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A B S T R A C T

By incorporating information about asset condition from a monitoring system, engineers can utilize asset
management models to manage maintenance activities on wind turbine blades throughout their lifespan.
This can lower operating and maintenance costs and increase the life of the blades. The asset management
model relies on the monitoring system as a source of information, however, commonly the reliability of the
monitoring system is not considered. This paper presents a wind turbine blade asset management Petri net
(PN) model that covers the blade asset management process, including degradation, inspection, condition
monitoring (CM), and maintenance processes. The paper proposes two contributions. Firstly, while taking
into account detailed industry guidelines, the developed model can forecast the future blade condition for
a given asset management strategy. Secondly, it investigates the impact of the reliability of the monitoring
system on the asset management modelling results. With the aid of the developed model, the number of
repair actions and probability distributions of blade condition discovery time are obtained. In addition, the
PN gives an indication of how misreporting (underestimation and overestimation) occurs and the extent of
the misreporting. The simulation results illustrate the degree of uncertainty introduced into the monitoring
results by the reliability of the monitoring system and, consequently, the extent to which this factor influences
the maintenance strategies. The proposed model can be used to support asset management decisions when
monitoring system performance degrades.
1. Introduction

The wind power industry has experienced significant global growth.
Wind energy is one of the fastest growing renewable energy sources,
with many countries increasingly adopting wind energy as a key com-
ponent of their energy mix. In June 2023, the world’s installed wind
energy capacity reached 1 terawatt (TW) [1]. The rapid growth in
the wind power sector has presented formidable challenges in the
realm of its operational and maintenance practices. The lifespan of a
good quality and modern wind turbine is around 20 years [2], hence
each decision made during the operating phase can have a significant
impact on the project’s maintainability [3,4]. Appropriate asset man-
agement, relating to wind turbine performance and repairs over their
lifetime, can be used to extend the expected lifespan, minimize risk and
maximize the value of the investment.

Different inspection tools and structural health monitoring (SHM)
systems are used to obtain wind turbine health condition, which can
be used to optimize maintenance strategies. Visual, drone and internal
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rover inspections are performed regularly every one to two years, with
the inspection interval varying with the age of the wind turbines. In
contrast to periodic inspections, SHM systems can provide a continuous
indication of component condition [5]. In the context of SHM, online
detection and characterization leads to a condition-based maintenance
approach, where the reliability of the structure can be quantified,
and maintenance procedures only performed when necessary [6,7].
Describing how inspections and monitoring systems can be integrated
into a decision making process is critical to avoiding unnecessary repair
actions.

Due to their flexibility and their capability when simulating dy-
namic processes, PNs have been applied to model the asset management
of wind turbine structures [8,9]. For example, a PN-based offshore
wind turbine maintenance model was developed in [10]; they con-
sidered three different maintenance strategies in detail: corrective
maintenance, periodic maintenance, and condition-based maintenance.
Müller [11] presented a close-to-reality maintenance optimization
https://doi.org/10.1016/j.ress.2024.110478
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model using high-level PNs; different detailed points were considered,
e.g. the joint use of maintenance capacities, as well as aspects relating
to spare parts logistics or weather. Santos [12] presented an age-
dependent preventive maintenance model with an imperfect repair
strategy. Le [13] proposed an asset management model based on the
PN method for modelling offshore wind turbine reliability accounting
for degradation, inspection and maintenance processes. Saleh [14]
proposed an intelligent Petri net method integrating PNs with rein-
forcement learning, which can maximize reliability and availability by
finding an optimal O&M policy. A PN simulation model was developed
to evaluate the availability of offshore wind turbines, as well as their
O&M costs in [15]. This study involved a detailed exploration of the
influence of a purpose-designed CM system and a Supervisory Control
and Data Acquisition (SCADA)-based CM system, both individually
and in various combinations, alongside an analysis of diverse mainte-
nance strategies. Various high-level PNs were also developed to extend
their simulation capabilities in other application areas [16,17]. The
stochastic PNs were used in [18] to model and evaluate of gas leakage
emergency rescue process in gas transmission station. Saleh [19] has
introduced an Intelligent PN model by merging PN with Reinforcement
Learning to consider the maintenance and operation of railway sec-
tions. The model is able to use diverse information, including usage,
degradation rates, maintenance effectiveness, fault probabilities, and
maintenance time, to simulate and learn at the same time. Hadri and
Prescott [20] developed a novel modularized Coloured Hybrid PN
modelling framework that can be applied to assess system performance
under various asset management strategies including condition-based
maintenance and risk-based maintenance. In [21], PN model is applied
to tackle all aspects of nuclear safety, spanning from design, operation,
and maintenance to accident response and recovery, in the case of high-
impact low-probability events. In summary, here are three reasons why
we use the PN method in our work. Firstly, PNs are ideally suited to
modelling dynamic systems with discontinuous state changes [22], such
as blade repair processes under different defect severities. Secondly,
PNs help visualize and provide a graphic description of a system [22].
From the constructed PNs, we can clearly see the overall situation of
wind turbine asset management, such as the number of defects, the
progression of defect degradation, and the repair process. Finally, PNs
are flexible and can be readily expanded. For instance, the failure model
can incorporate various types of failure history data, such as time-series
failure data and failure rates. This model can be effortlessly extended to
simulate the degradation process in various defects and failure modes
effectively.

An important part of modelling is describing how SHM functions
as part of an asset management process. Furthermore, systems may
produce accurate or inaccurate health status information. When do
they produce correct or incorrect information? What constitutes an
incorrect status? What are the consequences if the CM system provides
incorrect output? In order to answer these, and other questions, it is
crucial to investigate how asset management outcomes are affected by
the monitoring system accuracy. Recent works have also considered
the monitoring system degradation in the scope of reliability analysis.
Nielsen [23] presented a case study on risk-based maintenance of
wind turbine blades, which studied how the potential benefits of SHM
systems affect maintenance. Mukhopadhyay [24] highlighted the im-
portance of sensor degradation in system reliability evaluation, and also
evaluated the remaining life of degrading systems monitored by degrad-
ing sensors. Some researchers have included information modelling into
reliability analysis. Nielsen [25] offered an operational framework for
dealing with problems where the extent of true and false information
cannot be ascertained a priori. In [26,27] the value of information
associated with information collection has been modelled and the effect
of introducing biases and dependencies on the value of information
has been evaluated. Though efforts have been devoted to SHM system

reliability, there is still significant room for further exploration due
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to the lack of modelling techniques for predicting incorrect/correct
monitoring outcomes and their effects.

