysis and shape analysis literatures. However, the
two notions are very closely related for persistence landscapes, and we
hence use them interchangeably.
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Fig. 2. Example of topological noise: Point clouds X1, X2, X3 (with
different sampling) from topologically identical spaces (differing only in
scale) lead to different persistence diagrams D1,D2,D3 and hence
landscapes Λ1,Λ2,Λ3. Our approach: Construct aligned landscapes
Λa
1 ,Λ

a
2 ,Λ

a
3 and use alignment information to get transformed/denoised

diagrams Da
1 ,Da

2 ,Da
3 ; use aligned landscapes for statistical analysis.

in determining an optimal rate of increase of t, given by γ(t),
falls between the standard approach of fixing a t for each xi
and having t change with xi, as with a multiscale approach
that allows each ball Bxi(ti) to have a possibly different
radius ti [20].

The remainder of the paper is organized as follows.
In Section 2, we further motivate alignment of persistence
landscapes and provide technical details of our approach.
In Section 3, we use simulation studies to illustrate the
importance of amplitude-phase separation in persistence
landscapes for topological denoising. In Sections 4 and 5,
we analyze the brain artery tree [1] and prostate cancer
[2] datasets, respectively. In both cases, we focus on the
scientific questions that motivated the two studies, and il-
lustrate the benefits and novel insights gained from separate
statistical analysis of the amplitude and phase components
of persistence landscapes. In Section 6, we provide a short
discussion. Appendices A-C in the supplement contain ad-
ditional simulated examples and real data analysis results.

2 ELASTIC FUNCTIONAL DATA ANALYSIS OF PER-
SISTENCE LANDSCAPES

Before providing the technical details of our approach, we
provide a summary of the proposed analysis pipeline in
Figure 2 using three point clouds X1, X2, X3 with degree-1
(loops), one-dimensional persistence landscapes Λ1,Λ2,Λ3.
Topological noise is induced purely through scale (radii of
circles) and sampling variability. Notice how transforming
the diagrams {Di} using {γi} from alignment of {Λi}
collapses the three points to a single one (denoising), as it
should be since spaces from which {Xi} are sampled are
topologically identical. In this setting, it is evident that the
global scale and sampling variability are captured purely
in the phase component of the persistence landscapes. The
aligned landscapes, in turn, capture the topological informa-
tion about the underlying spaces from which the data was
sampled: they all contain a single maximum corresponding
to a single cycle, a topological feature that arises at the
same exact time across the three point clouds. Further,
the aligned landscapes are identical to each other up to a
uniform scaling of the function values, i.e., they have the
same shape. In the remainder of this section, we review
the basics of persistence diagrams and landscapes, discuss

distinct sources of variability in persistence landscapes, and
specify a statistical framework to analyze these sources of
variability using tools from elastic functional data analysis.

2.1 Persistence diagram and landscape
For a point cloud X = {x1, . . . , xN} in Rd, equipped with
the standard Euclidean norm, generated from a distribution
with support on a lower-dimensional manifold M , persis-
tence homology is a tool that tracks homological features,
such as connected components (degree-0), loops (degree-1),
voids (degree-2), etc., of the point cloud at different resolu-
tions [21]. Homology is computed using geometric filtered
complexes constructed from the union of balls ∪Ni=1Bxi(t)
around each point, each with the same radius t > 0. The
Čech complex, Čech(X, t), consists of k-simplices whose
nodes have k+ 1 many balls with a non-empty intersection.
In contrast, the Vietoris-Rips complex, or just Rips complex,
Rips(X, t), is easier to compute and consists of k-simplices
whose nodes have k + 1 many balls with a non-empty
pairwise intersection. At each fixed radius t, the homology
of the simplicial complex is a snapshot of the features of the
point cloud. Considering all radii, t > 0, provides a multi-
resolution view of the features of the point cloud where
features are born and die at different values of t. Persistence
homology tracks the features with a persistence diagram,
a function from a countable set to {(x, y) ∈ R2|x < y},
consisting of birth-death pairs, (bj , dj), the times at which
the jth feature was born and its corresponding death time.
A persistence diagram is thus a multiset consisting of these
points and represents a multi-resolution summary of the
homology of the point cloud; see [21] for more general treat-
ments of persistence homology and persistence diagrams.

A persistence landscape is an invertible functional rep-
resentation of persistence homology computed from a per-
sistence diagram [8]. For X = {x1, . . . , xN}, let Dp(X)
denote its degree-p persistence diagram consisting of m
birth-death pairs {(bj , dj)}mj=1. The basic units of persis-
tence landscapes are triangular functions computed using
coordinates of points in a persistence diagram, `pj (t) = (t−
bj)I{bj≤t≤ 1

2 (bj+dj)}+(dj−t)I{ 1
2 (bj+dj)≤t≤dj}. For k ∈ N, the

kth landscape function is defined as λpk(t) = kth max
j=1,...,m

`pj (t),

which is the kth maximum of the triangular functions with
λk(t) = 0 for all k > m by definition. Each function λpk
thus begins and ends at zero. In practice, we truncate the
number of landscape functions used for data analysis to the
K many that have some positive values along their domain.
The degree-p persistence landscape for X is defined as the
collection of landscape functions ΛpX(t) = {λpk(t)}Kk=1. In
this work, we consider degree-p persistence landscapes of
samples of point clouds X1, . . . , Xn, simply denoted by
Λ1(t), . . . ,Λn(t); we explicitly specify the degree p under
consideration in all simulated and real data examples.

2.2 Effects of global scaling, sampling and geometric
variabilities
The construction of geometric simplicial complexes on X
engenders noise in a persistence diagram that is comple-
mentary to the topological signal in the point cloud, since
distances between points in Rd are sensitive to (i) (global)
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Fig. 3. Same topology with scale variability only : Construction of Rips
filtration for two point clouds on circles with radii 0.5 (red) and 1 (blue)
at resolutions (a) t = .1545, (b) t = .3090, (c) t = .5, and (d) t = 1. (e)
Corresponding persistence diagrams and (f) landscapes.

scaling, (ii) geometric configuration, and (iii) sampling vari-
ability of the point cloud. Our interest lies in studying how
changes in (i)-(iii) result in different persistence diagrams
constructed using Rips or Čech simplicial filtrations.

