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Optically pumped magnetometers (OPMs) are revolutionizing the task of magnetic-field sensing due to their
extremely high sensitivity combined with technological improvements in miniaturization which have led to
compact and portable devices. OPMs can be based on spin-oriented or spin-aligned atomic ensembles which
are spin polarized through optical pumping with circular or linear polarized light, respectively. Characterization
of OPMs and the dynamical properties of their noise is important for applications in real-time sensing tasks. In
our work, we experimentally perform spin noise spectroscopy of an alignment-based magnetometer. Moreover,
we propose a stochastic model that predicts the noise power spectra exhibited by the device when, apart from
the strong magnetic field responsible for the Larmor precession of the spin, white noise is applied in the
perpendicular direction aligned with the pumping-probing beam. By varying the strength of the noise applied as
well as the linear-polarization angle of incoming light, we verify the model to accurately predict the heights of the
Larmor-induced spectral peaks and their corresponding linewidths. Our work paves the way for alignment-based
magnetometers to become operational in real-time sensing tasks.
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I. INTRODUCTION

Optically pumped magnetometers (OPMs) [1,2] based on,
e.g., caesium, rubidium, or potassium atomic vapor, or he-
lium gas, can have high sensitivity in the fT/

√
Hz range

[3]. Commercially available OPMs include scalar OPMs for
use in, e.g., geophysical surveys [4,5] and zero-field OPMs
[5–8] which are promising for applications within areas such
as cardiology [9–11] and neuroscience [12–14]. OPMs can
also be used for detection of radio-frequency (RF) magnetic
fields with potential applications within biomedical imaging
[15,16], non-destructive testing [17,18], and remote sensing
[19,20]. However, such RF OPMs are not yet commercially
available. Orientation-based RF OPMs are typically imple-
mented using two or three laser beams [21–23]. On the other
hand, alignment-based RF OPMs implemented with a single
laser beam [24] are promising for applications and commer-
cialization [25].

In an optical magnetometer, the atoms are spin polarized
using light through the process of optical pumping [26]. In an
orientation-based optical magnetometer, the atoms are opti-
cally pumped with circularly polarized light. In this case, each
atom can be effectively treated as a spin- 1

2 particle, even if
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the ground state of the atom has a total angular momentum F
larger than 1

2 . The evolution of the atomic spin in a magnetic
field is then well described by the Bloch equation for the spin
vector F = (Fx, Fy, Fz )T. Its three components correspond to
the expectation values of the angular momentum operators de-
fined along the respective directions, i.e., Fα := Tr{F̂αρ} with
α = x, y, z for an atomic ensemble being effectively described
by a single-atom density matrix ρ. On the contrary, in an
alignment-based magnetometer [24,25,27–30] the atoms are
optically pumped with linearly polarized light. In this case,
each atom can be effectively treated as a spin-1 particle [31].
As a result, one has to abandon describing the atomic state
with a three-component vector, and instead describe it using
rank-2 spherical tensors with five components, which describe
how the atomic spin is aligned along certain axes [32].

The purpose of spin noise spectroscopy (SNS) [33] is to
characterize the noise properties of a given atomic system
and, in particular, the form of the autocorrelation function
that noise fluctuations exhibit in the steady-state regime [34].
However, only in the case of orientation-based magnetometers
have stochastic noise models been proposed that are capable
of explaining the observed noise power spectra when prob-
ing unpolarized atomic ensembles [35–38], also including
the effects of spin-exchange collisions [39–41]. In contrast,
such models characterizing fully the spin noise spectra in
alignment-based magnetometers are still missing, despite re-
cent promising steps in that direction [42–47].

In our work, we employ methods of stochastic calculus
and the formalism of spherical tensors to predict the power
spectral density (PSD) of an alignment-based magnetometer
in the presence of a strong static magnetic field affected by
white noise that is applied in the perpendicular direction,
i.e., along the beam simultaneously pumping and probing the
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ensemble. 1 Our model correctly predicts the existence of
peaks in the measured PSD at particular multiples of the
Larmor frequency, as well as the dependence of their am-
plitudes and widths on the system geometry and the noise
intensity. Importantly, we verify our model in a series of ex-
periments, whose results show very good accordance with the
predictions.

Our work paves the way for exploring alignment-based
magnetometers in real-time sensing tasks, in which, thanks
to the detailed characterization of the spin noise, one is ca-
pable of tracking time-varying signals beyond the nominal
bandwidth dictated by the magnetometer [48]. Our alignment-
based magnetometer with added noise can be used as a scalar
magnetometer to sense time-varying magnetic fields, but also
potentially ones that oscillate at RF. Thanks to employing
only a single beam of light for both pumping and probing the
atoms, the simplicity of the proposed architecture is promising
with respect to potential miniaturization and commercializa-
tion [49].

The remainder of the paper is organized as follows. We
first describe the spatial configuration of the magnetometer
considered in Sec. II, in order to motivate and explain the
spherical-tensor formalism that we particularly employ to
parametrize its atomic state in Sec. II A. In Sec. II B we then
discuss the evolution of the atomic state and, in particular,
how it determines the dynamics of relevant spherical-tensor
components and the detected signal, so that in Sec. II C we
may relate it to and describe in detail the physical parameters
of our experimental setup. In Sec. III we turn to SNS that
constitutes the goal of our work. We first explain in Sec. III A
what the form of PSD is that we expect for the magnetometer
considered, and how we predict it. The results of the experi-
ment are then shown in Sec. III B and compared to the theory
in Secs. III B 1 and III B 2. Finally, we conclude in Sec. IV.

II. ALIGNMENT-BASED ATOMIC MAGNETOMETER

In Fig. 1 we depict the natural spatial configuration of an
alignment-based atomic magnetometer [24], which applies to
the implementation considered here. A strong magnetic field
B0, directed along z, acts perpendicularly to the direction
of light propagation, here chosen to be x, with light being
linearly polarized at an angle θ to z axis in the yz plane.
Both the field and the light interact with an atom and modify
its steady state, otherwise induced solely by the relaxation
processes [27]. Although we defer the formal description of
the atomic steady state, let us note for now that its form
can be conveniently represented by the angular-momentum
probability surface [32,50] (depicted in blue in Fig. 1). As the
surface describes the effective polarization of the steady state,
it indicates the rotational symmetries the state possesses. Its
shape strongly depends on the polarization angle θ of the input
light beam, e.g., resembling a “peanut” for θ = 0 or a “dough-
nut” for θ = π

2 [see Figs. 1(a) and 1(b), respectively]. As such
a qualitative description, however, relies solely on symmetry

1In contrast to the parallel configuration, in which the white noise
would just yield effective fluctuations of the static field [47].

FIG. 1. Alignment-based magnetometer: spatial configuration.
The light propagates in the direction x in the presence of a strong,
static magnetic field B0, pointing along the z direction. In (a) and
(b), angular-momentum probability surfaces of the resulting atomic
steady state are presented, when the atom is pumped by vertically
(θ = 0) or horizontally (θ = π/2) polarized light, respectively. As
shown in (c), considering the input light beam to be polarized at some
intermediate angle 0 < θ < π/2, the atomic steady state generally
modifies the polarization angle of the transmitted light θ ′. Moreover,
in our experiment a stochastic field Bnoise is applied along the di-
rection of light propagation, and induces white noise that disturbs
the atomic state from equilibrium. The so-created randomly tilted
state has now three distinct contributions from spherical components
T (2)

0 , T (2)
±1 , and T (2)

±2 , whose angular-momentum probability surfaces
shown in (d) exhibit periodicity under rotations around z at multiples
0, �L , and 2�L of the Larmor (angular) frequency �L , respectively.
As a result, as depicted in (d), the recorded power spectral density
(PSD) of θ ′ fluctuations should contain three peaks at these particular
frequencies with amplitudes dictated by the contribution of each
spherical-tensor component.

arguments, it applies irrespectively of other properties of the
input light, e.g., its detuning.

Importantly, in our experiment the atom is further disturbed
by a stochastic field Bnoise [see Fig. 1(c)], that induces white
noise along the x direction, whose impact can then be moni-
tored by inspecting the polarization angle θ ′ of the transmitted
beam, while the atomic state is constantly “kicked out” of
equilibrium. As we carry out the experiment in conditions in
which correlations between distinct atoms may be neglected
during the sensing process, the dynamics of the whole en-
semble is effectively captured by the evolution of a single
atom [26]. Furthermore, due to the effective atomic density
being low, the shot noise of the photon-detection process
dominates over the atomic projection noise, and the impact
of the measurement back-action on the atomic steady state
can be ignored [51,52]. Moreover, thanks to the presence of

013125-2



SPIN NOISE SPECTROSCOPY OF AN ALIGNMENT-BASED … PHYSICAL REVIEW A 110, 013125 (2024)

a relatively strong magnetic field B0, given that the experi-
ment is carried out at room temperature, the mechanism of
spin-exchange interactions during atomic collisions is irrele-
vant [53], in contrast to SERF magnetometers [54], that could
in principle induce not only classical correlations but also
entanglement between individual atoms [55,56].