With the aim of addressing these problems, in this study, a wind
turbine blade asset management PN model incorporating risk-based
maintenance and structural health monitoring processes is presented.
A stochastic process fitted with failure parameters serves as a versatile
framework for characterizing the failure progression of various defects,
offering adaptability to different defect types. The PN module within
monitoring systems, encompassing inspection and CM, is designed
to be practical in its application. Specifically, the incorporation of
stochastic, unknown defect into the inspection module is a notable
feature. Within the CM module, consideration is given to the dynamic
evolution of monitoring accuracy over time and diverse monitoring dis-
covery paths, thereby encompassing the influence of monitoring system
reliability. The design of the repair module meticulously adheres to
industry standards for defect classification and repair strategies. The
utilization of these modules in simulation enables a comprehensive
visualization of the asset management process. Additionally, the model
accommodates various failure scenarios within the monitoring system
to effectively illustrate their impact on system reliability. Ultimately,
the model’s detailed output regarding state discovery and maintenance
strategies serves as a valuable reference for predictive maintenance and
managerial decision-making.

In summary, the paper introduces three innovative aspects:

• Firstly, it presents a wind turbine blade asset management PN
model incorporating risk-based maintenance and structural health
monitoring processes. The PN modules are designed to incorpo-
rate industrial guidelines, enhancing their alignment with practi-
cal scenarios.

• Secondly, a CM module that considers the reliability of the mon-
itoring system is developed using probability transitions. This
module involves the dynamic evolution of monitoring accuracy
over time and various monitoring discovery paths.

• Finally, the model thoroughly investigates how asset manage-
ment outcomes are influenced by the accuracy of the monitoring
system, detailing the effects of both correct and incorrect infor-
mation produced by the system, and how inaccurate outputs are
generated by the CM system.

The manuscript is organized as follows. Section 2 gives a general
description of the research scope and introduces the basic concepts of
the PN method. A PN modelling framework for wind turbine blade
asset management is presented in Section 3. In Section 4 and Sec-
tion 5, results and discussion are provided. Conclusions are presented
in Section 6.

2. Background

2.1. Problem description

Wind turbines are complex machines designed to capture kinetic
energy from the wind and convert it into electrical energy. They consist
of various components that work together to achieve this goal. The
rotor blade is a key component of a typical wind turbine, and costs
about 20% of the value of the whole machine. The many distinct com-
ponents that make up a wind turbine each have their own monitoring
and management procedures. Here, we focus on wind turbine blades.
They have a lengthy lifespan, so engineers can benefit from inspection
and CM tools to keep track of the blades’ current state. CM and
discontinuous periodic inspection are the two main types of monitoring
technology that are analysed, often. Ping Monitor, Acoustic Emission,
and Ultrasonic Guided Wave Monitoring are examples of CM [28–30].
Internal and annual drone inspections are examples of discontinuous
inspection methods [31,32]. The areas that different technologies are
responsible for monitoring are also distinct, as are their roles. Failures

of the CM system are taken into consideration here.
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Fig. 1. Overview of the workflow examined in this paper.
Fig. 2. A simple PN model before and after transition firing.
Based on the above description, the overview of the workflow
examined in this paper is shown in Fig. 1. The asset management model
consists of three integral steps: the degradation modelling process, the
discovery of states through inspection and CM tools, and the selection
of repair strategies predicated on defect ratings.

2.2. Petri net concepts

PNs are directed, bipartite, graphical and mathematical modelling
tools, consisting of four simple elements: places, transitions, arcs, and
tokens. The PN is described by circular nodes, called places, and
rectangular nodes, called transitions, with a number of directed arcs
connecting places and transitions. The state of a PN is described by its
marking, which is defined according to the distribution of tokens in
the places. Tokens are moved from, or added to places based on firing
rules. A transition is enabled if all of its input places are marked with a
required number of tokens defined by the weight of the corresponding
connecting arcs. The transition can fire immediately or after a specified
delay. Firing removes an arc weight amount of tokens from each input
place and adds an arc weight amount to each output place [33,34].

To aid understanding, a simple example is given in Fig. 2. The left
side is the initial state. In this paper, Place 1 will be referred to as P1,
transition 1 as T1 and so on. In this PN, T1 has one input place, P1, and
two output places, P2 and P3. Since P1 is initially marked, the transition
is enabled and after a delay, it will fire. During firing, one token is
removed from P1 and one/two tokens added to P2 and P3 respectively,
due to the weight of the arcs connecting each of them to T1. The state
after firing is shown on the right side.

To simulate the CM tool error, a probabilistic transition is intro-
duced, which models different monitoring outcomes based on their
probabilities. Probability transitions add tokens to their output places
with a certain probability, which is associated with the corresponding
arcs, with the probability of all of the output arcs of a single proba-
bility transition adding to 1. Probabilistic transitions are described in
3 
Fig. 3. A PN model containing a probabilistic transition.

detail in [35]. When a probability transition fires, a token is randomly
added to one of its output places based on the assigned probabilities.
The probability of token movement is determined by the monitoring
accuracy of the monitoring system. For instance, with a monitoring
accuracy of 0.8, the probability of the control token moving to a place
indicating a true discovery is set to 0.8. Furthermore, it is assumed that
the probability of moving to both false states (either underestimation
or overestimation the severity of the reported degradation) is equal.
Hence, the probabilities of moving to the two false states would be
set to 0.1. All the output places of a probability transition will be
surrounded by a dashed ellipse.

A probabilistic transition example is shown in Fig. 3. When T1 fires,
the probabilities of the token moving to P1, P2 and P3 are 0.1, 0.8 and
0.1, respectively. A monitoring system represented by T1 has an 80%
probability of discovering the true state of the monitored blade, and a
10% probability of reporting false state 1 and false state 3, respectively.
If a token is added to P1, the state identified by the monitoring system
is state 1, and so on.
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Fig. 4. Proposed asset management model structure.
3. PN model of wind turbine blade asset management

In this section, the asset management model for wind turbine blades
is presented. It consists of four modules: a degradation module, an
inspection module, a CM module and a maintenance module. A tree
diagram of the proposed asset management model structure is shown
in Fig. 4.

