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Millimeter-wave (mmWave) and massive multiple-input multiple-output (MIMO) technologies are critical in current and future
communication research. Tey play an essential role in meeting the demands for high-capacity, high-speed, and low-latency
communication brought about by technological advancements. However, existing mmWave channel estimation schemes rely on
idealized common sparse channel support assumptions, and their performance signifcantly degrades when encountering beam
squint scenarios. To address this issue, this paper introduces a dynamic support detection window (DSDW) algorithm. Tis
algorithm dynamically adjusts the position and size of the window based on the received signal strength, thereby better capturing
signal strength variations and obtaining a more complete set of signal supports. Te DSDW algorithm can better capture and
utilize the sparsity of the channel, improving the efciency and accuracy of the channel state information acquisition. By
combining the beam-split pattern (BSP) algorithm with the DSDW algorithm, this paper designs an efective method to address
the inherent beam-spreading problem in mmWave scenarios. Simulation results are proposed to demonstrate the efectiveness of
the BSP-DSDW algorithm.

1. Introduction

To meet the demands of high-speed and high-quality
communication, the current confguration of massive
multiple-input multiple-output (MIMO) technology cannot
meet the demand [1]. Massive MIMO technology involves
deploying dozens or even hundreds of antennas at the base
station, serving multiple users across multiple frequency
bands. Tis setup efciently harnesses spatial spectrum re-
sources, thereby mitigating the impact of interference and
noise on system capacity. Compared to traditional MIMO
technology, massive MIMO ofers substantial improvements
in spatial multiplexing and spatial diversity, resulting in
enhanced system capacity and reliability [2], and therefore
the transmission process in massive communication

technology requires increased frequency band resources.
Owing to the shorter wavelength of millimeter-wave
(mmWave) signals and the subsequent reduction in the
spacing between adjacent antennas, it becomes feasible to
deploy massive antennas in a small form factor [3, 4].
Consequently, the amalgamation of mmWave and massive
MIMO technology can compensate for each other’s limi-
tations and signifcantly enhance the overall system
performance.

Channel estimation is an essential component of com-
munication systems, particularly in the context of massive
MIMO systems. In such systems, challenges such as mul-
tipath efects, noise, and interuser interference pose sig-
nifcant hurdles to achieving accurate channel estimation.
Precoding and beamforming techniques heavily rely on
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precise channel state information (CSI) [5], making the
accuracy of channel estimation paramount. Given the dis-
tinct characteristics of mmWave massive MIMO, traditional
MIMO channel estimation methods are inapplicable, ne-
cessitating the development of new approaches. In [6], the
compressive sampling matching pursuit (CoSaMP) algo-
rithm is employed to enhance channel estimation accuracy
and this is achieved by introducing a feedback backtracking
process centered around atom selection and broadening the
selection scope. Te matching pursuit algorithm leverages
the sparsity of the channel as a known condition, which
impacts the accuracy of the estimation. A sparsity value that
is too small results in underftting of the iterative estimation,
while an excessively large value increases algorithm com-
plexity. In reference [7], a sparse adaptive matching pursuit
algorithm is proposed to eliminate the reliance on sparsity as
a known condition. Tis method approximates the original
signal by adjusting the step size. Meanwhile, the authors in
reference [8] take advantage of the inherent sparsity of the
mmWave MIMO channel in the angular domain. It refor-
mulates the channel estimation problem as the re-
construction of a compressible signal from noisy linear
measurements. In contrast to previous approaches, this
method models angular-domain channel coefcients using
Laplacian-distributed random variables. Compared to
a Gaussian mixture prior, the Laplacian-based algorithm
exhibits improved channel estimation accuracy, achievable
rate, and computational efciency. Te authors in reference
[9] introduce a tensor-based joint channel parameter esti-
mation and information symbol detection scheme. Tis
approach divides the model into an outer submodel and an
inner submodel. Te inner submodel extracts physical pa-
rameters, including angles of arrival/departure (AoA/AoD),
Doppler shifts, and complex path gains, from the estimated
compound channel matrix. Tis signifcantly reduces
feedback overhead and enhances estimation accuracy with
lower computational complexity. In summary, channel es-
timation in mmWave massive MIMO systems is a complex
task, and these diverse algorithms address various aspects of
this challenge, aiming to improve accuracy and efciency.

To address the challenge of high hardware power con-
sumption in mmWave massive MIMO systems, mmWave
massive MIMO systems based on lens antenna arrays have
emerged [10]. Tese systems achieve channel sparsity
through the construction of lens antenna arrays, which serve
as a foundation for applying compressed sensing techniques.
Several algorithms leverage compressed sensing techniques
for channel estimation by establishing angular domain es-
timates. Tis approach efectively mitigates power con-
sumption and reduces the computational complexity.
However, certain channel estimation algorithms, such as
convex optimization and the orthogonal matching pursuit
(OMP) algorithm, rely on the common sparsity assumption,
particularly in mmWave systems. Nevertheless, these al-
gorithms often neglect the interbeam impact resulting from
beam splitting.