In what follows, we first formalize the description of an
atomic steady state in the spherical-tensor representation, in
order to then show how such a formalism allows us to com-
pactly model the magnetometer dynamics, as well as predict
the behavior of the detected signal.

A. Spherical-tensor representation of the atomic steady state

Any density matrix describing an atom of total angular
momentum F can always be written in the eigenbasis of the
angular-momentum operators F̂ 2 and F̂z as [26]

ρ (F ) =
F∑

M,M ′=−F

ρ
(F )
MM ′ |F, M 〉〈F, M ′|. (1)

However, it is much more convenient to decompose the den-
sity matrix in the basis of spherical-tensor operators of rank
κ = 0, 1, . . . , 2F , which transform independently in each κ

subspace under rotations, and hence magnetic fields, in a
well-behaved manner. In particular, the atomic state of fixed
F in Eq. (1) can be generally written as

ρ (F ) =
2F∑
κ=0

κ∑
q=−κ

m(F )
κq T (κ )

q (F ), (2)

where the density matrix is now decomposed into a sum of
rank-κ components, each constituting a sum (over q) of, in
principle, non-Hermitian tensor operators T (κ )

q (F ) (see, e.g.,
[26] and Appendix A) multiplied by their corresponding com-
plex coefficients m(F )

κq . For a given fixed F , T (κ )
q form a basis

and they formally satisfy Tr{T (κ )
q (T (κ ′ )

q′ )†} = δκκ ′δqq′ , while

it is convenient to also impose T (κ )†
q = (−1)qT (κ )

−q , so that
conditions mκq = (−1)qm∗

κ,−q and Im{mκ0} = 0 ensure then

the density matrix (2) is Hermitian. The m00 = 1/
√

2F + 1
coefficient is fixed by the Trρ = 1 condition, while the corre-
sponding (κ = 0) tensor operator T (0)

0 = 1√
2F+1

12F+1 is the
only one with a nonzero trace, being invariant under any
rotations.

In principle, the atomic steady state may involve more
than one F level, e.g., F = 3, 4 in the case of the D1-line
transition in caesium. However, if the laser field is tuned to
a specific optical transition from a single F level, and there is
no coherent coupling between levels of different F , one can
disregard coherences between these and most generally write
the atomic steady state as

ρ =
⊕

F

pF ρ (F ), (3)

where pF is the effective fraction of atoms having the total
angular momentum F . Moreover, one may then focus on the
dynamics of only one particular ρ (F ) for the F level actually
contributing to the light-atom interaction, with ρ (F ) being
then decomposable just as in Eq. (2). In such a case, as

done in what follows, the (F ) superscript can be dropped for
simplicity.

As the case of a linearly polarized pump is of our interest
(see Fig. 1), from symmetry arguments it follows that, inde-
pendently of the spin number F , only even-κ coefficients are
modified when interacting with light [57]. Moreover, as we
show later, our model predicts no significant coupling between
components of different κ . On the other hand, it is only
the orientation (κ = 1) and alignment (κ = 2) components
that can be probed by resorting to electric dipole light-atom
interactions [26,57]. Hence, even though the pump in the
experiment is relatively strong, so that the atomic state in
Eq. (2) reads as

ρ = 1

2F + 1
12F+1 +

2∑
q=−2

m2qT (2)
q +

4∑
q=−4

m4qT (4)
q + · · · ,

(4)

any detection signal obtained by probing the atoms with
light is determined by the vector containing the alignment
coefficients:

m = (m2,−2 m2,−1 m2,0 m2,1 m2,2)T, (5)

whose dynamics must therefore only be tracked.
Furthermore, if the quantization axis z is chosen along

the light polarization of the pump, θ = 0 in Fig. 1(a), by
symmetry the atomic steady state must be invariant to any
rotations around z. Hence, only the (real) coefficient with
q = 0 can acquire some value m2,0 → mini

20 , whose maximum
(or negative minimum) is theoretically constrained by the
positivity of ρ � 0, but practically by the efficiency of optical
pumping being counteracted by relaxation. Considering the
light to be linearly polarized at an arbitrary angle to the xz
plane [see Fig. 1(c)], the steady state can be found by just
adequately rotating the above solution for θ =0 around the
light-propagation direction x. In particular, the m vector (5)
of the steady state (ss) generated by linearly polarized pump
at an angle θ with respect to the quantization axis reads as (see
Appendix A)

mss=mini
20

(
−

√
6

4 s2
θ i

√
6

4 s2θ 1− 3
2 s2

θ i
√

6
4 s2θ −

√
6

4 s2
θ

)T
,

(6)

where sθ := sin θ . However, as the strong static field B0 leads
to (Larmor) precession of the atomic state around z (see
Fig. 1) that is much faster than the timescale of reaching the
steady state, i.e., with the Larmor (angular) frequency �L :=
γgmr|B0| much greater than the overall relaxation rate, all the
multipoles m2,q �=0 quickly average to zero, so that according
to the secular approximation [26] the steady-state vector (6)
simplifies to

mss ≈ mini
20

(
0 0 1− 3

2 sin2 θ 0 0
)T

, (7)

which we assume to be valid throughout this work. The Lar-
mor frequency above is defined using the gyromagnetic ratio
γgmr := gF μB/h̄ (with units [rad s−1T−1]), where gF is the
Landé g factor for an atom of total spin F and μB is the Bohr
magneton.

In order to visualize the symmetries and geometric prop-
erties of the steady state (7), we resort to plotting the
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angular-momentum probability surfaces it yields for θ = 0,
θ = π

2 , and 0 < θ < π
2 in Figs. 1(a)–1(c), respectively. In

particular, in each case we present a spherical plot of the over-
lap of the steady state with the state of a maximum angular
momentum |F, F 〉n defined with respect to a given direction
n, which then determines the quantization axis, i.e.,

r(n) = n〈F, F |ρss|F, F 〉n, (8)

where ρss is the steady-state density matrix of the form (4)
with the alignment coefficients given by Eq. (7).

In our experiment, as shown in Fig. 1(c), the angular-
momentum probability surface of the steady state is constantly
perturbed out of equilibrium by the Bnoise field inducing white
noise in the x direction, so that coefficients with q �= 0 in
Eq. (7) are no longer zero. As a result, the effective atomic
state contains components not only from T (2)

0 , but also from
T (2)

±1 and T (2)
±2 tensor operators [see Eq. (4)], which can be

separately visualized by the surfaces depicted in Fig. 1(d).
Crucially, as the latter two return to their original state under
Larmor precession after being rotated by 2π and π , respec-
tively, the measured noisy θ ′ signal should contain distinct
frequency components at �L and 2�L. This should be visi-
ble when analyzing the power spectral density (PSD) of the
detected signal, as schematically presented in Fig. 1(d).

B. Magnetometer dynamics and measurement

In order to be able to predict the PSD in our experiment, we
must move away from just the steady-state description. In par-
ticular, we must be able to model the stochastic dynamics of
the atoms, so that the autocorrelation function of the detected
signal can be computed, whose Fourier transform specifies the
PSD.

1. Atomic stochastic dynamics

Dissipative nonunitary evolution. A dissipative evolution
of the atomic state (1) is generally described by the Gorini-
Kossakowski-Sudarshan-Lindblad equation [58]

dρ

dt
= − i

h̄
[Ĥ, ρ] + 
[ρ], (9)

where Ĥ is the system Hamiltonian, while the map


[ρ] =
∑

i

�i

(
L̂iρL̂†

i − 1

2
{L̂†

i L̂i, ρ}
)

(10)

is responsible for the decoherence, with L̂i being the quantum
jump (Lindblad) operators and �i � 0 the corresponding dis-
sipation rates, which must be non-negative for a Markovian
evolution [58].

In the absence of the Bnoise field, the Hamiltonian incor-
porates only the interaction of the atom with the static field,
i.e., Ĥ = γgmrB0 · F̂ = �LF̂z. However, as the static field in-
troduces anisotropicity in the system, we split the decoherence
map as follows:


[ρ] :=
∑

α=x,y,z


α[ρ] + 
iso[ρ], (11)

where


α[ρ] := �α

h̄2

(
F̂αρF̂α − 1

2

{
F̂ 2

α , ρ
})

(12)

can be interpreted as arising from magnetic-field fluctuation
in each α = x, y, z direction, whereas


iso[ρ] := �iso

⎛⎝∑
M,M ′

L̂M,M ′ρL̂†
M,M ′ − 1

2
{L̂†

M,M ′ L̂M,M ′ , ρ}
⎞⎠,

(13)

with L̂M,M ′ := 1√
2F+1

|F, M〉〈F, M ′|, represents isotropic dissi-
pation that can be equivalently written as


iso[ρ] = � − 1
2 {�̂, ρ}, (14)

where �̂ := �iso12F+1 and � := �iso
2F+1 12F+1 are typically

referred to as the repopulation and depolarizing terms, re-
spectively [32]. Although we assume in our model the rates
�α and �iso to be phenomenological and account for various
dissipation mechanisms, Eq. (14) can be naturally interpreted
as the loss of polarized atoms that then reappear in the beam
in a completely unpolarized state.

