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Core and accessory genomic traits of Vibrio
cholerae O1 drive lineage transmission and
disease severity

Alexandre Maciel-Guerra 1,7, Kubra Babaarslan1,7, Michelle Baker 1,7,
Aura Rahman2, Maqsud Hossain1,2, Abdus Sadique2, Jahidul Alam2,
Salim Uzzaman3, Mohammad Ferdous Rahman Sarker3, Nasrin Sultana3,
Ashraful Islam Khan4, Yasmin Ara Begum4, Mokibul Hassan Afrad4,
Nicola Senin 5, Zakir Hossain Habib3, Tahmina Shirin3, Firdausi Qadri 4 &
Tania Dottorini 1,6

In Bangladesh, Vibrio cholerae lineages are undergoing genomic evolution, with
increased virulence and spreading ability. However, our understanding of the
genomic determinants influencing lineage transmission and disease severity
remains incomplete. Here, we developed a computational framework using
machine-learning, genome scalemetabolicmodelling (GSSM) and 3D structural
analysis, to identifyV. choleraegenomic traits linked to lineage transmission and
disease severity. We analysed in-patients isolates from six Bangladeshi regions
(2015-2021), and uncovered accessory genes and core SNPs unique to themost
recent dominant lineage, with virulence, motility and bacteriophage resistance
functions. We also found a strong correlation between V. cholerae genomic
traits and disease severity, with some traits overlapping those driving lineage
transmission. GSMM and 3D structure analysis unveiled a complex interplay
between transcription regulation, protein interaction and stability, and meta-
bolic networks, associated to lifestyle adaptation, intestinal colonization, acid
tolerance and symptom severity. Our findings support advancing therapeutics
and targeted interventions to mitigate cholera spread.

Cholera is an acute diarrhoeal disease. Worldwide, 1.3 billion people
are estimated to be at risk and approximately 1.3 to 4 million cases
occur annually, with 21,000 to 143,000 resulting in death1,2. In Ban-
gladesh alone, where cholera is endemic, an estimated 66 million
people are at risk of cholera with at least 100,000 cases and 4500
deaths per year1,3. Globally the O1 serogroup remains the primary

cause of cholera1,2. TheO1 serogroup is divided into themain serotypes
Ogawa and Inaba, and subdivided into two biotypes, classical and El
Tor (7th pandemic), which are genotypically and phenotypically
distinct4–6. V. cholerae has shown an extraordinary capacity to undergo
genetic and phenotypic changes over time, giving rise to successive
waves of genetically and phenotypically diverse pandemic clones.
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These variants exhibit increased virulence, pathogenicity, resistance
and spreading capability7,8.

Recently, distinctive lineages belonging to the 7th pandemic El
Tor (7PET) wave-3 have been observed circulating in Bangladesh9–11.
The two most prominent circulating lineages identified over the last
20 years are BD-1 and BD-29–11, and more recently BD-1.2, responsible
for the latest 2022 massive outbreak in the country10. Genomic ana-
lysis revealed variations between BD-1.2 and BD-2 in the Vibrio
seventh pandemic island II (VSP-II), Vibrio pathogenic island 1 (VPI-1),
mobile genetic elements, phage-inducible chromosomal island-like
element (PLE), and SXT-related integrating conjugative elements
(SXT ICE)10. Despite the advances of genomic analysis, the complete
genomic repertoire and the mechanisms causing the greater trans-
mission of BD-1.2 remain unknown. Gaps persist in our knowledge
regarding whether coding or non-coding single nucleotide poly-
morphisms (SNPs), or accessory genes, drive the evolutionary shifts.
It remains unclear whether gene regulation, metabolic or molecular
networks, or folding events play a role. There is even less knowledge
about the genomic determinants responsible for the severity of
cholera resulting from these lineages. About 1 in 5 people with cho-
lera will experience a severe condition owing to a combination of
symptoms (primarily diarrhoea, vomiting and dehydration)12.
Amongst the major symptoms, watery diarrhoea characteristic of
cholera is caused by the cholera toxin (CT)4–6. The V. cholerae El Tor
responsible for the current cholera pandemic has become more
virulent by undergoing several changes in CTX genotype and
acquiring virulence-related gene islands13,14.

In this study, we developed a reference-agnostic machine learning
method, coupled with genome-scale metabolic modelling (GSMM) and
protein structural analysis, to achieve two key objectives as outlined
below. The first objective was to identify the genetic variations and
signatures of the BD-1.2 lineage evolution beyond what has been found
so far10. Our analysis considered 129 V. cholerae isolates from diarrhoea
samples collected between 2015 and 2021, from patients admitted to
the icddr,b hospital in Bangladesh. Several genomic studies investi-
gated the evolution of lineages from 1991 to 2017, as well as in 20229–11.
However, there remains agap in researchduring the interveningperiod.
In our analysis, we discovered a set of 77 SNPs within the coding gen-
ome (mapped to 50 known genes), along with 12 annotated accessory
genes, including some associated with antibiotic resistance, virulence,
motility, colonisation, biofilm formation, acid tolerance and bacter-
iophage resistance, identified as correlated with BD-1.2 transmission.
Our findings gobeyondwhatwas recently discovered9–11 for the lineage.

The second objective was to investigate if correlations exist
between the genomic determinants of BD-1.2 strains and clinical
manifestations among hospitalised patients from whom the isolates
were collected. Machine learning revealed the existence of correla-
tions between genetic determinants in V. cholerae and clinical symp-
toms (duration of diarrhoea, number of stools, abdominal pain,
vomiting and dehydration). Overall, the analysis revealed anoverlap of
11 mutations, four accessory genes, and one intergenic SNP between
the unique genomic determinants associated with BD-1.2 transmission
and the clinical symptoms linked to this lineage. Additionally, a distinct
set of 17mutations, 39 accessory genes, and four intergenic SNPs were
found exclusively linked to the severity of clinical symptoms. Through
detailed GSMMs and 3D structure analysis of these genes, we inferred
the mechanistic basis behind the selection of these genomic drivers in
BD-1.2 and link to severity of the symptoms.

Results
From 2015 to 2021 in Bangladesh, a diverse array of genetic
variations characterises the emergence of distinct circulating
lineages
To explore the evolutionary dynamics of V. cholerae linked to cholera
cases in Bangladesh, a genomic analysis was done considering the

years 2015 to 2021. We sequenced 129 V. cholerae O1 El Tor isolates
taken from stool samples of patients between September 2015 and
April 2021 admitted to hospitals in six districts (Barisal, Chittagong,
Dhaka, Khulna, Rajshahi and Sylhet) of Bangladesh, Supplementary
Data 1. Over the duration of this study, isolates belonging to serotypes
Inaba and Ogawa were identified, Fig. 1. Consistent with previous
studies10,15, a serotype switch was observed, with Inaba predominantly
present in 2016 and 2017, followed by a predominance of Ogawa
samples in 2018 and 2019 (Fig. S1). Both serotypes were detected in
2015 and continued to coexist from 2020 onwards. Serotypes were
significantly associated with collection years (chi-square test with p-
value Bonferroni < 0.005) but not significantly associated with col-
lection location (chi-square test with p-value Bonferroni > 0.005).

The maximum likelihood phylogeny of the 129 isolates was
reconstructed based on the alignment of the core genome (3468
genes) and showed two distinctly evolved lineages, Fig. 1. Comparison
withprevious studies9,10, identified these lineages asBD-1.2 (n = 84) and
BD-2 (n = 45), Fig. S2. Apart from the previously reported genetic
variations9,10, we identified additional differences existing between the
two lineages in VSP-II, Vibrio pathogenic island 2 (VPI-2) and PLE, see
Fig. 1. More precisely, in VSP-II, BD-2 isolates had a tryptophan at
position 249, while BD-1.2 had a leucine at this position. In addition, in
VSP-II, gene VC-514 (aer) was present in all BD-2 isolates but absent in
BD-1.2. In VPI-2 a SNP led to an amino-acid variation at position 150,
with BD-1.2 having an aspartic acid, and BD-2 an asparagine. BD-2
samples exclusively exhibited PLE2, while BD-1.2 samples had both
PLE1 and PLE2 along with PLE2. Moreover, further differences were
found in nonsynonymous SNPs on core genes and presence/absence
of accessory genes, as described in the following section.

The distinct phylogeny patterns of BD-2 and BD-1.2, were also
confirmed through a comparative study analysing 1134 isolates from V.
cholerae El Tor O1 strains across 84 countries, including our isolates,
(Supplementary Data 2, 3 and Fig. S3). BD-2 isolates clustered with
Indian-1 (IND-1), whileBD-1, BD-1.1, andBD-1.2 isolates fromBangladesh
clustered with African (T9-T13)16, Latin America-3 (LAT-3)13, Asian-2
(AS-2), and Indian-2 (IND-2) lineages (Fig. S3), in agreement with pre-
vious results10.

Genetic and temporal differentiation of V. cholerae BD-1.2 and
BD-2 lineages correlate with SNPs in coding and non-coding
regions, and accessory genes
To assess the relatedness of V. cholerae isolates in our cohort, we
measured the number of different core genome SNPs in a pairwise
manner across all isolates. We created a network based on clusters of
related isolates with less than 15 SNPs, as done previously17,18. Across
the cohort themedian SNP difference was 117 SNPs (ranging from 0 to
1710 SNPs with IQR of 1211). The resulting undirected graph (Fig. 2)
revealed that BD-2 and BD-1.2 formed two disconnected graphs each
composed of samples from a specific lineage, but with no distinct
separations between the Ogawa and Inaba serotypes.

To identify additional potential involvement of genetic elements
in shaping the differences between the BD-1.2 and BD-2 isolates in our
cohort, beyond current annotations (ctxB allele, type of SXT/ICE, VSP-II,
VPI-I, gyrA gene allele)10, we looked for patterns of similarities and
differences, at a finer scale, searching for the number, type and posi-
tion of accessory genes as well as mutations in the core genome and
intergenic regions across all the isolates. A two-sided Fisher exact test,
with Bonferroni correction, was performed to assess the relationship
between the BD-2 and BD-1.2 lineages and each of the various genomic
features (core and intergenic SNPs and accessory genes). Overall, we
found a significantly larger proportion of core genome mutations
(51.4%, 1224 core genome SNPs and 73.1%, 160 intergenic SNPs) and a
small proportion of accessory genes (11.3%, 115 genes) that exhibited
statistically significant differentiation between the two lineages, Sup-
plementary Data 4. Refer to Supplementary Note 1 and Fig. S4 formore
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details on the statistical analysis comparing the number of accessory
genes, core genome SNPs and intergenic SNPs. The comparative ana-
lysis also indicated a temporal shift in the distribution of core genome
and intergenic SNPs over the years, showing that BD-1.2 isolates
accumulated different SNPs compared to BD-2 isolates as time pro-
gressed (Fig. S4E, F).

