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Abstract. We develop a shape-Newton method for solving generic free-boundary problems
where one of the free-boundary conditions is governed by the nonlinear Bernoulli equation. The
method is a Newton-like scheme that employs shape derivatives of the governing equations. In
particular, we derive the shape derivative of the Bernoulli equation, which turns out to depend on
the curvature in a nontrivial manner. The resulting shape-Newton method allows one to update the
position of the free boundary by solving a special linear boundary-value problem at each iteration.
We prove solvability of the linearised problem under certain conditions of the data. We verify the
effectiveness of the shape-Newton approach applied to free-surface flow over a submerged triangular
obstacle using a finite element method on a deforming mesh. We observe superlinear convergence
behaviour for our shape-Newton method as opposed to the unfavourable linear rate of traditional
methods.
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1. Introduction. Free boundary problems have many applications in fluid me-
chanics, such as open-channel flow, fluid/solid interaction and hydrodynamics. Solv-
ing such problems is difficult, because the geometry of the domain needs to be de-
termined together with other variables in this problem. A simplified but important
model problem is the Bernoulli free-boundary problem, which considers a (linear)
Dirichlet boundary condition, as well as a Neumann boundary condition on the free
boundary [4, 23]. This problem is not to be confused with the Bernoulli equation,
which is the pressure boundary condition in irrotational fluid mechanics, and which
we will study in this paper. The nonlinearity of the Bernoulli equation poses an
additional challenge to numerical algorithms.

There are several computational approaches to solving free-boundary problems.
The first is to iteratively solve the boundary value problem with a single free-boundary
condition for the field variables on a fixed approximated domain, and then update
the free surface derived from the remaining free boundary condition (which was not
included in the boundary value problem). These fixed-point type methods are called
trial methods, which converge linearly and cannot always find a solution. Details can
be found, for example, in [23, 3, 19].

The second approach is to formulate a shape optimization problem to improve
the convergence rate. This method aims to construct a boundary-value problem as
the state problem with one free-boundary condition and formulate a cost function
with the remaining free-boundary condition. This approach may require gradient
information. The formulation and application of shape optimization to free boundary
problems can be found in, e.g. [9, 15, 16, 27, 28, 30].

The third approach requires linearising the whole system and applying a Newton-
type method. The use of shape calculus and a Newton-type method is called the
shape-Newton method. One linearisation method, called domain-map linearisation,
requires to transform the free-boundary problem to an equivalent boundary value
problem on a fixed domain and then linearise the transformed problem with respect
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to the domain map [20, 31]. An alternative way to linearise the free-boundary problem
is to apply shape linearisation [5, 25]. Kärkkäinen and Tiihonen used this technique
to solve Bernoulli free-boundary problems [17, 18]. The application to a more general
Bernoulli free-boundary problem has been investigated in Van der Zee et al [32] by
considering the whole problem in one weak form, and using C1-continuous B-splines
to represent discrete free boundaries, in order to allow the exact computation of
the curvature in the shape derivatives. Montardini et al. [21] extend this method
by incorporating a collocation approach to update the boundary, and compare both
methods by imposing Dirichlet or periodic boundary conditions on the vertical fixed
boundary of the domain. The results show that collocation scheme has slightly worse
accuracy but higher efficiency.

In the current work, we derive the shape-Newton method for a free-boundary
problem involving the nonlinear Bernoulli boundary condition on the free boundary.
We use our approach to also re-derive the shape-Newton method for the simpler
Bernoulli free-boundary problem (containing a Dirichlet boundary condition), which
was obtained in [32] using a slightly different derivation.1 Similar to Kärkkäinen and
Tiihonen, we set up two weak statements: One derived from the boundary value
problem with the Neumann boundary condition, and the other from the remaining
free boundary condition (Dirichlet condition or nonlinear Bernoulli condition).

A key result in our work is the shape derivative of the Bernoulli equation. It
turns out that it has various equivalent expressions that are surprisingly elegant: The
primary result involves the normal derivative of the velocity squared (|∇2ϕ|), and
we show in detail how this can be equivalently computed using only the tangential
components of the velocity, suitably weighted by curvatures; see Section 5.3.

We present our shape-Newton scheme in both strong and weak form, and with-
out reference to any particular underlying discretisation. We study the solvability of
the linearised system in the continuous setting, that is, we establish coercivity of a
suitable bilinear form under certain conditions of the data. We are also able to estab-
lish discrete solvability for a particular finite element approximation using deforming
meshes, under certain conditions. We show numerical experiments involving open
channel flow over a submerged triangle. We observe that the shape-Newton method
converges superlinearly, and the results agree well with exact solutions and results
from [6].

The contents of this paper are arranged as follows. We first introduce the model
problems either with the Dirichlet boundary condition or the Bernoulli equation on the
free boundary in Section 2. In Section 3, we derive the weak form for both problems.
Then, we introduce some basic concepts about shape derivatives in Section 4. We
carry out shape linearisation by applying Hadamard shape derivatives for the free-
boundary problem in Section 5. In this Section, we also present the various equivalent
expressions for the shape derivative of the Bernoulli equation. In Section 6, we present
the Newton-like schemes, and present solvability results for the involved linearised
systems (details in Appendix B and C). The finite element scheme using deforming
meshes is given in Section 7 (details of its discrete solvability in Appendix D), as well
as numerical experiments. These are followed by Conclusions in Section 8.

2. Free-boundary Problem with Bernoulli or Dirichlet free-boundary
condition. We investigate the free boundary problem with either the Bernoulli con-
dition or the Dirichlet condition on the free boundary. The Bernoulli condition is

1We note that there is a typo for the strong form of the linearised problem in [32]. This mistake
is rectified in this paper; see equations (6.5a)–(6.5d).
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Fig. 1: The sketch of the parametrization of the free boundary ΓF by the displacement
θ (x0) with respect to the reference boundary Γ0.

commonly used when considering steady, incompressible, and inviscid flow, but it is
nonlinear, making the free-boundary problem more challenging to solve. To be gen-
eral, the boundary conditions on the fixed boundaries are Robin boundary conditions.

2.1. Free-boundary Problem With Bernoulli Condition. The
free-boundary problem with a Bernoulli condition can be stated as seeking an un-
known domain Ω ⊂ RN (N = 2, 3 or even > 3), and a corresponding scalar potential
function ϕ : Ω → R. For fluid problems, ∇ϕ is then the velocity vector. The boundary
∂Ω contains a free boundary ΓF , and the remainder ∂Ω \ΓF , for example in the two-
dimensional open-channel flow case, ∂Ω\ΓF contains a left boundary ΓL for inflow, a
right boundary ΓR for outflow, and the bed ΓB which can have any reasonable shape.
Figure 1 is an example of the domain and the parametrization of the free boundary
ΓF .

The problem can be written as

−∆ϕ = f, in Ω,(2.1a)

∂nϕ = 0, on ΓF ,(2.1b)

a |∇ϕ|2 + bxN + c = 0, on ΓF ,(2.1c)

∂nϕ+ ωϕ = g + ωh, on ∂Ω \ ΓF ,(2.1d)

where ∂n (·) = n · ∇ (·) is the normal derivative with n being the unit normal vector
to the boundary pointing out the domain, and xN is the N -th component (vertical
component) of vector x. The condition (2.1a) is the PDE for potential ϕ, where
f : RN → R is a sufficiently smooth given function. The condition (2.1b) represents
the kinematic condition on the free boundary. The condition (2.1c) with real-valued
constants a, b, and c represents the Bernoulli condition.2 In the standard case, a = 1

2 ,
b is the gravitational acceleration, and c = p∞

ρ0
, where p∞ is the external pressure and

ρ0 is the constant density of the fluid.
We consider general Robin boundary conditions (2.1d) on ∂Ω \ ΓF where ω ≥ 0,

and g, h : RN → R are sufficiently smooth given functions. Thus we can approximate
either a Neumann or Dirichlet-type condition depending on the value of ω: the Neu-
mann boundary condition, obtained when ω = 0, usually represents the kinematic
condition, where the perpendicular fluid velocity is zero on the free or solid boundary.

2Because of (2.1b), the Bernoulli condition (2.1c) is a condition on |∇Γϕ|, hence it can be thought
of as a surface-eikonal equation [26, 13].
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On the other hand, choosing ω → ∞ yields the Dirichlet boundary condition ϕ = h.
Furthermore, it is possible to impose mixed boundary conditions by choosing various
values of ω on different parts of the boundaries (e.g. ΓL, ΓR and ΓB).

We assume that for suitable data f , g, h and a, b, c, ω, there is a nontrivial and
sufficiently-smooth solution pair (ΓF , ϕ). The wellposedness of a free-boundary prob-
lem is studied in, for example, [14, 24]. By introducing a vector field θ : Γ0 → RN ,
the displacement of the free boundary with respect to the referenced boundary Γ0 (of
constant height x̄N ) can be defined as

ΓF :=
{
x ∈ RN |x = x0 + θ (x0) ,∀x0 ∈ Γ0

}
(2.2)

to parametrize the domain Ω and the free boundary ΓF , as shown in Figure 1. This
allows us to think of the problem (2.1a)–(2.1d) in terms of the solution pair (θ, ϕ).

Remark 2.1 (Fixed free boundary at inflow). The part of the free boundary ΓF

corresponding to inflow is assumed to be fixed in our work. That means in the
two-dimensional case that the left node xL on the free boundary ΓF is fixed, i.e.
θ(xL) = 0.