Impact of the stochastic Bnoise field. In our experi-
ment [see Fig. 1(c)], stochastic Bnoise field is applied
in the light-propagation direction x, which leads to an-
other term in the Hamiltonian Ĥnoise(t ) = γgmrBnoise(t ) · F̂ =
γgmrBnoise(t )F̂x with

Bnoise(t ) = �noise

γgmr
ξ (t ) ≈ �noise

γgmr

√
1

2π� f

dWt

dt
, (15)

where �noise is an effective magnetic noise amplitude given
in the units of Larmor frequency, while ξ (t ) represents the
stochastic process for the noise we generate (see Appendix C
for its further characteristics), which effectively exhibits a
constant power spectrum in a frequency range f ∈ [δf , fcutoff]
(in Hz) with δf set close to zero to eliminate spurious low-
frequency contributions, and some large cutoff fcutoff imposed
to prevent the effect of aliasing. Now, as we will deal with
processes occurring at (angular) frequencies ω ≈ �L, such
noise in Eq. (15) can be effectively described as white with
the correct rescaling factor � f := fcutoff − δf ≈ fcutoff; the
white noise can be interpreted as the time derivative dW

dt of
the Wiener process Wt [59]. As a result, we can write the
(stochastic) time increment induced by the noise involving the
Hamiltonian as

Ĥnoise(t )dt = √
ωnoise F̂x dWt , (16)

where we define ωnoise := �2
noise/(2π fcutoff ) as the effective

noise spectral density, while dWt ∼ N (0, dt ) is then normally
distributed with variance dt , i.e., the Wiener increment [59].

In order to correctly include the white noise in the deter-
ministic dynamics (9), we must explicitly compute the time
increment of the density matrix dρ = ρ(t + dt ) − ρ(t ), that
is now stochastic. By adding the noise contribution to Eq. (9),
we define the stochastic map

K(t )[ρ] := − i

h̄
[Ĥnoise(t ) + Ĥ , ρ] + 
[ρ], (17)

013125-4



SPIN NOISE SPECTROSCOPY OF AN ALIGNMENT-BASED … PHYSICAL REVIEW A 110, 013125 (2024)

which allows us to write for small dt

ρ(t + dt ) = eK(t )dt [ρ(t )] =
∞∑

n=0

[K(t )dt]n[ρ(t )]

n!

= ρ(t ) + K[ρ(t )]dt + 1

2
(Kdt )2[ρ(t )] + O(dt5/2)

= ρ(t ) − i

h̄
[Ĥ, ρ(t )]dt + 
[ρ(t )]dt

− i
√

ωnoise

h̄
[F̂x, ρ(t )]dWt − ωnoise

2h̄2 [F̂x, [F̂x, ρ(t )]]dt

+ O(dt3/2), (18)

where according to the Itô calculus implying dW 2
t = dt we

obtain a dissipative term at the second (n = 2) order, while all
the other terms can be ignored with dWt dt = O(dt3/2) within
the big-O notation [59].

As a consequence, we obtain the desired stochastic differ-
ential equation describing the atomic dynamics as

dρ =
(

− i

h̄
[Ĥ, ρ] + 
iso[ρ]

)
dt

+
∑
α=y,z

�α

h̄2

(
F̂αρF̂α − 1

2

{
F̂ 2

α , ρ
})

dt

+ �x + ωnoise

h̄2

(
F̂xρF̂x − 1

2

{
F̂ 2

x , ρ
})

dt

− i
√

ωnoise

h̄
[F̂x, ρ]dWt , (19)

which, apart from the expected term generating random ro-
tations around the Bnoise-field direction, accounts for the fact
that (by the fluctuation-dissipation theorem) the white noise
must also increase the dissipation rate in the x direction from
�x to �x + ωnoise.

2. Spherical-tensor representation

We have argued that when considering the relevant F sub-
space of the atomic steady state described in Eq. (2), the nature
and geometry of light-atom interactions allows us to reduce
its form, so that it contains only the alignment component
(κ = 2) in Eq. (4). Consistently, as shown in Appendix A,
the evolution determined by Eq. (19) does not couple
spherical-tensor components of different rank κ . Hence, while
incorporating optical pumping into the dynamics (19), the
evolution of the atomic state must be completely described
by the m vector (5) of, now time-dependent, alignment coef-
ficients, i.e.,

mt=(m2,−2(t ) m2,−1(t ) m2,0(t ) m2,1(t ) m2,2(t ))T.

(20)

This evolves under the dynamics (19) according to the follow-
ing stochastic differential equation (see Appendix A):

dmt =
(

A0 + A
 + A2
noise

2

)
mt dt + Anoise mt dWt , (21)

where A0 = −i�LJ(2)
z and Anoise = −i

√
ωnoiseJ(2)

x are 5 × 5
matrices that should be associated with the free evolution and
stochastic noise, respectively. These are defined with help of

the representation of angular momentum operators J(κ )
α , with

α = x, y, z, acting on the vector space of alignment, equivalent
to ones acting on the state space of a spin-2 particle, written
in the {|2,−2〉, . . . , |2, 2〉} basis to agree with Eq. (20).

In a similar fashion, the matrix representation of the dissi-
pative map 
 in Eq. (11) (see Appendix A) reads as

A
 = −1

2

∑
α

�α

(
J(2)

α

)2 − �iso15

≡ −diag{�2, �1, �0, �1, �2}, (22)

which we, however, force above to have a diagonal form
postulated in Ref. [27] with three dissipation rates:

� ≡
⎛⎝�0

�1

�2

⎞⎠ :=
⎛⎝ 6�⊥ + �iso

�‖ + 5�⊥ + �iso

4�‖ + 2�⊥ + �iso

⎞⎠. (23)

Formally, this corresponds to the assumption that in the
absence of the induced magnetic-field noise one should dif-
ferentiate only between dephasing rates along, �‖ := �z, and
perpendicular to, �⊥ := �x = �y, the static field, while keep-
ing the isotropic depolarization rate �iso as an independent
parameter. The effective rates � (see also Appendix A) are
then defined by reparametrizing the problem as in Eq. (23).

Finally, in order to include the impact of optical pumping in
Eq. (21), we enforce that, in the absence of the noisy magnetic
field, the mt vector (20) must converge with time to the steady
state described in Sec. II A. This way, we obtain the desired
stochastic dynamical equation for the vector of alignment
coefficients as

dmt =
(

A0 + A2
noise

2

)
mt dt + A
(mt − mss) dt

+ Anoisemt dWt , (24)

where the steady state mss is given by Eq. (7), being already
averaged over the fast (Larmor) precession around z and,
hence, satisfying A0mss = 0.

3. Detected signal

We depict the phenomenon of polarization rotation in
Fig. 1(c), i.e., the effect that the angle θ of the linearly polar-
ized incoming beam is changed to θ ′ upon leaving the atomic
cell. Treating the atomic ensemble as an optically thin sample,
the change of the angle �θ := θ ′ − θ obeys then [32,60]

�θ ∝ i(m̃2,1 + m̃2,−1), (25)

with the proportionality constant depending on the optical
depth, interaction strength, light power, etc.

In the above, m̃κ,q are the alignment coefficients defined
with the quantization axis along the direction of incoming
light polarization, i.e., tilted away by θ from z in the yz plane
[see Fig. 1(c)]. Hence, Eq. (25) can be reexpressed with help
of the mt vector (20) (defined with z being the quantization
axis) by simply rotating mt by an angle θ around the light-
propagation direction x, i.e.,

�θ ∝ hT D(2)
θ mt , (26)

where h = (0, i, 0, i, 0)T and D(2)
θ = D(2)

m,m′ (−π/2, θ, π/2) is
the appropriate Wigner D-matrix (see Appendix A).
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FIG. 2. Alignment-based magnetometer: experimental setup.
Linearly polarized light is passed through a polarization maintaining
fiber. Two sets of half-wave plates (λ/2) and polarizing beam splitters
(PBS) are used to reduce intensity fluctuations and to change the
power of the laser beam, respectively. The laser light propagates
along the x direction, while the angle θ of its linear polarization is
then adjusted by rotating yet another half-wave plate, before it enters
the magnetic shield (marked in gray). Within the shield, the light
simultaneously pumps and probes the atomic ensemble of caesium
atoms contained within a paraffin-coated cell (cell). The atoms are
subject to (strong) static and (relatively weak) noisy magnetic fields:
B0 applied in the z direction and Bnoise applied in the x direction,
respectively. Upon interacting with the atoms, the polarization of
light undergoes rotation, which is then measured by passing the
output beam through a PBS and performing balanced photodetection
(BPD).