Consider the simple setting where the manifold M is
a circle of radius t > 0, embedded into R2 as θ 7→
(t cos θ, t sin θ). Note that all circles with radius t ≥ 0
are topologically identical. However, changing the radius
t changes the metric dt2 + t2dθ2 on R2, and hence its restric-
tion to the circle; this amounts to changing the embedding
that provides coordinates for the observed points (geomet-
ric configuration), which ultimately changes the distance
between points, as measured in R2, used to construct the
filtration. Figure 3 illustrates this by considering two point
clouds consisting of ten equidistant points along circles
with radii 1 (blue) and 0.5 (red), respectively. We consider
degree p = 1 persistence homology (loops) with K = 1-
dimensional landscapes when topological noise is entirely
due to scale effects. In Figure 3(a)-(d), balls of different radii
t are drawn around the points in the point clouds. In (a),
when t = .1545, a loop forms for the red point cloud, while
there is no loop present for the blue point cloud. In (b),
when t = .3090, a loop forms for the blue point cloud, and
the loop persists for the red point cloud. In (c), when t = .5,
the loop closes for the red point cloud, and persists for the
blue point cloud. Finally, in (d), when t = 1, the loop closes
for the blue point cloud. The loops can be summarized by
the birth-death pairs (.1545, .5) and (.3090, 1) for the red
and blue point clouds, respectively. Panel (e) shows them
in the persistence diagram, while panel (f) displays the
corresponding misaligned persistence landscapes.

In the persistence diagram, (b, d) coordinates of the red
point are half of those for the blue, and this matches the
ratio of the radii of the two circles; this implies that the
persistence landscape for the red point cloud is shorter and
shifted to the left by a commensurate amount as compared
to the landscape for the blue point cloud. This scale-induced
topological noise thus arises by a common scaling of the

triangular function `11, given by

`11(t) = (t− αb)I{αb≤t≤α2 (b+d)} + (αd− t)I{α2 (b+d)≤t≤αd},
(1)

where α = 2 (when blue point cloud is derived from red).
If α < 1, the triangular function will be shifted to the left
along the domain and will be shorter relative to α = 1; if
α > 1, the function will be shifted to the right and taller.

In this example based on the circle, we are able to
explicitly link topological noise to a single parameter, the
radius t of the circle, which governs the magnitude of both
scale and geometric configuration of points. In essence, when
topological noise is due to scaling, alignment of peaks of the persis-
tence landscapes will move points in a persistence diagram toward
each other, and thus amplify the topological signal. In other
words, such topological noise manifests entirely through
phase variation in the landscapes. In higher dimensions, it
is not possible in general to carry out this program since the
restriction of the metric on Rd induced by the embedding
of the manifold M is more complicated. Nevertheless, we
demonstrate through numerical examples in Section 3 and
Appendices A and B in the supplement that alignment of
persistence landscapes acts as a denoising mechanism for
the corresponding diagrams, even when topological noise is
not only due to scaling.

From the discussion above, it is clear that changing the
embedding (e.g., x 7→ (x,

√
t− x2)) would have gener-

ated similar topological noise in the persistence diagram.
This of course amounts to a change in the metric which
ultimately results in a change in the simplicial filtration.
When sampling variability is present (e.g., non-equispaced
points on the circle), the situation can be viewed as one
involving local scaling of the point cloud, and alignment
of peaks of the landscapes will again induce points on the
persistence diagrams to move toward each other (Section
3.2, Figures 4 and 6); similar comments apply to the situation
involving measurement error (points do not lie exactly on
M ; Appendix A in the supplement, Figures 1-3).

2.3 Reparameterizing a landscape and denoising a di-
agram

The discussion in the previous subsection suggests align-
ment of persistence landscapes, by lining up peaks and
valleys of the component functions, as a viable denoising
mechanism for persistence diagrams. We propose to do this
through shape analysis of landscapes, viewed as parameter-
ized curves. Our approach is based on the elastic metric to
compare shapes of curves [19], based on a convenient trans-
form of the landscape curves. Specifically, the transforma-
tion maps landscapes into a Hilbert space, where geometric
computations become simplified; this stands in contrast to
the Banach space setting typically used for persistence land-
scapes. An important consequence of this is that we are able
to compute a mean landscape based on its amplitude which,
in contrast to the pointwise landscape currently computed
in a Banach space setting, better preserves the shape of a
landscape; moreover, the Hilbert space structure provides
an inner product to carry out PCA on the amplitude or
shape component of landscapes, which enables one to study
dominant modes of variation in samples of point clouds.
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By virtue of its definition, a landscape is parameterized
by the resolution (filtration) parameter t, used to construct
the Rips or the Čech simplicial filtrations, which in principle
can be any positive real. In order to choose a closed interval
of R as a parameter domain, note that, given n persistence
landscapes, there always exists an 0 < s < ∞ such that
Λi(t) = 0, ∀ t > s, i = 1, . . . , n. Given this, one can
assume, without loss of generality, the parameter domain
to be the unit interval obtained through rescaling by 1/s.
Then, for each i = 1, . . . , n, landscape Λi is aK-dimensional
piecewise linear parameterized closed curve [0, 1] 3 t 7→
Λi(t) ∈ RK with Λi(0) = Λi(1) = 0. This in turn results in
scaled persistence diagrams {(bi,j/s, di,j/s)}n,mii=1,j=1, so that
the birth-death pairs are in [0, 1]2.
Definition 2.1. A persistence landscape (diagram) Λ
({(bj , dj)}) obtained by rescaling in the above manner is
referred to as a scaled persistence landscape (diagram).
We will simply henceforth refer to a scaled persistence
landscape (diagram) as a persistence landscape (diagram),
unless explicitly mentioned to the contrary.