Out of the 115 accessory genes that differed between the two
lineages, 12 were annotated while the remaining 101 were hypothe-
tical. Among these 12 annotated genes, five (lon_3, endA, adh, hdfR_4
and bcr_2) were predominant (over 96% presence) in BD-1.2 and
absent in BD-2, and seven (aer_3, hlyA_2, mcrC, mepM_3, mrr, tetA and
tetR) were present (over 97% presence) in BD-2 and absent in BD-1.2.
Of the twelve annotated genes, three are known to be antimicrobial
resistance genes (bcr, tetA and tetR)19. TetA and tetR were mainly
detected in BD-2 isolates (97.7%), confirmed as primarily tetracycline-
resistant through susceptibility testing in both doxycycline and tet-
racycline antibiotics (Supplementary Data 1). On the contrary, bcr, a
multidrug efflux pump, was predominantly present in BD-1.2 isolates
(96.4% of isolates) and completely absent in BD-2 isolates. Out of the
16 known antimicrobial resistant genes (ARGs) present in the pan-
genome of this cohort, only tetA, tetR and bcr were found to statis-
tically separate both lineages. TetA and tetR were both located in a
contig showing high similarity to the SXT-ICE element, SXT(HN1) in
BD-2 isolates. Conversely, bcr was found in a mobile element in the
BD-1.2 isolates with similarity to SXT ICE element, ICEVchBan5. The
presence of these SXT elements in the BD-2 and BD-1.2 lineages was
previously shown by Monir et al.10. Both contigs contained two
identical insertion sequences, mobile genetic elements MGEs,
(ISShfr9 and ISVsa3), see Fig. S5. Also, among the 12 annotated genes,
four (endA, hlyA, lon andmcrC) were previously found to be related to
virulence18–23. More information about the function of these genes is
given in the Supplementary Note 2.

To assess the extent of our results beyond our cohort, we inves-
tigated whether the 12 annotated accessory genes that we had found
were also present in other Bangladeshi and Indian lineages. We per-
formed a comparative genomic analysis of 219 Vibrio cholerae O1
reference isolates collected in Kolkata, India, and Dhaka, Bangladesh,
between the years 2004 and 2022 (ENA public database http://www.
ebi.ac.uk/ena, see Supplementary Data 5). The results confirmed the
presence/absence patterns of the 12 genes in the BD-1.2 and BD-2
lineages in the reference isolates, aligning with our initial findings, see
Supplementary Note 2.

In addition to differences in accessory gene types and patterns,
missense mutations associated to allelic variations were found in BD-
1.2, when compared toBD-2 strains.We identified 1385 SNPs in the core
genome, including 291 non-synonymous and 934 synonymous coding
variants, both representing variants in their functional protein-coding
form. In addition, 160 intergenic SNPs were found, representing var-
iants in their regulatory form. Many SNPs showcased unique allelic
distribution patterns between the two lineages. When mapped back,
the non-synonymous SNPs identified 291 amino acid substitutions in
105 genes, including 50 known genes and 55 hypothetical ones (see
Supplementary Data 4). Table S1 shows core genes with allelic dis-
tribution between BD-1.2 and BD-2 significantly different (i.e., con-
taining polymorphic sites found exclusively in one lineage but absent
in the other lineage).

Among the genes exhibiting lineage-specific allelic variation,
some contribute to functions including growth, cell wall organisation,
colonisation, toxigenicity and resistance, similar to what found
previously10. Additionally, we found genes with a unique non-
synonymous variant in BD-1.2, with roles in toxin transport and acid
tolerance, shedding light on functions that may clarify their con-
tribution to the recent prevalence of BD-1.2 over BD-2. See Supple-
mentary Note 3 for more information about these genes. Notably,
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variant(ΔnagA-VC_1783(Asp150Asn))
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       4.65%

Fig. 1 | Maximum likelihood phylogenetic tree of the whole cohort based on
the core genome of 129 isolates cultured from in-patients admitted to hospi-
tals in six districts (Barisal, Chittagong, Dhaka, Khulna, Rajshahi and Sylhet)
of Bangladesh. The two distinct BD-1.2 and BD-2 lineages are shown in the inner
ring. The outer rings display serotypes, year of collection, presence of variants

within the Vibrio pathogenic island 2 (VPI-2), Vibrio seventh pandemic island II
(VSP-II) and phage-inducible chromosomal island-like elements 1 and 2 (PLE) and
region of collection. A map of Bangladesh132 showing the proportion of samples
collected from each regional division is also shown.
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OmpU is another gene with a statistically significant mutation (G325D)
underlying lineages’ separation. Amino acid D is predominant in BD-
1.2, while the amino-acid G is prevalent in BD-2. To assess for any
additional genes separating the BD-1.2 and BD-2 lineages we also
conducted an analysis on the pangenomes of the lineages separately
but found the results broadly in line with that of the combined pan-
genome analysis presented above (Supplementary Note 4 and Sup-
plementary Data 6-10).

To understand the systemic relationships connecting the identi-
fied lineage-specific genetic signatures on a mechanistic level, we
analysed the 30 core genes in Table S1 with allelic variants that were
found exclusively in one lineage but absent in the other lineage using
the V. choleraeGSMmodel iAM-Vc960 (Fig. 3). Thirteen of these genes
(murI, ftsI, appC, suhB, glmM, dsbD, licH, cysG_1, cobB, clcA, argG, mak,
phhA) are metabolic and have been identified as playing integral roles
in amino acid metabolism, cell wall metabolism, carbon metabolism,
amino sugar and nucleotide sugarmetabolism and energymetabolism
(see Supplementary Data 11). Moreover, for these genes we sought to
better understand their role by examining their effects on V. cholerae

growth rate, biochemical networks and production of metabolites in
the networks. As the effect of mutations/gene knockouts cannot
always be observed as change ingrowth rate (due to the redundancyof
the reactions in metabolic networks of bacteria), it can be useful to
also consider the changes in metabolite yield. Changes in metabolite
yield have been found to correlate with changes in the virulence,
persistence, and fitness of some organisms24. Furthermore, V. cholerae
are capable of adapting to ecological niches by altering the metabo-
lites they excrete to create a more favourable environment for V.
cholerae and/or a less favourable environment for other species
competing for the same resources25,26. Mutations disrupting
larger numbers of metabolite yields may be suggestive of a larger
systems-level impact on bacterial metabolic function. Therefore,
gene essentiality, flux variability analysis (FVA) and flux balance
analysis (FBA) were used to predict, through gene knockouts, the
essentiality and the effects of the identified genetic determinants
on the growth rates of V. cholerae, and also used to further explore
their influence on metabolite yield. The latter was done by assessing
the influence on metabolite flow within the complete metabolic

Fig. 2 | SNP network analysis of highly connected isolates. Network diagram
showing pairwise connections between isolates in our cohort with less than 15
pairwise SNP differences. The panels show the same network with the nodes

colour-coded according to (A) lineages, (B) year of collection, (C) serotypes and
(D) location of collection. The lines between pairs of isolates are colour-coded by
the number of SNPs.
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network of V. cholerae, encompassing all known metabolites and
metabolic reactions (see Methods). In this analysis it was important to
consider all reactions and metabolites in the model rather than
focussing on a subset, as doing so ensures no undue bias or assump-
tions underlie the results.

The genes cysG, clcA, adh andmcrC, were found to be essential for
growth (i.e., knocking these genes out reduced the biomass growth to
less than 0.0001 h−1) in both rich and minimal media. Furthermore,
murI, glmM, and dapF displayed auxotrophic behaviour in minimal
media, whereas cysG, clcA, adh, andmcrCwere found to be essential in
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rich media with alternative carbon sources. Additionally, three genes,
murI, glmM and dapF, were found to be essential for growth inminimal
media only. Next, FVA was used to identify biochemical reactions
whose flux span was significantly changed (greater than 10% change)
by knocking out these genes. In total ten genes (murI, glmM, cysG, clcA,
argG, mak, adh, dapF, add, and mcrC) when knocked out significantly
changed the flux span in at least one reaction through the model by
FVA analysis, Supplementary Data 11. Finally, FBA analysis was used to
determine the effect of gene knockouts on metabolite yield. Five
genes,murI, glmM, cycG,mak, and dapF were found to reduce at least
onemetabolite yield to zero in themodel when knocked out (given the
wildtype yield was greater than 0), Supplementary Data 1127,28. Inter-
estingly, the average number of metabolite yields affected by knock-
outs of the genes discriminating lineages was significantly higher than
a random selection of 100 metabolic genes (p-value 0.0429, Mann
Whitney U test, two-sided), indicating a stronger influence on meta-
bolite production for this subset of genes.

To further elucidate themetabolic differences between the BD-1.2
and BD-2 lineages, we repeated our previous analyses done on the
generalised model using strain-specific models automatically gener-
ated by CarveMe27. Gene essentiality analysis concurred with the
general model (iAM-Vc960), with only a small number of differences
(SupplementaryData 12 and SupplementaryNote 5). The effect ofmurI
gene knockouts differed between lineages, proving non-essential in
94% of BD-1.2 lineage models but only in 76% of BD-2 lineage models.
Flux variability analysis of the individual models revealed that clcA
knockouts led to significant changes in the flux span of the CLt3_2pp
reaction, which controls chloride transport, in 96% BD-2 models
compared to just 5%ofBD-1.2models. The clcAgene hasbeen linked to
bacterial acid resistance and it has been suggested that changes to the
expression/repression of this gene may help facilitate survival during
movement through the intestinal tract28. Similarly, flux balance ana-
lysis indicated that metabolite yield was changed differently across
lineages in response to knocking out clcA, with the metabolite yield of
chloride reduced to 0 in 95% of BD-1.2 isolates.