As a result, based on Eq. (26), we may write the detected
signal of an alignment-based magnetometer as

S(t ) = gD hT D(2)
θ mt + ζ (t )

= gD
1
2 [

√
6m2,0(t ) + m2,2(t ) + m2,−2(t )] sin(2θ )

+ gD i[m2,1(t ) + m2,−1(t )] cos(2θ ) + ζ (t ), (27)

where gD is the effective proportionality constant, whereas
ζ (t ) denotes the detection noise, which is completely un-
correlated from the magnetic-field noise affecting the atom
dynamics in Eq. (24). Moreover, as we assume here the impact
of the measurement back-action exerted on the atomic state
by the light to be ignorable [51,52], ζ (t ) shall not exhibit any
correlations with any noise exhibited by the atoms.

It becomes clear from the expression (27) that, as the signal
depends on all the alignment coefficients with q = 0,±1,±2,
it must contain components that oscillate at frequencies 0, �L,
and 2�L, respectively. In other words, the signal contains in-
formation about different spherical-tensor components of the
atomic state, in particular the ones illustrated in Fig. 1(d), each
of which should yield a peak in the PSD at the corresponding
frequency.

C. Experimental setup

Figure 2 shows a schematic of the experimental setup
we employ. Linearly polarized light, with a wavelength of
895 nm, is passed through a polarization-maintaining optical
fiber. The light is resonant with the F = 4 → F ′ = 3 D1 tran-
sition of caesium. The light has an electric field vector E0 and
passes through a cubic paraffin-coated cell containing caesium
atoms, which is placed inside a magnetic shield (Twinleaf
MS-1). The cell is (5 mm)3 and is kept at room temperature
(∼18◦). The laser beam diameter is ∼2 mm.

A static magnetic field B0 = B0 ez is applied using the
magnetic shield coils. A half-wave plate is placed before
the magnetic shield to change the angle of the electric-field
vector of the light E0, with respect to the direction of the
static magnetic field. Consistently with Fig. 1(c), we denote in
Fig. 2 by θ the angle between the linear polarization and the z
direction in the yz plane, so that, e.g., E0 = E0 ez for θ = 0
and E0 = E0 ey for θ = π/2. In parallel, a noisy magnetic
field Bnoise(t ) = Bnoise(t ) ex is applied to the system using a
homemade square Helmholtz coil. The current driving the coil
corresponds to the white-noise signal outputted by a function
generator, which is, however, first transformed thorough a
fcutoff = 1 MHz low-pass filter to prevent the effect of aliasing,
as well as a δf = 1 kHz high-pass filter to eliminate any spu-
rious contributions at very low frequencies (see Appendix D
for more details).

When measuring the power spectra of our magnetometer
as a function of the strength of the noisy magnetic field, as de-
scribed below, we set the static magnetic field to B0 = 2.7 µT,
what corresponds to inducing the Larmor precession of the
atomic spin at a frequency fL ≈ 9.45 kHz. In such a case, each
data set is acquired for a given fixed white-noise amplitude
in the range of 70.91 nTrms, for the first set, to 35.45 µTrms,
for the final data set. When investigating the dependence on
the polarization angle θ instead, we use the static field B0 =
2.74 µT (i.e., fL ≈ 9.6 kHz), while the white-noise amplitude
is fixed to 1.4 µTrms.

As shown in Fig. 2, after the magnetic shield the polar-
ization rotation of the transmitted light is measured using a
half-wave plate (λ/2) and a polarizing beam splitter (PBS).
The linear polarization of the setup was checked before and
after the vapor cell, by measuring the ellipticity of the beam
which was found to be of negligible order. The half-wave
plate is rotated to match exactly the polarization angle θ ′ of
the transmitted light [see Fig. 1(c)], so that it is the devia-
tions from θ ′ that are then effectively measured via balanced
photodection (BPD).2 In particular, the difference in the in-
tensity of the outgoing beams from the PBS is tracked using a
Thorlabs balanced photodetector (PDB210A/M). The output
photocurrent is recorded in real time using a data acquisition
card. Further technical details about the performance of the
magnetometer used can be found in Ref. [25].

Importantly, as our experiment matches the spatial con-
figuration of an alignment-based magnetometer described in
previous sections, we can interpret the measured photocurrent
of the BPD exactly as

δS(t ) := S(t ) − S̄, (28)

where by S̄ := 〈S(t )〉ss we denote the time-independent mean
DC component of the measured signal, which is determined
by the mean of the steady-state solution of Eq. (24). As a
result, Eq. (28) describes deviations from the mean value of
the detected signal stated in Eq. (27). The effective proportion-
ality constant gD in Eq. (27), which relates the instantaneous

2Even if θ ′ is not exactly matched, the resulting DC component of
the detected signal (27) yields a spike at zero frequency in the PSD,
whose presence may be safely ignored within our analysis.
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atomic state to the photocurrent signal, is then dictated by a
number of experimental conditions including the light power
(1 µW ), pumping efficiency, size of the vapor cell [(5 mm)3],
as well as the temperature (room temperature, ∼18◦C). On
the other hand, the detection noise, ζ (t ) in Eq. (27), should
be attributed to photon shot noise and electronic jitter arising
solely due to the photodetection process that effectively leads
to a background noise; within the measured PSD a DC offset
is observed independently whether the light beam interacts
with the atoms or not. This results in a noise floor that depends
on the frequency, partially due to the 1/ f noise. This will
be taken into account when interpreting the data in Sec. III B
below.

III. SPIN NOISE SPECTROSCOPY

Denoting the Fourier transform of any signal, here the
measured current of the balanced photodetector δS(t ) defined
in Eq. (28), over a finite-time interval [0, T ] as

δS(ω) = 1√
T

∫ T

0
dt e−iωtδS(t ), (29)

its power spectral density (PSD) is defined as [33]

PSD(ω) := 〈|δS(ω)|2〉, (30)

where by 〈. . . 〉 we denote throughout the article an average
over stochastic trajectories.

Importantly, provided that δS(t ) is stationary and ergodic,
which can be ensured by letting T � τcoh in Eq. (29) where
τcoh is some effective coherence time of the noisy system
under study, we may rewrite the power spectrum according
to the Wiener-Khinchin theorem as [33]

PSD(ω) =
ss

2
∫ ∞

0
dt cos(ωt )〈δS(t )δS(0)〉 (31a)

=
ss

2
∫ ∞

0
dt cos(ωt )〈S(t ), S(0)〉, (31b)

where by “ss,” as before, we emphasize the above to hold in
the steady state. In particular [see Eq. (31a)], the PSD (30)
can be expressed in terms of the autocorrelation function of
the (zero-mean) signal δS(t ) or, equivalently [see Eq. (31b)],
the autocovariance function of the actual detected signal
S(t ) specified in Eq. (27), i.e., 〈S(t1), S(t2)〉 := 〈S(t1)S(t2)〉 −
〈S(t1)〉〈S(t2)〉 [59].

Substituting explicitly the form of the detected signal (27)
into Eq. (31b), we obtain the form of the PSD applicable to
our problem as

PSD(ω) = g2
D hT D(2)

θ �(ω)D(2)T
θ h + 〈|ζ (ω)|2〉, (32)

where the (5 × 5) matrix �(ω) is defined as

�pq(ω) := 2
∫ ∞

0
dt cos(ωt )〈m2,p(t ), m2,q(0)〉, (33)

with p, q = −2, . . . , 2 specifying the coefficients of the mt

vector (20) evaluated in the steady state. As the detection noise
ζ (ω) is uncorrelated from any other noise sources within our
model, it leads to a noise floor in Eq. (30) as expected.

A. Theoretical predictions

The alignment dynamics derived in Eq. (24) constitutes
an example of a stochastic inhomogeneous evolution [59],
for which one can explicitly determine the form of the �(ω)
matrix appearing in the PSD (30) (see Appendix B), i.e.,

�(ω) = (Adet + iω)−1Anoise σ (Anoise )T
(
AT

det − iω
)−1

, (34)

where by Adet := A0 + A
 + 1
2 A2

noise we denote for short the
overall matrix responsible in Eq. (21) for the determinis-
tic evolution. The (covariance) matrix σ above is then (see
Appendix B) the solution of the linear equation

Adetσ + σAT
det + Anoise σ (Anoise )T

= A
mss(mss)TA

T(

AT
det

)−1

+ (Adet )
−1A
mss(mss)TA


T, (35)

which can always be solved fast numerically, given A0, Anoise,
A
, and mss.