Remark 2.2 (Data compatibility I). There is a compatibility requirement on the
parameters defining the Bernoulli and Robin boundary conditions, (2.1c) and (2.1d).
It is well-known that the Bernoulli condition prescribes the conservation of energy
along streamlines, therefore the total energy prescribed by the Bernoulli condition
should match the value of the total energy given by the Robin boundary condition
at the corresponding upstream (and downstream) coordinates. For example, in the
two-dimensional case with the geometry corresponding to the illustration in Fig.1, the
choice ω|xL

= 0, g|xL
= − cosα, and a = 1

2F
2, bxN = 1, c = − 1

2F
2−1 are compatible

for inflow angle α and Froude number F .

Remark 2.3 (Data compatibility II). Further to the compatibility requirements in
the previous remark, we will also require the following, which will ensure the linearised
operator is well-posed (see Remark 6.2):

Let τ denote the unit vector at ∂ΓF , tangent to and outward from ΓF , and normal
to ∂ΓF . We require ϕ to have ∇Γϕ · τ = 0 on those parts of ∂ΓF that do not touch
a part of ∂Ω \ ΓF where a Dirichlet boundary condition is imposed, or where θ is
fixed. An example situation for which this is satisfied is a flow in an open channel
with non-homogeneous Neumann boundary condition on the lateral boundary and
Dirichlet boundary condition on the outflow. An alternative situation is where the
Dirichlet boundary condition holds on all over ∂Ω.

2.2. Free-boundary Problem with Dirichlet Boundary Condition. A
more simple model problem is introduced by replacing the Bernoulli condition with
the Dirichlet condition on the free boundary. The dependence on ϕ is now linear:

−∆ϕ = f, in Ω,(2.3a)

∂nϕ = 0, on ΓF ,(2.3b)

ϕ = h, on ΓF ,(2.3c)

∂nϕ+ ωϕ = g + ωh, on ∂Ω \ ΓF ,(2.3d)

where g and h are assumed to be sufficiently smooth on RN (e.g. g ≤ 0 on ΓL makes
sense for the inflow).

By choosing ω → ∞ on ∂Ω\ΓF (i.e., Dirichlet boundary condition), this problem
becomes the classical problem for an ideal fluid, called the Bernoulli free-boundary
problem [23].
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3. The Weak Form. We will first find weak forms of both free-boundary prob-
lems in order to apply shape-calculus techniques to linearise these problems, and sub-
sequently propose Newton-like schemes. To allow shape linearisation, the test func-
tions will be more regular than what is usually assumed. Hence, let v ∈ V := H2(RN )
and w ∈W := H2(RN ) be sufficiently smooth test functions.

Since the only difference between the two free-boundary problems in Section 2 is
the Bernoulli condition and the Dirichlet condition on the free boundary, the first weak
form in the domain Ω is the same in both situations. It can be obtained by multiplying
the Laplacian equation ((2.1a) or (2.3a)) by the test function v ∈ V and integrating
over Ω, then applying the Green’s formula with the Robin boundary conditions on
∂Ω \ ΓF and (homogeneous) Neumann boundary condition on ΓF , yielding

(3.1) R1 ((θ, ϕ) ; v) = 0, ∀v ∈ V,

where the semilinear form R1 ((θ, ϕ) ; v) is defined as

R1 ((θ, ϕ) ; v) =

∫
Ω

∇ϕ · ∇vdΩ−
∫
∂Ω\ΓF

(g + ωh− ωϕ) vdΓ−
∫
Ω

fvdΩ.(3.2)

The second weak form can be derived by multiplying the remaining free-boundary
condition by the test function w ∈W and integrating over ΓF ,

(3.3) R2 ((θ, ϕ) ;w) = 0, ∀w ∈W,

with the definition of the semilinear form R2 ((θ, ϕ) ;w) as

(3.4) R2 ((θ, ϕ) ;w) =

∫
ΓF

(B.C)wdΓ,

where (B.C) can either be the left hand side of Bernoulli condition (2.1c) or (ϕ− h)
in case of the Dirichlet condition (2.3c).

Given some approximation (θ̂, ϕ̂), the exact Newton method for an update
(δθ, δϕ), in weak form, would be〈

∂(θ,ϕ)R1

((
θ̂, ϕ̂

)
; v
)
, (δθ, δϕ)

〉
= −R1

((
θ̂, ϕ̂

)
; v
)

∀v ∈ V,〈
∂(θ,ϕ)R2

((
θ̂, ϕ̂

)
;w
)
, (δθ, δϕ)

〉
= −R2

((
θ̂, ϕ̂

)
; v
)

∀w ∈W.

We now study the shape derivatives, which are present in the above left-hand side.

4. Shape Derivatives. The linearisation of R1 ((θ, ϕ) ; v) and R2 ((θ, ϕ) ;w)
needs the differentiation of the weak forms with respect to the geometry, where the
geometry itself is treated as a variable. Thus the shape derivatives are applied to a
given domain, which requires some appropriate smoothness assumptions.

The weak forms (3.2) and (3.4) contain domain integrals
∫
Ω
(·) dΩ and boundary

integrals
∫
ΓF

(·) dΓ. The shape derivatives for a domain integral and a boundary

integral can be obtained by the Hadamard formulas [5, 25]:

Theorem 4.1 (Shape derivative of domain integral). Suppose ϕ ∈ W 1,1
(
RN
)
,

where

W 1,1
(
RN
)
= {f ∈ L1(RN ) : ∇f ∈ L1(RN )N},
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and Ω is an open and bounded domain with boundary Γ = ∂Ω of class C0,1. Consider
the domain integral

J (Ω) =

∫
Ω

ϕdΩ.

Then its shape derivative with respect to the perturbation δθ ∈ C0,1
(
RN ;RN

)
is given

by3

⟨dJ (Ω) , δθ⟩ =
∫
Γ

ϕδθ · ndΓ,

where n denotes the outward normal derivative to Ω.

Theorem 4.2 (Shape derivative of boundary integral). Suppose ϕ ∈W 2,1
(
RN
)
,

where

W 2,1
(
RN
)
= {f ∈ L1(RN ) : Dkf ∈ L1(RN ) for any multi-index k with |k| ≤ 2},

and Ω is an open and bounded domain with boundary Γ = ∂Ω of class C1,1. Consider
the boundary integral

J (Ω) =

∫
Γ

ϕdΓ.

Then its shape derivative with respect to the perturbation δθ ∈ C0,1
(
RN ;RN

)
is given

by3

⟨dJ (Ω) , δθ⟩ =
∫
Γ

(∂nϕ+ κϕ) δθ · ndΓ,

where n denotes the normal vector to Γ and κ is the (additive) curvature of Γ.

Remark 4.3. The shape derivative of boundary integral for the open boundary
(see [34, Eq. (5.48)]) is:

⟨dJ (Ω) , δθ⟩ =
∫
Γ

(∂nϕ+ κϕ) δθ · ndΓ +

∫
∂Γ

ϕτ · δθds,

where τ is defined in Remark 2.3.

Remark 4.4 (Piecewise-smooth free boundary). When Γ is piecewise smooth, ad-
ditional jump terms should be included in the boundary-integral shape derivative; see
e.g., [25, Ch. 3.8].

5. Linearisation. The linearisation of R1 ((θ, u) ; v) and R2 ((θ, ϕ) ;w) at an

approximation pair
(
θ̂, ϕ̂

)
close to the exact solution (θ∗, ϕ∗) can be derived from

the partial derivative of the weak forms with respect to ϕ and θ. We proceed for-
mally when obtaining our linearisation: We assume that ϕ̂ is any sufficiently regular
approximation (in, say, H2), close to ϕ, that lives in the approximate domain Ω̂

3⟨dJ (Ω) , δθ⟩ := limt→0
1
t

(
J(Ω + δθ) − J(Ω)

)
, see e.g., [5, Chapter 9]. In practise, δθ is

only needed on Γ = ∂Ω, instead of on the whole RN . Any extension of δθ ∈ C0,1(Γ;RN ) into
C0,1(RN ;RN ) would suffice since ⟨dJ (Ω) , δθ⟩ does not depend on the particular extension used.
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with a sufficiently smooth approximate free boundary Γ̂ (say, C1,1) induced by the

approximation θ̂.
A key strategy in the derivation of our linearisation consists of the use of higher-

order corrections to arrive at more convenient expressions: In particular, since ϕ̂ is
assumed to be close to ϕ, we will often use that ϕ̂ satisfies the boundary conditions
up to, say, O(∥ϕ− ϕ̂∥, ∥θ − θ̂∥).

5.1. Linearisation of R1. The Gâteaux derivative at ϕ̂ in the direction δϕ can
be evaluated as

〈
∂ϕR1

((
θ̂, ϕ̂

)
; v
)
, δϕ
〉
= lim

t→0

R1

((
θ, ϕ̂+ tδϕ

)
; v
)
−R1

((
θ, ϕ̂

)
; v
)

t

=

∫
Ω̂

∇δϕ · ∇vdΩ+

∫
∂Ω\Γ̂

ωδϕvdΓ.(5.1)

Then the linearisation with respect to θ can be obtained by applying Hadamard
formulas from Theorem 4.1 to (3.2), assuming f ∈ H1, which yields

(5.2)
〈
∂θR1

((
θ̂, ϕ̂

)
; v
)
, δθ
〉
=

∫
Γ̂

∇ϕ̂ · ∇vδθ · ndΓ−
∫
Γ̂

fvδθ · ndΓ.