In summary, a total of 15 genes found to underly the genetic and
temporal differentiation of V. cholerae BD-1.2 and BD-2 lineages, were
also found to significantly alter the growth, reaction flux, ormetabolite
yield of V. choleraewhen knocked down, either in the generalised iAM-
Vc960GSMmodel or in the draft strain-specificmodels. Of interestwas
the gene clcA, which showed differences in both flux span and meta-
bolite changes between lineages in the draft GSMmodels. The FVA and
FBA results indicate that these genes play important metabolic roles.
Disruption of these functions could potentially affect bacterial growth
or metabolic output, which may contribute to the survival and dom-
inance of one lineage over another. Although our analysis cannot pin-
point a single SNP as responsible for the loss of metabolic function, it
suggests that an accumulation of SNPs or gene losses could collectively
lead to metabolic changes. We observe the potential for metabolic
alterations driven by multiple mutations (SNPs).

Lastly, when mapping the 160 intergenic SNPs back to genomes,
we found their location in the upstream/downstream regions of 35
known genes and 34 hypotheticals genes (see Supplementary Data 4).
These intergenic SNPs exhibited allelic distribution, with the minor
variant prevalent in the BD-2 isolates (68% to 100%), while the major
variant dominated in the BD-1.2 isolates (over 98%), only one SNP in
BD-1.2 had a major allelic variant at of 47% (Fisher exact test, Bonfer-
roni correction p-value < 2.31e-08). Many of these SNPs were located
within transcriptional factor binding sites (TFBs) (Supplemen-
tary Data 4). Intergenic SNPs, exhibiting significantly different allelic
distributions between BD-1.2 and BD-2, mapped across the TFBs of 11
TFs (ToxT, Fur, AmpR, OmpR, LuxR, LexA, ArgR, PhoP, CRP, ArcA, IHF)
(Fig. S6-S16). More information about the function of these
transcriptional factor binding motifs is provided in Supplemen-
tary Note 6.

Machine learning unravels correlations between genomic
determinants and clinical symptoms in humans
Beyond identifying the potential involvement of new genetic traits in
differentiating the BD-1.2 and BD-2 lineages, we hypothesised that the
same or additional genetic features might play a significant role in the
manifestation and severity of clinical symptoms in patients when
infectedwithV. cholerae. A summary of the distributionof each clinical
symptom over the two lineages is given in Fig. S17. We focused on the
lineage BD-1.2, which caused the most recent outbreak in Bangladesh.
To identify if and which coding and non-coding mutations and/or
presence/absence of accessory genes would correlate with the differ-
ent clinical symptoms, we employed a bespoke, supervised machine
learning pipeline.

The pipeline is aimed at mining sequencing data to identify the
genetic elements that more strongly correlate with observed clinical
symptoms, which in this case are vomiting, dehydration, number of
stools, duration of diarrhoea and abdominal pain (see Methods sec-
tion). The pipeline is a bespoke adaptation of ML-based data-mining
methodspreviously developedwithin our team to identify correlations
between genomic features with phenotypes17,18,29,30. In the pipeline,
information about different genetic features (SNPs -both from coding
and non-coding regions- and presence/absence of accessory genes)
canbe encoded as input toML-poweredpredictivemodels designed to
estimate the likelihood of observing the selected phenotypes under
each specific pattern of input values17. As long as trainedwith sufficient
observational data, the ML-powered predictive models are able to
replicate experimental evidence, in addition to providing information
on what inputs correlated most strongly with each phenotypic mani-
festation. Through such introspective power, the pipeline is able to
unravel co-occurrent, multiple mechanisms (mutations, horizontal
gene transfer - HGT), variants in their functional protein-coding and
regulatory forms, as well as their additive effect on the targeted phe-
notypes, which in this work, were clinical symptoms.

The following clinical symptomswere selected, namely: vomiting,
abdominal pain, diarrhoea duration, 24-hour stool count and dehy-
dration. Each clinical symptom was handled by building a dedicated
symptom prediction model, operating using genetic elements as
inputs. Two symptoms (vomiting and abdominal pain) were encoded
as binary (presence vs absence). The other three symptoms—diarrhoea
duration, 24-h stool count, and dehydration—were encoded as multi-
class: dehydration as None, Moderate and Severe; diarrhoea duration
as <1 day, 1–3 days, 4–6 days, and 7–9 days; and stool count in 24 h as
3–5 times, 6–10 times, 11–15 times, 16–20 times, and 21+ times. We
handled the prediction of multi-class symptoms via the implementa-
tion of binary predictors.

The symptom prediction models were developed with built-in
robustness to potential confounding factors. Specifically, the follow-
ing list of variables was initially considered as potentially having con-
founding effects: year of collection, location of patient, sex of patient,
age range of patient and serology of V. cholerae. Each potential con-
founder was tested for correlation to the symptom being targeted by
the prediction model. If the potential confounder was found corre-
lated to the symptoms (hence moving from potential to proven con-
founder), then any other input variable also found correlated with the
same confounder would be eliminated from the prediction model. All
the correlation tests between inputs and symptoms, aswell as between
inputs themselves, were run using two-sided chi-square tests. Further,
possible confounding effects related to random initialisation para-
meters of SMOTE (see Methods) were contained by running SMOTE
multiple times.

The development and optimisation of each symptom prediction
model powered by machine learning was based on running a com-
parative analysis of the predictive performances of different machine
learning algorithms, namely: linear support vector machine (linear
SVM), non-linear SVM with radial basis function (RBF SVM), random
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forest, extra-tree classifier and logistic regression) and two meta-
methods (Adaboost and XGBoost). For each algorithm, multiple con-
figurations of the hyperparameters of the learning algorithms were
tested. A nested cross validation approach was used to select the best
hyperparameters, based on randomly selecting different training and
test sets, and using stratified k-fold cross validation metric. Finally,
Friedman and Nemenyi tests were used to statistically compare and
select the best performing algorithm for each prediction model (see
Methods section).

In the end, based on a two-sided chi-square test of independence
(p-value < 0.01), the models for abdominal pain, vomiting, number of
stools 11–15 times vs. 21+ times, number of stools 11–15 times vs. 16–20
times, dehydration moderate vs severe were found immune to con-
founding effects due to year of collection, location of patient, sex of
patient, age range of patient and serology of V. cholerae. The predic-
tion model: diarrhoea duration <1 day vs 1–3 days was found immune
to confounding effects due to age range of patient, sex of patient,
location of patient, and serology of V. cholerae. However, the predic-
tionmodel was found to be influenced by year of collection; therefore,
the inputs thatwere also correlated to year of collectionwere removed
from the analysis (Supplementary Data 13). Moreover, we were able to
successfully develop six binary symptom prediction models featuring
adequate prediction performance levels. These were dedicated to
predicting the following binary phenotypical outcomes: (i) stools 11–15
times vs. 16–20 times; (ii) stools 11–15 times vs. 21+ times; (iii)moderate
vs. severe dehydration; (iv) diarrhoea duration <1 day vs. 1–3 days; (v)
presence vs absence of vomit; and vi) presence vs absence of
abdominal pain (Supplementary Data 14). The remaining binary pre-
dictors were discarded for not performing adequately, either because
of unbalanced available sets of observations (needed for training the
supervisedMLmodels), or because ofmore challenging separability of
thephenotypes given the selected inputs (no featureswere statistically
significant based on the Fisher exact test). Among the tested pipeline
technologies mentioned earlier, logistic regression was identified by
the Friedman F-test and the Nemenyi post-hoc analysis as the best
performing one (Fig. S18). Of the six binary prediction models, four
had an AUC greater than 0.9, Fig. 4. Supplementary Data 15 indicates
the performance metrics obtained by all binary predictors for each
clinical symptom. Figs. 4 and S19 show the performance results for the
logistic regression classifier.

Analysis of the best-performing symptom prediction models
allowed us to identify the input features (core genome coding and
intergenic SNPs and accessory genes)most strongly correlated to each
phenotype (SupplementaryData 16). Seventy-nine different features in
total were selected as significantly correlated to at least one of the six
symptom prediction models, with 68% being selected in two or more
models (Fig. 5). No features were selected for all symptoms. All fea-
tures associated with number of stools 11–15 times vs. 21+ times were
found associated to at least one of the other five symptom prediction
models. Forty-five accessory genes (nine known genes, tufB_2, blc,
pckA, luxR_2, hcpA_1, rpoS, dcuA, hpt, luxR, and 36 hypothetical genes)
and 28 core SNPs over 23 genes (14 known, clpS, gshB, dapF, fabV_1,
add, tufB, lpoA, phrB, yjcS, fabH1, cysG_2, padC, pepN, tadA_2, and nine
hypothetical genes) were identified as strongly associated to at least
one of the symptoms. From the nine known accessory genes: four
(rpoS, hpt, luxR and pckA) were found in the vomit model; dcuA was
found in the abdominal pain model; hcpA_1 was found only in the
number of stools 11–15 times vs. 16–20 times; luxR_2 was found in two
models (vomit and dehydration moderate vs severe); blc and tufB_2
were found in three models (vomit, number of stools 11–15 times vs.
16–20 times and number of stools 11-15 times vs. 21+ times) with tufB_2
also found in abdominal pain and diarrhoea duration <1 day vs.
1–3 days models. Six SNPs from the genes tufB, dapF, clpS, gshB and
fabV were associated to three symptom prediction models (vomit,
number of stools 11–15 times vs. 16–20 times and number of stools

11–15 times vs. 21+ times) with the SNPs from the genes dapF and fabV
also associated with abdominal pain and diarrhoea duration <1 day vs.
1–3 days and the SNP from the gene tufB associated with dehydration
moderate vs severe.

Among the 45 accessory genes linked to clinical symptoms, six
hypothetical genes were also statistically significant in distinguishing
the two lineages. Among the other accessory genes selected, four (blc,
pckA, luxR and rpoS) have important biological functions. In particular,
Blc, alsoknownasVlpA, is a lipocalin, that is correlated to acquisitionof
drug resistance in V. cholerae31. PckA (phosphoenolpyruvate carbox-
ykinase) is important for gluconeogenesis, a highly conserved pathway
in bacteria and humans. Interferingwith the gluconeogenesis pathway
impacts V. cholerae colonisation in mouse models, highlighting its
crucial role in sustaining V. cholerae growth and viability within the
intestines32. LuxR plays a key role in regulating biofilm production and
secretion in V. cholerae33. RpoS is a sigma factor that facilitates phy-
siological adaptation to general starvation and stationary phase
growth in different species. V. cholerae strains lacking the gene rpoS
are impaired in their ability to survive in different environmental
stresses. RpoS was also shown to be important in V. cholerae for effi-
cient intestinal colonisation34.

