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ABSTRACT 30 
Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. 31 
Inspired by frequentist probability and the work of R.A. Fisher, genome-wide association studies (GWAS) 32 
extract information using averages and variances from genotype-phenotype datasets. Averages and 33 
variances are legitimated upon creating distribution density functions obtained through the grouping of 34 
data into categories. However, as data from within a given category cannot be differentiated, the 35 
investigative power of such methodologies is limited. Genomic Informational Field Theory (GIFT) is a 36 
method specifically designed to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. 37 
Whilst GWAS determines the extent to which genes are involved in phenotype formation (bottom-up 38 
approach), GIFT determines the degree to which the phenotype can select microstates (genes) for its 39 
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subsistence (top-down approach). Doing so requires dealing with new genetic concepts, a.k.a. genetic 40 
paths, upon which significance levels for genotype-phenotype associations can be determined. By using 41 
different datasets obtained in ovis aries related to bone growth (Dataset-1) and to a series of linked 42 
metabolic and epigenetic pathways (Dataset-2), we demonstrate that removing the informational barrier 43 
linked to categories enhances the investigative and discriminative powers of GIFT, namely that GIFT 44 
extracts more information than GWAS. We conclude by suggesting that GIFT is an adequate tool to study 45 
how phenotypic plasticity and genetic assimilation are linked. 46 

 47 

NEW & NOTEWORTHY 48 
The genetic basis of complex traits remains challenging to investigate using classic GWASs. Given the 49 
success of gene editing technologies this point needs to be addressed urgently since there can only be 50 
useful editing technologies if precise genotype-phenotype mapping information is available initially. GIFT 51 
is a new mapping method designed to increase the investigative power of biological/medical datasets 52 
suggesting, in turn, the need to rethink the conceptual bases of quantitative genetics.    53 