The tangential gradient ∇Γ and tangential divergence divΓ satisfy

(5.3) ∇Γ(·) = ∇(·)− ∂n(·)n, divΓ(·) = div(·)− ∂n(·)n.

By substituting (5.3) into (5.2) and applying the tangential Green’s identity [5, 25],
(5.2) can be approximated as 4

〈
∂θR1

((
θ̂, ϕ̂

)
; v
)
, δθ
〉
=

∫
Γ̂

(
∇Γϕ̂ · ∇Γv + ∂nϕ̂∂nv

)
δθ · ndΓ−

∫
Γ̂

fvδθ · ndΓ

≈ −
∫
Γ̂

divΓ

(
δθ · n∇Γϕ̂

)
vdΓ +

∫
∂Γ̂

(
δθ · n∇Γϕ̂ · τ

)
vdΓ−

∫
Γ̂

fvδθ · ndΓ(5.4)

where, due to the Neumann boundary condition (2.1b) (or (2.3b)) and ϕ̂ being close

to ϕ∗, the related term ∂nϕ̂δθ · n is of higher order, hence it was neglected. We
now use the announced compatibility conditions from Remark 2.1-2.3 to remove the
integral over ∂Γ̂,

(5.5)
〈
∂θR1

((
θ̂, ϕ̂

)
; v
)
, δθ
〉
≈ −

∫
Γ̂

divΓ

(
δθ · n∇Γϕ̂

)
vd−

∫
Γ̂

fvδθ · ndΓ

For Dirichlet condition case, (5.5) can be written as〈
∂θR1

((
θ̂, ϕ̂

)
; v
)
, δθ
〉
≈−

∫
Γ̂

divΓ (δθ · n∇Γh) vdΓ−
∫
Γ̂

fvδθ · ndΓ(5.6)

due to ϕ̂ = h+O(||ϕ− ϕ̂||, ||θ − θ̂||) on the free boundary.

4The integral term over ∂Γ is missing in the formula in paper [32].
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5.2. Linearisation of R2 with Dirichlet condition. Considering first the
Dirichlet boundary condition, we have

(5.7) R2 ((θ, ϕ) ;w) =

∫
ΓF

(ϕ− h)wdΓ.

Similar to the linearisation of R1 with respect to ϕ, it is straightforward to eval-
uate the Gâteaux derivative at ϕ in the direction δϕ,

(5.8)
〈
∂ϕR2

((
θ̂, ϕ̂

)
;w
)
, δϕ
〉
=

∫
Γ̂

δϕwdΓ.

Then by using the Hadamard formula on the boundary integral (5.7), assuming

h ∈ H2 (and recall that ϕ̂ ∈ H2), we have the shape derivative〈
∂θR2

((
θ̂, ϕ̂

)
;w
)
, δθ
〉
=

∫
Γ̂

(∂n + κ)
[(
ϕ̂− h

)
w
]
δθ · ndΓ,

=

∫
Γ̂

[
∂n

(
ϕ̂− h

)
w +

(
ϕ̂− h

)
∂nw + κ

(
ϕ̂− h

)
w
]
δθ · ndΓ.

(5.9)

Using the Dirichlet condition (2.3c) and Neumann condition (2.3b) on the free

boundary, we can neglect the (ϕ̂− h)−term and (∂nϕ̂)−term in (5.9), similar to the
reasoning in Section 5.1. We then have the approximation

(5.10)
〈
∂θR2

((
θ̂, ϕ̂

)
;w
)
, δθ
〉
≈ −

∫
Γ̂

(∂nh)wδθ · ndΓ.

5.3. Linearisation of R2 with Bernoulli condition. To perform the lineari-
sation of the Bernoulli condition, we require more regularity on ∇ϕ̂ as well as the test
function w. It is sufficient to assume ϕ̂ ∈ H3 and w ∈W 2,∞.5

Substituting the Bernoulli condition (2.1c) into the weak form (3.4), we have

(5.11) R2 ((θ, ϕ) ;w) =

∫
ΓF

(
a |∇ϕ|2 + bxN + c

)
wdΓ.

The linearisation in terms of ϕ at approximation ϕ̂ is

(5.12)
〈
∂ϕR2

((
θ̂, ϕ̂

)
;w
)
, δϕ
〉
=

∫
Γ̂

2a∇ϕ̂ · ∇δϕwdΓ ≈
∫
Γ̂

2a∇Γϕ̂ · ∇ΓδϕwdΓ,

where the normal component was neglected, similar to the reasoning in Section 5.1.
To find the Gâteaux derivative with respect to θ at θ̂, the Hadamard formula

yields〈
∂θR2

((
θ̂, ϕ̂

)
;w
)
, δθ
〉
=

∫
Γ̂

(∂n + κ)

[(
a
∣∣∣∇ϕ̂∣∣∣2 + bx̂N + c

)
w

]
δθ · ndΓ.

According to the Bernoulli condition (2.1c) and ϕ̂ being close to ϕ, a
∣∣∣∇ϕ̂∣∣∣2 +

bx̂N + c is close to 0, similar to what we did in Section 5.1, the approximation is
therefore 〈

∂θR2

((
θ̂, ϕ̂

)
;w
)
, δθ
〉
≈
∫
Γ̂

(
a∂n

(∣∣∣∇ϕ̂∣∣∣2)+ bnN

)
wδθ · ndΓ,(5.13)

5The end result (5.13) and (5.22) of the linearisation indicates that these regularity requirements
may be weakened, although this has not been pursued further.
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where nN is the xN -coordinate (vertical coordinate) of the unit normal vector n.
In the two-dimensional case, the value of nN corresponds to the y-component of n.
However, in N dimensions, nN represents the N -th component.

We now look more closely at the term ∂n

∣∣∣∇ϕ̂∣∣∣2.
5.3.1. N dimensional case. We first continue assuming the general case in N

dimensions, and we will look into the two-dimensional case later for convenience to
the reader.

We introduce the index form of ∇ by

(
∇ϕ̂
)
i
=

∂ϕ̂

∂xi
= ϕ̂,i, i = 1, . . . , N,(5.14)

such that the Neumann boundary condition (2.1b) can be rewritten in the form

(5.15) ∂nϕ̂ = niϕ̂,i = 0,

where we employ the Einstein summation convention.
Taking the tangential gradient gives:

(5.16) ∇Γ

(
∂nϕ̂

)
= 0.

We define the tangential gradient and the matrix [∇Γx] as in [7](
∇Γϕ̂

)
α
= D̄αϕ̂ = ϕ̂,α, α = 1, . . . , N,(5.17)

[∇Γx]αi = D̄αxi = xi,α.(5.18)

According to the definition of tangential gradient, we have[
∇Γ∇ϕ̂

]
=
[
∇∇ϕ̂

]
− ∂n

(
∇ϕ̂
)
nT

=
[
∇∇Γϕ̂

]
− ∂n

(
∇Γϕ̂

)
nT(5.19)

where the second step is obtained by using Neumann boundary condition (2.1b). Since

the ∇Γϕ̂ is the tangential gradient of ϕ̂ which is only defined on the free surface Γ̂, it
can be extended as a constant beyond the surface such that its normal derivative is
zero. Hence,

(5.20)
[
∇Γ∇ϕ̂

]
=
[
∇∇Γϕ̂

]
.

The equation (5.16) is equivalent to(
∇Γ

(
∂nϕ̂

))
α
= D̄α

(
niϕ̂,i

)
= ni,αϕ̂,i + niϕ̂,iα

=
(
[∇Γn] ∇ϕ̂+

[
∇Γ∇ϕ̂

]
n
)
α

= 0.(5.21)
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By using (5.20) and (5.21), we have

∂n

(∣∣∣∇ϕ̂∣∣∣2) = ∂n

(∣∣∣∇Γϕ̂
∣∣∣2)

= ∂n

(
ϕ̂,α ϕ̂,α

)
= 2niϕ̂,iαϕ̂,α(by (5.20))

= 2
(
∇Γϕ̂

)T
·
[
∇Γ∇ϕ̂

]
· n

= −2
(
∇Γϕ̂

)T
· [∇Γn] · ∇Γϕ̂,(5.22)

where [∇Γn] is the extended Weingarten map [7], which is a tensor containing cur-
vature type quantities. In particular, the trace of [∇Γn] coincides with the summed
curvature [34, Sec. 4.5.2].

Substituting (5.22) into (5.13), the (approximate) shape linearisation in the N -
dimensional case becomes
(5.23)〈

∂θR2

((
θ̂, ϕ̂

)
;w
)
, δθ
〉
≈
∫
Γ̂

[
−2a

(
∇Γϕ̂

)T
· [∇Γn] · ∇Γϕ̂+ bnN

]
wδθ · ndΓ.

5.3.2. Three dimensional case. For the three-dimensional case, let κ1 and
κ2 be the principle curvatures. The matrix [∇Γn] has eigenvalues {0, κ1, κ2} and
corresponding normalised eigenvectors {0,d1,d2} [34, Sec. 4.5.2]. Since [∇Γn] is
symmetric [34, 7], by the spectral decomposition theorem,

[∇Γn] = QΛQT

where

Λ =

0 0 0
0 κ1 0
0 0 κ2

 , Q =
(
0 d1 d2

)
.