According to the survey in [36], there are more than 17 differ-
ent types of defect that could occur to each blade. Possible defects
discovered during periodic inspections include leading edge erosion,
lightning delamination, trailing edge transverse laminate cracks and
other defects in the outer surface of the blade. Possible defects revealed
by CM include shear web cracking and delamination, bondline failure
along the spar box or shear web to spar, and other damage occurring
inside the blade. These named defects are called classified defects.
Unclassified defects are defined as defects that are unnamed or have
not been previously discovered. In this section, defects identified during
inspections and revealed by the CM system are denoted as i and j,
respectively. The condition of the wind turbine blade will be assigned
by engineers based on the severity of the observed defect. The industry
handbook that was adapted to develop the rating system shown in
Table 1 was published to provide a common understanding of words,
process, levels and concepts to all parties involved in the research
and development of wind turbine blades [37]. Repair strategies are
determined based on these overall ratings rather than the actual size
of the defect.

3.1. Degradation modules

In this section, the degradation modules of classified and unclas-
sified defects identified using inspection and revealed using CM are
presented.

3.1.1. Degradation relating to classified defects
This module models the degradation of wind turbine blades ac-

cording to defect growth and an instance of this module will be
included in the PN model for each classified defect i that is modelled.
4 
Places represent different defect size ranges, and transitions govern the
transition times between different states (see Fig. 5). The places from
Pi,1 to Pi,5 represent the physical growth of defect i from severity 1 to
severity 5. Transitions Ti,1 to Ti,4 model the progression of the defect
from one severity to next. Place Pi,x is marked when a change in defect
severity occurs and is connected to the inspection module to increase
the efficiency of the Monte Carlo simulation analysis of the PN, detailed
explanation will be provided in Section 3.2. A similar place appears in
the degradation module for each defect type that is discovered at the
same inspection as defect i.

3.1.2. Occurrence of unclassified defects
In real-world scenarios, unclassified defects may occur, which are

subsequently detected at inspection, for example, during the examina-
tion of photos taken by drones. These defects are unusual and tend to
lack established degradation parameters for characterizing the failure
progression. Consequently, defect ratings are assigned based on the
specific location of these defects. The module designed for simulating
the occurrence of an unclassified defect is presented in Fig. 6. Transition
Ti,35 is a probabilistic transition, and will fire after a time interval
defined according to industrial experience. Places, Pi,29, Pi,30, and Pi,31
symbolize unclassified defects that have emerged at different locations,
specifically at the root, midspan, and tip of the blade. Pi,x is marked to
indicate within the module that there is an unclassified defect to be
discovered at periodic inspection type x.

3.1.3. Degradation relating to defects identified using the CM system
A similar module to that used to model classified defects is adapted

to model the growth of defects whose presence is monitored using
the CM system, as shown in Fig. 7. However, in this case, a place
corresponding to Pi,x is not required, since the operation of the CM
system must be modelled at regular, short intervals.

3.2. Periodic inspection modules

Inspection aims to identify different types of defects, alongside
randomly occurring, unclassified defects. Fig. 8 to Fig. 13 provide a



W. Wu et al. Reliability Engineering and System Safety 252 (2024) 110478 
Table 1
Defect ratings and corresponding repair actions.
Source: Adapted from [37].
Ratings Defect description Repair action

Rating 1 No defect or cosmetic damage No need for immediate action

Rating 2 Outside of tolerance, but low
potential for growth

Repair if nearby defects are to be
repaired (Type I)

Rating 3 Outside of tolerance where there
is potential for growth

Repair in 10–16 months (Type II)

Rating 4 Serious defect outside of tolerance
affecting structural integrity

Monitor regularly until the repair
performed in 3 months (Type III)

Rating 5 Critical defect with severe
structural integrity loss

Stop turbine and repair/replace
(Type IV)
Fig. 5. PN describing the growth of classified defect i.
Fig. 6. PN describing the occurrence of an unclassified defect.
Fig. 7. PN describing the growth in severity of defect j, whose presence is monitored using the CM system.
visual representation of the inspection process within the PN modelling
framework.

3.2.1. Recording defect state changes
Although, in practice, inspections take place periodically, within

the PN an inspection is only modelled if a change in state will be
5 
discovered, which is the minority of inspections. The place Pi,x, already
depicted in Figs. 5 and 6, registers the occurrence of a change in defect
severity that should be discovered at periodic inspection type x. The
PN module shown in Fig. 8 marks place Px,𝜎 , which is used to indicate
that at least one of the defects that is tracked at the periodic inspections
has experienced at least one change in severity. If P is empty when
i,𝜎
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Fig. 8. PN to record defect state changes.

Fig. 9. PN describing the timing of inspection process.

Pi,x becomes marked, Ti,n=1 immediately empties Pi,x and marks Px,𝜎 to
signify that at least one change in defect severity has occurred since the
last inspection. If Px,𝜎 is already marked, meaning that there has already
been at least one change in the severity of at least one defect since
the last inspection, then Ti,n will unmark Pi,x. Ti,n>1 ensures that Px,𝜎
contains at most a single token. A similar module exists for all defects
whose presence is discovered and tracked at periodic inspections type
x, with the place P being common to them all.
x,𝜎

6 
3.2.2. Timing of inspections
Fig. 9 shows the inspection process for defect i, which is discovered

at period inspection x. The delay time associated with Tx,𝜃 is periodic
inspection interval and the delay time associated with Tx,𝜖 , 𝜖, is a
modelling delay, which in practice is equivalent to 0, but has an
infinitely small delay for the purpose of the modelling in order to
ensure that transitions fire in the correct order, with all inspections
carried out before Ti,𝜖 fires and ends the inspection. The inspection only
happens at 𝜃, 2𝜃 and so on, meaning that the delay associated with Tx,𝜃
must be set to ensure a firing time that is a multiple of 𝜃. Px,𝜃 is thus
marked when an inspection is being carried out, and Px,I is marked
between inspections. Although inspections take place in practice at
regular intervals, within the PN model the inspection only takes place if
there is a change in defect state to be discovered, which is achieved by
connecting Px,𝜎 to Tx,𝜃 . This increases the efficiency of the simulation
used to analyse the PN, since changes in defect state generally occur
less frequently than the inspections and simulation time is not wasted
on the modelling of featureless inspections.