Out of the 28 core SNPs associated to the clinical symptoms, 11
were also found previously as statistically significant in differentiating
the BD-2 and BD-1.2 lineages (see above), Supplementary Data 16.
These 11 SNPs mapped to 11 genes (clpS, gshB, dapF, fabV_1, add, and
six hypothetical genes). Among the SNPs mapping to known genes
(clpS, gshB, dapF, fabV_1, add), three are non-synonymous SNPs map-
ping to clpS, gshB and fabV. In V. cholerae clpS regulation involves
cAMP receptor protein (CRP)31. CRP is important in intestinal
colonisation35. GshB, encodes a glutathione synthetase (GSH), which is
associated to resistance to oxidative stress. V. cholerae fabV is one of
the several triclosan-resistant ENR encoding genes36.

As in our previous lineage analysis, we sought to better under-
stand the importance of the genes which had been found to better
correlate with the severity of the symptoms. We examined for those
genes that were metabolic, through FVA and FBA, the effects of such
genes on growth rate (gene essentiality), and beyond that, their
influence on metabolite yield and reaction flux. Nine symptoms-
related genes were identified as metabolic genes in the iAM-
Vc960GSMmodel (Fig. 6). Eight of these genes were associated to five
metabolic systems (Supplementary Data 17). FabH1 and gshB asso-
ciated with cofactor and prosthetic group metabolism; pckA is asso-
ciated with carbohydrate metabolism; dcuA plays a crucial role in C4-
dicarboxylate transport; dapF, pepN and gshB are significant in amino
acidmetabolism; add and pckA are relevant to nucleotidemetabolism;
oppA and fabH1 are involved in cell wall metabolism, with fabH1 rele-
vant for fatty acid biosynthesis (Supplementary Data 17).

Using FBA and FVA analysis, the knockouts of the genes dapF and
gshB were found to halt production of several metabolites. The genes
pckA, add, dapF, oppA, gshB were found to significantly change the
reaction flux span, Supplementary Data 17. Both FBA and FVA analysis
can infer if potential metabolic adaptationmechanisms for V. cholerae
can lead to alterations in bacterial virulence, potentially leading to
worse symptoms, if genes significantly affect pathways which are
associated with important functions such as colonisation, biofilm
production and cell wall synthesis. For example, the gshB gene, a
glutathione reductase, contributes to V. cholerae intestinal
colonisation37 and has a role in acid tolerance response38. Similarly,
dapF was found as an essential gene in minimal media and leading to
auxotrophic behaviour to the amino-acid lysine. As Pearcy et al.39

indicated, an auxotrophic behaviour of a gene connected to amino-
acid biosynthesis is important because it can provide competitive fit-
ness advantage against commensal bacteria. During the infection stage
V. cholerae engage and compete with commensal bacteria for nutrient
acquisition to support rapid growth and multiplication40. Moreover,
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the lysine pathway plays a central role in eubacteria cell wall bio-
synthesis, sincemeso-diaminopimelate is the immediate precursor for
the biosynthesis of its main component, peptidoglycan, with dapF
responsible for the synthesis of meso-diaminopimelate in the lysine
pathway41,42. The proper synthesis and maintenance of peptidoglycan
is essential for bacterial virulence and its viability43.

To further investigate the link between metabolic gene variations
and the clinical symptoms observed in different strains, we utilised
draft strain-specific models generated with CarveMe27. The gene
essentiality analysis results were largely consistent with those of the
general model (iAM-Vc960), with only a few differences noted (Sup-
plementary Data 18). The effect of dapF gene knockouts varied
betweenmodels with the gene being essential in 93% (n = 20) and non-
essential in 7% (n = 9) of the models. Comparing symptoms between
the ‘essential’ and ‘non-essential’ groups, dehydration was significantly
more severe in the ‘non-essential’ group (Fisher exact test p-value =
0.05). All strains in this group exhibited severe dehydration, sug-
gesting a link between non-essentiality of the dapF gene and the

severity of V. cholerae symptoms. In relation to this, the flux balance
analysis revealed changes in metabolite yields associated with the
genes dapF and cysG_2 across all strain-specific models. For dapF,
altered metabolite yields were predominantly observed in strains
where dapF was essential, while knocking out dapF in non-essential
models hadminimal impact on themetabolite yields ofmurein-related
metabolites. This indicates metabolic adaptations linked to bacterial
survival in these strains, potentially contributing to more severe dis-
ease outcomes. Additionally, knocking out the padC gene resulted in
significant changes inmetabolite yields only in the NGICDV-066 strain.
Although conclusions drawn from a single strain are limited, it is
notable that this isolate exhibited the most severe clinical symptoms
across all measured symptoms, except for the duration of diarrhoea
(presence of vomiting, presence of abdominal pain, number of stools
(21+ times), presence of severe dehydration, duration of diarrhoea 1-3
days). Flux variability analysis in individual models indicated con-
sistent behaviour across all strain-specific models regarding gene
knockouts associated with clinical symptoms. Specifically, five gene
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Fig. 4 | Supervised machine learning pipeline accurately predicts the clinical
manifestations of hospitalised patients from the genomic determinants
extracted from BD-1.2 isolates, collected among the same hospitalised
patients. A Flow diagram showing machine learning pipeline including data
(green), pre-processing steps (yellow) and classification (blue).BMachine learning
performance results measured by the area under the curve (AUC) from 30 training
runs for clinical symptomcombination. The results shownare for thebest classifier
LogisticRegression, as definedby theNemenyi test (Fig. S18). The violin plots show
the distribution of the data, with each data point representing one classification

model. Inside each violin plot is a box plot, with the box showing the interquartile
range (IQR), the whiskers showing the rest of the distribution as a proportion of
1.5 x IQR and the white circle representing themedian value.CNumber of features
(accessory genes, core genome and intergenic SNPs) selected for each symptom.
Predictive models were generated for six different clinical symptoms (X-axis):
abdominal pain; dehydrationModerate vs. Severe; duration of diarrhoea <1 day vs.
1–3 days; number of stools 11–15 times vs. 16–20 times; number of stools 11–15
times vs. 21+ times; and vomit.
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knockouts (add, dapF, gshB, padC, pckA) showed significant flux span
changes in all models.

In summary, in relation to gene essentiality, reaction flux and
metabolite yield, our results show that gshB and dapFmake interesting
candidates for further analysis, as knockout models of these genes
predict significant changes to the bacterial metabolic function.

To delve deeper into understanding the functional mechanisms
underlying clinical symptoms, we explored the interactome of the
proteins associated to the clinical symptoms. The protein-protein
interaction network (PPI) analysis revealed the interactome of 36
proteins, selected by the machine learning pipeline, with 109 other
proteins, Fig. S20. The KEGG analysis indicated enrichment in ribo-
some proteins (e.g., RpoS) and fatty acid biosynthesis (e.g., FabH1,
FabV) (Fig. S21). The colonisation in the human intestine and virulence
of V. cholerae is intricately connected to both fatty acid metabolism44

and the ribosome pathway45. The gene onthology (GO) analysis

highlighted enrichment in translation, peptide biosynthetic processes,
and gene expression, featuring TufA, TufB, RpoS, GshB (Supplemen-
tary Data 19 and 20). The peptide biosynthetic pathway plays a vital
role in V. cholerae biofilm formation and colonisation23.

None of the six intergenic SNPs selected by the machine learning
pipeline were in TFBs or promoters. These SNPs were located in a
region without any functional annotations within 2 kbps upstream or
0.5 kbps downstream of a gene, adhering to the standard database
dbSNP cutoffs for SNP-to-gene mapping46,47. See Supplementary Data
16 for additional information about the location of these SNPs.

Structural analysis suggests evolutionary drivers of selection,
mechanistic bases for BD-2 and BD-1.2 lineages evolution, and
associations to clinical symptoms
To further understand whether the identified alleles play a causal role
in the evolution of lineages and clinical symptoms, we selected two of

Fig. 5 | Undirected graph network illustrating the genomic features associated
with clinical symptommodels forV. cholerae. Node colour denotes the genomic
determinant category, (i.e. accessory genes and/or core genome coding, and
intergenic SNPs) identified by machine learning. Nodes are labelled with numbers
corresponding to specific genes associated with each genomic determinant, as
detailed in theGenes Legend, while unnumbered nodes are related to unannotated

(hypothetical) genes. The clinical symptom models are highlighted in different
colours and explained in the legend Symptoms Legend featuring abdominal pain;
dehydration Moderate vs. Severe; duration of diarrhoea <1 day vs. 1–3 days;
number of stools 11–15 times vs. 16–20 times; number of stools 11–15 times vs. 21+
times; and vomiting.
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the top-ranked non-synonymous SNP candidates, prioritising the fol-
lowing aspects in relation to the associated genes: (i) have significant
difference of allelic distribution between BD1-1.2 and BD-2; (ii) have a
significant correlation, as detected by the ML pipeline, with the
selected clinical symptoms; (iii) are characterised as functionally
important for V. cholerae metabolisms (i.e. significantly impacting
reaction flux when knocked out, as highlighted by the GSM model)
and/or interactome (i.e. enrichment of the functions and mechanisms
related to pathogenesis); (iv) 3D structural mutation analysis could be
benchmarked with experimental evidence. This resulted in three
genes, all top-ranked by both the Fisher Exact test for BD-1.2 and BD-2
lineage evolution and the ML analysis for the underlying clinical
symptoms,namely: fabV, gshB and clpS.Wemapped the alleles of fabV,
gshB and clpS to their protein structures using both experimental
crystal structures and predicted homology models. However, the 3D-
structure could be utilised to infer the mechanistic basis only for fabV
and gshB.