However, independently of the particular form of σ, one
can show that the PSD (32) for our problem (see Appendix B)
must correspond to a sum of absorptive and dispersive
Lorentzian functions:

PSD(ω) =
∑

j=−2,...,2

pa
| j|γ

2
| j|

(ω − ω j )2 + γ 2
| j|

+
∑

j=±1,±2

±pd
| j|γ| j|(ω − ω j )

(ω − ω j )2 + γ 2
| j|

+ 〈|ζ (ω)|2〉, (36)

whose central frequencies ω j read as

ω0 = 0, ω1 = −ω−1 =
√

�2
L − 9

16
ω2

noise,

ω2 = −ω−2 ≈ 2�L − 3

16

ω2
noise

�L
, (37)

and, as expected, up to negligible corrections O(ω2
noise/�L )

correspond to multiples of the Larmor frequency: 0, �L, and
2�L. Whereas, the linewidths (half-widths at half maxima) γ| j|
take the form

γ0 ≈ �0 + 3
2ωnoise, γ1 = �1 + 5

4ωnoise,

γ2 ≈ �2 + 1
2ωnoise, (38)

with �i defined as in Eq. (23). All ω j and γ| j| stated in
Eqs. (37) and (38), respectively, can be determined analyti-
cally, however, we already simplified their forms above for
ω±2, γ0, and γ2, which are given by ∀ j : �L � �| j| and
�L � ωnoise.

In particular, these assumptions are guaranteed in our ex-
periment, in which the static field B0 is always much stronger
than the noisy field Bnoise and yields the Larmor frequency �L

much greater than any of the dissipation rates forming � in
Eq. (23). Moreover, under these assumptions we can compute
analytically also the peak heights pa/d

| j| , which in the absorptive
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case then read as

pa
0 = C

27

16
ω2

noise
�2

0 (2�2 + ωnoise )

(2�0 + 3ωnoise )2G(ωnoise,�)
h(θ ), (39a)

pa
1 = C

3

4
ωnoise

�2
0 (2�2 + ωnoise )

(4�1 + 5ωnoise ) G(ωnoise,�)
g(θ ), (39b)

pa
2 = C

3

32
ω2

noise
�2

0

(2�2 + ωnoise ) G(ωnoise,�)
h(θ ), (39c)

with

G(ωnoise,�) := (2�0 + 3ωnoise )
{
3ω2

noise[�0 + 2(�1 + �2)]

+ 2ωnoise(2�0�1 + 5�0�1

+ 6�1�2) + 8�0�1�2
}
, (40)

and the proportionality constant C := g2
D(mini

20 )4.
The dispersive equivalents of expressions (39) can also

be determined analytically (given ∀ j : �L � �| j| and �L �
ωnoise) and can be found in Appendix C. However (see
Appendix C), these are negligible upon substituting the pa-
rameters applicable to our experiment. Hence, we ignore their
contribution to the PSD (36) from now on.

Although Eqs. (39) allow us to predict the dependence
of the peak heights for all values of noise intensity ωnoise, it
directly follows that for low noise strengths they obey pa

0 ∝
ω2

noise, pa
1 ∝ ωnoise, and pa

2 ∝ ω2
noise. Furthermore, their angular

dependence factorizes and is given by

h(θ ) := [2 sin(2θ ) + 3 sin(4θ )]2 (41)

for pa
0 and pa

2, whereas for pa
1 it reads as

g(θ ) := [3 + 2 cos(2θ ) + 3 cos(4θ )]2. (42)

Consistently, these angular dependencies correspond to the
squares of the expressions derived in Ref. [61], when the
response to a radio-frequency magnetic field is considered
instead of white noise.

B. Measured noise spectra

In order to validate the theoretical model outlined above,
we vary the noisy magnetic field in the table-top alignment-
based magnetometer described in Sec. II C. For the purpose
of experiment, we define the noise spectral density in Hz,
i.e., fnoise such that ωnoise = 2π fnoise. As we apply a known
voltage through the coil, it is convenient to further write
fnoise = c V 2

noise, where Vnoise has units of mVrms and the pro-
portionality constant c can be explicitly determined for our
setup (see Appendix D).

In order to measure the PSD (30) of our device, we record
for a given value of fnoise 100 1-s data sets, for each of which
the Fourier transform is then computed before averaging. The
main plot of Fig. 3 shows an exemplary PSD obtained for the
input polarization angle being set to θ = 40◦, and a relatively
low noise spectral density being applied, fnoise = 0.26 Hz
(corresponding to Vnoise = 140 mVrms). It is clear that the PSD
has peaks at approximately 0, fL, and 2 fL frequencies with
�L = 2π fL, as anticipated by Eq. (37).

FIG. 3. Power spectral density (PSD) measured in the experi-
ment against the theoretical fits predicted by Eq. (36). The signal was
recorded over 100 time traces, each of 1 second duration. Within the
main plot, relatively low-noise spectral density of fnoise = 0.26 Hz
is chosen, corresponding to 140 mVrms (the input polarization an-
gle is set to θ = 40◦). The so-obtained PSD has the experimental
noise floor subtracted and is then fitted using a single function
(magenta curve) containing three Lorentzian peaks with centres lo-
cated close to the frequencies: f = 0, fL and 2 fL . Here, the three
peaks are clearly distinguishable due to their small linewidths. In
contrast, the inset shows the PSD for high-noise spectral density
fnoise = 120 Hz, corresponding to 3 Vrms (with the input polarization
angle set now to θ = 25◦), that nonetheless is well described by the
same fit-function (yellow curve) despite the Lorentzian peaks now
overlapping significantly.

Due to a clear separation of the peaks, the noise floor
varies between them: it takes the value of approximately 6.5 ×
10−14 V2/Hz for the peaks centered at f0 = 0 and f1 ≈ fL,
while it reads about 2.7 × 10−14 V2/Hz for the peak at f2 ≈
2 fL. When fitting the data we subtract the noise floor (data not
shown) of the experiment from each data set. This removes the
detection noise (and 1/ f noise) of different strengths across
the spectrum. We then fit a single function containing three
Lorentzian peaks to the whole spectrum, i.e., the complete
absorptive part of Eq. (36). The corresponding fit parameters
obtained for each of the three peaks are listed in Table I. In
contrast, when dealing with high strengths of white noise,

TABLE I. Fit parameters in the low-noise regime. A single func-
tion corresponding to the absorptive part of Eq. (36) is fitted to
reconstruct the PSD presented in the main plot of Fig. 3. As it con-
tains three Lorentzian profiles ( j = 0, 1, 2), such a procedure yields
three distinct sets of parameters: central frequencies ( f j), linewidths
(γ̃ j), and peak amplitudes ( p̃a

j). The data were collected in the above
measurement of the PSD (main plot of Fig. 3) for Larmor frequency
∼9.6 kHz, the light polarization angle being set to θ = 40◦, and the
strength of applied noise set to 140 mVrms such that fnoise = 0.26 Hz.

f j γ̃ j p̃a
j

j (Hz) (Hz) (V2/Hz)

0 0 34.9(2) 9.03(3) × 10−12

1 9603(1) 48.6(4) 4.16(2) × 10−13

2 19208(1) 37.8(6) 1.97(2) × 10−13
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FIG. 4. Amplitudes (a) and linewidths (b) of the PSD peaks as a function of the white-noise strength, which is varied from 6.53 × 10−4 Hz
to 163 Hz with the light polarization angle fixed to θ = 25◦. For every white-noise value fnoise, amplitudes and linewidths are determined for
each of the three relevant (absorptive) peaks in the PSD via the fitting procedure described in Fig. 3. The theoretical predictions are shown
for each peak at 0 (red, dotted-dashed), ≈ fL (green, solid), and ≈2 fL (blue, dashed) frequency. (a) All three peak amplitudes p̃a

j clearly
follow the theoretical predictions of Eq. (39), which we fit by tuning the overall proportionality constants [allowing different Cj for each pa

j in
Eq. (39)] and common values of the dissipation rates [�0, �1, and �2 in Eq. (39)]. (b) The linewidths increase linearly with fnoise with the slope
agreeing almost exactly for each peak with the proportionality constants predicted by Eq. (38). Moreover, their offsets at fnoise = 0 provide us
independently with the dissipation rates [�0, �1, and �2 appearing also in Eq. (38)], which are consistent (up to ≈10 Hz) with their equivalents
predicted by amplitude fitting in (a) (see the main text).

the three peaks strongly overlap within the PSD, as shown
explicitly for fnoise = 120 Hz within the inset of Fig. 3. As
predicted by the theory, this is due to an apparent increase of
the peak linewidths.

In what follows, we verify in more detail the expressions
(39) for the peak amplitudes by studying explicitly their de-
pendence on the noise spectral density fnoise and the light
polarization angle θ .

1. Varying the noise spectral density

Figures 4(a) and 4(b) show the variation of the amplitude
and linewidth, respectively, for each of the Lorentzian peaks
fitted around f = 0, fL, and 2 fL, as a function of the noise
spectral density fnoise (in Hz). The data were collected with
a fixed, θ = 25◦, polarization angle of the input beam. As
described above, the fitting procedure was done using a single
fitting function. The applied voltage to generate the noisy
magnetic field was varied from 7 mVrms to 3500 mVrms. To
convert this to spectral density (in Hz) we determine the
proportionality constant in fnoise = cV2

noise as c = 1.33(3) ×
10−5 Hz/mV2

rms, which is possible via the calibration proce-
dure described in Appendix D.