3.2.3. Identifying degradation relating to classified defects
3.2.3.1. Inspection reveals change of state of classified defect. Fig. 10
shows how a periodic inspection process reveal the rating of defect i.
Ti,5 to Ti,9 are immediate transitions that represent the identification
of the severity of a defect at inspection and will fire only when an
inspection is taking place (Px,𝜃 is marked) and the defect has not already
been identified and rated at this particular level (with one of Pi,6 to Pi,10
already marked), with Pi,6 to Pi,10 denoting the rating values associated
with each of the five severities of defect i, which are observed at
inspection.

3.2.3.2. Contribution of classified defects to overall blade rating. The
severities of all defects are taken into account when determining the
blade ratings. Fig. 11 shows how the five observed severities of defect
i, represented by Pi,6 to Pi,10, are used to identify a corresponding blade
rating from 1 to 5, modelled by Pi,16 to Pi,20. The place relating to the
observed severity of defect i retains its original marking and Pi,11 to
Pi,15 ensure that Pi,16 to Pi,20 can each hold at most one token relating
to each defect i. This means that, for example, when two defects are
modelled, these places will contain a total of two tokens, one for each
defect, and the cumulative marking of these five places will be used to
determine the overall blade rating.

3.2.3.3. Updating revealed state for classified defects. The groups of
places relating to the severity of defect i (Pi,6 to Pi,10) and the overall
blade rating (Pi,16 to Pi,20) must each contain only one token relating
to the severity of defect i to ensure that when a new level of degra-
dation is detected during an inspection only the more severe level of
Fig. 10. PN describing the inspection process for defect i.
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Fig. 11. PN describing the determination of the contribution of defect i to the overall blade rating.
Fig. 12. PN module updating the rating identified for defect i during the inspection process.
degradation is stored within the PN model. This process is handled by
the module shown in Fig. 12. Upon the detection of an increased level
of degradation during inspection, this module keeps the marking of the
place representing the newly identified defect rating while concurrently
unmarking places corresponding to previously identified defect ratings.
The marking status of each individual defect (Pi,6 to Pi,10), and the
total ratings (Pi,16 to Pi,20) are all updated. For instance, if the current
identified state of defect i transitions from rating 2 to rating 3, meaning
that Pi,8 and Pi,18 are marked by the modules shown in Fig. 10 and Fig.
11, then Pi,7 and Pi,17 must be emptied. This is performed by the firing
of Ti,19. The other transitions in this module cover the other possible
cases.

3.2.4. Identifying unclassified defects at inspection
Fig. 13 shows the inspection process identifying the existence of

unclassified defects. Unlike classified defects, for which degradation
is understood and can be modelled, unclassified defects are merely
identified to exist or not. Therefore, the module modelling inspection
related to unclassified defects can be used to directly identify the
contribution of the defect to the overall blade rating. Px,𝜃 indicates
periodic inspection of type 𝑥 is taking place and T to T model
i,36 i,38

7 
Fig. 13. PN describing the inspection process considering unclassified defects.
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Fig. 14. PN describing the CM system degradation process.
Fig. 15. PN describing the CM process taking into consideration the degradation of the CM system.
Fig. 16. PN describing the process of a CM system revealing defects.
the discovery of defects at the root, midspan and tip of the blade
respectively, which can be immediately identified as contributing to a
particular rating. Typically, defects occurring at the root and tip tend
to be more severe, and as such, they contribute to a rating of 4, while
defects at the midspan result in a rating of 3.

3.3. Condition monitoring (CM) modules

Some defects can only be identified through the continuous mon-
itoring of the blade condition by a CM system. This section presents
the PN module dedicated to describing the CM system, as shown from
Fig. 14 to Fig. 17. Notably, the module incorporates the consideration
of the reliability of the monitoring system.
8 
3.3.1. Degradation of the CM system
The degradation process of the CM system is shown in Fig. 14. The

monitoring accuracy of the CM system gradually deteriorates over time
due to an increasing probability of sensor failures [24]. Pk,1 to Pk,4
denote the four states of the CM system and Tk,1 to Tk,3 model the
transition of the CM system between these four states. As the CM system
degrades, its accuracy reduces. The states of Pk,1 to Pk,4 are used by
the modules that are used to reveal the occurrence of defects that are
identified by the CM system. This is discussed in Section 3.3.2.

3.3.2. CM reveals defect
Fig. 15 shows the CM process for a defect j whose degradation is

described in Section 3.1.3. T to T represent the CM system, which
j,5 j,9
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Fig. 17. PN module updating the rating identified by the CM process.
Fig. 18. PN describing repair following the identification of degradation by the CM system.
fires periodically at short intervals, since compared to periodic inspec-
tions, CM systems can provide more frequent defect detection. These
transitions are linked to five different probabilistic delay transitions,
each distinguished by a unique colour. Tj,5 and Tj,9 are linked to two
potential ratings, while Tj,6 to Tj,8 are linked to three, with the output
places relating to the possible readings (accurate or inaccurate), that
may be reported by the CM system. A similar module exists for each of
the CM system severities that are modelled by the PN shown in Fig. 14,
with the probabilities of identifying the rating of defect j correctly or
incorrectly being specified according to the level of degradation of the
CM system. Therefore, for example, when the CM system is degraded
to level Pk,s (where s is 1 to 4, as shown in Fig. 14), and defect j
is of severity 2 (meaning Pj,2 is marked) then Tj,6 will be enabled
and fire, marking either Pj,6, Pj,7 or Pj,8. Which one of the three is
marked depends on the probability of the CM system underestimating
the severity (marking Pj,6), accurately identifying the severity (marking
P ) and overestimating the severity (P ).
j,7 j,8

9 
In the event that the CM system provides accurate states, the in-
hibitor arcs stemming from Pj,6 to Tj,5, Pj,7 to Tj,6, Pj,8 to Tj,7, Pj,9 to Tj,8,
and Pj,10 to Tj,9 function to prevent the repetitive firing of Tj,5 to Tj,9.
However, if the CM system overstates the detected ratings, the inhibitor
arcs extending from Pj,7 to Tj,5, Pj,8 to Tj,6, Pj,9 to Tj,7, and Pj,10 to Tj,8
will also inhibit the repetitive firing of Tj,6 to Tj,9. This indicates that
when the CM system overestimates the defect ratings, a conservative
approach is adopted for safety. Consequently, the system will prema-
turely alert the engineer to perform potentially unnecessary repairs,
resulting in additional, unnecessary repair expenses. Conversely, if the
CM system underestimates the defect state, the monitoring transitions
(Tj,5 to Tj,9) will not be inhibited. In this scenario, the CM system will
continue to operate until it identifies an accurate or overestimated
outcome. Underestimated outcomes mean that the CM may fail to
promptly notify engineers to address the defect, which could also lead
to unwarranted costs.