In all BD-2 isolates FabV had a proline at position 149 (Pro149)
whereas, in BD-1.2 isolates, the Pro149 was found in only 40.5% of
cases, with the remaining 59.5% isolates exhibiting histidine at posi-
tion 149 (His149). The BD-1.2 isolates with His149 showed a higher
duration of diarrhoea (1–3 days) and a higher number of stool score
(16-20 times and 21+ in 24 h) compared to the BD-1.2 isolates with
Pro149, featuring a lower diarrhoea duration (<1 day) and lower
number of stools score (11–15 times). The amino acid 149 was located

in the trans-2-enoyl-CoA reductase catalytic domain (Fig. 7A–E), when
Pro149 is present, it interacts with Lys148, Ser151, Trp159 through Van
der Waals (VDW) interactions, whereas His149 not only forms the
aforementioned interactions but also creates an extra VDW interac-
tion with Lys148. Furthermore, His149 interacts with an additional
amino acid, Arg150, through a VDW interaction. These additional
interactions in the presence of the His149 cause an increase in the
stability of the structure (ΔΔG=0.101 kcal/mol > 0) and a decrease
of the molecule flexibility (ΔΔSVib ENCoM: −0.053 kcal.mol−1 K−1),
which is usually linked to a stronger binding affinity48,49. Moreover,
the presence of His149 increased the positive charge of the sur-
rounding area (Lys148, His149, Arg150) (Fig. S22), with an overall
electrostatic energy increasing from 7.3E + 03 kJ/mol (Pro149) to
7.48E + 03 kJ/mol (His149) within the 5 Å region and with an overall
protein total electrostatic energy rising from 2.1E + 05 kJ/mol
(Pro149) to 2.52E + 05 kJ/mol (His149). Exposed, positively charged
amino acids are suggested to promote interactions with negatively
charged cellular systems50. The enhanced positive charge of FabV in
the presence of His149 might support its role in participating in the
breakdown of the negatively charged fatty acids.

GshB, a glutathione reductase, has been shown to contribute to V.
cholerae intestinal colonisation37 and to have a role in the ability of V.
cholerae to mount an acid tolerance response38. In all BD-2 isolates
GshB had a threonine at position 93 (Thr93), whereas in the BD-1.2, the
Thr93 was only found in 21.5% of the cases, with most (78.5%) of the
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Fig. 7 | 3D protein structure analysis of FabV allelic variants underlying BD-1.2
and BD-2 lineage evolution and clinical symptoms. A Violin plot indicating the
distribution of the diarrhoea duration score (0: no diarrhoea, 1: <1day, 2: 1–3 days,
3: 4–6 days and 4: 7–9 days) for the isolates containing either Pro149 (P) or His149
(H). Statistical significance was tested with a two-sided Mann Whitney U test,
p-value is shown. B Violin plot indicating the distribution of the number of stools
score (0: <3 times, 1: 3–5 times; 2: 6–10 times; 3: 11–15 times; 4: 16–20 times; 5: 21+
times) for the isolates containing either Pro149 (P) or His149 (H). Statistical

significance was tested with a two-sided Mann Whitney U test, p-value is
shown. C The bar graph displays the number of isolates in the two BD lineages
associated with Pro149 (P) and His149 (H). D 3D structures of FabV (AlphaFold)
with Pro149 and coloured by functional domains. Amino acid residues (Lys148,
Ser151, and Trp159) interacting with Pro149 (green) are shown in sticks models.
E 3D structures of FabV (AlphaFold) with His149 and coloured by functional
domains. Amino acid residues (Lys148, Arg 150, Ser151, and Trp159) interacting
with His149 (purple) are shown in sticks models.
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BD-1.2 isolates exhibiting an isoleucine (Ile93) at this position. The
BD-1.2 isolates with Ile93 are associated to a higher duration of diar-
rhoea (1-3 days) and a higher number of stool score (16-20 times and
21+ in24 h) compared to theBD-1.2 isolateswithThr93. Thr93 interacts
with Asp92, Ile96, Tyr97 through 13 VDW interactions and 1 H-bond;
whereas Ile93 not only forms the aforementioned interactions but also
creates extra VDW interactions with Tyr97 (Fig. 8A–E). These addi-
tional bonds in the presence of Ile93 cause an increase in the stability
of the structure (ΔΔG=0.384 kcal/mol >0) and a decrease of the
molecule flexibility (ΔΔSVib ENCoM: −0.055 kcal.mol-1.K-1), which is
usually linked to a stronger binding affinity48,49. Moreover, the pre-
sence of Ile93 increased the negative charge of the surrounding area
(<5 Å) (Fig. S23A, B), with an overall electrostatic energy decreasing
from7.93E +03 kJ/mol (Thr93) to 7.4E + 03 kJ/mol (Ile93)within the 5 Å
region and with an overall protein total electrostatic energy varying
from 2.1E + 05 kJ/mol (Thr93) to 1.8E + 05 kJ/mol (Ile93). A decrease in
total electrostatic energy is often associated to folding51, protein
folding stability is largely dependent on the hydrophobic interactions
of nonpolar residues52. The surface, on average, has become more
hydrophobic, indicating a possible reorientation of residues or a
change in the surface’s exposure to the solvent (Fig. S23C, D).

Discussion
Bangladesh has witnessed the continual genomic evolution of V. cho-
lerae lineages, with increased virulence, resistance, global spreading
ability and disease severity. The potential of a V. cholerae isolate to
have a global spreading ability and cause disease ismostly approached
by studying its genomics via bioinformatics analysis. Two recent
studies9,10 explored the genomics attributes of the lineage BD-2 pre-
dominant between 2004 and 2018 and the emergent lineage BD-1.2
appearing from 2016 onwards and responsible for the 2022
outbreak9,10. By comparing these lineages, the authors revealed
mutations in ctxB allele, SXT/ICE, VSP-II, VPI-1 and gryA allele10 poten-
tially explaining the recent shift in lineage predominance. Despite
these knowledge advances, gaps persist in understanding the entire
genomic repertoire associated to transmission ability and different
disease severity patterns.

Here, we developed an analysis approach that combines, ML-
powered data mining, whole-genome sequencing, genome-scale
metabolic modelling and 3D structural analysis to uncover, on a finer
scale, unknown associations between lineage transmission dynamics,
disease severity and the genomic make-up of V. cholerae isolates.
Machine learning offers a powerful opportunity to analyse entire
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Fig. 8 | 3D protein structure analysis of GshB allelic variants underlying BD-1.2
and BD-2 lineage evolution and clinical symptoms. A Violin plot indicating the
distribution of the diarrhoea duration score (0: no diarrhoea, 1: <1day, 2: 1–3 days,
3: 4–6 days and 4: 7–9 days) for the isolates containing either Thr93 (T) or Ile93
(I). Statistical significancewas testedwith a two-sidedMannWhitneyU test, p-value
is shown. B Violin plot indicating the distribution of the number of stools score (0:
<3 times, 1: 3–5 times; 2: 6–10 times; 3: 11–15 times; 4: 16–20 times; 5: 21+ times) for
the isolates containing either Thr93 (T) or Ile93 (I). Statistical significance was

tested with a two-sided Mann Whitney U test, p-value is shown. C The bar graph
displays the number of isolates in the two BD lineages associated Thr93 (T) or Ile93
(I). D 3D structures of GshB (AlphaFold) with Thr93 and coloured by functional
domains. Amino acid residues (Asp92, Ile96, and Tyr97) interacting with Thr93
(green) are shown in sticks models. E 3D structures of GshB (AlphaFold) with Ile93
and coloured by functional domains. Amino acid residues interacting with Ile93
(orange) are shown in sticks models.
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genomes efficiently against selected phenotypes (lineages, clinical
symptoms), allowing for the identification of genomic features ranked
on strength of correlation with the phenotype. This provides a sig-
nificant advantage to conventional genomics-only methods based on
checking for presence/absence or based on similarity searches of
known manually chosen determinants. Moreover, our approach
allowed various genetic determinants (accessory genes, and core
coding and intergenic SNPs) to be analysed simultaneously to capture
the co-occurrence, synergism and additive effect of multiple
mechanisms and determinants (mutations, accessory genes, hor-
izontal gene transfer, functional, metabolic, and regulatory variants).
Determinants identified by ML may contain genes with a known
functional relationship with the phenotype as well as genes with no
previously known association with that specific phenotype. Alto-
gether, our reference-agnostic approach overcomes limitations of
previous genomics studies that only considered one feature type
(SNPs, accessory genes) at a time and known genetic elements asso-
ciated to V. cholerae transmission.

Using our method, in addition to confirming the aforementioned
mutations identified in recent genomics studies10, we found further
mutations in VSP, VPI, and PLE, exclusive to one lineage and absent in
the other, supplementing those previously found by Monir et al.10.
Moreover, our findings expand known mutations to a wider range of
genomic determinants, including 115 accessory genes, 1225 core cod-
ing SNPs, and 160 intergenic SNPs crucial for explaining at a more-in
depth scale BD-1.2 and BD-2 recent shift. Supplementing the previous
knowledge on the type, number and functions of genomics determi-
nants differentiating BD-1.2 and BD-210.

For example, five core genes (skp, tamA, clcA, cysG, and valS) with
a unique non-synonymous variant in BD-1.2 and playing key roles on
toxin transport and acid tolerance, shed new light on functions and
may help clarify their contribution to the recent prevalence of BD-1.2
over BD-2. In addition, non-synonymous SNPs, found uniquely in BD-
1.2, were mapped to genes with functions such as colonisation, toxins
export, virulence, growth, response to pH and temperature, and phage
resistance. For example, the mutation G325D in ompU conferring
bacteriophage resistance, was found in this work to be statistically
important to differentiate the two lineages. OmpU a pore-forming
protein of the outer membrane of V. cholerae has adhesive properties
which may play a role in the pathogenesis of cholera53, is critical for
Vibrio fitness54,55, for dissemination54, for protection against the bac-
tericidal effect of bile salts56, cationic peptides57 and intestinal organic
acids58. The G325D mutation is located within the L8 loop, which has
been reported to be crucial for neutralising infection and conferring
resistance against phages59,60. Seed et al.60, showed that in presence of
the bacteriophage ICP2 (bacteriophage that preys on V. cholerae and
was first isolated from cholera patient stool samples61) the OmpU
virulent mutant (G325D) had a 10,000-fold enrichment over the wild-
type, indicating that strong selective pressure is imposed by phage
predation during V. cholerae infection.

Out of the twelve accessory genes found statistically significant to
differentiate the two lineages, five (lon_3, endA, adh, hdfR_4 and bcr_2)
were present uniquely in BD-1.2 with functions such as antibiotic
resistance and biofilm formation. Increasing evidence indicates that V.
cholerae has the capability to develop biofilm-like aggregates during
infection, potentially serving as a function in pathogenesis and disease
transmission. Nonetheless, the composition, control mechanisms
governing the formation of these biofilms during infection, and their
significance in intestinal colonisation and virulence remain yet to be
elucidated62.