Crucially, the experimental results are consistent with
the theory, in particular, the amplitudes of the three (ab-
sorptive) peaks follow the functional dependencies predicted
by Eq. (39), with, e.g., quadratic and linear dependencies:
p̃a

0 ∝ f 2
noise, p̃a

1 ∝ fnoise, and p̃a
2 ∝ f 2

noise, easily verifiable from
Fig. 4(a) in the low white-noise regime. Performing the full
fitting procedure, we allow the proportionality constants in
Eq. (39) to differ (Cj for each pa

j), while determining common
dissipation rates that are most consistent with the data (�0, �1,
and �2). We obtain C0 = 2.1(2) × 10−6 V2, C1 = 3.4(6) ×

10−6 V2, and C2 = 1.0(1) × 10−6 V2 for each peak, respec-
tively, which consistently are of the same order, whereas
the best-fitted dissipation rates read as �̃0 = 29(1) Hz, �̃1 =
43(4) Hz, and �̃2 = 29(2) Hz. On the other hand, the cor-
responding linewidths depicted in Fig. 4(b) follow linear
dependencies in fnoise with the slope almost identical to the
proportionality constants predicted by Eq. (38). Moreover,
their offsets at fnoise allow us to independently determine
the dissipation rates (23) as �̃0 = 31(3) Hz, �̃1 = 34(1) Hz,
and �̃2 = 34(3) Hz. These are in a good agreement (within
≈10 Hz) with the ones found when fitting the three peak
amplitudes in Fig. 4(a).

Last but not least, let us comment on the ability of our
theoretical models to predict changes in the central frequen-
cies of the peaks. Figure 5 shows how the central frequency,
for the peak around fL (green dots) and 2 fL (blue squares),
vary as a function of the noise spectral density in the exper-
iment. The theoretically predicted relation (37) is then fit to
the experimental data (dashed lines) with fL = �L/(2π ) =
9435(1) Hz being the only free parameter. It can be seen that
the theory agrees reasonably well with the experimental data
with the central frequency slightly decreasing in the high
noise regime for the peak at fL and remaining almost the
same for the second peak. Note that the error on the values
for the central frequencies are within ±5 Hz. These errors
come from experimental imperfections, however, such as the
central frequency drifting in the time it takes for all of the
data to be taken, and errors in fitting the data. It is noted
here that the errors in fitting the central frequency at 2 fL

will be larger than at fL due to the peaks being at least an
order of magnitude smaller and hence closer to the noise floor
of the experiment. Bearing in mind all the aforementioned
imperfections, one may conclude that theory predicts well the
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FIG. 5. Central frequency of the PSD peaks as a function of the
noise spectral density ( fnoise), which is varied from 6.53 × 10−4 to
163 Hz with the light polarization angle being fixed to θ = 25◦. The
theoretical predictions of the change in central frequency [Eq. (37)]
are shown over the full range of the noise spectral densities applied
(dashed lines) with fL = 9435(1) Hz fitted to the experimental data
for f1 ≈ fL (green dots) and f2 ≈ 2 fL (blue squares). The overall
error in the experimentally determined central frequencies is approx-
imately ±5 Hz, arising both from experimental imperfections (e.g.,
drifts, background-noise subtraction) and the fitting procedure.

dependence of the central frequencies on the noise density for
both peaks.

2. Varying the light polarization angle

Finally, as the angular dependence of the peak amplitudes
(39) separates from all other parameters in the form of func-
tions h[θ ] and g[θ ] stated in Eqs. (41) and (42), we verify
this explicitly in the low white-noise regime with Vnoise =
140 mVrms, corresponding to fnoise = 0.26 Hz, by varying the
polarization angle of the incoming light from θ = −20◦ to
120◦. It is noted that the Larmor frequency used for varying
the polarization angle was ∼9.6 kHz. The results are presented
in Fig. 6 with measurements reproducing almost exactly the
predicted angular behaviors. As the linewidths of the peaks
do not vary significantly when varying θ (data not shown),
we may use the values γ̃ j determined for this low value of
noise in Fig. 4(a) and compute separately the exact propor-
tionality constants for each p̃a

j such that the functions h[θ ] and
g[θ ] are most accurately reproduced. In this way, while ac-
counting also for a common angular offset θ → θ + δθ with
δθ = 0.77(7)◦ in our setup, we obtain C0 = 3.9(6) × 10−6 V,
C1 = 2.1(1) × 10−6 V, and C2 = 1.5(4) × 10−6 V, which are
consistently of similar magnitude and almost the same as the
ones determined above when varying the white-noise strength.

IV. CONCLUSIONS

We prepare a detailed dynamical model allowing us to pre-
dict spin noise spectra of an alignment-based magnetometer,
which we then verify experimentally. Its applicability relies
on the presence of the excess white noise being applied along
the propagation direction of the light beam that is used to both

FIG. 6. Amplitudes of the PSD peaks as a function of the light
polarization angle, which is varied from θ = −20◦ to 120◦ with
the white-noise strength set to Vnoise = 140 mVrms, corresponding
to fnoise = 0.26 Hz. The fits predicted theoretically by Eq. (39), in
particular, the angular dependencies h[θ ] and g[θ ] stated in Eqs. (41)
and (42), are shown as solid curves for the peaks centered around
frequencies 0 (red), fL (green), and 2 fL (blue).

pump and probe the atomic ensemble, which is perpendicular
to the direction of the strong magnetic field responsible for
Larmor precession.

On the one hand, the added noise amplifies the Larmor-
induced peaks to be clearly visible within the power spectral
density above the level of detection noise. As a result, our
model describing the spin noise in the device can now be used
by signal-processing tools to interpret the detection data bet-
ter, e.g., when operating the device as a scalar magnetometer,
Bayesian inference methods such as the Kalman filter [48] can
be applied to track fast changes of the strong magnetic field in
real time beyond the magnetometer bandwidth [62,63]. On the
other hand, the induced noise can be used to naturally perform
sensing tasks in the so-called covert manner [64], i.e., so that
an adversary having access to the output of the magnetometer
would not be able to recover the signal without possessing
the precalibrated dynamical model that we propose. In this
sense, we expect our model to be useful also for tracking time-
varying signals encoded in oscillating RF fields (amplitude
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and phase) directed perpendicularly to both the scalar field
and the added noise.

It would be interesting to generalize our model to a device
that operates at the quantum limit [35–37], i.e., with detection
noise being small enough, so that the predicted peaks in the
spectrum arise without the need to artificially amplify them
by applying the excess classical noise. Moreover, similarly
to orientation-based magnetometers [38,52,65], maybe such
model could be also capable to incorporate the effect of pump-
ing and probing the ensemble with squeezed light, so the
detection noise can be even further reduced. We leave such
open questions for the future.

Experimental data created during this research are openly
available from The University of Nottingham data repository
[66].
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APPENDIX A: EVOLUTION IN THE BASIS OF
SPHERICAL-TENSOR OPERATORS

The evolution of the atomic ensemble without the effect
of pumping, described by Eq. (19), is written in terms of the
density matrix (1). In this Appendix we show how to write it in
terms of the vector of all spherical-tensor components mfull

t . In
particular, since the right-hand side of the equation is linear in
terms of ρ, we would like to find specific linear operators that
act on mfull

t that correspond to specific operations performed
on ρ, and enable us to write the dynamical equation in the
form of (21). We also show that, since the resulting operators
do not couple spherical-tensor components of different rank,
we only need the rank-2 component for a full description of
the problem under consideration.

1. Rotations induced by magnetic fields

Spherical-tensor operators T (κ )
q are defined by the decom-

position of the density matrix (1) with respect to irreducible
representations of the three-dimensional rotation group, i.e.,
for each κ = 0, . . . , 2F , operators T (κ )

q with q = −κ, . . . , κ

form a basis of a (2κ + 1)-dimensional irreducible represen-
tation. These operators form a convenient basis for density
matrices of a system with fixed angular momentum F :

ρ =
2F∑
κ=0

κ∑
q=−κ

mκqT (κ )
q , (A1)

with a scalar product Tr[T (κ )
q

†T (κ ′ )
q′ ] = δκκ ′δqq′ , and with well-

defined behavior under rotations generated by the angular-

momentum operators, i.e., a vector F̂ := (F̂x, F̂y, F̂z )T . In
particular, any SO(3) rotation can be parametrized either by
the axis (represented by a normalized vector n), and angle of
rotation ϕ:

R̂(n, ϕ) = e−iϕn·F̂ , (A2)

or by the three Euler angles φ, θ , ψ that correspond to
subsequent rotations about the z, y, and again the z axes,
respectively:

R̂(ψ, θ, φ) = e−iψF̂z e−iθ F̂y e−iφF̂z . (A3)

We now use the operator above to define the Wigner D-matrix:

D(F )
M,M ′ (ψ, θ, φ) := 〈F, M|R̂(ψ, θ, φ)|F, M ′〉. (A4)

The spherical-tensor operators behave analogously to angular-
momentum eigenstates under rotations if we treat the rank κ as
the total angular momentum, and the index q as the projection
on the z axis:

R̂(ψ, θ, φ)T (κ )
q′ R̂(ψ, θ, φ)† =

κ∑
q=−κ

D(κ )
q,q′ (ψ, θ, φ)T (κ )

q .