Beam-split technology in current wireless communica-
tion systems, especially in mmWave and terahertz frequency
bands, faces a series of technical challenges. Even minor

beam errors can cause beam misalignment, afecting signal
reception quality and system performance. At high fre-
quencies, channel estimation and tracking become more
challenging. Any small environmental changes, such as user
movement or object obstruction, can lead to rapid channel
variations, and traditional channel estimation algorithms
often fall short in these highly dynamic environments.
Terefore, channel estimation methods based on beam
detection and training have been introduced. Te authors in
reference [11] analyzed the channel estimation performance
of large-scale MIMO Internet of things system in Rayleigh
fading by utilizing the least square (LS) and minimummean
square error estimation methods. Te authors in reference
[12] suggest a channel estimation accuracy improvement
through beam search using layered codebooks tailored for
mmWave massive MIMO systems. By leveraging the ana-
lytical structure of the underlying codeword within the
layered codebook, the optimal beam design is derived. Te
authors in reference [13] designed a beam-split-aware dic-
tionary composed of beam squint correction steering vec-
tors, which inherently includes the efects of beam squint.
Te proposed beam-split-aware orthogonal matching pur-
suit method can automatically generate beam squint-
corrected physical channel directions, outperforming
existing state-of-the-art techniques. Te authors in reference
[14] proposed a regularized sensing beam-split-based or-
thogonal matching pursuit scheme. Te cascaded channel
estimation is formulated as a sparse parameter recovery
problem, and the algorithm is utilized to estimate the
channel parameters. Tis approach signifcantly improves
performance in terms of NMSE.

Te common sparsity assumption can introduce errors
in the carrier direction ofset, subsequently leading to
a reduction in the accuracy of the channel estimation al-
gorithm [15]. In the context of wideband channel esti-
mation algorithms, assuming a common support set can
constrain the algorithm’s performance. To overcome this
limitation, certain algorithms compute signal power for
diferent beam directions, efectively mitigating the beam
difusion efect [16, 17]. In this work, we propose an al-
gorithm based on the beam-split pattern (BSP) and dy-
namic support detection window (DSDW) to analyze the
beamspace channel and tackle the beam-spreading chal-
lenge in mmWave massive MIMO systems. We adopt the
Saleh–Valenzuela model for channel modeling while en-
suring signal sparsity through the use of a lens antenna
array [18]. Initially, the BSP algorithm is employed to
establish index sets for various subcarrier directions,
aligning them with their corresponding physical channel
directions. Subsequently, we calculate the power associated
with each index set based on its indices. We design a dy-
namic window size algorithm to maximize power and
compute the support sets for all signals. Finally, the ac-
quired support set aids in signal recovery through an or-
thogonal matching tracking approach. We present the
estimation outcomes of both the BSP and DSDW algo-
rithms and include results from comparative simulation
experiments involving existing algorithms.

Te main contributions of this paper are as follows:
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(1) A channel estimation algorithm for mmWave
massive MIMO systems based on dynamic window
power capture is proposed. Tis algorithm addresses
the issue of insufcient channel estimation accuracy
caused by the beam expansion efect by dynamically
adjusting the signal capture window to maximize
signal power.

(2) Te channel is built upon an angle-domain channel
model, and we employ a lens antenna array to focus
the incoming signals in specifc directions. Tis
transforms the channel into beamspace for signal
recovery, efectively mitigating the impact of the
beam-spreading efect.

(3) DSDW is executed for each subcarrier, utilizing
signal power as the objective function to maximize
signal coverage. Tis approach efectively captures
variations in signal strength, optimizing the win-
dow’s position and size, and thereby obtaining the
complete support set of the signal.

Te rest of this paper is organized as follows. Section 2
introduces the channel model of the mmWave massive
MIMO system. Section 3 introduces an acquisition algo-
rithm based on the beam-splitting efect. In Section 4, the
channel estimation scheme based on physical channel di-
rection acquisition and the DSDW algorithm is discussed in
detail. Section 5 discusses the performance of the design
scheme through simulation. Finally, we summarize the
whole paper in Section 6.

2. Channel Model of the mmWave Massive
MIMO System

Massive MIMO systems are a key technology for future
communication systems, and accurate channel estimation is
crucial for achieving efective multiuser diversity and spatial
multiplexing. mmWave channels exhibit high-frequency
characteristics and sparsity, whereas traditional channel
estimation methods perform poorly. Terefore, new
methods are needed to adapt to the characteristics of
mmWave communication. In addition, accurate CSI is es-
sential for resource allocation, beamforming, and in-
terference management, thereby enhancing the reliability
and efciency of data transmission. Overall, channel esti-
mation can address practical issues in modern communi-
cation systems, improve communication performance, and
meet the demands of new technologies and applications,
thus driving the continuous advancement of wireless
communication technology.

Millimeter-wave channels are divided into two major
categories: physical models and analytical models. Te
foundation of physical models is the electromagnetic
characteristics between the signal reception and trans-
mission arrays. Tis type of model can efectively refect
measurement parameters and demonstrate the spatial cor-
relation and sparsity of MIMO systems, as shown in Fig-
ure 1, and is also known as a parameterized model. It is
commonly used in channel estimation and precoding de-
sign. Due to the limited number of scattering paths in

millimeter-wave propagation, most research work adopts
geometric channel models to describe them. Terefore, this
paper also adopts the widely used Saleh–Valenzuela channel
model [19].