Since a reparameterization of a landscape Λ preserves its
image, its shape, modulo scale, is preserved. As the set of
reparameterizations, consider

Γ = {γ : [0, 1]→ [0, 1] : γ̇ > 0, γ(0) = 0, γ(1) = 1} ,

the set of orientation-preserving diffeomorphisms of [0, 1],
which forms a group under composition (γ̇ is the derivative
of γ). The group Γ acts on the set of landscapes from the
right as function composition: (Λ, γ) → Λ(γ). Alignment
of landscapes {Λi} thus amounts to establishing corre-
spondence between (K-dimensional) points in the images
t 7→ Λi(t), achieved by determining optimal γi ∈ Γ such
that the collection {Λi(γi)} is ‘optimally’ aligned, where op-
timality is defined with respect to a metric-based matching
functional. For each i, γi represents common phase variation
in the component functions (λ1i , . . . , λKi) of Λi.

Since the resolution/filtration parameter t is the param-
eter for a landscape when viewed as a closed curve, we
observe the following.

Proposition 1. The map Λ 7→ Φ(Λ) := {(bj , dj)} that takes
a scaled persistence landscape Λ to a unique scaled persistence
diagram {(bj , dj)} is equivariant with respect to the action of
Γ on the set of scaled persistence landscapes, i.e., Φ(Λ(γ)) =
γ−1{(bj , dj)} = {(γ−1(bj), γ

−1(dj))}.

A useful way to think of the induced transform
{(γ−1(bj), γ

−1(dj))} on a persistence diagram is as a nonlin-
ear local scale change of the multiset of points that generalizes
the global scale change described in (1). This attempts to
reverse the effects of (i) working with rescaled persistence
landscapes, and (ii) potential topological noise induced
through the geometric construction of simplicial filtrations.
Indeed, this is tantamount to considering a geometric Čech
or Rips filtration with parameter γ(t): for a point cloud X ,
the corresponding Rips simplicial complex is defined as

σ = [x1, . . . , xk] ∈ Rips(X, γ(t)) ⇐⇒ |xi − xj | ≤ γ(t)

⇐⇒ γ−1(|xi − xj |) ≤ t, ∀i, j

since γ is strictly increasing. Equivalently, the equivariant
action on Φ implies that the metric induced by the Euclidean

norm | · | on Rd is deformed by a differmorphism γ−1 to
track local scale changes needed to preserve the integrity of
topological signal in the presence of topological noise.

However, some care is needed with this interpretation
since γ−1(| · |) fails to be a metric on Rd if the function γ−1

is not concave, since the triangle inequality will otherwise
not be satisfied. Moreover, the chain of inclusions

Rips(X, t′) ⊂ Čech(X, t) ⊂ Rips(X, t), when
t

t′
≥

√
2d

d+ 1

that characterize Rips and Čech complexes with parameter
t [22] need not be preserved under γ(t) for all γ ∈ Γ;
since preservation would depend on the magnitude of the
derivative of γ, it is difficult to provide a lower bound for
γ(t)/γ(t′) that holds for all γ ∈ Γ. In principle, it is possible
to restrict attention to a subset of diffeomorphsims γ with
a concave inverse that preserve the chain of inclusions, but
this may restrict how well one is able to denoise persistence
diagrams by aligning persistence landscapes.

We can summarize the practical consequence of the
above discussion in the following manner: on point clouds
{Xi}, the equivariant action of Γ ensures that, in the op-
timally aligned landscapes {Λi(γi)}, the extrema (mainly
peaks) of the component functions (λ1i(γi), . . . , λKi(γi))
line up, and the transformed points {(γ−1

i (bij), γ
−1
i (dij))},

consequently, will tend to cluster, the number of which will
depend on the topology of the underlying manifold. As a
consequence, if a Čech or Rips filtration forXi is constructed
with balls of radius γi(t), the corresponding persistence
diagram will be ‘denoised’.

2.4 Optimal reparameterizations, mean amplitude land-
scape and PCA

The program described above rests on determining the
optimal reparameterizations {γi} from observed landscapes
{Λi}. In principle, any registration or alignment procedure
for curves in RK can be used. Our choice is based on the
highly successful Elastic Functional Data Analysis (EFDA)
framework, a Riemannian-geometric approach that utilizes
the elastic metric for curves in RK . This framework is
characterized by two important theoretical considerations
for the curve alignment problem: (i) isometry, i.e., invari-
ance to simultaneous reparameterization of curves, and (ii)
invariance of optimal reparameterizations to rescaling of
curves. These are addressed through the use of the elastic
Riemannian metric for comparing absolutely continuous
curves, which is difficult to compute in practice. For ease of
exposition, we refrain from providing the definition of the
metric and its properties; see Chapter 10 in [19] for details.

Let F denote the space of absolutely continuous curves
in RK equipped with the elastic metric. Practical use of the
metric is greatly simplified through use of the square-root
velocity function (SRVF) representation. For any curve β ∈
F , its SRVF is defined as

β 7→ Q(β) = q := β̇(|β̇|)−1/2,

where β̇ is the componentwise derivative and | · | is the
Euclidean norm on RK . The map Q : F → L2([0, 1],RK) is
a homeomorphism [23] with inverse β(t) =

∫ t
0 q(u)|q(u)|du,
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and effectively ‘flattens’ the complicated elastic metric:
the distance d(β1, β2) between two absolutely continuous
curves with respect to the elastic metric equals ‖Q(β1) −
Q(β2)‖2 = ‖q1 − q2‖2 = [

∫ 1
0 |q1(t) − q2(t)|2dt]1/2, and the

standard L2 metric on SRVFs of curves possesses desiderata
(i) and (ii) mentioned above.

Absolute continuity of a curve in RK is defined via abso-
lute continuity of its one-dimensional component functions.
Absolutely continuous functions in one dimension have
constant speed parameterization [24]. In the present setting,
persistence landscapes Λ : [0, 1] → RK are piecewise linear
curves. It is known that the set of piecewise linear curves in
RK is dense in F [25], and continuity of the map Q ensures
that its image under Q, consisting of piecewise constant
SRVFs, is dense in L2([0, 1],RK).