In addition to the coding genome, we found that regulatory net-
works are associated to lineage differentiation. Among the most rele-
vant intergenic SNPs exhibiting significant allelic distribution between
the two lineages is the onemapping in the TFBs of ToxT. This TF plays a
crucial role in the development of V. cholerae-related symptoms60 and

selectively regulates the expression of virulence genes found in toxin-
coregulated pilus (TCP) and cholera toxin (CT)63,64. Environmental
conditions within the intestinal tract, such as the presence of bile,
bicarbonate, reducedoxygen levels, andunsaturated fatty acids, play a
significant role in promoting the simultaneous expression of genes
responsible for the production of Tcp, CT, and various other genes
linked to colonisation12,63. The activation of the ToxT regulon is also
influenced by metabolic cues and quorum sensing12,63. Although,
transcription factor binding site prediction algorithms tend to over-
predict sites. The correlation of experimentally determined SNPs with
the predicted sites and their different nucleotide frequency provides a
reasonable certainty that the observation reflects the phenomenon.
The fact that we found significant intergenic SNPs in TFBs of 11 TFs and
not in promoters, suggests a possible important role in such scenario.
Higher frequency of SNPs close to transcriptional start sites is related
to subtle alteration of gene expression which might result in lineage
diversity. In addition to a wider range of genomic determinants found
in this study, we also found 23 genes with mapped SNPs (tyrA, gyrA,
ctxB, glmM, tamA, valS, czcA, licH, mutL, kbl, cobB, mak, znuC, phhA,
nagA_1, argG, cysG_1,murI, appC, putA, suhB, fadJ and recD) in common
between our analysis and Monir’s comparison of BD-1 vs BD-29 and
nine genes with SNPs (rstA, ubiA, dsbD, clcA, thiG, rtxA, mltD, fadJ and
recD) in common between our analysis andMonir’s comparison of BD-
1.1 vs BD-1.210.

Roughly 20% of people who contract toxigenic V. cholerae show
cholera symptoms12. Among symptomatic cases, approximately 5% are
mild, 35% aremoderate, andabout 60%are severe. Thedisease severity
depends on pathogenic factors of the bacteria, and host factors
including age, nutrition, and immune system12. Here, we revealed the
existence of correlations between a core set of genetic determinants in
V. cholerae and clinical symptoms (diarrhoeal duration, number of
stools, abdominal pain, vomiting, and dehydration). A recent study65

investigated these correlations, using machine learning, by analysing
gene families in the gutmicrobiome of householdmembers of cholera
patients to predict disease severity. In such study, associations were
found in gene families like ribosomal proteins, RNA polymerases, and
the sugar phosphotransferase system with symptomatic disease.
However, the computational pipeline adopted in such work65 did not
produce high-performance metrics for predictive models. Our pipe-
line, in contrast to Levade et al.65, achieved superior performance
metrics, and encompassed accessory genes, core genome SNPs, and
intergenic SNPs. It considered variants in both functional protein-
coding and regulatory forms, revealing their additive effect on diverse
clinical symptoms.

Moreover,mechanistic insightswerederived throughGSMMs and
protein-protein interaction networks. Notably, we identified genes
crucial for pH homoeostasis, host adaptability, colonisation, virulence,
motility, acid tolerance, toxin transport, biofilm formation, and bac-
teriophage resistance. Important pathways were found underlying
these roles, such as the fatty acids biosynthesis which is important for
V. cholerae since unsaturated fatty acids present in bile inhibit the
expression of virulence factors and both cholesterol and unsaturated
fatty acids can enhance the motility of V. cholerae66; and biofilm pro-
duction which plays a crucial role in the cholera pathogenesis and
dissemination of disease62. Furthermore, our ML analysis identified
genes associated to abdominal pain thatwere also found important for
colonisation in V. cholerae. It is known that colonisation of pathogenic
bacteria can present clinical symptoms such as abdominal pain67.

Three non-synonymous SNPs associated to the clinical symptoms
were also found as statistically significant in differentiating the BD-1.2
and BD-2 lineages. These SNPs mapped to clpS, gshB and fabV. In V.
cholerae clpS regulation involves cAMP receptor protein (CRP)35. CRP is
important in V. cholerae gene regulatory network lifestyle switching,
adapting gene expression for quorum sensing, intestinal colonisation,
and toxin production to its environment35. GshB, encodes a
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glutathione synthetase (GSH), associated to resistance to oxidative
stress. It is part of the σ32 regulon, contributing to V. cholerae intest-
inal colonisation37. Glutathione controls the potassium efflux system,
Kef, and pH homoeostasis involved in Na+ and K+ transport68.
Impaired glutathione production may affect the stress response68.
GshB was additionally shown to have a role in the ability of V. cholerae
to mount an acid tolerance response38. V. cholerae fabV is one of the
several triclosan-resistant ENR encoding genes36. Resistance to triclo-
san also affects resistance to other antibiotics, showing cross-
resistance to a wide range of antibiotics (including chloramphenicol
and tetracycline)69. Moreover, fabV exhibits pleiotropic effects con-
trolling pathogenicity in P. aeruginosa via modulation of fatty acids
synthesis, production of virulence factors and motility70.

Analysing the 3D structure based on non-synonymous mutations
can provide insights into the mechanisms by which these mutations
can cause disease71–74. Changes in the stability of proteins can lead to
manifestation of diseases73 or symptom variations71,74. Among all types
of mutations, non-synonymous SNPs have the greatest impact on
protein structure and function75. In this work we found that different
SNPs accumulated in BD-1.2 isolates compared to BD-2 isolates, sug-
gesting different evolutionary dynamics possibly explaining the tem-
poral shift of the two lineages. Our analysis of top-ranked non-
synonymous SNPs in protein-coding regions, identified by machine
learning as linked to both BD-1.2 lineage evolution and clinical symp-
toms, specifically FabV andGshB, unveiled that SNPs present in BD-1.2,
associated withmore severe cholera, led to increased protein stability.
That protein stability might be relevant for disease severity is also
supported by the fact that no SNPs associated to clinical symptoms
were found in any TFBs or promoter signature but only in protein-
coding sequences. In this study, we have identified promising targets
related to metabolism (clcA, cysG, adh), antimicrobial resistance
(i.e. bcr, blc), and virulence (i.e. ompU, skp, tamA, valS). These targets
show significant potential for further investigation through experi-
mental studies.

We are aware of the limitations of our current study. Several host
factors (retinol deficiency, blood group, genetic factors, innate
immune system) confer susceptibility to cholera with higher risk of
symptomatic disease76. These factors have not been considered in this
study due to lack of data. A further limitation of this study was the
inability to consider the potential impact of co-infections with either
multiple V. cholerae lineages/strains or other pathogens. Whilst the
presence of more than one V. cholerae strain or lineage in a host has
recently been shown to be unlikely77–79, co-infections with other bac-
teria can occur in diarrhoeal patients. A study of 10,351 confirmed
clinical V. cholerae cases from 2000-2021 in Bangladesh found that
Campylobacter spp, enterotoxigenic E. coli (ETEC) and rotavirus were
the most frequently found co-pathogens, with co-infection rates of
6.7%, 5.7% and 2.4%, respectively80. Although the effects on the host of
co-infection of V. cholerae with Campylobacter spp. or rotavirus have
not been studied, co-infection with enterotoxigenic E. coli (ETEC) has
been studied. Chowdhury et al.81 showed that coinfection with ETEC
results in an increasedhost immune response, and so could potentially
affect observed symptoms. The authors have also observed a higher
co-infection rate (13%)betweenV. choleraeO1andETEC in their cohort.
However, for future researchwewill aim to incorporate these variables
to provide a more comprehensive understanding of the interactions
between host and pathogen, aswell as between different pathogens, in
the context of cholera. This study should be considered a proof-of-
principle to be further investigated and validated with larger sample
sizes and different geographical areas.

With the advent of modern technologies, by strengthening
bespoke analytical methods and by performing wider comparisons
(asymptomatic vs. symptomatic, patients vs. households, environ-
mental vs intestinal Vibrio) we can potentially disentangle the intricate
network of correlations between the genetic underpinnings of cholera

symptoms and epidemiological transmission risk, uncovering reg-
ulatory, metabolic and signalling networks interconnectivity that
might help to inform future interventions.

Methods
Ethics Statement
Informed written consent was obtained from all adult patients, or
guardians on behalf of children. Upon receiving consent, the physician
collected the patient’s sociodemographic characteristics and medical
histories. For the icddr,b isolates, the study protocol was approved by
the Institutional Review Board of icddr,b (PR-15127). For the IEDCR
isolates, the study was performed in accordance with protocols
approved by the Institutional Review Board of IEDCR (IEDCR/IRB/09
and IEDCR/IRB/26). Ethics approval was also obtained from the School
of Veterinary Medicine and Science Ethics Committee, University of
Nottingham (2811 110724).

Experimental design
For the study we used 129 V. cholerae bacterial isolates obtained from
distinct stool samples of patients between 2014 and 2021 from the
ongoing Nationwide Cholera Surveillance82, jointly conducted by
IEDCR and icddr,b. The isolates were collected from admitted patients
fromsixdivisionsofBangladesh (Barisaln = 11, Chittagongn = 6,Dhaka
n = 99, Khulna n = 2, Rajshahi n = 4 and Sylhet n = 7). The isolates
included in the study were gathered from patients meeting the case
definition of diarrhoea and consenting to be included in the surveil-
lance study. The case definition was used and defined as (i) Diarrhoea
(patient age > 2months): any patient attending hospital with 3 ormore
loose or liquid stools within 24 h or less than 3 loose/liquid stools
causing dehydration; (ii) Diarrhoea (patient age < 2 months): changed
stool habit from usual pattern in terms of frequency (more than the
usual number of purging) or nature of stool (more water than faecal
matter). The case definition of diarrhoea was standardised to ensure
consistency across different regions and over the collection timeline.
Stool samples were processed by either IEDCR or icddr,b research
institutes. For the identification of V. cholerae, specimens were
streakedonto taurocholate-tellurite gelatin agar (TTGA) and incubated
overnight at 37 °C. Specimenswere also inoculated in alkaline peptone
water for enrichment and incubated for an additional 18–24 h83 and
plated on TTGA. Suspected colonies were serotyped with monoclonal
antibody specific to V. cholerae O1 (Ogawa and Inaba) and
O139 serogroups84 for the icddr,b isolates, while for the IEDCR isolates
serotyping and biotyping was carried out by slide agglutination and
PCR using primers in Supplementary Data 21. Further confirmation of
the isolates being V. cholerae was obtained by whole genome
sequencing. Confirmed isolates were tested for antimicrobial sus-
ceptibility using disk diffusion methods in accordance with CLSI
protocols85 to antibiotics: ampicillin, azithromycin, ciprofloxacin, cef-
triaxone, cefixime, doxycycline, erythromycin and meropenem, using
commercially available antibiotic discs (Oxoid, Basing- stoke, United
Kingdom). Escherichia coli American Type Culture Collection
25922 susceptible to all antimicrobials was used as a control strain for
susceptibility studies.