Assuming there is an available transmission path, also
known as a multipath component, between the transmitter
and receiver, the transmitter is equipped with a basic uni-
form linear array (ULA). Te narrowband channel fading
model can be represented as

H �

������
NTNR

L

􏽲

􏽘

L

l�1
αlaR θl( 􏼁aH

T φl( 􏼁, (1)

where NT and NR are the numbers of antennas at the re-
ceiver and transmitter, respectively; αl is the complex gain of
the l-th path; θl and φl denote the azimuth angles of arrival
and departure, respectively, and lie within [0, 2π]; and aR

and aT represent the receive and transmit array vectors,
respectively, and when the antenna array is linear, they are
expressed as

aR θl( 􏼁 �
1
���
NR

􏽰 1, e
− j2πdsin θl( )/λ, · · · , e

− j2π NT− 1( )dsin φl( )/λ􏼔 􏼕
T

,

aT φl( 􏼁 �
1
���
NT

􏽰 1, e
− j2πdsin φl( )/λ, · · · , e

− j2π NT− 1( )dsin φl( )/λ􏼔 􏼕
T

,

(2)

where d and λ represent the antenna spacing and wave-
length, respectively, and T denotes the transpose operator.
Trough the basis expansion model, the newly introduced
sparsity can be better refected. Tus, equation (1) can be
written in a compact form represented as follows:

H � AR(θ)diag(α)AT(φ), (3)

where AR(θ) � [aR(θ1), · · · , aR(θL)] and AT(φ) � [aT(φ1),

· · · , aT(φL)] contain the steering vectors of each multipath
component and the vector α �

��������
NTNR/L

􏽰
[α1, · · · , αL]T

contains the gains of the multipath components.
Te angle-domain channel model decomposes the channel

into multiple paths with specifc angles, quantizing these angles
to form a channel matrix. Tis matrix representation of the
channel in the angle domain enhances sparsity and simplifes
signal processing.Te lens antenna array, which combines lens
technology with a traditional antenna array, focuses incoming
electromagnetic waves such that signals from diferent di-
rections converge at diferent positions on the array. Tis
physical focusing mechanism efectively converts the spatial
information of the signal into positional information. By
placing antennas at the focal plane of the lens, we can capture
signals from various directions distinctly.Te digital processing
of these signals then reconstructs the angle-domain repre-
sentation of the channel, converting the channel into beam-
space. Beam space representation, achieved through
beamforming and channel measurement, further sparsifes and
consolidates the channel characteristics, thus constructing
a beamspace channel matrix. Tis transformation signifcantly
enhances the efciency of channel estimation and processing,
optimizing overall communication system performance.

International Journal of Intelligent Systems 3

 ijis, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/7727469 by T

est, W
iley O

nline L
ibrary on [19/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



For channel estimation schemes, it is assumed that the
presence of a common support set limits the algorithm’s
performance. Consequently, certain algorithms calculate
signal power for diferent beam directions, thereby efec-
tively addressing the beam-spreading efect. In this section,
we construct the system model, which is primarily based on
the uplink time-division duplex system under the frame-
work of mmWave massive MIMO. Te Saleh–Valenzuela
multipath channel model is used, and the antenna array is
a ULA [20].

When modeling, the calculation of base stations and
users is implemented by an orthogonal frequency guide
strategy, which uses Q time slots for sampling. In the uplink
training phase, the received signal vector yl,q ∈ NRF × 1 on
the l-th subcarrier and the q-th time slot can be expressed as

yl,q � Aqh
b
l ol,q + nl,q, q � 1, 2, · · · , Q, (4)

where hb
l is the broadband channel model, Aq is the overall

combining matrix of NRF × N, ol,q is the transmission pilot
on the l-th subcarrier and the q-th time slot, and
nl,q � Aqnl,q, nl,q ∼ CN(0, σ2nIN) is the Gaussian noise of
N × 1. For convenience in analysis, o is set to 1.

Te received pilots at the l-th subcarrier are given by

yl � Ahb
l + nl, (5)

where yl � [yT

l,1, y
T

l,2, · · · , yT

l,Q]T ∈ CNRFQ×1 and the view ma-

trix is A � [AT

1 ,AT

2 , · · · ,AT

Q]T ∈ CNREQ×N. Te multiuser
scenario is transformed into a single-user scenario for
analysis.

Te number of antennas is set to N, the number of users
is set to u, and the number of carriers is L. Ten, the N × 1
dimensional space channel hl of the l-th subcarrier of the
user can be written as follows:

hl �

��
N

K

􏽲

􏽘

K

k�1
βke

− j2πτkfla θk,l􏼐 􏼑, (6)

where K, βk, and τk, respectively, represent the number of
paths, the complex path gain of the k-th path, and the time
delay of the k-th path and fl is the subcarrier frequency. Te
space domain array guidance vector α(θk,l) under the linear
antenna array is given by

α θk,l􏼐 􏼑 �
1
��
N

√ 1, e
− jπθk,l , e

− j2πθk,l , · · · , e
− j(N− 1)πθk,l􏽨 􏽩. (7)

Te θk,l can be further expressed as

θk,l �
2fl

c
d sinφk, (8)

where φk is the angle of arrival corresponding to the l-th
multipath component, c is the speed of light, d � c/2fc, fc is
the carrier frequency, and fl is the subcarrier frequency,
fl � fc + B/L(l − 1 − (L − 1)/2). In a broadband system, the
center carrier frequency fc is similar to bandwidth B. Te
spatial direction of the subcarrier is related to the frequency.
Due to the large diference in the spatial direction of each
subcarrier in the broadband system, the beam-splitting efect
leads to the performance loss of the existing channel esti-
mation schemes.