The tokens in Pj,6 to Pj,10 serve as indicators of the CM system’s
health status to a certain degree. If the count of tokens in any of
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Fig. 19. Average number of different repair actions under different runs of simulation.

these places, ranging from Pj,6 to Pj,10, exceeds 1, it signifies an un-
derestimation error by the monitoring system. Conversely, if the token
combination is 0 and 1 (for instance, Pj,6 contains 0 tokens, while Pj,7
contains 1 token), it indicates an overestimation error made by the
monitoring system. In reality, the ratings reported by the CM system
would indicate its condition. Based on the PN design here, it would be
possible to extend the PN to infer CM system condition as part of a fault
diagnosis process in future.

3.3.3. Contribution of defects revealed by CM to overall blade rating
After the CM system has identified the severity of defect j, the blade

rating must be updated, as shown in Fig. 16. Pj,11 to Pj,15 prevent the
repetitive firing of Tj,10 to Tj,14. Tokens located in Pj,16 to Pj,20 serve to
indicate the current blade rating revealed by the CM system, which may
diverge from the true state indicated in Pj,1 to Pj,5 due to monitoring
error.
10 
3.3.4. Updating revealed state for defects identified by CM
Fig. 17 shows a state update module that serves the same purpose

as that shown for periodic inspections in Fig. 12. However, a key
difference is that the total count of ratings is not updated in this case
since only one rating is provided by the CM system.

3.4. Repair module

When defects are detected in terms of their size by the inspection
and CM systems, engineers will assign ratings to these defects based
on their severity. Subsequently, maintenance decisions will be made
in accordance with the criteria outlined in Table 1. As previously
mentioned, Pi,16 to Pi,20 in the inspection module and Pj,16 to Pj,20 in
the CM module are linked to the repair module. The repair actions are
determined by the number of tokens present in these places. While the
places and transitions of the repair modules within the inspection and
CM modules are independent, their design is the same. For brevity, only
the repair module incorporated within the CM module is depicted, as
illustrated in Fig. 18.

Transition Tj,25, associated with rating 2 defects, cannot be fired
independently; it requires notification of other repair actions. Engineers
typically address rating 2 defects only when more severe defects also
require repair. Additionally, from an economic perspective, it is often
more cost-effective to address all defects collectively. Therefore, in the
PN design, repairs for lower-rated defects are automatically initiated
when repairs for more severe defects commence. For instance, Pj,24
(indicating the initiation of a rating 5 defect repair) and Pj,19 (signifying
the presence of a rating 4 defect) are linked to Tj,30. When an engineer
initiates the repair of a rating 5 defect, Tj,30 will fire and add a token
to Pj,23, thereby initiating the repair process for a rating 4 defect. In
this paper, rating 2, rating 3, rating 4 and rating 5 defects correspond
to different repair strategies and are named Type I, Type II, Type III
and Type IV respectively, as shown in Table 1. Transitions Tj,26 and
Tj,27 represent distinct required waiting periods for repair conditions,
which are provided in Table 1. Transition Tj,28, connected with rating
5 defects, requires immediate repair and is therefore represented by an
immediate transition. Pj,25 to Pj,28 are utilized to prevent the repetitive
firing of Tj,25 to Tj,28. The addition of tokens to Pj,21 to Pj,24 indicates
the initiation of the repair action. Transitions Tj,31 to Tj,34 are reset
transitions, representing the ongoing maintenance action. If any of
these transitions are fired, the defect reverts to its initial condition,
signifying that the tokens in the whole module will be reset to their
initial state, including Pj,1 to Pj,5 (defect severities), Pj,6 to Pj,10 (reported
defect ratings) and Pj,16 to Pj,20 (revealed blade ratings). The reset
transitions will do the same for defect i discovered by inspections.
Fig. 20. The average number of repair actions over its lifetime recorded (a) in the inspection module, (b) in the CM module.
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Fig. 21. (a) Probability distribution in true state 1. (b) Probability distribution over time in true state 1. (c) Probability distribution in true state 2. (d) Probability distribution
over time in true state 2. (e) Probability distribution in true state 3. (f) Probability distribution over time in true state 3. (g) Probability distribution in true state 4. (h) Probability
distribution over time in true state 4.
Fig. 22. The overall monitoring accuracy of different states. Marked numbers on the bars represent the monitoring accuracy of each state.
4. Results

4.1. Assumptions and model input parameters

In Section 3, a general asset management model for wind turbine
blades is presented, where different modules are introduced, poten-
tially covering various wind turbines, different defect types, different
periodic inspection types, and different CM systems. In this section, a
case study is provided to illustrate the application of the model. Key
assumptions are being made since limited data and sources on wind
turbine failures were available [38]:
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• The defect evolution data utilized is sourced from historical fa-
tigue load data due to the absence of blade failure data. The
delay times for degradation transitions are sampled from Weibull
distributions with parameters derived from these data. Transition
firing follows a Weibull distribution with scale parameter 𝜂 and
shape parameter 𝛽. Approaches for estimating the Weibull param-
eters can be classified as manual or computational methods [39].
Manual methods perform better for small samples. Additional
details on the methodology for acquiring stochastic distribution
parameters can be found in [33].

• Three different types of defect are taken into account in this case
study. Two of them appear on the outer surface of the blade,
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Fig. 23. Probability distribution of state 1 discovery time gap (a) in total, (b) Group 1, (c) Group 2 and (d) Group 3; probability distribution of state 2 discovery time gap (e) in
total, (f) Group 1, (g) Group 2 and (h) Group 3; probability distribution of state 3 discovery time gap (i) in total, (j) Group 1, (k) Group 2 and (l) Group 3; probability distribution
of state 4 discovery time gap (m) in total, (n) Group 1, (o) Group 2 and (p) Group 3; probability distribution of all states discovery time gap (q) in total, (r) Group 1, (s) Group
2 and (t) Group 3.
which is monitored at a single periodic inspection. The third
defect appears inside the blade and is monitored by the CM tool.
Also, some unknown defect may occur randomly, which is also
taken into account in this paper. The general structure of the
model means it can be easily expanded to include further defect
types and further inspection.