Our definition of the amplitude (shape) of a curve and
subsequent statistical analysis approach are analogous to
the definitions presented in [26] for univariate functions.
The group Γ acts on F through composition, and since
the map Q : F → L2([0, 1],RK) is bijective, the action
(q, γ) = Q(Λ(γ)) = (q(γ))

√
γ̇ of Γ can be defined on

L2([0, 1],RK), under which, the amplitude of a landscape
Λ is its orbit [q] := {(q, γ) | γ ∈ Γ}. Since ‖(q, γ)‖2 = ‖q‖2
for every q ∈ L2([0, 1],RK) and γ ∈ Γ, we note that Γ
acts by isometries on L2([0, 1],RK). Under this definition,
two curves, Λ1,Λ2, have the same amplitude if their cor-
responding SRVFs are in the same orbit, i.e., there exists a
γ ∈ Γ such that q1 = (q2, γ). The set of all orbits forms a
partition of Q and is the quotient space Q/Γ. Hence, Q/Γ
defines the amplitude space of persistence landscapes.

The amplitude distance between two landscapes
Λ1,Λ2 ∈ F is defined as the distance between their cor-
responding SRVF orbits [q1], [q2] ∈ Q/Γ:

da(Λ1,Λ2) = d([q1], [q2]) = min
γ∈Γ
‖q1 − (q2, γ)‖2. (2)

Key to the definition of the above distance is the invariance
of the L2 metric, under the SRVF representation, to simulta-
neous reparameterization of curves. The function

γ∗ = argmin
γ∈Γ

‖q1 − (q2, γ)‖2

is then the optimal reparameterization of Λ2 to register or
align it to Λ1. Furthermore, γ∗ = argmin

γ∈Γ

‖q1 − (q2, γ)‖2 =

argmin
γ∈Γ

‖c1q1− (c2q2, γ)‖2, c1, c2 ∈ R+, i.e., rescaling of the

curves does not alter the optimal reparameterization.
Denoising persistence diagrams from point clouds

X1, . . . , Xn requires determining optimal reparameteriza-
tions γ1, . . . , γn that jointly align persistence landscapes
Λ1, . . . ,Λn. This requires a template landscape to align the
individual ones to. We use a data-driven template given
by the mean amplitude landscape. Denote by q1, . . . , qn the
SRVFs of Λ1, . . . ,Λn. This mean is defined as the quantity
that minimizes the sum of squared amplitude distances:

[µ̂q] = argmin
[q]∈Q/Γ

n∑
i=1

min
γ∈Γ
‖q − (qi, γ)‖22. (3)

An orbit representative [µ̂q] is found by iteratively aligning
q1, . . . , qn to the current estimate of the mean and averaging
the aligned SRVFs to produce a new mean estimate; this

is repeated until convergence. For identifiability, we use the
center of the orbit of [µ̂q] as the representative element of the
elastic mean; henceforth, we simply refer to this element of
the mean orbit as µ̂q . For additional algorithmic details and
the orbit centering step, we refer to [26]. The corresponding
mean amplitude landscape µ̂ ∈ F is defined as Q−1(µ̂q).

The joint alignment of Λ1, . . . ,Λn can then be achieved
via pairwise alignment of each Λi, i = 1, . . . , n to the mean
µ̂ using (2) by determining the optimal reparameterizations

γi = argmin
γ∈Γ

‖µ̂q − (qi, γ)‖2, i = 1, . . . , n,

which can be used to study phase variability. Details of
methods for statistical analysis of reparameterization func-
tions, including computation of a distance, averaging and
PCA are available in [27], and are omitted here for brevity.

Since the aligned landscapes Λi(γi), i = 1, . . . , n, or
equivalently their SRVFs, (qi, γi), describe amplitude vari-
ability in the sample, a sample amplitude covariance func-
tion can be defined as

Ĉq(t, u) :=
1

n− 1

n∑
i=1

((qi, γi)(t)−µ̂q(t))((qi, γi)(u)−µ̂q(u))>.

(4)
Amplitude-based PCA is carried out via eigendecomposi-
tion of Ĉq(t, u),

Ĉq(t, u) =
∞∑
b=1

τ̂bφ̂b(t)φ̂b(u)>, (5)

where φ̂b, b ∈ N are the primary directions of amplitude
variability (amplitude PCs) and τ̂b, b ∈ N are variances
in the corresponding directions. Typically, one selects a
finite number, B, of principal components that describe a
large portion of amplitude variability. The aligned SRVFs
can then be projected onto the B directions of amplitude
variability with largest variance, βi,b :=

∫ 1
0 〈(qi, γ)(t) −

µ̂q(t), φ̂b(t)〉dt, b = 1, . . . , B, i = 1, . . . , n, where 〈·, ·〉 is
the Euclidean inner product in RK . The PC scores, βi =
(βi,1, . . . βi,B)>, i = 1, . . . , n serve as a low dimensional
Euclidean representation of the amplitude of landscapes. To
visualize the primary directions of amplitude variability, we
compute F 3 Q−1(µ̂q + ν

√
τ̂bφ̂b), i.e., a landscape that is ν

standard deviations from µ̂q in the direction of φ̂b.

3 SIMULATION STUDIES

In this section, we present simulation examples which
demonstrate (i) denoising of persistence diagrams, obtained
under scale and sampling variabilities in point clouds,
through alignment of landscapes, and (ii) benefits of com-
puting the mean landscape and PC directions on the set of
aligned landscapes as opposed to computing a pointwise
mean with unaligned ones, as currently done in practice.
The supplement contains additional examples that (i) con-
sider data sampled with additive noise (Appendix A), and
(ii) illustrate mean estimation (Appendix B).