Hence, (
∇Γϕ̂

)T
· [∇Γn] · ∇Γϕ̂ =

(
∇Γϕ̂

)T
·QΛQT · ∇Γϕ̂

=
(
0 d1 · ∇Γϕ̂ d2 · ∇Γϕ̂

)
· Λ ·

 0

d1 · ∇Γϕ̂

d2 · ∇Γϕ̂


= κ1(d1 · ∇Γϕ̂)

2 + κ2(d2 · ∇Γϕ̂)
2(5.24)

where the last step is obtained because d1 and d2 are orthonormal [34, Sec. 3.2.4].
Substituting (5.24) into (5.13), the approximate shape linearisation (up to higher-

order terms) in the 3-D case becomes
(5.25)〈
∂θR2

((
θ̂, ϕ̂

)
;w
)
, δθ
〉
≈
∫
Γ̂

[−2aκ1(d1 · ∇Γϕ̂)
2 − 2aκ2(d2 · ∇Γϕ̂)

2 + bnz]wδθ ·ndΓ,

where nz is the z-component of the unit normal vector n.
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5.3.3. Two dimensional case. For convenience to the reader, now we look into
a specific case of the linerisation of R2, namely in two dimensions using Cartesian
coordinates, which is more direct. In this case, we assume that we can introduce η(x)
as the vertical displacement of the free surface with respect to the referenced free
surface, the horizontal x-axis, such that θ = (x, η(x)).

Given the approximation θ̂ = (x, η̂(x)), we have the unit normal vector n =
1√
1+η̂2

x

(−η̂x, 1) and the unit tangential vector τ = 1√
1+η̂2

x

(1, η̂x). Then the Neumann

boundary condition (2.1b) on the free boundary can be written in the form of

−η̂xϕ̂x + ϕ̂y = 0.

This implies that its tangential derivative is also zero, i.e.

(τ · ∇)
(
−η̂xϕ̂x + ϕ̂y

)
= 0,

which is equivalent to

(5.26) −η̂xxϕ̂x − η̂xϕ̂xx + ϕ̂xy − η̂2xϕ̂xy + η̂xϕ̂yy = 0.

Then we have

∂n

(∣∣∣∇ϕ̂∣∣∣2) =
1√

1 + η̂2x
(−η̂x∂x + ∂y)

(
ϕ̂2x + ϕ̂2y

)
=

2√
1 + η̂2x

ϕ̂x

(
−η̂xϕ̂xx − η̂2xϕ̂xy + ϕ̂xy + η̂xϕ̂yy

)
=

2√
1 + η̂2x

η̂xx

(
ϕ̂x

)2
= 2κ

∣∣∣∇ϕ̂∣∣∣2 ,(5.27)

where κ = ∂x

(
η̂x√
1+η̂2

x

)
, which is the curvature. The second and last steps are

obtained by substituting the Neumann condition, and the third step is obtained by
substitution of (5.26).

In the two dimensional case, we have

[∇Γn] = [∇n]− ∂n (n)nT

=

(
−κ+ κnx −ηxκ+ κnxny
κηxn

2
x κηxnxny

)
(5.28)

where n = (nx, ny) = 1√
1+η̂2

x

(−η̂x, 1) . By substituting (5.28) into (5.22) and using

the Neumann condition (2.1b), (5.27) is consistent with (5.22). The details can be
found in Appendix A.

On substitution from (5.27) into (5.13), the approximate shape linearisation in
the 2-D case is

(5.29)
〈
∂θR2

((
θ̂, ϕ̂

)
; v
)
, δθ
〉
≈
∫
Γ̂

(
2aκ

∣∣∣∇ϕ̂∣∣∣2 + bny

)
wδθ · ndΓ.
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6. Newton-Like Schemes. Next, we use the linearisations in the previous sec-
tion to construct Newton-like schemes. We first consider the general case in RN .

We introduce θ = θ̂ + δθ ∈ C0,1(Γ0,RN ) and ϕ = ϕ̂+ δϕ ∈ H1(RN ), where δθ ∈
C0,1(Γ0;RN ) and δϕ ∈ H1(Ω̂) ⊂ H1(RN ) are the corrections to θ̂ ∈ C0,1(Γ0;RN ),

which generates the domain Ω̂ with free boundary Γ̂ = Γ0 + θ̂, and ϕ̂ ∈ H1(RN ),
respectively.6

In each iteration, a reference free boundary Γ̂ is updated, and thereby the reference
domain Ω̂. The exact Newton method for (δθ, δϕ), in weak form, would be〈

∂(θ,ϕ)R1

((
θ̂, ϕ̂

)
; v
)
, (δθ, δϕ)

〉
= −R1

((
θ̂, ϕ̂

)
; v
)

∀v ∈ V,(6.1a) 〈
∂(θ,ϕ)R2

((
θ̂, ϕ̂

)
;w
)
, (δθ, δϕ)

〉
= −R2

((
θ̂, ϕ̂

)
; v
)

∀w ∈W.(6.1b)

Instead, we obtain more convenient Newton-like schemes by using the higher-order
corrections of Section 5 to the above derivatives.7, the Newton-like schemes coincides
with the exact Newton scheme. We subsequently provide a strong form interpretation
of the scheme.

6.1. Weak form of the problem with Dirichlet Boundary condition. The
Newton-like equation for R1 is obtained by combining (5.1) and the approximation

(5.6) of ∂θR1

((
θ̂, ϕ̂

)
; v
)
, i.e.,

∫
Ω̂

∇δϕ · ∇vdΩ+

∫
∂Ω̂

\Γ̂ωδϕvdΓ−
∫
Γ̂

divΓ (δθ · n∇Γh) vdΓ−
∫
Γ̂

fvδθ · ndΓ

= −R1

((
θ̂, ϕ̂

)
; v
)
, ∀v ∈ V.(6.2a)

For the Dirichlet boundary condition, the Newton-like equation for R2 is derived
based on (5.8) and approximation (5.10) as∫

Γ̂

δϕwdΓ−
∫
Γ̂

(∂nh)wδθ · ndΓ = −R2

((
θ̂, ϕ̂

)
;w
)
, ∀w ∈W.(6.2b)

6.2. Weak form of the problem with Bernoulli Boundary condition.
The Newton-like equation for R1 is obtained by combining (5.1) and the approxima-

tion (5.5) of ∂θR1

((
θ̂, ϕ̂

)
; v
)
, i.e.,

∫
Ω̂

∇δϕ · ∇vdΩ+

∫
∂Ω̂\Γ̂

ωδϕvdΓ−
∫
Γ̂

divΓ

(
δθ · n∇Γϕ̂

)
vdΓ−

∫
Γ̂

fvδθ · ndΓ

= −R1

((
θ̂, ϕ̂

)
; v
)
, ∀v ∈ V.(6.3a)

For the Bernoulli condition, introducing (5.12), (5.13) and (5.22), the Newton-like
equation for R2 is∫

Γ̂

2a∇Γϕ̂ · ∇Γδϕw dΓ +

∫
Γ̂

(
−2
(
∇Γϕ̂

)T
· [∇Γn] · ∇Γϕ̂+ bnN

)
w δθ · n dΓ

= −R2

((
θ̂, ϕ̂

)
;w
)
, ∀w ∈W.(6.3b)



SHAPE-NEWTON METHOD FOR FBP SUBJECT TO BERNOULLI CONDITION 13

Table 1: The coupled shape-Newton scheme solving for (δθ, δϕ) using a linearised
Bernoulli boundary condition (6.4d) on the free boundary. For the linearised Dirichlet
boundary condition on the free boundary, replace (6.4d) by (6.5d).

1. Initialize with
(
θ0, ϕ0

)
; set k = 0.

2. Given
(
θk, ϕk

)
, solve the linear coupled problem for (δθ · n, δϕ):

∇2δϕ = −∇2ϕk − f in Ωk,(6.4a)

∂nδϕ − divΓ

(
δθ · n∇Γϕ

k
)
− fδθ · n = −∂nϕk, on Γk,(6.4b)

∂nδϕ+ ωδϕ = g + ωh−
(
∂nϕk + ωϕk

)
on ∂Ωk \ Γk,(6.4c)

2a∇Γϕ
k · ∇Γδϕ+

(
−2

(
∇Γϕ

k
)T

· [∇Γn] · ∇Γϕ
k + bnN

)
δθ · n(6.4d)

= −
(
a
∣∣∣∇ϕk

∣∣∣2 + bx̂N + c

)
, on Γk,

3. Update the free boundary displacement and potential as

θk+1 = θk + δθ ,

ϕk+1 = ϕk + δϕ .

4. Update the free boundary (hence the domain) as

Γk+1 = Γ0 + θk+1

Then repeat from step 2 with k := k + 1 until convergence.

6.3. Strong form: General free-boundary perturbations. It is important
to provide a strong form interpretation of the Newton-like scheme, so that the lin-
earised equations can be used by methods that don’t use weak forms. Furthermore,
the strong form provides further insight and a starting point for analysis.