Keywords: Complex traits; GIFT; genotype-phenotype mapping studies; GWAS  54 

 55 

INTRODUCTION 56 
Identifying associations between phenotype and genotype is the fundamental basis of genetic analysis.  57 
The development of high-density genotyping and whole genome sequencing has enabled DNA variants to 58 
be directly identified and Genome-Wide Association Studies (GWASs) have become the method of choice 59 
for mapping genotype to phenotype in large populations of unrelated individuals. GWAS have been 60 
employed in many species, and especially in the study of human disease (1). By 2021 the NHGRI-EBI GWAS 61 
Catalog listed 316,782 associations identified in 5149 publications describing GWAS results (2). 62 
Additionally, extensive collection of data has been initiated through efforts such as the UK Biobank (3), 63 
Generation Scotland (4) and NIH All of Us research program (https://allofus.nih.gov/) in the expectation 64 
that large-scale GWAS will elucidate the basis of human health and disease and facilitate precision 65 
medicine. 66 
 67 
While genomic technologies have advanced rapidly, statistical models used to analyze genetic data are 68 
still based on the models developed by Fisher more than 100 years ago (5, 6). GWASs essentially make 69 
use of the Fisher method of partitioning genotypic values by performing a linear regression of phenotype 70 
on marker allelic dosage (7). Regression coefficients estimate the average allele effect size, and the 71 
regression variance is the additive genetic variance due to the locus (8). However, an ongoing debate exists 72 
over whether the present analysis paradigm in quantitative genetics is at its limits for truly understanding 73 
complex traits, namely traits resulting from many genes each with very small effect size (9). As a result, 74 
one may wonder whether alternative statistical model(s) could be invented and used to determine 75 
genotype-phenotype mappings.  76 
 77 
GWASs are fundamentally linked to frequentist probabilities that, defined through relative frequencies, 78 
determines the validity of statistical inferences. In practice, frequentist probabilities are generated 79 
through the grouping of data into bins or categories to generate a bar chart, that is then interpolated to 80 
create a distribution density function (DDF) in the continuum limit. The DDF is, in turn, used to determine 81 
statistical inferences including average, variance, p-value and so on. However, since the DDF approximates 82 
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the bar chart (and not the converse), and that it is not possible to differentiate data from within any given 83 
group/category, the DDF is constructed mathematically on the implicit assumption that information is 84 
missing to differentiate data from within any given group/category.  85 
 86 
The notion of ‘missing information’ can be legitimate and defined experimentally. For example, measuring 87 
the phenotype human height with a ruler with centimetre graduations implies that any height can be 88 
measured to the nearest centimetre. Consequently, one centimetre-width bins/categories need to be 89 
used to generate a frequency table of range of phenotype values upon which the phenotype and genotype 90 
DDFs are defined. In this case, all the resulting statistical inferences are defined with a precision 91 
corresponding to the nearest centimetre. The ‘missing information’ (i.e., that what cannot be measured 92 
by the ruler) corresponds then to sub-centimetric scales (i.e., distances to the nearest millimetre for this 93 
example). In practice the ‘missing information’ is therefore linked to the one of ‘imprecision’ and deciding 94 
to provide more precise statistical inferences implies that the width of categories be reduced, which can 95 
only be achieved by increasing the sample size. It is not by chance that the ‘normal distribution’ created 96 
by mathematicians and physicists was initially called the ‘law of errors’, where the notion of error 97 
(misinformation) results from imprecisions in experimental measurements. As a result, GWAS is faced 98 
with a fundamental issue involving the extraction of precise information using a method that, 99 
conceptually, assumes that information is missing or that data is mis-(in)formed.  100 
 101 
In general, the problem concerning the ‘missing information’ is never mentioned since the DDF in the 102 
continuum limit is never considered as an approximation but as something that has its own reality. Namely 103 
a DDF must exist independently of data measured (i.e., data must fit the DDF and not the converse). The 104 
latter remark leads to an interesting conceptual territory where the notions of average and variance, and 105 
their usage, may be questioned. If one considers the normal distribution (or any other DDFs) is inherent 106 
to life and that data must fit it (them), then the moments of the distribution (e.g., average and variance) 107 
are also essential parameters to describe life, and the variance often interpreted as noise in the data is 108 
then a nuisance. If, on the contrary, data is the important thing, and that the DDF is considered solely as 109 
a tool to interpolate data based on missing information, then average and variance are parameters 110 
derived from a lack of information and are, as a result, poorly informative. The latter point should not 111 
come as a surprise as reducing the huge diversity of populations to a handful of parameters (i.e., average 112 
and variance) is highly reductionist and likely to be poorly descriptive. Thus, while the notions of average 113 
and variance may help representing datasets, they are inventions nonetheless, i.e., thought constructions 114 
akin to the field of frequentist probability. Thus, using average and variance as a starting point to map 115 
genotype-phenotype (GWAS) is a matter of choice. Accordingly, different statistical methods can be 116 
suggested. 117 
 118 
To avoid those conceptual and practical issues a new method called GIFT (Genomic Informational Field 119 
Theory) has been designed and applied to simulated genotype-phenotype data in (10, 11), reviewed in 120 
(12). In short, to associate genotype to phenotype GIFT does not presume that the only important 121 
information concerning the gene effect is found in averages or variances, nor does it presume that DDFs 122 
are central. On the contrary, GIFT starts with the pre-requisite that phenotypic values, or phenotypic 123 
residuals after considering the environment/fixed effects, may be measured with sufficient precision to 124 
be unique in a population. Then, by avoiding grouping data into bins/categories, which would otherwise 125 
create an artificial imprecision, GIFT considers the entire information contained in the data, (i.e., variance 126 
is not a nuisance anymore) making use of the cumulative sum of microstates. Figure 1 provides the 127 
intuition underscoring GIFT as a method.  128 
 129 
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The current article extends our previous theoretic studies using simulated data to analyse for the first 130 
time two real datasets: 131 

i. Dataset-1 is derived from a study concerned with the genetic background of carcass composition in 132 
sheep (ovis aries) (13). Using GWAS this study demonstrated a strong association between 133 
chromosome 6 and the carcass composition trait ‘bone area at the ischium’. We now apply GIFT to 134 
reanalyse this dataset to benchmark it against GWAS. Since GWAS previously identified a QTL in 135 
chromosome 6, our hypothesis was that GIFT would at least replicate GWAS results and identify 136 
additional putative QTLs.  137 

ii. Dataset-2 comprises biochemical data arising from an ongoing study in sheep which seeks to identify 138 
risk allele variants in genes whose products direct a series of metabolic pathways, collectively referred 139 
to as one carbon (1C) metabolism and associated epigenetic regulators. The gene array was designed 140 
to include all single nucleotide polymorphisms (SNPs) linked to known biochemical enzymes involved 141 
in these pathways. Given that Dataset-2 preselected genes for a targeted analysis of enzymes involved 142 
in these metabolic/epigenetic pathways, it can be considered more specific.  143 