Clinical metadata was collected from patients corresponding to
104 isolates for the 129 isolates in our cohort. Clinical data covered 5
categories (duration of diarrhoea, number of stools, abdominal pain,
vomiting, and dehydration), in addition the age and sex of the patient
and location of the patient was recorded. Clinical symptoms data
(Supplementary Data 14) were binned into categories and ranked in
order of increasing severity for data analysis.

• Duration of diarrhoea: number of days the diarrhoea persisted
was recorded. Data were binned as a duration score ranging from
1–3, with 1 = < 1 day; 2 = 1–3 days; 3 = 4–6 days.

• Number of stools in 24 h: The number of stools recorded in a 24-h
period during the hospital admission was recorded. Data were
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binned as a number of stools score ranging from 1–5 with 1 = 3–5
times; 2 =6–10 times; 3 = 11–15 times; 4 = 16–20 times; 5 = 21+ times.

• Abdominal pain: the presence or absence of abdominal pain was
recorded as a 0 for absence and 1 for present.

• Vomiting: The presence or absence of any vomiting in the 24 h
prior to admissionwas recordedwith 0 denoting no vomiting and
1 denoting the occurrence of vomiting

• Dehydration: clinical assessment of dehydration was recorded as
none, moderate or severe by the clinician.

DNA purification and extraction
DNA extraction was performed at North South University. All the V.
cholerae isolates were subjected to genomic DNA extraction in
accordancewith themanufacturer’s protocol of theQIAampDNAMini
Kit (Qiagen).

Library construction and whole-genome sequencing
The library preparation and sequencing of the 129 selected strains
were carried out at NGRI (NSU Genomics Research Institute,
North South University). To prepare the Illumina libraries, approxi-
mately 1μg of high molecular weight V. cholerae genomic DNA was
utilised. Barcoded libraries were prepared using the Illumina DNA Prep
Kit (product code 20060059, NEB, USA) following the manufacturers
protocol. Nextera DNA CD index codes were added to attribute
sequences to each sample. Following that, paired-end sequencing
with 2 × 151 cycles was performed on the Illumina MiSeq platform
at NGRI.

Genome assembly and annotation
All sequences were pre-processed using the Illumina BaseSpace
sequencing hub. To clean the data adapters were trimmed and uni-
dentifiedbaseswere removed.Genomeswere assembledusing SPAdes
(v3.12)86 with default parameters and a coverage cut off value of 20.
Genomic contamination was assessed using ContEst16S87 with only
genomes identified as V. cholerae retained for further analysis. Contigs
with length shorter than 500 nucleotides were filtered out of the final
assemblies. Genomes were annotated with Prokka (v1.14.6)88, using
default settings with –addgenesz--usegenus.

Screening of annotated genes against ABR databases, virulence
and plasmid databases and in silico subtyping.

The whole-genome sequences were screened against the CARD89

database (accessed 05-06-2022) using Abricate90 with a minimum
coverage of 70% andminimum identity of 90% to identify knownAMR-
associated genes in the isolate cohort. Genomes were also screened
against the VFDB91 database using Abricate90 to find virulence asso-
ciated genes, with 70% coverage and 90% identity) (accessed 05-06-
2022). Plasmid screening was conducted using the PlasmidFinder92

database in Abricate90, with 70% coverage and 90% identity) (accessed
05-06-2022); no plasmids were identified in the genome sequences.
Sequence types were identified through MLST93 which mapped the
sequences to the PubMLST94 database.

Pangenome analysis and generation of genetic features
input files
All annotated genomes were used as input for pangenome analysis
using Roary v3.1395. The core genome alignment was taken as input to
produce a file of core gene SNPs present in the cohort using SNP sites
2.5.196. SNPs within intergenic regions (IGRs) were extracted using
piggy v1.597 to generate an alignment of core intergenic clusters. Var-
iants in this alignment were then called using SNP sites 2.5.1. The
presence-absence of accessory gene was found from the output
of Roary.

In addition, a further pangenome alignment was created consist-
ing of the 129 isolates in our cohort togetherwith 218 isolates collected
in Bangladesh from 2004 to 2022 (The European Nucleotide Archive-

ENA (http://www.ebi.ac.uk/ena), accession codes: PRJDB8664,
PRJDB12727, PRJDB13928, PRJNA723557).

Phylogenetic analysis of V. cholerae isolates in our cohort in
Bangladesh
For both our cohort alone and our cohort together with publicly
available Bangladeshi isolates (as detailed above)maximum likelihood
phylogenies were reconstructed. Using the core genome alignments
generated in Roary v3.1395, the phylogenies were reconstructed in IQ
Tree (v2.2.0.3)98 with 10000 ultrafast bootstrap replicates and best
fitted evolutionary model (HKY + F + I for our cohort only and K3Pu
+F + I for the combined Bangladesh alignment) was selected using
ModelFinder99. The alignment lengthof the core genomeof our cohort
was 3459819 nucleotide sites of which 1486 were informative. For the
core genome of the combined Bangladeshi isolates, the alignment
length was 2086397 nucleotide sites with 844 informative sites. The
resulting consensus trees were visualised using iTol v6100, and bran-
ches with less than 95% ultrafast bootstrap support were deleted.

Phylogenetic relations between V. cholerae isolates worldwide
We usedWGS data from 1140 V. cholerae isolates collected from India,
Africa, Haiti and Yemen together with our Bangladesh samples (see
Supplementary Data 2 and 3). To generate the input for a phylogenetic
tree, SNP variants were called from each isolate against the reference
genome VC N16961 (NC_002505.1; NC_002506.1) using Snippy
v4.6.0101 (https://github.com/tseemann/snippy). The cleaned align-
ment files from Snippy were concatenated via the SeqIO function of
biopython v1.83102 then recombination was masked using Gubbins
(v.2.3.4)103. The filtered polymorphic sites output from Gubbins was
further filtered using SNP-sites96. The final SNP input contained
4033464 nucleotide sites with 26995 informative sites. This
recombination-free SNP output was then used as input to reconstruct
the phylogeny using IQtree (v2.2.0.3)98 with 1000 ultrafast bootstrap
replicates and best fitted model (K3Pu+F + I +G4) was selected by
ModelFinder99. The sequence ERR025382 (Indonesia-1957) was used as
an outgroup, and the tree was rooted here. The resulting consensus
tree was visualised using iTol v693, and branches with less than 95%
ultrafast bootstrap support were deleted.

Transcriptional binding motifs
Motif searches were conducted using FIMO (Find Individual Motif
Occurrences104 within the MEME (Multiple Em for Motif Elicitation)105

suite (https://meme-suite.org/meme/tools/fimo). Reference sequen-
ces of intergenic regions of DNA from our isolates were generated in
Piggy as described above; these were used as input for FIMO. To pre-
dict the TFBs the followingdatabaseswereused: CollecTF (Bacterial TF
Motifs); Prokaryotes (Prodoric Release 8.9); Prokaryotes (RegTrans-
Base v4);CombinedProkaryotes. Intergenic regionswheremotifswere
found were variant called using SNP-sites96 and then aligned to the
motif sequences using Clustal Omega v1.2.4106. For visualisation of
intergenic regions, alignment maps of the intergenic regions were
created using Jalview 2.11.3.2 with easyfig python genome figure
package107.

Promoter analysis for Intergenic SNPs
BPROM/softberry108 was used to predict promoter region and oligo-
nucleotides fromknownTFbinding sites close to the promoter region.

Genome-scale metabolic model
All simulationswereperformedusing the Python cobra toolkit v0.26.2.
The analysis was conducted on both a manually curated and validated
model of V. choleraeO1 N16961, iAM-Vc960, taken fromAbdel-Haleem
et al.19 and on automatically generated draft strain-specific GSM
models. The strain-specific draft models were generated using
CarveMe27. CarveMewas runusing theCPLEX solver andgramnegative

Article https://doi.org/10.1038/s41467-024-52238-0

Nature Communications |         (2024) 15:8231 15

http://www.ebi.ac.uk/ena
https://github.com/tseemann/snippy
https://meme-suite.org/meme/tools/fimo
www.nature.com/naturecommunications


template, with gap filling for LB and M9 media using the command:
‘carve input.faa --gapfill M9,LB -u gramneg --solver cplex --output
model.xml’. Gene essentiality, FVA and FBA analyses as described
below were conducted on genes of interest in the generalised iAM-
Vc960 and in each of the 129 draft strain-specificmodels, based on the
analysis pipeline in Pearcy et al.39.