For these examples, we use the ripsDiag function
to compute persistence diagrams using the Vietoris-Rips
simplicial complex for point clouds, and the landscape
function to compute landscapes from persistence diagrams;
both functions are part of the TDA R package [28]. In
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Same topology with scale and sampling variabilities: (a) Persis-
tence landscapes {Λi}20i=1 of 20 point clouds of the type in Figure 2.
(b) Aligned persistence landscapes {Λi(γi)}20i=1. (c) Mean landscape
after (blue) and without (red) alignment. (d) Noisy persistence diagrams
{(bi, di)}20i=1 from 20 point clouds. (e) Estimated reparameterizations
{γi}20i=1. (f) Denoised persistence diagrams {(γ−1

i (bi), γ
−1
i (di))}20i=1.

the EFDA framework, registration, mean estimation and
PCA for a sample of landscapes are implemented in
MATLAB. Code and data to reproduce simulated exam-
ples are available here: https://github.com/jamesmatuk/
EFDA-of-Persistence-Landscapes.

3.1 Examples 1 and 2: Mean from aligned landscapes
Example 1. We consider 20 point clouds, where each
point cloud is generated by (i) sampling M from a
Discrete-Uniform(10, 30), (ii) sampling r from |N(1, 0.32)|,
and (iii) generating M points uniformly on a circle with
radius r. Figure 2 shows three (from 20) point clouds along
with the corresponding degree p = 1, K = 1-dimensional
landscapes. Figure 4(a) shows all 20 landscapes {Λi}20

i=1. The
amplitude and phase variations in the landscapes are related
to variability in the radii, sample size and dispersion. Panels
(b)-(f) demonstrate the benefit of alignment of landscapes
{Λi}: a visually better mean (c) is obtained by using the
aligned landscapes {Λi(γi)} (b); transforming points in the
persistence diagrams (d) using reparameterizations {γi} (e)
results in denoising (f) by collapsing all points to a single
one, since the topology of the 20 point clouds is the same.
Example 2. In Figure 5, we consider mean estimation based
on degree p = 0, K = 1-dimensional persistence land-
scapes computed from 20 point clouds that consist of 2000
points uniformly sampled along two interwoven spirals.
The tightness of the spirals is random, so that the spirals
complete Uniform(2, 5) revolutions. Panels (a) and (c) show
two examples of point clouds generated in such a manner
with the corresponding landscapes shown in panels (b) and
(d). The tighter spirals in (a) have points closer together,
and the resulting landscape is smaller and shifted to the
left as compared to the spirals in (c). When computing
landscapes, we only considered the point in persistence
diagrams that corresponded to the death time that coincided
with the intersection of the two spirals present in each
point cloud. Panels (e)-(g) show landscapes for all 20 point
clouds, their alignment, and a comparison of the mean

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Fig. 5. Same topology with scale variability: (a)&(c) Two examples,
from 20, of randomly generated point clouds. (b)&(d) Correspond-
ing persistence landscapes. (e) Persistence landscapes {Λi}20i=1 of
20 point clouds. (f) Aligned persistence landscapes {Λi(γi)}20i=1. (g)
Mean landscape after (blue) and without (red) alignment. (h) Noisy
persistence diagrams {(bi, di)}20i=1 from 20 point clouds. (i) Esti-
mated reparameterizations {γi}20i=1. (j) Denoised persistence diagrams
{(γ−1

i (bi), γ
−1
i (di))}20i=1.

before (red) and after (blue) alignment. The mean based on
aligned landscapes appears to have sharper features that
are consistent with the observed landscapes. Based on the
denoised persistence diagrams in (j), in contrast to the noisy
persistence diagrams in (h), it is evident that reparame-
terization of landscapes completely accounts for the scale
variability associated with the tightness of the spirals, i.e., all
points collapse to a single point in the denoised diagrams.

3.2 Example 3: PCA on aligned landscapes

We consider a more involved setting involving 20 point
clouds from two topologically different spaces: (i) one
circle, and (ii) two connected circles. Point clouds from
(i) are drawn in the same manner as in Example 1, but
for the fact that the sample size M is drawn from a
Discrete-Uniform(20, 30). For point clouds from (ii), the
radius of the larger circle is drawn from a |N(1, 0.32)|, while
the radius of the smaller circle is a random proportion of
the larger circle, drawn from a Beta(10, 10). Panels (a) and
(c) in Figure 6 show one point cloud each from (i) and (ii).
We consider degree p = 1, K = 2-dimensional landscapes
{Λi = (λi1, λi2)}20

i=1. For point clouds from (i), λi1 will have
one peak and λi2 = 0 for all t; for point clouds from (ii), λi1
will have two peaks and λi2 will have a single peak.

The top and bottom rows in Figure 6(e)-(g) show the
primary PC direction of variability within one standard
deviation of the mean following alignment and without
alignment, respectively. Panel (h) highlights the benefits of
alignment of landscapes through better separation of the
two settings, (i) and (ii), when projected along the first two
PC directions. Specifically, in the top row, when PCA is
carried out on aligned landscapes, all of the point clouds
that have two loops have a negative first PC score, while all
of the point clouds with only one loop have a positive first
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 6. Different topology with scale and sampling variabilities: (a)&(c)
Two examples, from 20, of randomly generated point clouds from topo-
logically different spaces (blue and red, respectively, in all relevant
panels). (b)&(d) Corresponding degree p = 1, K = 2-dimensional
persistence landscapes. (e) -1, (f) 0, (g) +1 standard deviation from
the mean landscape in the first PC direction, and (h) projection of
landscapes onto the first two PC directions: following alignment (top)
and without alignment (bottom). (i) Noisy and (k) denoised persistence
diagrams. (j) Estimated reparameterizations.

PC score. There is no such clear separation of the two groups
when PCA is performed on unaligned landscapes, as seen
in the bottom row of (h). The separation in PC scores after
alignment is directly related to the improved interpretability
of the primary PC direction shown in the top row in (e)-(g):
the landscape in (e) corresponding to -1 standard deviation
from the mean in (f) exhibits features of a landscape for
a point cloud with two loops, while the landscape in (g)
corresponding to +1 standard deviation exhibits features of
a landscape for a point cloud with one loop.