• The CM system degradation state transitions are governed by
constants in the absence of actual data. The initial accuracy
of the monitoring system is set to 0.9, and it will gradually
decrease to 0.5. This path of monitoring accuracy degradation
is considered as path 2. Further details are given in Section 4.6,
12 
which investigates other rates of degradation of the monitoring
accuracy.

• It is assumed that the CM system cannot overstate or under-
estimate the defect severity by more than one rating, and the
probabilities of both overestimation and underestimation are con-
sidered equal.

• It is assumed that the repair time for defects of different severity
levels is governed by constants. The state after the repair is as
good as new over time.

• All input parameters in this study have been standardized to
unit one in proportion to the 20-year lifespan of wind turbine
blades [2].
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Fig. 24. Different monitoring accuracy paths of the monitoring system.

The input parameters and description of the transitions and places
are given in Appendix A.

4.2. Convergence analysis

Monte Carlo simulation is employed to analyse the developed PNs.
The convergence criterion is determined by whether the count of
distinct repair actions based on the results of the monitoring system
reaches a constant or stable value. The evolution of the number of
different repair actions over multiple runs is depicted in Fig. 19.

Based on the results displayed above, convergence has been
achieved concerning the count of distinct repair actions. The total num-
ber of simulations has been specified at one million for all subsequent
calculations, unless stated otherwise.

4.3. Quantification of different repair actions

Throughout the operational lifespan of a wind turbine blade, the
model enables us to record the total count of distinct repair actions
conducted. Concerning the defects monitored by inspection, Fig. 20(a)
illustrates the average number of different repair actions. Type I and
Type II repairs occur more frequently, while Type III and Type IV
repairs are relatively less common. Since Type I and II generally incur
lower repair costs, while Type III and IV have significantly higher
repair costs, it is crucial for the monitoring system to promptly notify
engineers of any detected failures. Engineers can then prioritize and
carry out repairs to minimize the risk of defects degrading and incurring
higher costs.

In Fig. 20(b), which represents the defects monitored by CM, no
Type I repair actions are observed. This is because Type I repairs are
exclusively conducted when more severe nearby defect is required to
repair. Given that there is only one type of defect in the CM module,
Type I actions cannot be initiated based on engineering knowledge
provided in Table 1. The predominant repair actions are of Type II,
while Type IV actions are less frequent and constitute the minority.

4.4. Assessing the monitoring system’s reliability through probability distri-
bution of state discovery

Monitoring outcomes are significantly influenced by the reliability
or monitoring accuracy of the CM system. As discussed in Section 3.3,
when the system detects defects, three potential scenarios can occur:
underestimation, accurate reporting, and overestimation. Therefore,
the identified state by the monitoring system may differ from the
true state. The designed CM module is used for a comprehensive
representation of misreporting.
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Probability distributions of discovered states via the CM system for
different true states are provided, as shown in Fig. 21. Please note
that, in line with the aforementioned assumptions, false reporting can
only result in a single state difference. This means that, for example,
when state 2 is the true state, only states 1, 2, and 3 can be ab output
of the CM system. Referring to Fig. 21(a), it is evident that state 1
reporting exhibits an overall accuracy rate of approximately 87.96%
with a probability of incorrect reporting of state 2 of 12.04%. As
shown in Fig. 21(b), the monitoring accuracy progressively declines
over time in accordance with the aging process following monitoring
accuracy path 2, as depicted in Fig. 24. The overall monitoring accuracy
of state 2, as shown in Fig. 21(c), is approximately 89.80%, with a
probability of incorrect reporting to states 1 and 3 standing at 5.39%
and 4.81%, respectively. This accuracy rate is consistent with that
observed for state 1. Fig. 21(d) reveals that, initially, False state 1
constitutes a significant portion and exhibits a declining trend, followed
by a gradual rise after reaching a minimum point. Error reporting for
state 3 demonstrates a gradual upward trajectory. Similar patterns are
also observed for state 3 and state 4.

Fig. 22 provides a comprehensive summary of the overall monitor-
ing accuracy for different states, offering engineers a means of assessing
the monitoring accuracy and state identification. Generally, the overall
monitoring accuracy exhibits a decreasing trend from state 1 to state 5,
with poorer states being identified with a lower monitoring accuracy.

4.5. Assessing the monitoring system’s reliability through state discovery
time

Time is a critical factor, as the inability to detect defects promptly
may result in their further degradation, potentially incurring substan-
tial costs. Furthermore, aside from monitoring accuracy, incorrect re-
porting introduces disparities in reported times compared to the actual
degradation processes. Investigating this time gap holds significant
value in expediting engineers’ decision-making processes.

We have categorized the monitoring scenarios into three distinct
groups. Group 1 signifies that the CM system detects degradation as
it occurs, resulting in accurate and timely reporting. Group 2 indicates
that the CM system detects degradation when no degradation has oc-
curred. Group 3 implies that the CM system fails to detect degradation
when it does indeed take place. For a more detailed illustration of this
grouping, let us consider the example of state 2. In this instance:

• Group 1 represents the first monitoring interval after the wind
turbine blade’s defect has progressed from state 1 degradation to
state 2, and the CM system successfully detects this change.

• Group 2 denotes a situation where the current state is state 2, but
the CM system erroneously detects state 3 instead.

• Group 3 signifies that the current state is state 3, yet the CM
system detects state 2.

To compute this time gap, we take the difference between the time
when the actual state occurs and the time at which the monitoring
system correctly or incorrectly reports. It is important to note that
Group 2’s monitoring reporting time will be set to 0 because there
is no corresponding time for the true state, meaning that Group 2’s
monitoring reporting time is equivalent to the time step at which the
CM system misreports a state. Consequently, Group 2’s time gap is a
positive value.

For Group 1, the time gap is either 0 or equals the negative monitor-
ing interval. The reason for a time gap of 0 is that when the calculation
commences, the first output time step of the program coincides with
the first time step at which the monitoring transition fires in the PN
module. Consequently, for the initial appearance of state 1, the time
gap is 0, while for subsequent instances, it represents a negative value
equivalent to the monitoring interval.

Group 3’s time gap, on the other hand, is a negative integer multiple
of the monitoring interval. The results are presented in figures in
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Fig. 25. Average number of different repair actions under different monitoring accuracy paths.
Fig. 26. Average time gap of Group 2 and Group 3 under different monitoring accuracy
paths.