 144 
The present article initially introduces the reader to the way data may be used and analysed differently 145 
using GIFT, contrasting to more conventional methods mostly based on an analysis of averages and 146 
variances. More specifically in Part 1, the null hypothesis defined by GIFT will be established. Using 147 
Dataset-1 the concept of genetic path pertaining to GIFT will be introduced (Part 2) out of which a p-value 148 
for GIFT will be defined (Part 3). Then Dataset-1 (Part 4) and Dataset-2 (Part 5) will be analysed comparing 149 
the informational/investigative power of GIFT relative to GWAS using Manhattan plots prior to performing 150 
enrichment analyses.  151 

MATERIALS AND METHODS 152 

Biological datasets. 153 
The first dataset (Dataset-1) analysed 600 pedigree-recorded Scottish Blackface lambs using CT scans to 154 
determine in vivo carcasses composition (13). The trait selected for the present study is the bone areas of 155 
the ischium (BAI) measured in mm2 from cross-sectional CT scans. The ischium is one of the three bones 156 
that make up the pelvis. It is located beneath the ilium and behind the pubis. The upper portion of the 157 
ischium forms a major part of the concave portion of the pelvis that forms the hip. The BAI crossed a 158 
genome-wide significance threshold on Chromosome 6 (OAR6). The pre-corrected phenotype values were 159 
obtained fitting fixed effects of age of dam, year of birth, the effect of management group (as sheep were 160 
from different farms), sex (males or females) and litter size (singles or twins) and as covariate the day of 161 
birth. Further information can be found in Matika et al. (2016) (13).  Supplemental S1 provides the raw 162 
data used (Dataset-1). 163 
The second dataset (Dataset-2) was from previously unpublished data extracted from a large ongoing 164 
programme of research to investigate genome regions (Quantitative trait loci, (QTL)) that determine 165 
metabolic and epigenetic responses to nutritionally induced deficiencies in one carbon metabolism (14, 166 
15). For this study sheep were used as an experimental model. All animal procedures relating to this study 167 
adhered to the Animals (Scientific Procedures) Act, 1986. Associated protocols complied with the ARRIVE 168 
guidelines and were approved by the University of Nottingham Animal Welfare and Ethical Review Body 169 
(AWERB) with Home-Office project licensed authority (30/3376;10th February 2016). Supplemental S2 170 
provides the raw data used (Dataset-2). 171 
 172 
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Dataset-2: Sheep genome resequencing, custom array design and SNP profiling on test subjects. 173 
Twenty-four unrelated Texel ewes were sequenced to a depth of 30x in 2 pools at Edinburgh Genomics. 174 
DNA samples were prepared using Illumina’s TruSeq PCR free kits and sequenced on an Illumina HiSeq 175 
2500 Rapid Mode (serial no. D00125), read length of 150PE. Reads were trimmed to remove adapter 176 
sequences and low-quality bases using skewer with commands (-Q 20, -q 3) (16) and mapped to the 177 
reference sheep genome assembly (Oar_v3.1) using bwa mem (options -M -t 4) (17). Following 178 
deduplication using Picard-tools version 1.92, variants were called using GATK pipeline (18) including 179 
realignment around known indels and recalibration of bases, and FreeBayes (--use-best-n-alleles 4 --180 
pooled-discrete --min-alternate-count 4). Annotation of SNPs was performed using Ensembl variant effect 181 
predictor VEP version ensembl tools release 79 (19). 15,347,831 variants were identified. Of these, ~3 182 
million were novel SNPs and ~12 million were already present in the Ensembl genome database. SNPs 183 
within annotated coding regions (VEP annotated “downstream gene variant” or “intron variant” removed) 184 
and within 3Kb upstream of a gene were retained. SNPs with a minor allele frequency of greater than 0.5 185 
were used to design an Illumina Infinium® iSelect® Custom Array consisting of 4,576 probes. This captured 186 
SNPs in 115 1C metabolism and related genes, and 108 related epigenetic regulators as well as 33 control 187 
SNPs (Supplemental S1).  188 
 189 
Liver samples were next collected post-mortem from 360 male and female Texel lambs (6 to 11 months 190 
of age) representing 11 farms dispersed regionally across the UK. Collections took place at regional 191 
abattoirs and samples immediately snap frozen in liquid N and stored at -80°C until analyses. DNA was 192 
then extracted using AllPrep DNA/RNA Mini kit (Qiagen, Manchester UK). Briefly approximately 20 mg of 193 
liver were mechanically disrupted using a TissueLyser (Qiagen, Manchester, UK) in 600 RLT plus buffer 194 
containing β-mercaptoethanol. Tissue lysates were then used to extract RNA and DNA according to the 195 
manufacturer instructions. The custom designed array was then used to SNP profile DNA from these Texel-196 
sheep. For this purpose, liver samples were collected post-mortem from lambs (aged 6 to 11 months) 197 
representing 11 farms dispersed regionally across the UK. Collections took place at regional abattoirs and 198 
samples immediately snap frozen in liquid N and stored at -80°C until analyses. DNA was then extracted 199 
using AllPrep DNA/RNA Mini kit (Qiagen, Manchester UK). Briefly approximately 20 mg of liver were 200 
mechanically disrupted using a TissueLyser (Qiagen, Manchester, UK) in 600 RLT plus buffer containing β-201 
mercaptoethanol. Tissue lysates were then used to extract RNA and DNA according to the manufacturer 202 
instructions. 203 
 204 