Following results from previous simulations, we expect
to see two clear clusters in the denoised persistence dia-
grams, using reparameterizations {γi} shown in (j), corre-
sponding to two distinct topological features; this is indeed
the case as seen in (k). This is explained as follows: points
concentrated around (b, d) ≈ (0.25, 0.6) correspond to the
single circle in the blue point clouds and the large circle
in the red ones. This is consistent with the data generat-
ing process where the large circles across the two groups
correspond to each other. The points associated with the
second feature for the red point clouds are concentrated
around (b, d) ≈ (0.1, 0.25) and correspond to the additional
significant homological feature (smaller circle) that gener-
ally has smaller persistence than the larger circle. It is very
difficult to discern such topological information from the
noisy diagrams in (i).

4 ANALYSIS OF BRAIN ARTERY TREES

We now demonstrate the utility of the proposed approach
on 3D point clouds representing brain artery trees. These

data were collected to understand population attributes of
brain arteries and how these attributes vary with demo-
graphic covariates. For a description of the experiment and
data generation, see [29]. Information regarding human sub-
jects in the experiment is available at http://insight-journal.
org/midas/community/view/21. Chapter 10.1 in [30] pro-
vides an overview and comparison of past approaches used
to analyze this data.

The approach of Bendich et al. [1] computed persistence
diagrams from artery trees for 98 healthy human subjects,
and used persistence diagrams to extract the 100 largest
birth-death differences, {di,j − bi,j}98,100

i=1,j=1, for each subject.
Restricting focus to the largest differences serves as a denois-
ing step, since points close to the line b = d in a persistence
diagram can be thought of as noise [6].

This dataset is apt to demonstrate our approach for three
reasons, one a priori and the other two a posteriori: (i) since
each point cloud contains a large number (order of 105) of
points, in order to be able to compute the diagrams, [1]
subsampled 3000 points from each point cloud, thus creat-
ing large sampling variability; (ii) we uncover a significant
scale effect between the two sex groups of subjects (males
versus females); and (iii) we confirm the finding of [1] that
there exists a significant correlation between the topological
structure of the brain artery trees (as captured by PCs) and
age. We note that these findings are exploratory and serve
as a proof of concept for the proposed approach.

4.1 Exploration of sex differences among subjects
The starting point for our analysis are the persis-
tence diagrams available at https://marron.web.unc.edu/
brain-artery-tree-data/, and not the original 3D point
clouds. From these, we compute degree p = 1, K = 100-
dimensional persistence landscapes. Information on the sex
of each subject is also available along with the tree data.
We investigate differences between mean persistence land-
scapes grouped by sex. One major finding of [1] is the
existence of sex differences in their mean degree p = 1
feature vectors {di,j − bi,j}98,100

i=1,j=1. For convenience, we
denote the mean landscape for the male (female) group
following alignment (within each group) by µ̂ma (µ̂fa ), and
pointwise mean computed without alignment for the males
(females) by µ̂m (µ̂f ).

The means µ̂ma and µ̂fa are shown in the top row of Figure
7(a)-(b), respectively. The difference between the means is
obtained by first aligning the group means to the common
pooled mean (computed with alignment) and then taking
their difference, where all operations are carried out under
the SRVF representation; this difference is shown in the top
row of panel (c). The bottom row of Figure 7(a)-(c) shows
the pointwise means µ̂m and µ̂f , and the corresponding
(µ̂m − µ̂f ), when no alignment is carried out. The differ-
ence between the pointwise means has very large features
indicating topological and geometric structural differences
across males and females. However, these features are es-
sentially non-existent in the difference of the aligned means.
This indicates that the large difference in the pointwise means
is potentially due to misalignment, and can be construed as
topological noise.

We surmise that global scale differences and sampling
variability in observed data between the male and female
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(a) (b) (c)

(d) (e)

Fig. 7. Top. Mean persistence landscapes and their differences for males
and females in the brain artery example with (top row) and without
(bottom row) alignment: (a) Male mean, (b) female mean, and (c) dif-
ference between (a) and (b). Bottom. Relationship between groupwise
total artery length and relative phase of groupwise means following
alignment, across sexes: (d) Estimated groupwise CDFs of total artery
length, and (e) reparameterizations that align groupwise aligned means
to a mean computed from alignment of the pooled data. The identity
parameterization (black) is shown for reference.

groups may be responsible for this phenomenon. To confirm
this, we use the total artery length for each subject as a
measure of global scale, which is also available as part of
the tree data [31]. For each group, we estimate a cumulative
distribution function (CDF) of total artery length using a
kernel density estimate using the ksdensity function in
MATLAB (default bandwidth). From the estimated CDFs
shown in Figure 7(d), it appears that total artery length is
stochastically ordered by sex, with females having stochas-
tically longer brain artery trees. Given this global scale
disparity and sampling variability, we would expect µ̂fa to
be shifted to the right relative to µ̂ma . This behavior can be
extracted from the phase difference between µ̂ma and µ̂fa
after alignment to the pooled sample mean, as shown in
Figure 7(e). The blue reparameterization (female) shifts µ̂fa
to the left while the red (male) shifts µ̂ma to the right. Thus,
the misalignment caused by differences in global scale and
sampling between the two groups appear to explain the
reason behind the large difference between the groupwise
pointwise means. In summary, the above analysis suggests
that the sex effect detected via pointwise analysis without
alignment of the landscapes, corresponding to some of the
results presented in Table 10.1 in [30], is due to global scale
and/or sampling differences of the observed data rather
than differences in homology, and thus makes a compelling
case study of the perils in ignoring the distinction between,
and confounding of, amplitude and phase in landscapes.

(a) (b)

Fig. 8. Correlations and scatterplots of PC 1 (top) and PC 2 (bottom)
estimated using (a) aligned and (b) unaligned landscapes, computed
from rescaled persistence diagrams, versus age.