By converting the spatial channel into the beamspace
channel, which is equivalent to performing a matrix
transformation, we get

P � α ψ1( 􏼁, α ψ2( 􏼁, · · · , α ψN( 􏼁􏼂 􏼃
H

, (9)

where ψN � 1/N(n − N + 1/2), for n� 1, 2, ..., N, is the
predefned spatial direction of the lens antenna array, as
shown in Figure 2. So, the beamspace channel corresponding
to the l-th subcarrier hb

l can be expressed as

hb
l � Phl �

��
N

K

􏽲

􏽘

K

k�1
βke

− j2πτkflbk,l, (10)

where bk,l � Pα(θk,l) represents the path component of the
beamspace subcarrier, given by

bk,l � Pα θk,l􏼐 􏼑 � μ θk,l − θ1􏼐 􏼑, · · · , μ θk,l − θN􏼐 􏼑􏽨 􏽩
T
. (11)

Here, we can observe the characteristics of
μ(x) � (sinNπx/2)/(sin πx/2) from the power concentra-
tion of the Dirichlet function. On the other hand, the power
of bk,l is concentrated in the direction of the spatial channel.
Since the number of paths is usually small, the sparsity of the
angular-domain channel for diferent subcarriers is pri-
marily determined by θk,l. Tis means that in wideband
systems, variations in azimuth angles also have a signifcant
impact on signal gain.
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Figure 1: Millimeter-wave massive MIMO system block diagram.
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3. Acquisition Algorithm Based on Beam-
Splitting Effect

As the demand for higher rates and capacity increases, large-
scale MIMO systems are predominantly based on wideband
systems. Tis introduces a phenomenon known as beam
spread, where the beam direction changes with frequency.
Consequently, some algorithms based on the common
sparse assumption may introduce errors due to carrier di-
rection ofset, leading to a decrease in the accuracy of
channel estimation algorithms, particularly those relying on
angle-of-arrival-based channel estimation. In this study, we
also consider the common sparse assumption in the
beamspace in Section 4, jointly addressing the spread efect
using the BSP algorithm and the SDW algorithm. In this
section, the BSP and SDW algorithms are proposed. For the
wave number splitting case, we analyze the relationship
between the physical channel direction and the beam di-
rection. After obtaining the beamspace direction [21], we use
the SDW algorithm to perform the power maximization
calculation and then construct the channel estimation
scheme.

3.1. BSP Algorithm for Physical Channel Direction Capture.
According to the derivation related to the spatial direction in
Section 2, the θk,l determines the sparse channel support of
the channel hb

l . In this paper, we consider an algorithm to

capture the physical channel direction, referring to the idea
of the SOMP algorithm. Let φk be the physical channel
direction of an arbitrary path, and we defne that

Βn � bk,1, bk,2, · · · , bk,l, · · · , bk,L􏽨 􏽩. (12)

It is assumed that the physical channel direction φk is in
the sample θn direction of the angle domain, that is, φk � θn,
and n1 ∈ 1, 2, · · · , N{ }. Ten, index bk,l is given by

n
max
k,l � argmin

n1
θk,l − θn1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � argmin
n1

fl

fc

θn − θn1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (13)

ξn � 􏽛

L

l�1
argmin

n1

fl

fc

θn − θn1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, l􏼠 􏼡􏼨 􏼩, (14)

where θn is the direction corresponding to the physical
channel direction. To prove the efectiveness, we defne
a physical channel direction φk0

� θn0
� θn + 2b/N, where

b is a nonzero value, and according to (13), it can be inferred
that

n
max
k0 ,l � argmin

n1

fL

fc

θn +
2b

N
􏼠 􏼡 − θn1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (15)

According to (13) and (15), we get |nmax
k0 ,L − nmax

k,L |≥ b; so,
for the specifc physical channel direction φk, the power
captured by the BSP algorithm is

Bn ξn( 􏼁
����

����
2
2 � 􏽘

L− 1

l�1
μ2

fl

fc

θn − n
max
k,l􏼠 􏼡 + μ2

fL

fc

θn − n
max
k,L􏼠 􏼡, (16)

Bn ξn( 􏼁
����

����
2
2 > 􏽘

L− 1

l�1
μ2

fl

fc

θn − n
max
k,l􏼠 􏼡 + μ2

fL

fc

θn − n
max
k0 ,L􏼠 􏼡≥ Bn ξn0

􏼐 􏼑
�����

�����
2

2
. (17)

Since φk � θn, Bn(ξn) can capture more power than
Bn(ξn0

). Bn(ξn) corresponds to the only physical channel
direction θn, and it is also determined by that direction [22].