In the Dirichlet case, the strong form problem for (δθ · n , δϕ) extracted from
(6.2a)-(6.2b) is:8

∇2δϕ = −∇2ϕ̂− f in Ω̂,(6.5a)

∂nδϕ+ ωδϕ = g + ωh−
(
∂nϕ̂+ ωϕ̂

)
on ∂Ω̂ \ Γ̂,(6.5b)

∂nδϕ− divΓ (δθ · n∇Γh)− fδθ · n = −∂nϕ̂, on Γ̂,(6.5c)

δϕ− ∂nh δθ · n = h− ϕ̂, on Γ̂(6.5d)

while in the case of the Bernoulli condition, the strong form problem for (δθ · n , δϕ)

6The inclusion H1(Ω̂) ⊂ H1(RN ) is meant in the sense that each δϕ ∈ H1(Ω̂) has a (non-unique)

extension onto RN \ Ω̂, which is in H1(RN ).
7In particular, when ϕ̂ and θ̂ are the exact solutions (θ∗, ϕ∗)
8We note that [32, Section 4.1] has several typos in the strong from of the linearised system.

Equations (6.5a)–(6.5d) are correct versions for the case in [32, Section 4.1] with vanishing Neumann
data (i.e., set their g = 0).
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extracted from (6.3a)-(6.3b) is:

∇2δϕ = −∇2ϕ̂− f in Ω̂,(6.6a)

∂nδϕ+ ωδϕ = g + ωh−
(
∂nϕ̂+ ωϕ̂

)
on ∂Ω̂ \ Γ̂,(6.6b)

∂nδϕ− divΓ

(
δθ · n∇Γϕ̂

)
− fδθ · n = −∂nϕ̂, on Γ̂,(6.6c)

2a∇Γϕ̂ · ∇Γδϕ+

(
−2
(
∇Γϕ̂

)T
· [∇Γn] · ∇Γϕ̂+ bnN

)
δθ · n

= −
(
a
∣∣∣∇ϕ̂∣∣∣2 + bx̂N + c

)
, on Γ̂.(6.6d)

The iterative algorithm associated to (6.6a)–(6.6d) is given in Table 1. The solu-
tions are updated as

θk+1 = θk + δθ, ϕk+1 = ϕk + δϕ,

where δθ is such that δθ · n satisfies the problem (6.4a)–(6.4d) (while its tangential
component is free to specify). Accordingly, the free boundary is updated as Γk+1 =
Γ0 + θk+1.

Remark 6.1 (Solving directly for ϕk+1). One can write the linearized system in
mixed total/update form, which solves for the variables (ϕk+1, δθ), instead of (δϕ, δθ).
This can be particularly helpful to remove any dependencies on ϕk (which lives on
the previous domain Ωk−1, hence would need a suitable extension onto Ωk); see [32,
Remark 5] where, in case of the Dirichlet boundary condition, the dependence on ϕk

is shown to be completely eliminated.

Remark 6.2 (Solvability of the shape-linearized systems). Both linearized sys-
tems (6.5) and (6.6) can be shown to have a unique weak solution under certain
conditions of the data. We have presented the details of these well-posedness analyses
in Appendix B and C, for (6.5) and (6.6) respectively. In both cases, the analysis
establishes coercivity of a bilinear form for a weak formulation for the variable δϕ,
obtained by eliminating the variable δθ · n from the system.

In the case of system (6.5), the bilinear form corresponds to that of a Laplacian
with a generalized Robin boundary condition involving an oblique derivative. Such
problems have been analyzed in, e.g., [22, 29, 33].

In the case of system (6.6), the bilinear corresponds to that of a Laplacian
with a generalized Robin boundary condition involving a surface Laplacian (Laplace–
Beltrami operator). Such problems have been analyzed in, e.g., [8, 1, 2].

6.4. Strong form: Vertical free-boundary perturbations. A particular
scenario arises in a two-dimensional case, where the free boundary is adjusted verti-
cally such that θ = (0, η).

In that case, we have dΓ = ds =
√

1 + η̂2xdx such that

(6.8)

∫
Γ̂

(·) δθ · ndΓ =

∫
Γ̂

(·) δηdx,

where s is the arc length and δη =
√
1 + η̂2x (δθ · n) = δθ · (−η̂x, 1). The boundary

integrals can be evaluated in a referenced domain along the x direction, and this
problem can be solved in terms of the pair (δη, δϕ). The algorithm is now displayed
as Table 2, and the geometry is updated vertically with δη.
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Table 2: The coupled shape-Newton scheme for (δη, δϕ).

1. Initialize with
(
η0, ϕ0

)
; set k = 0.

2. Given
(
ηk, ϕk

)
, solve the free boundary problem

∇2δϕ = −∇2ϕk − f in Ωk,(6.7a)

∂nδϕ+ ∂nϕ̂− divΓ

(
δθ · n∇Γϕ

k
)
− fδθ · n = 0, on Γk,(6.7b)

(6.7c)

2a∇Γϕ
k · ∇Γδϕ+

(
2aκ

∣∣∣∇ϕk
∣∣∣2 + bny

)
δη = −

(
a
∣∣∣∇ϕk

∣∣∣2 + bηk + c

)
, on Γk,

∂nδϕ+ ωδϕ = g + ωh−
(
∂nϕk + ωϕk

)
, on ∂Ωk \ Γk,(6.7d)

for (δη, δϕ), where δη =
√

1 +
(
ηkx

)2
(δθ · n) = δθ ·

(
−ηkx, 1

)
.

3. Update the free boundary displacement and potential as

ηk+1 = ηk + δη ,

ϕk+1 = ϕk + δϕ .

4. Update the free boundary (hence the domain) as

Γk+1 = Γ0 + (0, ηk+1)

Then repeat from step 2 with k := k + 1 until convergence.

7. Numerical experiments. Next we present numerical experiments in 2D.
We start with a straightforward test case for the Dirichlet boundary condition prob-
lem and then focus on the submerged triangle problem. The first test case is also
a Bernoulli free-boundary problem simplified from the submerged triangle problem,
with a Dirichlet condition on both the fixed and free boundary. The submerged
triangle problem is the problem to which we are mainly interested in applying this
shape-Newton scheme. We will use the algorithm in Table 2 such that the displace-
ment of the free boundary is updated vertically.

We use a finite element method, based on the weak form of the linearized system
in Table 2. That is, we seek (δϕ, δη) ∈ V̂h × Ŵh such that

(7.1a)

∫
Ω̂

∇δϕ · ∇vdΩ+

∫
Ω̂\Γ̂

ωδϕvdΓ−
∫
Γ̂

divΓ

(
δθ · n∇Γϕ̂

)
vdΓ−

∫
Γ̂

fvδθ · ndΓ

= −R1

((
θ̂, ϕ̂

)
; v
)
, ∀v ∈ V̂h,

(7.1b)

∫
Γ̂

2a∇Γϕ̂ · ∇ΓδϕwdΓ +

∫
Γ̂

(
2κ
∣∣∣∇ϕ̂∣∣∣2 + bnN

)
wδθ · ndΓ

= −R2

((
θ̂, ϕ̂

)
;w
)
, ∀w ∈ Ŵh.

where V̂h and Ŵh are finite element spaces based on a quasi-uniform partition (triangu-
lation) of Ω̂ into a set of shape-regular simplicial elements Ω̂h. In particular, we choose
continuous piecewise-linear approximations, i.e., V̂h = P1(Ω̂h) and Ŵh = P1

0,in(Γh),
where the (line) elements in Γh correspond to the free-boundary edges of the (trian-



16 Y. FAN, J. BILLINGHAM, AND K. VAN DER ZEE

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

(a) The initial domain and the triangulation.
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(b) The domain and the triangulation after the
first iteration.
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(c) The domain and the triangulation after the sec-
ond iteration.
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(d) The domain and the triangulation after the
third iteration.

Fig. 2: The initial domain and the change of the domain in three following Newton-
like iterations. The free surface is updated vertically.

gular) elements in Ω̂h adjacent to Γ̂. The space P1
0,in(Γh) incorporates the condition

δη = 0 at the inflow of the free boundary (recall Remark 2.1).
Notice that in the 2D case,

∇Γϕ̂ =
dϕ̂

ds
and δθ · n =

δη√
1 + (η̂x)2

on the free surface Γ̂, where s represents the arc length along the free surface, which
allows us to write (7.1) in terms of (δϕ, δη).

Remark 7.1 (Mesh deformation). Given a new δη, the free boundary Γ̂ is updated
by moving the mesh nodes on Γ̂ vertically with the distance δη. The other mesh nodes
are then updated accordingly to yield a smoothly deformed mesh. In particular, we
update the other mesh nodes simply by moving vertically using a linearly-interpolated
fraction of the distance δη at the same x-coordinate. Further implementation details
can be found in Section 6.6.2 in [12].
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Remark 7.2 (Discrete curvature). For simplicity, the curvature κ along the free
surface is evaluated by a finite difference approximation. An alternative to this ap-
proximation of κ is to obtain the linearisation directly from piecewise smooth free
boundaries (which we have not pursued in this work); cf. Remark 4.4.

Remark 7.3 (Solvability of the discrete linear system). Under certain condi-
tions of the mesh and data, the solvability of the discrete shape-Newton schemes for
Bernoulli boundary conditions has been proven in Appendix D.

7.1. Dirichlet boundary condition. The test case for the free-boundary prob-
lem with Dirichlet boundary condition is a Bernoulli free-boundary problem derived
from a manufactured solution,

(7.2) ϕ = x+ y, η = x+ 1,

such that the data can be obtained as

f = 0,

g = 0,

h =

{
2y − 1, on ΓF ,

x+ y, on ∂Ω \ ΓF ,

ω → ∞.