(A5)

This means that for the spherical-tensor component vector
m(κ )

t composed of mκ,q(t ) coefficients (q = −κ, . . . , κ), the
rotation generators are J(κ )

x , J(κ )
y , and J(κ )

z , which are the matrix
representations of angular momentum operators cut to the
subspace of total angular momentum κ .

This simplifies the study of dynamics of ρ under rotations,
but also facilitates the description of light-atom interactions.
Whenever one considers dipole-type interactions, which cor-
respond to multiplying two (dipole) vectors, spherical-tensor
components with κ � 2 describing the atom are sufficient to
find the output light state [26,57].

We use these properties of the spherical tensor to find the
expressions for the evolution of the atomic state described by
Eq. (19) in the spherical-tensor basis. Since the Hamiltonian
resulting from the magnetic field generates the rotation of the
atomic state about the magnetic field vector B,

dρ

dt
= −i[γgmrB · F̂, ρ], (A6)

the evolution in the spherical-tensor basis will also be driven
by respective rotation generators

dm(κ )
t

dt
= −iγgmr(B · J (κ ) )m(κ )

t , (A7)

where J (κ ) = (J(κ )
x , J(κ )

y , J(κ )
z )T.

This can be directly shown using the commutation relations
for the spherical-tensor operators and the angular-momentum
operators: [

F̂z, T (κ )
q

] = h̄qT (κ )
q , (A8)[

F̂±, T (κ )
q

] = h̄
√

κ (κ + 1) − q(q ± 1)T (κ )
±q , (A9)

that enable us to find the exact form of the matrix:

(A0)(κ ),q
(κ ′ ),q′ = − i�L

h̄
tr
{
T (κ )†

q

[
F̂z, T (κ ′ )

q′
]}

= −i�Lqδκκ ′δqq′ = −i�L
(
J(κ )

z

)q

q′ . (A10)
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Using Eq. (A9) we could analogously find that commuting
the density matrix with F̂x and F̂y is equivalent to acting the
operators J(κ )

x and J(κ )
y , respectively, on m(κ )

t . We use this to
also obtain

Anoise = −i
√

ωnoiseJ(2)
x . (A11)

Let us now note that commuting density matrix twice with
some operator

[F̂α, [F̂α, ρ]] = 2F̂αρF̂α − {
F̂ 2

α , ρ
}

(A12)

is then equivalent to acting with the square of the respective
operator J(κ )

α . This is responsible for the appearance of the
A2

noise/2 term in Eq. (21). In either case, the operation does
not couple spherical-tensor coefficients of different rank.

2. Decoherence

We would also like to find the correct description of deco-
herence using the spherical-tensor coefficients. It is driven by
nonunitary evolution, described by an operator

dρ

dt
= 
[ρ] =

∑
α


α[ρ] + 
iso[ρ], (A13)

where 
α[ρ] is the part of dissipation that comes from the
unknown fluctuations of the magnetic field:


α[ρ] = �α

(
F̂αρF̂α − 1

2

{
F̂ 2

α , ρ
})

, (A14)

and the isotropic part of the dissipation reads as


iso[ρ] = � − 1
2 {�̂, ρ}, (A15)

where �̂ = �iso12F+1 and � = �iso
2F+1 12F+1. It causes the de-

cay of all matrix components at the same rate �iso (− 1
2 {�̂, ρ})

and pumps the m0,0 components in the rate that balances the
decay (�). This means that all of the κ �= 0 components of the
spherical tensor decay at the same rate �iso:

dmκ,q

dt
= −�isomκ,q. (A16)

The operator (A14), on the other hand, is proportional to a
double commutator of Eq. (A12), therefore, we obtain the fol-
lowing operator of decoherence in the spherical-tensor basis:

A
 = −1

2

∑
α

�α

(
J(2)

α

)2 − �iso15, (A17)

which for the case �x = �y = �⊥, �z = �‖ takes the form

A
 = −

⎛⎜⎜⎜⎜⎝
�2 0 0 0 0
0 �1 0 0 0
0 0 �0 0 0
0 0 0 �1 0
0 0 0 0 �2

⎞⎟⎟⎟⎟⎠, (A18)

with

�0 = 3�⊥ + �iso, (A19)

�1 = 1
2 (�‖ + 5�⊥) + �iso, (A20)

�2 = 2�‖ + �⊥ + �iso. (A21)

We see again that spherical-tensor coefficients of different
rank do not couple, so we can limit our considerations to the
rank-2 component, relevant to our physical system.

APPENDIX B: NOISE SPECTRUM RESULTING FROM AN
INHOMOGENEOUS LINEAR SDE

For the purpose of predicting the spin noise spectrum, we
need to consider the following multiple-variable stochastic
differential equation:

dmt = (v + Fmt )dt + Gmt dWt , (B1)

where mt is an evolving vector, while operators F and G
together with vector v parametrize the evolution of the system.
The equation is linear and inhomogeneous. Equations like
this, in general, are not analytically solvable if the operators F
and G do not commute. However, we only need to calculate
the Fourier transform of the time-autocovariance matrix:

�(t ) = 〈
m0, mT

t

〉
ss = 〈

m0mT
t

〉
ss − 〈m0〉ss

〈
mT

t

〉
ss. (B2)

In order to obtain the steady-state mean value 〈. . . 〉ss, we aver-
age over the possible paths of the stochastic process Wt given
particular value of the initial point m0, and then separately
over all values of the initial point. We indicate these subse-
quent stochastic averages explicitly by the distinct subscripts,
i.e., 〈

m0mT
t

〉
ss = 〈

m0
〈
mT

t

〉
Wt |m0

〉
m0

. (B3)

Path averaging of Eq. (B1), which cancels the stochasic incre-
ment, leads to

d

dt
〈mt 〉Wt |m0 = v + F〈mt 〉Wt |m0 , (B4)

which yields the following evolution of the average value:

〈mt 〉Wt = −F−1v + eFt (m0 + F−1v). (B5)

The steady-state mean of mt , which is only obtained if all
eigenvalues of F have negative real parts, can be found by
taking the limit t → +∞:

〈m〉ss = −F−1v, (B6)

where we drop the subscript t in m because by definition the
steady-state mean value does not evolve.

Finally, by substituting the expressions (B5) and (B6) into
Eq. (B2) we obtain〈

m0, mT
t

〉
ss = [〈mmT〉ss − F−1vvT(F−1)T]eFTt , (B7)

which is true for t � 0. An analogous result for t < 0 can be
found by the use of the fact that for the steady state〈

m0, mT
−t

〉
ss = 〈

mt , mT
0

〉
ss = 〈

m0, mT
t

〉T
, (B8)

so that for any t we can finally write〈
m0, mT

t

〉
ss

=
{

[〈mmT〉ss − F−1vvT(F−1)T]eFTt for t < 0,

e−FTt [〈mmT〉ss − F−1vvT(F−1)T] for t � 0.
(B9)

In order to get the mean steady-state value of 〈mmT〉, we
need to find

d (mt mT
t ) = dmt mT

t + mt dmT
t + dmt dmT

t . (B10)
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The dmt dmT
t term is necessary to account for the property

of the stochastic increment that dW 2
t = dt . We substitute dmt

from Eq. (B1), take the average, divide by dt , and obtain

d

dt

〈
mt mT

t

〉 = v
〈
mT

t

〉 + 〈mt 〉vT + F
〈
mt mT

t

〉
+ 〈

mt mT
t

〉
FT + G

〈
mt mT

t

〉
GT, (B11)

which equals 0 in the steady state. Hence, after substituting
〈mt 〉 = 〈m〉ss from (B6), we obtain

F σ + σ FT + G σ GT = v vT (FT)−1 + F−1 v vT, (B12)

where σ = 〈m mT〉ss. Importantly, in case we are given a
specific set of v, F, and G, we can solve (B12) as a system
of linear equations to find σ.