3.2. SDWAlgorithm Based onWindow Capture. As depicted
in Figure 3, the BSP algorithm proves efective in precisely
determining the physical channel’s direction, extracting its

Digital
Precoding

Network
Selection 

RF Chain

Figure 2: Lens antenna array structure diagram.
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eigenvalues, and consequently capturing its maximum
power [23]. In contrast, the common window expansion
method, widely used in signal processing, extends a signal
segment to analyze more data points but has notable lim-
itations for accurate direction localization. It causes
a “smearing” efect, obscuring precise timing information,
and introduces phase ambiguities, complicating the in-
terpretation of phase diferences crucial for determining
signal direction. In addition, it sufers from a resolution
trade-of, reducing the time resolution essential for locali-
zation, and can integrate more noise, masking subtle dif-
ferences needed for detecting the signal’s origin. To address
these issues, alternative techniques such as beamforming,
cross-correlation, and adaptive fltering are employed, of-
fering improved accuracy by focusing on specifc directions,
analyzing time delays, and dynamically adjusting parame-
ters. Due to the wave number splitting efect, subcarriers in
other directions also contribute to channel power in a par-
ticular direction, leading to estimation errors.

For the support detection window (SDW) algorithm, the
window expansion method is realized by expanding the
physical channel direction of the BSP algorithm, where λ is
the size of the SDW algorithm window and
σN(x) � modN(x − 1) + 1 is the module function, which
can be used to ensure that the elements are all nonzero
positive integers.

Tus, the ratio of the power captured by the SDW al-
gorithm to the actual power in the direction can be obtained
as

c �
1
2N

􏽘

λ

b�− λ
􏽚
1/N

− 1/N
μ2 λθ −

2b

N
􏼠 􏼡dλ θ,

c �
􏽐

λ
b�− λ Βn σN ξn + b( 􏼁( 􏼁

����
����
2
F

Βn
����

����
2
F

.

(18)

Due to the power issues involved, Βn
����

����
2
F

�

􏽐
L
l�1 bk,l

����
����
2
F

� MN2, combined with the SDW algorithm, we
can get

c �
1

MN
2 􏽘

λ

b�− λ
􏽘

L

l�1
μ2 θk,l − θnmax

k,l
+b􏼒 􏼓. (19)

As θnmax
k,l

+b � θnmax
k,l

+b + 2b/N is defned and Δθl �

θk,l − θnmax
k,l
, then the proportion can be further obtained as

c �
1

LN
2 􏽘

λ

b�− λ
􏽘

L

l�1
μ2 λθl −

2b

N
􏼠 􏼡, (20)

where Δθl ∈ [− 1/N, 1/N], assuming that they are uniformly
distributed, so Δθl � − 1/N + (l − 1)2/NL. Te sum of all
subcarriers is given by

􏽘

L

l�1
μ2 λθ −

2b

N
􏼠 􏼡 �

LN
2

􏽚
1/N

− 1/N
μ2 λθ −

2b

N
􏼠 􏼡dλ θ. (21)

Tis derivation also verifes the rationality of (16).

4. Channel Estimation Scheme Based on
Physical Channel Direction Capture and
Dynamic-Window Expansion

Tis section utilizes BSP and SDW algorithms to develop
a DSDW algorithm grounded in physical orientation. Ini-
tially, the BSP algorithm is employed to ascertain the index
set of distinct subcarriers within the channel model. Tis
approach resolves the issue of beam splitting across various
directions and yields the corresponding physical orienta-
tions of the index set. Subsequently, the SDW window
expansion algorithm is examined to ascertain the accuracy of
its capture direction and the size of window expansion by
evaluating the power captured by the support set.

4.1. OMP and SOMP Algorithms. Te OMP algorithm is
a representative of greedy algorithms. Its basic idea is to use
iterations for recovery, solving the correlation of the sensing
matrix A and the residual matrix to obtain the column with
the maximum correlation, and then updating the residual. It

θ3

θ4

θ5

θ3

θ4

θ5

The strongest element of m-th subcarrier
in the physical direction θ3 

The strongest element of m-th subcarrier
in the physical direction θ5 

Subcarrier (m)

BSP

SDW

Figure 3: Schematic diagram of the physical channel direction capture.
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gradually updates its atomic support set. Te algorithm steps
are shown in Algorithm 1.

Te SOMP algorithm maintains the sparsity of the so-
lution at each iteration, meaning it only selects atoms most
relevant to the residual rather than selecting all atoms rel-
evant to the residual, as in OMP. Terefore, theoretically,
SOMP can converge to the optimal solution faster thanOMP
because it is more sparse. However, SOMP may be com-
putationally more complex as it requires calculating the
correlation coefcients between all atoms and the residual.
Diferent from the OMP algorithm, the SOMP algorithm is
mainly refected in the third step of the residual update
method. Te SOMP algorithm uses a set of joint sparse
signals for processing. It can be defned as

bλ � argmax
j�1,2,...,M

rt− 1
j ,Aj􏽄 􏽅

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (22)

After obtaining the physical channel direction index set,
channel estimation can be directly performed based on the
SOMP algorithm.

4.2. Research on BSP-DSDW Channel Estimation Scheme.
Te DSDW algorithm dynamically adjusts the position and
size of the window based on the received signal strength.
Tis adaptive mechanism captures signal strength variations
more efectively, resulting in a more complete signal support
set and further optimized CSI acquisition. By performing
signal recovery in beamspace, the DSDW algorithm efec-
tively focuses on the incoming signal in a specifc direction,
mitigating the negative impact of beam spreading on CSI.
Utilizing signal power as the objective function for opti-
mization, the DSDW algorithm better captures and lever-
ages the sparsity of the channel, thereby enhancing the
efciency and accuracy of CSI acquisition. Due to its ability
to dynamically adapt to diferent signal conditions, the
DSDW algorithm demonstrates high robustness and re-
liability in various environments and scenarios, which is
crucial for stable communication in practical applications.
By improving CSI accuracy, the DSDW algorithm signif-
cantly enhances beamforming efciency, thereby increasing
system throughput and reliability, which is of great im-
portance for real-world mmWave massive MIMO systems.