With an initial domain Ω0 =
{
(x, y) : x ∈ [0, 1] , y ∈

[
0, x2 + 1

]}
, how the domain

and the triangulation changes in the first three iterations are shown in Figure 2.
Starting with a parabola, the free boundary is almost a straight line after the third
iteration. The source term has been tested in [32] by choosing a more complicated
manufactured solution.

Figure 3 shows the error between numerical results of ϕ and η compared with the
exact solution (7.2) on the free boundary ΓF with a different number of finite element
meshes. The value of N + 1 represents the number of nodes along the x-axis, and
the number of nodes along the y-axis is N

4 . Although the error is slightly larger with
more nodes, the shape-Newton scheme converges superlinearly.

7.2. The submerged triangle problem. The second test case is the sub-
merged triangle problem investigated by Dias and Vanden-Broeck [6]. A detailed
derivation of the governing equations can be found in [12, Appendix]. In this prob-
lem, we have a Neumann boundary condition on ∂Ω \ ΓR and a Dirichlet boundary
condition on ΓR, i.e. ω = 0 on ∂Ω \ ΓR and ω → ∞ on ΓR. The data defining this
problem is given as follows:

f = 0,

g =

{
0, on ∂Ω \ ΓL,

−1, on ΓL,

h = 0 on ΓR.

The Bernoulli condition is obtained by giving a = 1
2F

2, b = 1 and c = − 1
2F

2−1 where
F is the Froude number. The domain is a rectangle truncated at |x| = 4 containing
an isosceles triangle symmetric about x = 0 having an angle α and width 2w0 at the
bottom, as shown in Figure 4. The space is discretised as shown in Figure 5, where
it was uniformly spaced along the x−axis and the vertical direction for fixed values
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Fig. 3: The Dirichlet error ||ϕ− h||L2
and surface error ||η− η̂||L2

on ΓF measured in
L∞-form against the number of iterations. The upper plot shows the Dirichlet error,
and the lower shows the surface error. The values of N + 1 are the number of the
nodes along the x-axis.

ΓF

ΓL ΓR

Ω

w0 ΓB (4, 0)(−4, 0)

(−4, 1) (4, 1)

α

Fig. 4: The sketch of the domain we used for the second test case. α is denoted as
the angle and w0 as the half width of the triangle.

of x. Then the algorithm in Table 2 can be applied to solve for the pair (δη, δϕ), and
the free boundary can be updated vertically with δη.

Dias and Vanden-Broeck [6] found that the solutions to the submerged problem
have two types: One is supercritical flow both upstream and downstream, and the
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Fig. 5: An example of the domain and the triangulation with α = π
4 , F = 2 and the

half width of the triangle w0 = 0.5.

other is supercritical (or subcritical) upstream and subcritical (or supercritical) down-
stream flow. Our numerical solutions are the first type, and we can compare them
with the results in [6].

7.2.1. Convergence rate of Shape-Newton method. The rate of conver-
gence is shown in Figure 6, where we show ||δϕ||L2 and ||δη||L2 against the number of
iterations for α = π

8 , w0 = 0.3 and F = 3. These show superlinear convergence. This
figure also shows the comparison for different mesh densities.

7.2.2. Robustness of the Shape-Newton scheme. Some converged grids of
the whole region are shown in Figure 7. We noticed that η(x) has a maximum value
y0 at x = 0 on the free boundary, and the value of y0 changes with the values of α, w0

and F . Figure 8 shows the value of y0 against the Froude number F for various values
of α. We can observe from Figure 8 that y0 will decrease when the Froude number
F becomes larger for the fixed width of the triangle. In addition, for fixed values of
F and angle α, y0 will also decrease with the width of the triangle. This agrees with
the results presented by Dias and Vanden-Broeck in [6], who solved this problem for
fixed α = π

4 . To improve convergence behaviour, we explored using a continuation
technique in the Froude number F. However, as seen in Figure 8c and Figure 8d, for
larger triangles (larger α), convergence generally becomes more difficult, as those test
cases are closer to critical situations beyond which there is no solution. See [6] for a
detailed study on critical values.

We also found that the solutions are challenging for larger angle α for fixed width.
The possible reason is that with a higher triangle height, the flow can approach its
limiting configuration as a thin layer over the edge of the triangle with a stagnation
point, hence may require local mesh refinement.

8. Conclusion. We derived a shape-Newton method to solve generic
free-boundary problems with the nonlinear Bernoulli boundary condition. The lin-
earised system is obtained from applying the Hadamard formula for shape derivatives
to a suitable weak form of the free boundary problem. After linearisation and neglect-
ing higher-order terms, one obtains a linear boundary-valued problem to be solved at
each iteration.

The shape linearisation of the nonlinear Bernoulli equation is a key result in our
work. In its derivation, many terms can be neglected (as a higher-order correction) due
to the homogeneous Neumann boundary condition. After some calculations, we find
that the result involves the normal derivative of the velocity squared, i.e. ∂n |∇ϕ|2.
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Fig. 6: The size of ||δϕ||L2
and ||δη||L2

on ΓF against the number of iterations with
α = π

8 , w0 = 0.3 and F = 3. The values of N + 1 are the number of the nodes along
the x-axis.

This can be equivalently computed as
(
∇ϕ̂
)T

· [∇Γn] · ∇ϕ̂, see Section 5.3.

The linearised system essentially corresponds to a boundary value problem for the
Laplacian with a generalized Robin boundary condition involving a surface Laplacian
(Laplace–Beltrami), which in turn depends on the curvature. Another key result
in our work is a study of the solvability of this linearised system. Under certain
conditions on the data, one can guarantee the existence of a unique solution (details
in Appendix C). We applied our method to compute the flow over a submerged triangle
for a range of Froude numbers and triangle shapes, and obtained consistent results
with the earlier literature [6]. Moreover, the numerical test revealed that the shape-
Newton method converges superlinearly. A theoretical explanation of this behaviour
remains an open problem.

Appendix A. Consistency of (5.27) with (5.22). In this appendix, we will
show the detail about consistency between the result (5.22) for the N -dimensional
case and the result (5.27) for the two-dimensional case.

In the two-dimensional case, we have the unit normal vector n(x) = (nx, ny) =
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(d) The final domain for α = π
8
, w0 = 1, and F = 2.

Fig. 7: The final domains for various α, w0 and F , where their free boundaries are
the numerical solutions.

1√
1+η̂2

x

(−η̂x, 1). Thus,

∇n =

(
∂xnx ∂xny
∂ynx ∂yny

)
=

(
−κ −η̂xκ
0 0

)
,(A.1)

(n · ∇)n = (nx∂x + ny∂y)n = nx∂x (n) =

(
−κnx

−η̂xnxκ

)
,(A.2)
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Fig. 8: The maximum value y0 on the free boundary at x = 0 against F for different
values of α and w0.

where κ = ∂x

(
η̂x√
1+η̂2

x

)
= −∂xnx represents the curvature. Hence,

∂n (n)nT =

(
−κnx

−κη̂xnx

)(
nx ny

)
=

(
−κn2x −κnxny
−κη̂xn2x −κη̂xnxny

)
(A.3)

By substituting (A.1) and (A.3) into the definition of ∇Γ (·) (5.3), we obtain

∇Γn = ∇n− ∂nnn
T

=

(
−κ −η̂xκ
0 0

)
−
(

−κn2x −κnxny
−κη̂xn2x −κη̂xnxny

)
= κ

(
−1 + n2x −η̂x + nxny
η̂xn

2
x η̂xnxny

)
.(A.4)
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Now by using (A.4) and the Neumann boundary condition (2.1b), we have(
∇Γϕ̂

)T
· [∇Γn] · ∇Γϕ̂ =

(
∇ϕ̂
)T

· [∇Γn] · ∇ϕ̂

= κ
(
ϕ̂x ϕ̂y

)(−1 + n2x −η̂x + nxny
η̂xn

2
x η̂xnxny

)(
ϕ̂x
ϕ̂y

)
= κ

( (
−1 + n2x

)
ϕ̂x + η̂xn

2
xϕ̂y

(−η̂x + nxny) ϕ̂x + η̂xnxnyϕ̂y

)(
ϕ̂x
ϕ̂y

)
= κ

[(
−1 + n2x

)
ϕ̂2x + η̂xn

2
xϕ̂xϕ̂y + (−η̂x + nxny) ϕ̂xϕ̂y

+ η̂xnxnyϕ̂
2
y

]
= κ

[(
−1 + n2x

)
ϕ̂2x + η̂2xn

2
xϕ̂

2
x + (−η̂x + nxny) η̂xϕ̂

2
x

+ η̂3xnxnyϕ̂
2
x

]
(by (2.1b))

= κϕ̂2x
(
−1 + n2x + η̂2xn

2
x − η̂2x + η̂xnxny + η̂3xnxny

)
= κϕ̂2x

(
−1 + n2x + η̂2xn

2
x − η̂2x − n2x − η̂2xn

2
x

)
(by nx = −η̂xny)

= −
(
1 + η̂2x

)
κϕ̂2x

=
2√

1 + η̂2x
η̂xx

(
ϕ̂x

)2
= −κ

∣∣∣∇ϕ̂∣∣∣2 ,(by (2.1b))

Hence, (5.22) in the two-dimensional case equals (5.27).