4.2 Correlation between age and topological structure
of brain artery trees
Bendich et al. [1] show that age is significantly correlated
with the dominant PCs estimated using degree p = 0 persis-
tence diagrams. One potential confounding variable for this
relationship is total artery length, since this quantity is also
significantly correlated with age (correlation of −0.63; see
Figure 6(a) in Appendix C in supplement). To account for
this, they first rescaled each subject’s persistence diagram
by their total artery length and then measured correlation
between age and the dominant PCs estimated using rescaled
diagrams. Even after rescaling, the relationship holds.

Here, we reanalyze the data using K = 100-dimensional
persistence landscapes from rescaled degree p = 0 per-
sistence diagrams. We estimate PCs using aligned and
unaligned landscapes, and project onto the first two PC
directions to explore whether there is a correlation between
either of the first two PCs and age. Figure 8(a)-(b) shows the
relationship between age and the first two PCs for aligned
and unaligned landscapes, respectively. In both panels, age
appears to be strongly associated with the first PC. Thus,
our findings are consistent with [1] and the results presented in
Table 10.1 in [30]. We further note that alignment of the per-
sistence landscapes computed using rescaled persistence diagrams
decreases the correlation slightly from 0.58 to 0.45 (note that the
sign of the correlation coefficient is irrelevant here due to lack
of directionality in the PCs); this is likely due to residual scale
effects (and sampling variability) after accounting for the total
artery length. Correlations computed using PCs from both
unaligned and aligned persistence landscapes are similar to
the correlation of 0.53 reported under TDA H0 in Table 10.1
in [30]. Appendix C in the supplement reports results of
this analysis when original persistence diagrams (without
rescaling by total artery length) are used to derive persis-
tence landscapes; there, we show that scale is confounded
with topo-geometric structure when unaligned landscapes
are used to carry out PCA.

5 CLASSIFICATION OF GLEASON DATA

As described in [2], the Gleason grading system is a prog-
nostic tool to help understand severity of prostate cancer.
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(a)

(b)

(c)

(d)

Fig. 9. Point clouds (left), persistence diagrams (middle) and landscapes
(right) from each of the four Gleason grading scales: (a)-(d) benign to
most severe.

Grading groups are assigned based on features of a prostate
gland biopsy. In more benign biopsies, carcinoma walls are
well-defined as seen in Figure 1(a). On the other hand,
malignant carcinoma lose their structure and have very
irregular shapes as shown in Figure 1(d). Using a variety of
functional summaries of persistence diagrams, [2] classified
simulated point clouds representing four different Gleason
grade groups that ranged from benign to unhealthy. A repre-
sentative from each of the four classes used in their study are
shown in the left of Figure 9(a)-(d), from benign to most se-
vere. The middle and left columns show the corresponding
degree p = 1 persistence diagrams and K = 5-dimensional
landscapes, respectively. As the prognostic grade worsens,
the cycle in the point clouds, corresponding to the carcinoma
outline, becomes less pronounced. This is accompanied by
significant changes in geometry and scale. Thus, the benign
class is characterized by a persistence landscape with a large
maximum in the first component function, and negligible
maxima in subsequent component functions. On the other
hand, the most severe class is characterized by a landscape
with multiple small maxima along several component func-
tions. Clearly, the landscapes contain significant amplitude
and phase variation, and our aim is to classify the point
clouds (landscapes) into the four Gleason grades based
on these two components. The data consists of 2400 point
clouds with 600 in each of the four Gleason grades.

In particular, using this data, we study k-nearest neigh-
bor (KNN) classification accuracy using the amplitude and
phase features of the landscapes. We also compare to one
of the approaches taken in [2], which applied KNN clas-
sification to the landscapes without alignment. KNN clas-
sification is a distance-based approach, and we compare
performance based on the following three distances: (i)
L2 distance: dL2(Λ1,Λ2) = ‖Λ1 − Λ2‖2; (ii) amplitude

(a) (b) (c)

Fig. 10. Multidimensional scaling plots for the training dataset: (a) L2

distance, (b) phase distance, and (c) amplitude distance. Each point is
colored according to class membership with benign = red, grade 2 =
green, grade 3 = orange, and grade 4 = blue.

distance: da(Λ1,Λ2) = min
γ∈Γ
‖q1 − (q2, γ)‖2; (iii) phase dis-

tance: dp(Λ1,Λ2) = arccos
(∫ 1

0

√
γ̇∗(s)ds

)
, where γ∗ =

argmin
γ∈Γ

‖q1 − (q2, γ)‖2. The KNN classification procedure is

implemented as follows. For a test observation (unknown
class), we first compute its distance from each observation in
the training data (known class). Then, we find the k nearest
neighbors in the training set to the test observation, and
predict its class as the one that is most frequent among the k
nearest training neighbors. In case of a tie, we use the class
of the nearest training neighbor. The classification accuracy
is then computed as the percentage of correctly predicted
classes in the test set. Using the same training and testing
split as [2], data are split into 83% training (2000 landscapes,
500 in each of the four severity classes) and 17% testing (400
landscapes, 100 in each of the four severity classes).

We begin by displaying the 2D multidimensional scaling
(MDS) plots, computed using the three different distances,
for the training dataset. In short, MDS uses pairwise dis-
tances to compute lower-dimensional Euclidean coordinates
of the data such that interpoint Euclidean distances based
on these coordinates are as similar as possible to the original
distances. It is evident that there is good separation between
the benign (red) and Gleason grade 2 (green) classes for
each of the three distances. The L2 and phase distances
also provide good separation between the grade 2, grade
3 (orange) and grade 4 (blue) classes, with phase appear-
ing more discriminative between the grade 3 and grade 4
classes. However, the amplitude distance is ineffective at
separating the grade 2, grade 3 and grade 4 classes. This
result is not surprising. The amplitude (shape) of persistence
landscapes is effective in capturing whether and how many
cycles exist in the point clouds. Thus, while it is very
effective in discriminating between the benign and severe
classes, it does not provide effective finer classification into
the four Gleason grades. On the other hand, the signal
captured in the phase component is related to the size and
geometry of the homological features. Visually inspecting
the four point clouds in Figure 9, it is clear that these are
the most discriminative features in the data. Finally, the L2

distance uses both amplitude and phase information of the
landscapes without explicit control of the contribution of
each component. We expect that these observations will lead
to very good KNN classification rate based on the phase
distance. On the other hand, the amplitude distance will
only be effective at classifying benign versus severe classes.