Possessing a particular form of σ, we can explicitly calcu-
late the Fourier transform of �(t ), i.e.,

�(ω) =
∫ 0

−∞
dt e−FTt [〈mmT〉 − F−1vvT(F−1)T] (B13)

+
∫ +∞

0
dt[σ − F−1vvT(FT)−1] exp[(−iω + FT)t]

= − 1

2π
(F + iω)−1[σ − F−1vvT(FT)−1]

− 1

2π
[σ − F−1vvT(FT)−1](FT − iω)−1. (B14)

We can simplify this formula by using Eq. (B12) and finding
that

(F + iω)�(ω)(FT − iω) = G σ GT, (B15)

so we obtain

�(ω) = (F + iω)−1G σ GT(FT − iω)−1. (B16)

If the signal is a linear combination of the mt components,
parametrized by a vector k of the same dimension as mt :,

S(t ) = kT xt , (B17)

then the PSD is given by

PSD(ω) = kT �(ω) k

= kT (F + iω)−1G σ GT(FT − iω)−1 k. (B18)

Effective Lorentzian form

To find the functional form of PSD(ω) one can write
Eq. (B18) in the eigenbasis of the F matrix. If we write the
eigenvalues of F as λα = −γα + iωα , then

PSD(ω) =
∑
α,β

kαkβQαβ

[−γα + i(ω + ωα )][−γβ − i(ω − ωβ )]

=
∑
α,β

kαkβQαβ

γα + γβ + i(ωα + ωβ )

(γα + γβ )2 + (ωα + ωβ )2

×
(

γα + i(ω + ωα )

γ 2
α + (ω + ωα )2

+ γβ − i(ω − ωβ )

γ 2
β + (ω − ωβ )2

)
,

(B19)

where kα , kβ are the components of the k vector and Qαβ are
the components of the matrix G σ GT, in both cases written in

the eigenbasis of F. As one can see, the resulting spectrum is a
sum of symmetric (absorptive) and antisymmetric (dispersive)
Lorentzian peaks, whose widths are the opposites of real parts
(γα), and central frequencies are the imaginary parts of the
eigenvalues and their opposites (±ωα):

PSD(ω) =
∑

α

(
pa

αγ 2
α

γ 2
α + (ω − ωα )2

+ pa
αγ 2

α

γ 2
α + (ω + ωα )2

+ pd
αγα (ω − ωα )

γ 2
α + (ω − ωα )2

+ pd
αγα (ω + ωα )

γ 2
α + (ω + ωα )2

)
,

(B20)

which, in the case of a real signal S(t ) we know to be real,
positive, and symmetric around ω = 0.

APPENDIX C: ANALYTIC PREDICTION
OF PEAK AMPLITUDES

Crucially, the atomic magnetometer under study, described
by dynamics (24), constitutes an example of stochastic in-
homogeneous evolution discussed in Appendix B, so that
the PSD without external noise ζ (t ) is given by Eq. (B18)

with v = A
mss, F = A0 + A
 + A2
noise
2 , G = Anoise, and k =

D(2)T
θ h.
Since the characteristic polynomial of the matrix F has real

coefficients, we know that it has at least one real eigenvalue,
while the other two are, in pairs, complex conjugates of each
other. This limits the number and character of peaks to one
symmetric peak at zero, and two pairs of peaks of opposite
frequencies, that are sums of symmetric and antisymmetric
peaks:

PSD(ω) =
∑

j=−2,...,2

pa
| j|γ

2
| j|

(ω − ω j )2 + γ 2
| j|

(C1)

+
∑

j=±1,±2

±pd
| j|γ| j|(ω − ω j )

(ω − ω j )2 + γ 2
| j|

, (C2)

where the approximate ω j and γ j are given by Eqs. (37) and
(38) of main text, respectively.

The formula resulting from Eq. (B18) has a complex form,
practically only possible to obtain and store using symbolic
calculation software, therefore, it does not provide a clear
picture of the properties of the spectrum, except for making
it possible to plot it numerically. In order to find the specific
values of pa

i , pd
i , which are hidden in the formula, we use the

observation that for �L � γi the heights of the peaks in the
spectrum do not depend on �L, and therefore the limits

pa
i ≈ lim

�L→+∞
PSD(ω = ωi ) (C3)

will give, in sufficiently good approximation, the values of pa
i .

To obtain the approximate values of pd
i , we calculate

pd
i ≈ �i

�L
lim

�L→+∞

(
�L

d

dω
PSD(ω)

∣∣∣∣
ω=ωi

)
(C4)
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(a) (b)

FIG. 7. Amplitude calibration for the noise spectral density ωnoise = 2π fnoise. (a) The output current of the noise generator is first
transmitted through both 1-kHz high-pass and 1-MHz low-pass filters, before being directly measured. 100 independent time traces of 0.01-s
duration (sampled at a rate 40 MHz) are recorded to compute the resulting power spectral density (PSD) shown, which is converted into the
units of Hz after accounting for the calibration factor of the coil inducing the noisy magnetic field and the gyromagnetic ratio of caesium. (b) In
order to obtain the effective magnitude of the PSD, i.e., the noise spectral density, the average value of the PSD is computed for five different
frequency ranges, as a function of the amplitude Vnoise of the noise applied. The plot shows quadratic fits fnoise = cV 2

noise, applicable to each of
the five frequency ranges used for averaging. All these agree and yield c = 1.33(3) × 10−5 Hz/mV2

rms.

because we need the second order of expansion in 1
�L

. Using this approximation we obtain Eqs. (39) from the main text, and

pd
1 =g2

D

3

2

(
mini

20

)4 ωnoise

�L

�2
0

[
16�2

1�2 + 8�1(�1 + 5�2)ωnoise + 16(�1 + �2)ω2
noise + 3ω3

noise

]
(4�1 + 5ωnoise )3 G(ωnoise,�)

[3 + 2 cos(2θ ) + 3 cos(4θ )]2,

(C5)

pd
2 =g2

D

9

64

(
mini

20

)4 ω2
noise

�L

�2
0

(
8�2

2 + 8�2ωnoise + ω2
noise

)
(2�2 + ωnoise )3 G(ωnoise,�)

[2 sin(2θ ) + 3 sin(4θ )]2, (C6)

where G(ωnoise,�) is stated in Eq. (40) of the
main text.

Irrelevance of the dispersive contributions

We note that we have not verified the predicted re-
lations for the dispersive contributions of the line shape
[see Eqs. (C5) and (C6). This is due to their contribu-
tion being below the noise floor of our system. We can
verify that this is as expected for a Larmor frequency of
approximately 9.45 kHz by calculating the ratios of the
peak height equations and using the linewidths found in
the experiment: �1 = 34 Hz and �2 = 34 Hz. We find pd

1/pa
1

from Eq. (C5) divided by Eq. (39b) and we find pd
2/pa

2
from Eq. (C6) divided by Eq. (39c). The calculations were
done for the lowest white-noise amplitude of 7 mVrms

and the highest white-noise amplitude of 3.5 Vrms. For
Vnoise = 7 mVrms we find pd

1/pa
1 = 1.1 × 10−4 and pd

2/pa
2 =

3.2 × 10−4. Furthermore, when Vnoise = 3.5 Vrms we find
pd

1/pa
1 = 3.1 × 10−5 and pd

2/pa
2 = 1.8 × 10−4. Hence, the

dispersive contribution is at least four orders of magnitude
smaller than the absorptive contribution. Hence, this is sig-
nificantly below our noise floor for both peaks, as seen
experimentally.

APPENDIX D: AMPLITUDE CALIBRATION FOR THE
NOISE SPECTRAL DENSITY ωnoise = 2π fnoise

In order to determine the value of the constant c relating
the magnitude of the noise spectral density to the (RMS)
amplitude of the voltage applied in the noise generator, i.e.,
ωnoise = 2π fnoise = 2πcV 2

noise, we directly measure the current
in the coil that induces the noisy magnetic field. The signal
from the generator, however, is first transformed thorough a
1-MHz low-pass filter to prevent the effect of aliasing, as
well as a 1-kHz high-pass filter to eliminate any spurious
contributions at very low (DC-like) frequencies. We record
100 traces of 0.01-s duration of the current reaching the coil
(sampled at 40 MHz), while varying the voltage amplitude
in the noise generator. Based on these we compute the PSD
(30), which is presented in Fig. 7(a) in the units of Hz2/Hz,
after performing adequate rescaling given the values of the
coil calibration factor (10.1 nT/mVrms) and the gyromagnetic
ratio of caesium (3.5 Hz/nT).

From Fig. 7(a) we can determine fnoise by seeing how the
PSD varies with different white-noise amplitudes. We average
areas of Fig. 7(a) in five different frequency ranges [specified
in the label of Fig. 7(b)] to obtain the effective value of fnoise

as a function of the noise amplitude: five values of Vnoise

013125-14



SPIN NOISE SPECTROSCOPY OF AN ALIGNMENT-BASED … PHYSICAL REVIEW A 110, 013125 (2024)

(stated in mVrms) are used. For each of the averaged ranges,
we then fit the quadratic dependence fnoise = cV 2

noise, which
allows us to overall obtain c = 1.33(3) × 10−5 Hz/mV2

rms
[see Fig. 7(b)].
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