In the previous research study, we established a one-
to-one correspondence between the index of the physical
channel direction and the physical channel direction itself.
Tis foundational work allowed us to calculate the maxi-
mum power of each subcarrier by expanding the window in
the physical channel direction, thus obtaining their re-
spective maximum power. Leveraging the insights gained
from these algorithms, we can estimate the direction of
diferent subcarriers within the spatial channel. Building
upon these principles, we propose a dynamic window ac-
quisition method for broadband channel estimation. Tis
method utilizes the dynamic support detection window
(DSDW) for each subcarrier, employing signal power as the
objective function. Initially, parameters and weights are set
for each subcarrier, followed by signal sampling and anal-
ysis. Subsequently, the signal power of each subcarrier is

computed as the objective function value. Based on this
value, the size and position of the detection window are
iteratively adjusted to maximize signal power. Trough
continuous optimization using algorithms such as gradient
descent, the DSDW method selects subcarriers with maxi-
mum signal power to form a complete support set, thereby
enhancing overall signal coverage.

Step 1: Defne a residual matrix U ∈ CQNRF×L and
initialize the residual matrix U � [u1,u2, · · · , uL] � Y,
where ul represents the residual of the m-th subcarrier.
Step 2: According to the BSP algorithm based on (14)
and (21), set N indexes to estimate N directions to
get BSP.
Step 3: Refer to other algorithms to set a correlation
matrix. Before that, we write (5) as a matrix and further
derive the following equation:

Y � AHb
+ N, (23)

where Y � [y1, y2, · · · , yL], Hb
� [hb

1, h
b

2, · · · ,hb

L], and
N � [N1,N2, · · · ,NL]. Te correlation matrix is con-
structed as W � AHU.
Step 4: Te BSP algorithm is used to capture the
subcarrier physical channel direction of the correlation
matrix W and obtain the index of diferent path
components as n∗k � argmax W(ξn)

����
����F
. Tis step en-

sures the accuracy of the φk � θn∗
k
physical channel

direction.
Step 5: Use the determined path index to carry out the
window expansion algorithm to determine the beam-
space sparse channel support of diferent subcarriers.
When the window size is obtained, the dynamic power
calculation method is used to determine the window
size λ, and the physical channel direction θn∗

k
estimated

by the extended BSP algorithm is determined, given by
ck � ∪ λ− λσN(ξn + λ).
Step 6: Eliminate the infuence of other paths and
calculate the subcarrier channel index
ck,l � i | (i, m) ∈ ck􏼈 􏼉 of each path.
Step 7 and Step 8: According to the obtained support set
ck,l, the LS method is used to estimate the nonzero
element value of the path component and update the
residual value. Tese steps are calculated in each path,
and the channel index support sets of all paths are
calculated.
Step 9: Merge all the support sets. Finally, the beam
channel is estimated by the obtained support set.

Te algorithm process is presented in Algorithm 2.
In the process of algorithm development in this paper,

we drew references from the OMP algorithm and the SOMP
algorithm [24, 25]. Te SOMP algorithm is designed for
scenarios where sparse signals share the same support set.
Unlike the frst type of joint sparse model, each group lacks
its distinct sparse component.Te SOMP algorithm involves
calculating inner products and selecting the maximum
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column number of the computed inner product values as the
support set element. It proceeds to obtain the least squares
solution and calculate the residual, which then guides
subsequent iterations with updates based on the residual.
With the assumption of the same support set, column-by-
column detection becomes feasible, and each column cor-
responds to a specifc physical channel direction.

In contrast to the SOMP algorithm, the approach pre-
sented in this paper divides the iterative estimation process
into two steps. Initially, we employ the BSP algorithm to
compute the physical channel direction for each subcarrier.
Tis critical step addresses the issue of direction estimation
errors induced by wave number splitting in broadband
systems. Following the determination of the physical
channel direction, the support set expands dynamically
based on the estimated physical channel direction. Tis step
establishes the dynamic window size through the acquisition
of maximum power. In summary, within broadband sys-
tems, we no longer rely on the estimated direction under the
ideal assumption for estimation, thereby signifcantly

reducing performance loss due to the resolution of the di-
rection deviation problem caused by the beam-splitting
efect. Consequently, accurate subcarrier support sets can
be obtained in broadband systems, leading to heightened
estimation accuracy.

4.3. Algorithm Complexity Analysis. From Algorithm 2, we
can see that the complexity is mainly concentrated in Steps 4,
5, 9, 10, and 15.

Te calculation of the correlation matrix is included in
the operation of Step 4. As A ∈ CNRFQ×N, U ∈ CQNRF×L, the
calculation complexity of Step 4 is Ο(NRFPNL).

In Step 5, the norm ofW(ξn) is calculated.Te size of it is
L × 1 and calculated N times, and the calculation complexity
is O(NL).