A key question that has not yet been addressed is the
choice of the number of nearest neighbors k. While we
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(a)
L2L2L2 Phase Amplitude

Overall Accuracy
91% 92.75% 70%

(b)
Confusion Tables

True True True
1 2 3 4 1 2 3 4 1 2 3 4

Pr
ed

ic
te

d 1 100 2 0 0 100 3 0 0 100 4 0 0
2 0 87 9 5 0 89 5 10 0 91 23 2
3 0 8 86 4 0 4 94 2 0 5 77 86
4 0 3 5 91 0 4 1 88 0 0 0 12

TABLE 1
(a) Test classification accuracy, based on the KNN classifier, using the

L2 (k = 11), phase (k = 9) and amplitude (k = 19) distances. (b)
Corresponding confusion matrices.

could fix this number a priori to some small number of
neighbors, say 1 or 3, this approach will not result in optimal
classification performance. Instead, we will learn an optimal
k, for each of the three distances, based on training data and
then apply the KNN classifier with the optimal k to testing
data. We allowed values of k = 1, . . . , 20. Based on KNN
classification applied to the training data, we determined
the optimal values of k to be 11 for the L2 distance, 19 for
the amplitude distance, and 9 for the phase distance, using
leave-one-out cross-validation.

We report the overall classification rate on the testing
data in Table 1(a). The phase-based KNN classifier provides
highest classification accuracy with the L2 distance-based
approach in close second; the phase distance results in
correct classification of 7 more cases than the L2 distance. Fi-
nally, the amplitude distance provides the lowest classifica-
tion accuracy. We further report confusion matrices in Table
1(b). Overall, the phase distance is more effective than the
other two distances in discriminating between neighboring
classes, e.g., class 2 versus class 3. The amplitude distance
is only effective in discriminating between the benign and
severe classes. These observations are very similar to those
reported earlier based on the MDS plots.

6 DISCUSSION

In the analysis of the brain artery tree data, alignment of
persistence landscapes adds substantially to the findings of
[1, 30] by uncovering that the apparent differences in the
unaligned mean landscapes of the two sex groups can be
partially attributed to a difference in scale and sampling
variability, and confirms this finding by comparing the
distributions of the total artery lengths of males and females.
In the analysis of the Gleason dataset [2], we show that
the amplitude of landscapes (topological information) is
most effective in discriminating between benign and severe
cancer, while the phase (geometry and scale) is very effective
in discriminating between all four grades. In particular,
phase-based classification outperforms the standard L2-
based approach. In both settings, we demonstrate the need
to consider amplitude and phase variability in persistence
landscapes to address the scientific questions of interest.

The novel approach presented in this paper can be
viewed as a first step toward understanding how geom-
etry of the manifold on which point clouds are sampled
influences TDA. To see this, suppose e : M ↪→ RD is an
equivariant embedding of a d-dimensional manifold M into

RD, D ≥ d. Then, a diffeomorphism φ : RD → RD acts on
the embedding as φ ◦ e(M). The map φ does not change
the topology of M , but constructing simplicial filtrations
for point clouds under the embedding in RD using balls
will transform according to φ since the metric is accordingly
transformed; that is, for a fixed x ∈ e(M), {y ∈ e(M) :
‖x − y‖RD < t} will transform to φ(x) ∈ φ ◦ e(M),
{φ(y) ∈ φ◦e(M) : ‖φ(x)−φ(y)‖RD < t}. In the special case
where φ corresponds to a (constant) scale change, the radius
t changes nonlinearly as t 7→ γ(t), for a reparameterization
γ, since t is forced to lie within [0, 1]. This phenomenon also
relates to when points are sampled with variability on M ,
since by judiciously changing the metric depending on the
locations of points, balls of different (or differently chang-
ing) radii can be used to construct the simplicial filtration,
not dissimilar to the multiscale approach considered by [20].
Much remains to be done in this direction.

The limitations of this work inspire directions for future
work. First, using scaled persistence diagrams by rescaling
to [0, 1]2 is also a source of topological noise, but is entirely
driven by practical considerations. In principle, we could
instead consider the group of diffeomorphisms of [0,∞) to
align the persistence landscapes, although there would be
very little phase variation for parameter values exceeding
the maximum across different point clouds. A compromise
would be to consider the subgroup of diffeomorphisms of
[0,∞) based on scaling and translating diffeomorphisms of
[0, 1], considered in [32], to perform alignment that better
reflects phase variability in the landscapes. Second, notwith-
standing the promising results for the noisy simulations
presented in Appendix A in the supplement, robustness
of the alignment-based approach to measurement error
will strongly depend on the geometry of the manifold
M , sampling density and magnitude of noise in observed
point clouds on Rd, especially if data have been sampled
from a distribution with support only on M . One possible
approach would constitute of first estimating M (and its
dimension) using a manifold fitting method, and using
this information to construct tailored simplicial filtrations;
however, additional noise induced by the fitting procedure
would have to be accounted for in downstream tasks. An-
other option for the large noise setting is to use explicit sta-
tistical models to align persistence landscapes that account
for all sources of uncertainty. For example, Bayesian models
based on shape constraints to infer the pattern and number
of extrema in landscapes may be profitably used [33].

While the focus of this paper is on persistence land-
scapes, we expect our approach to be fruitful with silhou-
ettes [9], since similar triangular functions are used in their
definition. However, feasibility of the alignment method
for other functional summaries mentioned in Section 1 is
not clear, and is worthy of further investigation. Finally,
for denoising a persistence diagram directly without using
landscapes, it is possible to consider generalizations of the
one-dimensional transforms γ of points on diagrams to the
group of diffeomorphisms of R2, along the lines of what
is done in the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) framework [34].
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