Appendix B. Solvability of the shape-linearized system for the Dirichlet
boundary condition. In this Appendix we show that, under certain conditions
of the data, the shape-linearized system (6.5a)–(6.5d) for the free-boundary problem
with Dirichlet boundary condition (i.e., (2.3a)–(2.3d)), has a unique solution.

From the Dirichlet boundary condition (6.5d), we have

(B.1) δθ · n =
δϕ+ ϕ̂− h

∂nh
,

provided ∂nh ̸= 0. Note that for the case when h is a constant and ∂nh = 0, this
problem has been shown to have a unique solution; see, e.g. [32].

Substituting (B.1) into (6.5c), the system becomes one-way coupled, i.e., a
boundary-value problem for δϕ, and subsequently an equation for δθ · n:

∇2δϕ = −∇2ϕ̂− f in Ω̂,(B.2a)

∂nδϕ− divΓ

(
δϕ

∂nh
∇Γh

)
− f

δϕ

∂nh
= divΓ

(
ϕ̂− h

∂nh
∇Γh

)
+ f

ϕ̂− h

∂nh
− ∂nϕ̂, on Γ̂,

(B.2b)

∂nδϕ+ ωδϕ = g + ωh−
(
∂nϕ̂+ ωϕ̂

)
on ∂Ω̂ \ Γ̂,(B.2c)

The boundary-value problem for δϕ has essentially a generalized Robin boundary
condition involving an oblique derivative (∂nδϕ− 1

∂nh∇Γh ·∇Γδϕ) on Γ̂. To guarantee
existence of a unique weak solution to this boundary-value problem, we use the Lax-
Milgram theorem and establish coercivity of a suitable bilinear form. We assume Ω̂
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is a bounded Lipschitz-continuous domain, and ϕ̂ is sufficiently smooth to ensure
continuity of the bilinear form and linear form of the weak formulation.

A weak form of (B.2a)–(B.2c) seeks δϕ ∈ H1(Ω̂) such that

(B.3) a(δϕ, ψ) = l(ψ), ∀ψ ∈ H1(Ω̂) ,

where

a(δϕ, ψ) :=

∫
Ω̂

∇δϕ · ∇ψdΩ+

∫
Ω̂\Γ̂

ωδϕψdΓ(B.4)

+

∫
Γ̂

δϕ

∂nh
∇Γh · ∇ΓψdΓ−

∫
Γ̂

f
δϕ

∂nh
ψdΓ,

l(ψ) := −
∫
Ω̂

∇ϕ̂ · ∇ψdΩ+

∫
Ω̂

fψdΩ+

∫
∂Ω̂\Γ̂

(g + ωh− ωϕ̂)ψdΓ(B.5)

−
∫
Γ̂

ϕ̂− h

∂nh
∇Γh · ∇ΓψdΓ +

∫
Γ̂

f
ϕ̂− h

∂nh
ψdΓ.

To study the coercivity of a(·, ·), note that

a(ψ,ψ) =

∫
Ω̂

|∇ψ|2dΩ+

∫
∂Ω̂\Γ̂

ωψ2dΓ +

∫
Γ̂

ψ

∂nh
∇Γh · ∇ΓψdΓ−

∫
Γ̂

f

∂nh
ψ2dΓ,

(B.6)

hence, if the last two terms are nonnegative, coercivity holds when ω > 0 (by a
Poincaré–Steklov inequality; see, e.g., [11, Eq. (31.23)]). We note that the penultimate
term can be written as∫

Γ̂

1

2∂nh
∇Γh · ∇Γ(ψ

2)dΓ = −
∫
Γ̂

divΓ

(
1

2∂nh
∇Γh

)
ψ2dΓ +

∫
∂Γ̂

∇Γh · τ
2∂nh

ψ2ds .

Therefore, sufficient conditions that guarantee coercivity are:

divΓ

(
1

2∂nh
∇Γh

)
≤ 0, and

f

∂nh
≤ 0,

and a closed free boundary Γ̂ (hence ∂Γ̂ = ∅) or ∇Γh·τ
2∂nh ≥ 0.

These conditions then guarantee that δϕ ∈ H1(Ω̂) while δθ ·n follows from (B.1).
Generally, one expects additional regularity for δϕ beyond H1(Ω̂), so that δθ inherits
this regularity and becomes a Lipschitz-continuous vector field on Γ0. Such regularity
study is outside the scope of this work.

Appendix C. Solvability of the shape-linearized system for the
Bernoulli boundary condition. In this Appendix we show that, under cer-
tain conditions of the data, the shape-linearized system (6.6) for the free-boundary
problem with Bernoulli boundary condition (i.e., (2.1a)–(2.1d)), has a unique solution.

The linearized Bernoulli condition (6.6d) can be rearranged to:

(C.1) δθ · n =
2a∇Γϕ̂ · ∇Γδϕ+ C2

C1

where C1 = −2
(
∇Γϕ̂

)T
· [∇Γn] · ∇Γϕ̂+ bnN and C2 = a

∣∣∣∇ϕ̂∣∣∣2 + bx̂N + c, provided

that C1 ̸= 0. Let bΓ = 2a∇Γϕ̂
C1

and C = C2

C1
for notation convenience, (C.1) can be
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rewritten as

(C.2) δθ · n = bΓ · ∇Γδϕ+ C.

Similar to the approach in Appendix B, by substituting (C.2) into (6.6c), we
obtain a boundary-value problem for δϕ:

−∇2δϕ = ∇2ϕ̂+ f in Ω̂,(C.3a)

∂nδϕ+ ∂nϕ̂− divΓ

(
bΓ · ∇Γδϕ∇Γϕ̂

)
− fbΓ · ∇Γδϕ = −divΓ

(
C∇Γϕ̂

)
− Cf

(C.3b)

on Γ̂,

∂nδϕ+ ωδϕ = g + ωh−
(
∂nϕ̂+ ωϕ̂

)
on ∂Ω̂ \ Γ̂,(C.3c)

This is essentially a problem for the Laplacian with a generalized Robin boundary
condition on Γ̂ involving a surface Laplacian (Laplace–Beltrami operator). Again, to
guarantee existence of a unique weak solution to this boundary-value problem, we
use the Lax-Milgram theorem and establish coercivity of a suitable bilinear form. We
assume Ω̂ is a bounded Lipschitz-continuous domain, and ϕ̂ is sufficiently smooth to
ensure continuity of the bilinear form and linear form of the weak formulation.

A weak form of (C.3a)–(C.3c) seeks δϕ ∈ V := {v ∈ H1(Ω̂)
∣∣ v|Γ̂ ∈ H1(Γ̂)} such

that

(C.4) a(δϕ, ψ) = l(ψ), ∀ψ ∈ V,

where

a(δϕ, ψ) :=

∫
Ω̂

∇δϕ · ∇ψdΩ+

∫
Ω̂\Γ̂

ωδϕψdΓ(C.5)

+

∫
Γ̂

(∇Γδϕ)
T
[
bΓ(∇Γϕ̂)

T
]
∇ΓψdΓ−

∫
Γ̂

fbΓ · ∇ΓδϕψdΓ,

l(v) := −
∫
Ω̂

∇ϕ̂ · ∇ψdΩ+

∫
Ω̂

fψdΩ(C.6)

+

∫
∂Ω̂\Γ̂

(g + ωh− ωϕ̂)ψdΓ +

∫
Γ̂

[
divΓ

(
C∇Γϕ̂

)
+ Cf

]
ψdΓ.

To study the coercivity of a(·, ·), note that

a(ψ,ψ) =

∫
Ω

|∇ψ|2dΩ+

∫
Ω̂\Γ̂

ωψ2dΓ

+

∫
Γ̂

(∇Γψ)
T
[
bΓ(∇Γϕ̂)

T
]
∇ΓψdΓ−

∫
Γ̂

fbΓ · ∇Γ(ψ)ψdΓ,(C.7)

hence, similar to the approach in Appendix B, if the last three terms are suitably
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bounded, coercivity holds. We note that the last two terms can be written as∫
Γ̂

(∇Γψ)
T
[
bΓ(∇Γϕ̂)

T
]
∇ΓψdΓ =

∫
Γ̂

(∇Γψ)
T
[2a∇Γϕ̂

C1
(∇Γϕ̂)

T
]
∇ΓψdΓ

=

∫
Γ̂

2a

C1
(∇Γϕ̂ · ∇Γψ)

2dΓ∫
Γ̂

fbΓ · ∇Γ(ψ)ψdΓ =

∫
Γ̂

1

2
fbΓ · ∇Γ(ψ

2)dΓ

=

∫
Γ̂

divΓ

(
1

2
fbΓ

)
ψ2dΓ−

∫
∂Γ̂

ψ2(
1

2
fbΓ · τ )ds.

Therefore, sufficient conditions that guarantee coercivity are:

(C.8)

{
a
C1

≥ a0 > 0, divΓ (fbΓ) ≤ 0, fbΓ · τ ≥ 0 on Γ̂

ω > 0 on ∂Ω̂ \ Γ̂.

The same remark at the end of Appendix B applies: The above conditions guar-
antee existence of δϕ ∈ V while δθ · n follows from (C.1). Generally, one expects
additional regularity for δϕ beyond V , so that δθ inherits this regularity and becomes
a Lipschitz-continuous vector field on Γ0. Such regularity study is outside the scope
of this work.