In Step 9, we calculate the nonzero value of each sub-
carrier, complete the LS calculation of the matrix, and solve
the product of the generalized inverse of matrix
A(:, ck,l) ∈ CNRFQ×(2λ+1) and the residual matrix
ul ∈ CNRFQ×1, so the complexity is Ο(LNRFQλ2).

Input: measurement matrix A; measurement signal y; sparsity s
Output: channel vector 􏽥h

(1) Residual signal r0 � y at initialization, atomic support set Ω0 ≠∅
(2) for t� 1 : s
(3) Find the column vector bλ corresponding to the largest coefcient in the measurement matrixA, record λt as the column number,

and select the atom bλ � arg maxj�1,2,...,M|〈rt− 1,Aj〉| according to the inner product maximization
(4) Add the obtained sequence number to the atomic support set Ωt � Ωt− 1 ∪ λt􏼈 􏼉, and then update the matrix At � At− 1 ∪ bλt

􏽮 􏽯

(5) Finally estimate the signal 􏽥ht � (AT
t At)

− 1AT
t y through the least squares principle

(6) Update the residual signal rt � y − 􏽥htAt.
(7) end for
(8) return H � [􏽥h1, 􏽥h2, · · · , 􏽥ht]

ALGORITHM 1: OMP algorithm.

Input: view matrix Y; overall matrix A; number of paths K
Output: beamspace channel Hb

� [hb

1, h
b

2, · · · , hb

L]

(1) Initialize the residual matrix U � [u1, u2, · · · ,uL] � Y
(2) From (14) get ξn � ∪ L

l�1 (argminn1
|fl/fcθn − θn1

|, l)}􏽮

(3) for k ∈ 1, 2, · · · , K{ } do
(4) Get the correlation matrix W � AHU
(5) Get the index of diferent path components as n∗k � argmax W(ξn)

����
����F

(6) Estimate physical channel direction ck � ∪ λ− λσN(ξn∗
k

+ λ)

(7) for l ∈ 1, 2, · · · , L{ } do
(8) Calculate the subcarrier channel index for each path ck,l � i | (i, l) ∈ ck􏼈 􏼉

(9) Estimated path component nonzero element values bk,l(ck,l) � [(AH
(:, ck,l)A(:, ck,l))]

− 1AH
(:, ck,l)Ul

(10) Update residual value Ul � Ul − A(:, ck,l)bk,l(ck,l)

(11) Merge support set Ωl � ck,l ∪ ck− 1,l

(12) Estimate beam channels hb

l (Ωl) � [(A(:,Ωl)∗A
H

(:,Ωl))]
− 1AH

(:,Ωl)yl

(13) end for
(14) end for
(15) return Hb

� [hb

1,h
b

2, · · · , hb

L]

ALGORITHM 2: BSP dynamic window expansion capture algorithm.
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Similarly, Step 10 involves the calculation of matrix
bk,l(ck,l) ∈ CNRFQ×1, with a complexity of O(LNRFQλ).

Step 15 is subcarrier channel restoration, which uses the
support set after combining the path components. Com-
pared with Step 9, the cycle calculation of the path com-
ponents is increased and the complexity is O(LNRFQK2λ2).

Finally, we consider the number of paths executed in
Steps 4, 5, 9, 10, and 15. Te total complexity O is expressed
as

O � O LNNRFQK( 􏼁 + Ο(LNK) + Ο LNRFQKλ
2

􏼐 􏼑 + Ο LNRFQK
2λ2􏼐 􏼑. (24)
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Figure 4: NMSE under diferent SNRs.
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Figure 5: Sum rate under diferent SNRs.
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Te complexities of the OMP and SOMP algorithms are
also analyzed in the same way. Both channel estimations are
iterated based on the LS principle, and the complexity is
Ο(LNNRFQKλ) + Ο(LNRFQL3λ3). Compared with the two
algorithms, the dynamic window λ of this paper is smaller,
which is one N order less than that of N. Terefore, the
complexity is reduced.

5. Simulation Results and Analysis

Tis section considers simulation results for massive MIMO
systems in broadband systems and compares and analyzes
various algorithms. Parameter settings: the number of an-
tennas is 256, number of users is 8, number of radio

frequency chains NRF � 8, center carrier frequency fc �

30GHz, bandwidth B� 4GHz, and the number of sub-
carriers is 512. Te specifc channel parameters are set as the
number of paths which is 3, the spatial direction
φl ∈ U(− π/2, π/2), and the path time delay τl � 20ns. Te
normalized mean square error is used as a measure of
channel estimation.

Figure 4 illustrates the normalized mean square error
(NMSE) of the corresponding algorithms under diferent
SNRs. In addition, the Oracle LS scheme is employed as
a reference, where the channel support set on all subcarriers
is known. Due to the consideration in SOMP [26] of dif-
ferent sparse signals sharing the same support set and the
infuence of wave number splitting in mmWave massive
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Figure 6: NMSE of pilot length algorithms.
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Figure 7: Sum rate of pilot length algorithms.
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MIMO systems, its performance is not ideal. In contrast, the
OMP [27] algorithm considers unique sparse parts in its
sparse model. During the iteration process, signal recovery is
performed using the residual of a single sparse signal,
leading to improved accuracy. Te BSP-SDW and
BSP-DSDW algorithms capture the physical channel di-
rection of subcarriers, obtaining support sets for diferent
sparse signals, thereby efectively addressing the impact of
wave number splitting. Furthermore, BSP-DSDW enhances
algorithm performance by incorporating a moving window.
In terms of channel estimation accuracy, BSP-DSDW
gradually approaches the Oracle LS scheme. Te dynamic
window method efectively expands the support set using
power calculation. However, as compressive sensing

methods may approximate some lower-energy elements to
zero, while it cannot fully approach the Oracle LS scheme, its
performance gradually stabilizes with increasing SNR.