Fig. 23. The discovery time gap for state 1 is illustrated from Fig. 23(a)
to (d). Analyzing Fig. 23(a), it is evident that Group 1 comprises the
largest portion of the overall distribution, aligning with the simulation
outcomes presented in the previous section. This indicates that the
system operates normally with a high likelihood. Within Group 1, the
probability of having a time gap of zero slightly exceeds −0.0125.
Group 2 exhibits a broader distribution, spanning from 0.0125 to 1.
Among these values, the highest probability is observed within the
range of 0.0125 to 0.1, followed by the interval between 0.6 and
0.7. This suggests that when the actual state is state 1, the erroneous
reporting of state 2 primarily occurs during the early and middle
stages of the simulation run. For Group 3, the distribution range is 0,
signifying that there is no delay for state 1 reporting. Indeed, as for the
designed PN, there is no possibility of delay for state 1 reporting.

The discovery time gap for state 2 is presented from Fig. 23(e) to
(h). When comparing this to the discovery time gap for state 1, several
distinctions become evident. In Group 1, only a time gap of −0.0125
is observed, indicating that state 2 is detected nearly immediately
upon its occurrence. Group 2, on the other hand, displays a broader
distribution, with the highest range being from 0.9 to 1.0, although
the most concentrated part falls within the range of 0.3 to 0.9. This
suggests that, in Group 2, reporting state 3 when the actual state is
state 2 predominantly occurs within these time intervals. Within Group
3, the majority of time gaps are distributed at twice the monitoring
interval. While other delays may occur, their probability diminishes as
the length of the delay increases.
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The discovery time gaps for state 3 and state 4 exhibit a similar pat-
tern, with the primary distinction being the expansion of the time span
in which Group 2 occurs most frequently. This observation aligns with
the expectation that severe failure states typically manifest relatively
later in the monitoring process.

In essence, the results presented here provide insights not only into
the presence of errors in the monitoring system but also into the extent
of its inaccuracy.

4.6. Examining the influence of the monitoring system’s failure rate

Clearly, the failure of monitoring systems has a significant impact
on the outcomes of asset management. Therefore, it is essential to
understand how the failure rate of monitoring systems affects asset
management results. We define the monitoring accuracy path to mirror
the failure rate of the monitoring system. When the monitoring accu-
racy decreases at a faster rate, it indicates a higher failure rate for the
monitoring system. Four monitoring accuracy paths are considered, as
shown in Fig. 24. Path 1 maintains a constant monitoring accuracy
over the entire lifetime. In contrast, the other three paths exhibit
declining monitoring accuracy at varying rates. Path 4 signifies the least
reliable monitoring system, experiencing the most significant decline in
monitoring accuracy over time.

Fig. 25 illustrates the average number of different repair actions
under various monitoring accuracy paths. It is evident that as aging
accelerates, the number of Type II repair actions decreases, while
the number of Type III and Type IV repair actions increases. When
monitoring accuracy is high, the system can promptly detect degra-
dation and notify engineers for timely maintenance, thus preventing
further deterioration of the defect. It is crucial not to underestimate
the increase in the number of Type III and Type IV repair actions. Their
associated maintenance costs will escalate significantly in comparison
to Type II repairs [40].

Fig. 26 presents the average time gap of Group 2 and Group 3 under
various monitoring accuracy paths. It is observed that as the system
ages more rapidly, the average time gap for both Group 2 and Group 3
increases. This indicates that the extent of misreporting becomes more
pronounced as the system ages more rapidly.

5. Discussion

In this study, all input parameters have been standardized to a
unit value in proportion to the lifespan of wind turbine blades due
to the lack of data source. Therefore, the outputs of the PNs lack a
direct physical interpretation in reality. For instance, the number of
different repair actions in Fig. 20 represents the number of repairs over
the normalized lifetime of wind turbine blades. However, the ratio of
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the number of different repair actions is meaningful, as it provides a
comparison between different strategies over the actual lifetime of wind
turbine blades.

In real-life applications, identifying failure of the monitoring system
can be challenging. Thus, the assessment of the monitoring system’s
reliability relies on assumed failure rates of the monitoring system
in this study. The impact of the monitoring system’s reliability on
the asset management modelling output is reflected in the probability
distribution of state discovery and state discovery time. The study also
explores the influence of different failure rates on the number of dif-
ferent repair actions and the average time gap between the time when
the actual state occurs and the misreporting time. These results provide
valuable insights into the importance of considering the reliability of
the monitoring system.

An enhancement to this methodology could involve using informa-
tion theory to evaluate the expected information gain of the sensor
network and employing PNs to model sensor network failures. This
approach would provide a more accurate assessment of how the mon-
itoring accuracy of the CM system changes over time [42], potentially
enhancing the accuracy and practicality of the current study.

6. Conclusions

This paper introduces the development of an asset management
PN model tailored for wind turbine blades, which integrates the SHM
process and its reliability. The model is designed to incorporate indus-
trial guidelines, enhancing its alignment with practical scenarios. The
study conducted a comprehensive investigation into the influence of
monitoring system reliability on asset management outcomes.

In summary, the paper presents a thorough analysis of true dis-
covery states and incorrect reporting over time. This analysis shines
a spotlight on the errors made by monitoring systems and their under-
lying causes. Additionally, the paper highlights the time gap associated
with misreporting, illustrating the extent of these errors. Lastly, the
study explores the impact of aging rates on reliability indicators. The
findings emphasize the critical importance of reliability, providing
valuable guidance for practical applications in the wind energy sector.
In the future, the PN modules will undergo further enhancements by
incorporating the failure rate of the monitoring accuracy evaluation

scheme [42]. Additionally, maintenance cost considerations can be
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taken into account. In the case of obtaining detailed CM system failure
data, it is more realistic to use stochastic PNs to describe the CM system
failure process, rather than using a constant transition rate to define the
CM system failure process. Stochastic CM module will generate more
accurate monitoring accuracy paths of the monitoring system. Finally,
incorporating electricity production into the study would enable engi-
neers to balance operational and management costs with the annual
energy production of wind farms. Future research efforts will aim to
integrate electricity production into the proposed asset management
modelling.