Appendix D. Solvability of the discrete shape-linearized system for the
Bernoulli condition. In this Appendix we show that, under certain conditions of
the data and mesh, the finite element method for the shape-linearized system (7.1)
has a unique discrete solution. To that end, we use the Lax-Milgram theorem and
establish coercivity of the coupled system in (7.1).9

The discrete problem (7.1) can be written as follows:

(D.1)

{
Find (δηh, δϕh) ∈ Ŵh × V̂h = P1

0,in(Γh)× P1(Ωh) :

a ((δηh, δϕh), (vh, wh)) = l(wh, vh) ∀(wh, vh) ∈ Ŵh × V̂h ,

where

a((δηh, δϕh), (wh, vh)) := b ((δηh, δϕh), vh) + c ((δηh, δϕh), wh)

l(wh, vh) := l1(vh) + l2(wh)

b ((δηh, δϕh), vh) :=

∫
Ω̂

∇δϕh · ∇vhdΩ+

∫
Ω\Γ̂

ωδϕhvhdΓ−
∫
Γ̂

fvhδηhdΓ

+

∫
Γ̂

∇Γϕ̂ · ∇ΓvhδηhdΓ,

l1(vh) := −R1

((
θ̂, ϕ̂

)
; vh

)
,

c ((δηh, δϕh), wh) :=

∫
Γ̂

2a∇Γϕ̂ · ∇ΓδϕhwhdΓ +

∫
Γ̂

(
2κ
∣∣∣∇ϕ̂∣∣∣2 + bnN

)
whδηhdΓ,

l2(wh) := −R2

((
θ̂, ϕ̂

)
;wh

)
.

9We note that the proof of coercivity in the continuous setting, see Appendix C, does not apply
in the discrete case, because in the continuous setting the geometrical variable δθ · n could be
straightforwardly eliminated from the system. We therefore establish coercivity separately in the
discrete case.
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To study the coercivity of a(·, ·), note that

b ((δηh, δϕh), δϕh) =

∫
Ω̂

|∇δϕh|2 dΩ+

∫
∂Ω̂\Γ̂

ω(δϕh)
2dΓ

(D.3a)

+

∫
Γ̂

∇Γϕ̂ · ∇ΓδϕhδηhdΓ−
∫
Γ̂

fδϕhδηhdΓ,

c ((δηh, δϕh), δηh) =

∫
Γ̂

2a∇Γϕ̂ · ∇ΓδϕhδηhdΓ +

∫
Γ̂

(
2κ
∣∣∣∇ϕ̂∣∣∣2 + bnN

)
(δηh)

2dΓ.

(D.3b)

Next, we bound the coupling terms in (D.3a) and (D.3b). Let ĉ0 := ||∇Γϕ̂||L∞(Γ̂)

and cf := ||f ||L∞(Γ̂), then∣∣∣∣∫
Γ̂

∇Γϕ̂ · ∇ΓδϕhδηhdΓ

∣∣∣∣ ≥ −ĉ0||∇Γδϕh||L2(Γ̂)||δηh||L2(Γ̂) ,∣∣∣∣∫
Γ̂

fδϕhδηhdΓ

∣∣∣∣ ≥ −cf ||δϕh||L2(Γ̂)||δηh||L2(Γ̂) .

According to discrete trace inequalities [10, Ch. 12.2], there are constants c1, c2 > 0
(independent of h) such that

||∇Γδϕh||L2(Γ̂) ≤ ||∇δϕh||L2(Γ̂) ≤ c1h
− 1

2 ||∇δϕh||L2(Ω̂),

||δϕh||L2(Γ̂) ≤ c2h
− 1

2 ||δϕh||L2(Ω̂),

where h = maxK∈Ωh
diam(K).

Using these inequalities as well as Young’s inequality (see, e.g., [11, Appendix
C.3]), we obtain∣∣∣∣∫

Γ̂

∇Γϕ̂ · ∇ΓδϕhδηhdΓ

∣∣∣∣ ≥ − ĉ0c
2
1h

−1

2
||∇δϕh||2L2(Ω̂)

− ĉ0
2
||δηh||2L2(Γ̂)

,(D.5) ∣∣∣∣∫
Γ̂

fδϕhδηhdΓ

∣∣∣∣ ≥ −cfc
2
2h

−1

2
||δϕh||2L2(Ω̂)

− cf
2
||δηh||2L2(Γ̂)

.(D.6)

Next, using Poincare inequality,

(D.7) ||δϕh||2L2(Ω̂)
≤ cp

(
||∇δϕh||2L2(Ω̂)

+ ||δϕh||2L2(∂Ω̂\Γ̂)

)
And substitution from (D.5)-(D.7) into (D.3a) and (D.3b), we have

b ((δηh, δϕh), δϕh) ≥
(
1− ĉ0c

2
1h

−1

2
− cpcfc

2
2h

−1

2

)
||∇δϕh||2L2(Ω̂)

(D.8a)

+

(
ω − cpcfc

2
2h

−1

2

)
||δϕh||2L2(∂Ω̂\Γ̂) −

(
ĉ0 + cf

2

)
||δηh||2L2(Γ̂)

c ((δηh, δϕh), δηh) =− |a|ĉ0c21h−1||∇δϕh||2L2(Ω̂)

(D.8b)

+
(∣∣∣2κ|∇ϕ̂|2 + bnN

∣∣∣− |a|ĉ0
)
||δηh||2L2(Γ̂)

.
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Hence, we obtain the estimate

a ((δηh, δϕh), (δηh, δϕh)) ≥
(
1− ĉ0c

2
1h

−1|1 + 2a|
2

− cpcfc
2
2h

−1

2

)
||∇δϕh||2L2(Ω̂)

+

(
ω − cpcfc

2
2h

−1

2

)
||δϕh||2L2(∂Ω̂\Γ̂)

+

(∣∣∣2κ∇ϕ̂|2 + bnN

∣∣∣− (|1 + 2a|ĉ0 + cf )

2

)
||δηh||2L2(Γ̂)

,(D.9)

Therefore, sufficient conditions that guarantee discrete solvability are:

1− ĉ0c
2
1h

−1|1 + 2a|
2

− cpcfc
2
2h

−1

2
> 0,

ω − cpcfc
2
2h

−1

2
> 0,∣∣∣2κ∇ϕ̂|2 + bnN

∣∣∣− (|1 + 2a|ĉ0 + cf )

2
> 0.
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erned by bernoulli free boundary problems, Computer Methods in Applied Mechanics and
Engineering, 197 (2008), pp. 3803–3815.

[29] G. Troianiello, Elliptic differential equations and obstacle problems, Springer Science & Busi-
ness Media, 2013.

[30] E. H. Van Brummelen and A. Segal, Numerical solution of steady free-surface flows by
the adjoint optimal shape design method, International Journal for Numerical Methods in
Fluids, 41 (2003), pp. 3–27.

[31] K. van der Zee, E. van Brummelen, I. Akkerman, and R. de Borst, Goal-oriented
error estimation and adaptivity for fluid–structure interaction using exact linearized
adjoints, Computer Methods in Applied Mechanics and Engineering, 200 (2011),
pp. 2738–2757, https://doi.org/https://doi.org/10.1016/j.cma.2010.12.010, https://www.
sciencedirect.com/science/article/pii/S0045782510003555. Special Issue on Modeling Er-
ror Estimation and Adaptive Modeling.

[32] K. G. van der Zee, G. J. van Zwieten, C. V. Verhoosel, and E. H. van Brummelen,
Shape-newton method for isogeometric discretizations of free-boundary problems, in MA-
RINE 2011, IV International Conference on Computational Methods in Marine Engineer-
ing, Springer, 2013, pp. 85–102.

[33] D. Wachsmuth and G. Wachsmuth, Optimal control of an oblique derivative problem, Ann.
Acad. Rom. Sci. Ser. Math. Appl., (2013).

[34] S. Walker, The shapes of things: a practical guide to differential geometry and the shape
derivative, SIAM, 2015.

https://doi.org/https://doi.org/10.1007/978-3-642-58106-9
https://doi.org/https://doi.org/10.1016/j.cma.2010.12.010
https://www.sciencedirect.com/science/article/pii/S0045782510003555
https://www.sciencedirect.com/science/article/pii/S0045782510003555

	Introduction
	Free-boundary Problem with Bernoulli or Dirichlet free-boundary condition
	Free-boundary Problem With Bernoulli Condition
	Free-boundary Problem with Dirichlet Boundary Condition

	The Weak Form
	Shape Derivatives
	Linearisation
	Linearisation of R1
	Linearisation of R2 with Dirichlet condition
	Linearisation of R2 with Bernoulli condition
	N dimensional case
	Three dimensional case
	Two dimensional case


	Newton-Like Schemes
	Weak form of the problem with Dirichlet Boundary condition
	Weak form of the problem with Bernoulli Boundary condition
	Strong form: General free-boundary perturbations
	Strong form: Vertical free-boundary perturbations

	Numerical experiments
	Dirichlet boundary condition
	The submerged triangle problem
	Convergence rate of Shape-Newton method
	Robustness of the Shape-Newton scheme


	Conclusion
	Appendix A. Consistency of dn with de
	Appendix B. Solvability of the shape-linearized system for the Dirichlet boundary condition
	Appendix C. Solvability of the shape-linearized system for the Bernoulli boundary condition
	Appendix D. Solvability of the discrete shape-linearized system for the Bernoulli condition
	Acknowledgments
	References