For all gene essentiality, FBA and FVA analyses, a knockout model
for each gene of interest was constructed by blocking all corre-
sponding reactions to zero, given that the reaction is not catalysed by
an isozyme. We considered the essentiality of a gene under both rich
medium conditions and M9 minimal medium conditions. To mimic
richmediumconditions, themodelwas constrained to allow all carbon
sources into the system, with a fixed uptake rate of 1mmol/gDCW/h. If
a feasible solution exists, while maximising the biomass equation as
the objective function, then the knockout of the gene was not essen-
tial. To mimic M9 minimal medium conditions, the model was con-
strained so one individual carbon source had a maximum uptake of
10mmol/gDCW/h. This simulation (minimal medium condition) was
repeated for each carbon source in the model. The genes whose cor-
responding knockout model achieved a growth rate of 0.0001 h−1 or
less were considered essential. Flux variability analysis (FVA) was
applied to the wild-type model and each knockout model using the
cobra toolbox inpython109. FVAcalculates theminimumandmaximum
flux through each reaction in the model, given a set of constraints,
resulting in the range of possible fluxes for each reaction (flux span).
FVA was simulated using glucose as the only carbon source in aerobic
minimal M9 medium conditions. Note that reaction loops in the
solution were not allowed. A gene knockout was considered to sig-
nificantly affect the flux if the flux span of at least one reaction was
changed by greater than 10% compared to the wildtype solution. For
the FBA analysis, a drain reaction (i.e., a reaction that consumes the
metabolite of interest) was added to the GSM model for each meta-
bolite. The maximum theoretical yield of each metabolite was calcu-
lated by setting its corresponding drain reaction as the objective
function, with glucose as the only carbon source in aerobic minimal
M9 medium conditions. All metabolites contained within the model
were considered in the FBA analysis. In iAM-Vc960 this was 1741 dif-
ferent metabolites, whilst in the draft strain-specific GSM models the
number of metabolites spanned the range 1321–1433. The simulations
were carried out for the wild-type model and each gene knockout
model. A gene knockout was considered to significantly affect meta-
bolite yield if the yield of at least one metabolite was reduced to zero,
given that it was non-zero in the wildtype. For each of the selected
genes of interest, molecular function, pathways and biological pro-
cesses were taken from the BioCyc database110 using the SMART tables
for V. cholerae O1 biovar El Tor strain N16961. These were added to
Supplementary Data 11, 12, 17 and 18 to give context to the analysis
results.

Network analysis based on core genome SNPs
Network of our cohort of 129 V. cholerae isolates was created using a
pairwise hamming distance comparison based on core genome SNPs
in python (NetworkX v2.8.4111 and Matplotlib v3.6.2112). Each node
represents an isolate while the edge represents the hamming distance
between two isolates multiplied by the total number of SNPs found in
our cohorts (2382 SNPs). A threshold of 15 or less SNPs difference was
used to filter the edges in the network as suggested by Ludden et al.113

and used by us previously17,18.

Statistical analysis and machine learning of genomic features
correlated to a specific lineage or clinical symptoms
To assess if the genomic features were associatedwith a lineage or to a
clinical symptom, we employed a fisher exact test9,10. Furthermore, to
analyse the relationship between genomic features of the BD-1.2 line-
age and clinical symptoms amachine learning pipeline was employed.

Clinical data were collected from 104 out of 129 V. cholerae isolates of
which63 belonged to the BD-1.2 lineage. These clinical symptomswere
be divided into two groups: binary (vomiting and abdominal pain) and
multi-class (dehydration, number of stools and duration of diarrhoea),
with the binning within each group described above. In the multiclass
group, we applied a one-vs-one approach, i.e., each class is compared
individually to another class. For example, dehydration classModerate
is compared against class Severe. For both binary and multiclass
groupings, as the classes were unbalanced, we oversampled the min-
ority class as a pre-processing step using a Synthetic Minority Over-
sampling Technique approach (SMOTE)114. The Python package Scikit-
learn version 1.2.1115 was used to make the classification and the pack-
age Scipy version 1.9.3116,117 was used to select the most important
features based on a Fisher exact test.

The pipeline first removes features that are either present or
absent in all the samples. Second, to measure the influence of con-
founding effects in the data, it uses a two-sided chi-square test of
independence to measure the dependency between the confounding
effects (sex of patient, age range of patients, year of collection, loca-
tion of patient, serology of V. cholerae) and the phenotype classes (p-
value < 0.01 with Bonferroni correction); if the null hypothesis is
rejected (i.e. there is a dependency between the confound effect and
the phenotype) the pipeline checks if there are features that are
dependent on the confounding effect again based on a two-sided chi-
square test of independence (p-value < 0.01 with Bonferroni correc-
tion); if there are features where the null hypothesis is rejected, these
features are removed from the analysis. Next, the pipeline oversamples
the minority class using a SMOTE approach. Then, based on the
oversampled data, it selects the most important features using a two-
sided Fisher exact test (p-value < 0.1). This process is done in two parts:
i) to improve randomisation in the pipeline and avoid confounding
effects, a loopover 1000different randomseeds is used for theSMOTE
approach in order for it to have different initialisations; for each loop
the most important features are selected based on the Fisher exact
test; ii) then, the features that are selected in over 75% of the different
initialisations are deemed important and a random initialisation is
selected that contains all these important features to be used for the
predictionmodels. Next, a panel ofmachine learningmethods (logistic
regression (LR), linear support vector machine (L-SVM), radial basis
function support vector machine (RBF-SVM), extra-tree classifier,
random forest, Adaboost andXGboost) wasused to predict the clinical
symptoms classes based on the pre-selected features described above.
The hyperparameters used were:

• Logistic Regression: inverse of regularisation strength C =
[0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000];

• Linear SVM: penalty parameter of the hinge loss error C = [0.0001,
0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000];

• RandomForests, Extra Trees andAdaboost: Number of estimators
= [2, 4, 8, 16, 32, 64, 128, 256];

• Non-linear SVM with RBF kernel: γ (RBF kernel coefficient) =
[0.0001, 0.0001, 0.001, 0.01, 0.1, 1] and C (L2 penalty parameter)
= [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000];

• XGBoost: Number of estimators = [2, 4, 8, 16, 32, 64, 128, 256] and
learning rate = [0.0001, 0.001, 0.01, 0.1, 1].

As per previous works17,18,29,30: (i) nested cross-validation118,119 was
employed to assess the performance and select the hyper-parameters
of the proposed classifiers and to compare the results obtained by the
seven different classifiers used; (ii) a Friedman Statistical F-test (FF)
with Iman-Davenport correction was used for statistical comparison of
multiple classifiers acrossmultiple analyses120; (iii) a post-hocNemenyi
test was employed to find if there is a single classifier or a group of
classifiers that performs statistically better in terms of their average
AUC rank after the FF test has rejected the null hypothesis (stating that
the performance of the comparisons on the individual classifiers over
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the different datasets is similar)120; (iv) an undirected graph was cre-
ated using NetworkX111 to visualise how the features (accessory genes,
core genome SNPs and intergenic SNPs) correlate with different clin-
ical symptoms.

Protein-protein interaction network and building protein 3D
structures
Protein-protein interaction networks of the proteins encoded by the
genes associated with clinical symptoms were obtained using
STRING database v12.0 (using reference genome V. cholerae O1 bio-
var El Tor str. N16961) and analysed in Cytoscape 3.10.1121. Eighty-one
accessory and core genes selected by machine learning were used as
input for the PPI, of these only 60 could be mapped to the STRING
database. The interactome was constructed using first and second
neighbour proteins. Disconnected nodes and nodes with interaction
scores lower than medium confidence level (interaction scores
<0.400), according to StringDB122, were filtered out. Functions of the
protein in the network were annotated with Gene Ontology terms
(biological process, molecular function, cellular component and
KEGG pathways) in StringDB122. Three-dimensional AlphaFold123 pre-
dictedmodelswere obtained by aligning theprotein FASTA sequence
to reference sequences from the Uniprot database124 to find a 3D
protein structure. 3D protein structures were then visualised using
UCSF Chimera125 and UCSF ChimeraX126. Protein stability analysis and
the effect of eachmutationwere performedwith DUET127, DynaMut128

and SIFT129. The electrostatic potential was analysed and visualised
using PDB2PQR and APBS accessed online130, UCSF ChimeraX126 and
APBS Colouring130.

Statistical analysis
Statistical comparisons were made using the SciPy package imple-
menting: 1. A two-sided chi-squared test with Bonferroni correction
to evaluate the similarities between the serotypes and the collection
year and location of the isolates (p-value < 0.005); 2. A two-sided
Mann–Whitney U test to evaluate the distribution of the counts of
accessory genes, coding and non-coding SNPs in BD-1.2 and BD-2
lineages and along the different collection years (p-value < 0.005); 3.
A two-sided Fisher exact test, with Bonferroni correction, to assess
the relationship between the BD-2 and BD-1.2 lineages and different
genomic features - core and intergenic SNPs and accessory genes
(p-value < 0.005); 4. A two-sided hypergeometric enrichment test
(two-sided) with false discovery rate (FDR) for the GSM analysis
(p-value < 0.01); and 5. A two-sided chi-square test of independence
to test if there are symptoms/features that are dependent on the
confounding effect (p-value 0.01 with Bonferroni correction); 6. A
two-sided Fisher exact test to select the most important features in
themachine learning pipeline (p-value < 0.1); 7. A two-sided Friedman
Statistical F-test (FF) with Iman-Davenport correction for statistical
comparison of multiple datasets over the seven different classifiers
used (p-value < 0.05). With 7 classifiers and 6 clinical symptom
models, the Friedman test is distributed according to the F dis-
tribution with 7−1 = 6 and (7− 1) × (6 − 1) = 30 degrees of freedom.
Therefore, the critical values for F(6,30) using a p-value = 0.05 is
2.42052319. The post-hoc Nemenyi test was used to find if there is a
single classifier or a group of classifiers that performs statistically
better in terms of their average rank after the FF test has rejected the
null hypothesis (stating that the performance of the comparisons on
the individual classifiers over the different datasets is similar); 8.
A two-sided Mann–Whitney U test was used to assess for lineage
differences in the numbers of genes, reactions and metabolites in
the generated draft strain-specific GSM models. 9. A two-sided
Mann–Whitney U test was used to assess the number of affected
reactions and metabolites in knockouts of genes discriminating
lineages, compared to randomly selected genes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Short-read sequence data for all 129 isolates used in this study are
deposited in the NCBI SRA and can be found associated with BioPro-
ject number PRJNA1021874 [https://www.ncbi.nlm.nih.gov/bioproject/
?term=PRJNA1021874]. All previously published public V. cholerae
sequences used in this study are held in European Nucleotide Archive-
ENA or NCBI repositories under accession numbers supplied in Sup-
plementary Data 2. Reference sequences are available from NCBI
under accessions: NC_002505.1 [https://www.ncbi.nlm.nih.gov/
nuccore/NC_002505.1], NC_002506.1 [https://www.ncbi.nlm.nih.gov/
nuccore/NC_002506.1] and European Nucleotide Archive-ENA under
accession: ERR025382 [https://www.ebi.ac.uk/ena/browser/view/
ERR025382]. Clinical data used in this study is given in Supplemen-
tary Data 14.

Code availability
The code used in this study and draft strain-specific GSMMs are
available in the following GitHub repository: https://github.com/
tan0101/VibrioCARE under https://doi.org/10.5281/zenodo.
13384700131.
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