CRediT authorship contribution statement

Wen Wu: Writing – original draft, Visualization, Validation,
Software, Methodology, Investigation, Formal analysis, Conceptual-
ization. Darren Prescott: Writing – review & editing, Validation,
Supervision, Methodology, Investigation, Conceptualization. Rasa
Remenyte-Prescott: Writing – review & editing, Validation, Supervi-
sion, Project administration, Funding acquisition, Conceptualization.
Ali Saleh: Writing – review & editing, Validation, Software,
Resources. Manuel Chiachio Ruano: Writing – review & editing,
Validation, Supervision, Resources.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work has received funding from the European Union’s Horizon
2020 research and innovation program under the Marie Skłodowska-
Curie grant agreement No. 859957.

Appendix A. Summary of input parameters and places used in the
PN models

See Tables A.2–A.5.
Table A.2
Summary of input parameters and places used in the CM PN module.

Transition name Transition type Transition parameters Action

Tj,1 Weibull distribution 𝜂 = 0.4935, 𝛽 = 2.9000 [33,41] Failure state transition
Tj,2 Weibull distribution 𝜂 = 0.1595, 𝛽 = 2.1283 [33,41] Failure state transition
Tj,3 Weibull distribution 𝜂 = 0.3838, 𝛽 = 2.0020 [33,41] Failure state transition
Tj,4 Weibull distribution 𝜂 = 0.4935, 𝛽 = 2.9000 [33,41] Failure state transition
Tj,5 Probability transition 𝐵Pj,6 = 0.9, 𝐵Pj,7 = 0.1, 𝐹 = 0.0125 Perform monitoring

Tj,6 Probability transition 𝐵Pj,6 = 0.05, 𝐵Pj,7 = 0.9, 𝐵Pj,8 = 0.05, 𝐹 = 0.0125 Perform monitoring

Tj,7 Probability transition 𝐵Pj,7 = 0.05, 𝐵Pj,8 = 0.9, 𝐵Pj,9 = 0.05, 𝐹 = 0.0125 Perform monitoring

Tj,8 Probability transition 𝐵Pj,8 = 0.05, 𝐵Pj,9 = 0.9, 𝐵Pj,10 = 0.05, 𝐹 = 0.0125 Perform monitoring

Tj,9 Probability transition 𝐵Pj,9 = 0.1, 𝐵Pj,10 = 0.9, 𝐹 = 0.0125 Perform monitoring

Tj,10-Tj,14 Immediate transition F = 0 State discovery
Tj,15-Tj,24 Immediate transition F = 0 State updating
Tj,25 and Tj,28 Immediate transition F = 0 Waiting for repair
Tj,26 Uniform distribution 𝐷1 = 0.05, 𝐷2 = 0.075 [37] Waiting for repair
Tj,27 Uniform distribution 𝐷1 = 0.00625, 𝐷2 = 0.0125 [37] Waiting for repair
Tj,29 and Tj,30 Immediate transition F = 0 State updating
Tj,31-Tj,34 Constant number F = 0.003125 Perform repair
Tk,1 Constant number F = 0.3 Failure state transition
Tk,2 Constant number F = 0.3 Failure state transition
Tk,3 Constant number F = 0.3 Failure state transition

Note: 𝐵 denotes the probability of probability transitions, and the subscript of 𝐵 denotes the specified place. F denotes the firing interval. 𝐷
denotes the upper and lower bounds of uniform distributions.
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Table A.3
Description of places used in the CM PN module.

Place name Description

Pj,1-Pj,5 Actual defect severity of Rating 1, 2, 3, 4 and 5
Pj,6-Pj,10 Monitored defect severity by the CM system
Pj,11-Pj,15 Inhibit repeated reporting by the CM system
Pj,16-Pj,20 Identified defect ratings by the CM system
Pj,21-Pj,24 Start repair
Pj,25-Pj,28 Inhibit repeated repair actions
Pk,1-Pk,4 Degradation states of the CM system

Table A.4
Summary of input parameters and places used in the inspection PN module.

Transition name Transition type Transition parameters Action

Ti,1 Weibull distribution 𝜂 = 0.4935, 𝛽 = 2.9000 [33,41] Failure state transition
Ti,2 Weibull distribution 𝜂 = 0.1595, 𝛽 = 2.1283 [33,41] Failure state transition
Ti,3 Weibull distribution 𝜂 = 0.3838, 𝛽 = 2.0020 [33,41] Failure state transition
Ti,4 Weibull distribution 𝜂 = 0.4935, 𝛽 = 2.9000 [33,41] Failure state transition
Ti,5-Ti,9 Immediate transition F = 0 Perform inspection
Ti,10-Ti,14 Immediate transition F = 0 State discovery
Ti,15-Ti,24 Immediate transition F = 0 State updating
Ti,25 and Ti,28 Immediate transition F = 0 Waiting for repair
Ti,26 Uniform distribution 𝐷1 = 0.05, 𝐷2 = 0.075 [37] Waiting for repair
Ti,27 Uniform distribution 𝐷1 = 0.00625, 𝐷2 = 0.0125 [37] Waiting for repair
Ti,29-Ti,30 Immediate transition F = 0 State updating
Ti,31-Ti,34 Constant number F = 0.003125 Perform repair
Ti,35 Probability transition 𝐵Pi,29 = 0.3, 𝐵Pi,30 = 0.2, 𝐵Pi,31 = 0.5, 𝜂 = 4.05, 𝛽 = 3.5 Perform inspection
Ti,36-Ti,38 Immediate transition F = 0 State discovery
Tx,𝜃 Constant number F = 0.15 Start inspection
Tx,I Constant number F = 0.001 Waiting for next inspection
Ti,n=1 Immediate transition F = 0 State updating
Ti,n>1 Immediate transition F = 0 State updating

Table A.5
Description of places used in the inspection PN module.

Place name Description

Pi,1-Pi,5 Actual defect size range of Rating 1, 2, 3, 4 and 5
Pi,6-Pi,10 Identified defect ratings by the inspection
Pi,11-Pi,15 Inhibit repeated reporting by the inspection
Pi,16-Pi,20 Identified blade ratings by the inspection
Pi,21-Pi,24 Start repair
Pj,25-Pj,28 Inhibit repeated repair actions
Pi,29 Unclassified defect at root
Pi,30 Unclassified defect at mid span
Pi,31 Unclassified defect at tip
Pi,x Defect i state change occurs
Px,𝜎 At least one defect has changed state at least once
Px,I Between inspection
Px,𝜃 Inspection occurring
16 
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