To comprehensively evaluate the performance of the
proposed channel estimation algorithms, in Figure 5, we
compare the performance of the algorithms under diferent
SNR conditions using the sum rate as a metric.Tis metric is
crucial for meeting users’ demands for high-speed and high-
quality communication. From the graph, we observe an
overall increasing trend in the sum rate with the increase in
SNR. It is noteworthy that the sum rate of the BSP-DSDW
method gradually approaches that of the Oracle LS method
and outperforms BSP-SDW, SOMP, and OMP algorithms.
Te BSP-DSDW algorithm may achieve sum rates close to
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Figure 8: NMSE performance of each algorithm under diferent bandwidths.
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Figure 9: NMSE performance of each algorithm under diferent user numbers.
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the Oracle LS algorithm at lower SNR levels because it fo-
cuses on subcarriers with high signal power and can better
handle interference between noise and signal during the
channel estimation process, thereby improving the sum rate.

Figure 6 details the relationship between pilot length and
NMSE for diferent algorithms when the SNR is set to 20 dB.
Meanwhile, Figure 7 shows the trend of sum rate changes
under diferent pilot lengths. As the pilot length increases,
the NMSE of all algorithms correspondingly decreases, in-
dicating an improvement in estimation accuracy. Te sum
rate also shows a gradual upward trend, which can be
explained by the more accurate acquisition of channel state
information, allowing for a better resource allocation and
signal modulation, ultimately enhancing the system’s sum
rate. Among the algorithms, BSP-DSDW demonstrates
signifcant advantages in both NMSE and sum rate per-
formance, with results closely matching those of the Oracle
LS algorithm. Tis indicates that BSP-DSDW can achieve
high performance with lower pilot overhead while meeting
the same accuracy requirements.

Figure 8 shows the impact of bandwidth on the NMSE
estimation characteristics of diferent algorithms.Te SNR is
set to 15 dB, and the number of pilot groups is set to 10. It
can be seen that when the bandwidth is small, such as 8GHz,
SOMP can also achieve good results because, at low fre-
quencies, the wave number splitting efect has a weak impact
on channel estimation. Tus, the same common sparse
signal estimation method can also achieve satisfactory
performance. However, as the bandwidth increases, the wave
number splitting efect becomes signifcant, and the support
sets of diferent subcarriers for broadband beamspace vary
greatly, resulting in a decrease in estimation performance.
BSP-DSDW, by dynamically adjusting the detection window
and efectively expanding the support set, can better cope
with the wave number splitting efect. Even under high
bandwidth conditions, BSP-DSDW can accurately capture
the physical channel directions of diferent subcarriers,
maintaining high channel estimation accuracy. Terefore,
the BSP-DSDW algorithm demonstrates superior perfor-
mance across various bandwidths.

Te number of antennas set in this study is fxed.
Figure 9 shows the NMSE performance comparison of
each algorithm for diferent numbers of users, with the
SNR set to 10 dB. As the number of users increases, it can
be observed that the performance of the BSP-DSDW al-
gorithm signifcantly decreases but then gradually stabi-
lizes. Te BSP-DSDW algorithm enhances signal coverage
by dynamically adjusting the detection window and ef-
fectively expanding the support set. When the number of
users increases, although the number of pilots also in-
creases, potentially leading to increased estimation errors
of the common support set, the BSP-DSDW algorithm is
better able to handle this interference. By focusing on
subcarriers with high signal power, it maintains a high
level of channel estimation accuracy. Tis demonstrates
that the proposed BSP-DSDW algorithm has a high sta-
bility when facing an increasing number of users and can
efectively maintain performance in multiuser
environments.

6. Conclusion

In this paper, we have conducted research on channel es-
timation for mmWave massive MIMO systems, with
a particular focus on addressing the challenges posed by the
wave number splitting efects in such systems. It is important
to note that the assumption that common sparse signals
share the same support set no longer holds true in this
context; instead, the sparse support for diferent subcarriers
varies. Consequently, this paper employs a method rooted in
physical direction detection, primarily aimed at estimating
the physical direction. Tis approach establishes a one-
to-one correspondence between the index of elements in
diferent directions and their respective physical directions,
efectively mitigating the challenges introduced by beam-
splitting efects. After framing the channel estimation
problem as a beam direction estimation issue, we propose
a channel estimation scheme. Leveraging the physical di-
rection obtained via the BSP algorithm as the index set, in
combination with a dynamic window expansion method, we
obtain the support set with maximum power. Tis approach
signifcantly enhances the accuracy of support set acquisi-
tion. Trough simulation and algorithm performance
comparison analysis, it is observed that the BSP-DSDW
method is better than other methods in terms of NMSE and
sum rate and is very close to the performance of the Oracle
LS method [28].
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