Dataset-2: Metabolic profiling. 205 
For the purposes of the current study the following seven liver metabolites were selected from a larger 206 
pool of 1C metabolites: S-adenosyl methionine (SAM), methylcobalamin (mB12), adenosylcobalamin 207 
(aB12), trimethylglycine (TMG), dimethylglycine (DMG), propionate (PPA) and methylmalonic acid (MMA). 208 
The first four metabolites were selected as representative intermediates of the methionine cycle whilst 209 
the latter two are intermediates in the hepatic synthesis of succinate (15) (Fig.2 & Supplemental S1). 210 
 211 
Hepatic concentrations of four metabolites (i.e., mB12, aB12, TMG and DMG) were determined by 212 
hydrophilic interaction chromatography (HILIC) coupled to electrospray ionization tandem mass 213 
spectrometry (MS/MS) as reported previously (20). For the analysis of SAM (determined separately by 214 
HILIC), the standard was purchased from Sigma-Aldrich (Poole, Dorset, UK). Stock solutions of this 215 
standard were prepared in potassium phosphate extraction buffer (KH2PO4 and K2HPO4; 40 mmol/L) 216 
containing 0.1% L-ascorbic acid, 0.15% citric acid and 0.1% MCE (adjusted to pH 7 with NaOH), each at a 217 
final concentration of 100 μmol/L. Also, for SAM the mobile phase was modified from that used for the 218 
three other reported metabolites by adjusting the pH of the aqueous ammonium carbonate buffer 219 
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solution from 3.5 to 9.1. Mass spectrometer parameters for SAM were as follows: retention time = 7.69 220 
min; Q1mass = 399.1 amu; Q3 mass = 250.1 amu; declustering potential = 56; collision energy = 25; 221 
collision cell exit potential = 16.          222 
 223 
Hepatic concentrations of PPA and MMA were determined by gas chromatography coupled to mass 224 
spectroscopic-detection (GC-MS). Briefly, for PPA, 750 μL 5-Sulfosalicylic acid (SSA, 0.04 mg/ml) was 225 
added to 150mg frozen liver, homogenised for 2 min and cooled on ice for 10 min. The sample was 226 
centrifuged for 15 min at 14,500 x g and 200 μL liver homogenate transferred to a 2.5 mL screw capped 227 
glass vial. To this, 20 μL internal standard (MBA, 400 μM), 3.5 μl HCl (37%) and 1 mL diethylether were 228 
added, vortexed for 2 min and centrifuged for 10 min at 14,500 x g. 600 μL of the upper layer was 229 
transferred to a screw capped glass vial containing 3.5 μL 1-(tert-butyldimethylsilyl)imidazole (TMDMSIM, 230 
97%), vortexed for 2 min and heated at 60°C for 30 min. GC-MS analysis proceeded after cooling. The 231 
method used a DB-5MS column (J&W Scientific Agilent technology, 30 m x 0.25 mm; 0.25 μm film 232 
thickness). The carrier gas (He) was set at a constant flow rate of 1.3 ml/min. The injection volume was 5 233 
μL for SCAN mode (for qualification) and SIM (selected ion monitoring) mode (for quantification), both 234 
using splitless mode. The injection port and MS selective detector interference temperatures were 260°C 235 
and 250°C respectively. The chromatograph was programmed for an initial temperature of 40°C for 1 min, 236 
increased to 60°C at 70°C min-1, then to 110°C at 15°C min-1, and finally 250°C at 70°C min-1. MS was 237 
tuned regularly and operated in electron impact (EI) ionization mode with the ionization energy of 70eV. 238 
SCAN mode measured at m/z: 30-300 and SIM ions were set at 159 (for MBA) and 131 (for PPA). The same 239 
method was used to produce a calibration curve for PPA using standards at concentrations ranging from 240 
19.5 nmol/g to 5μmol/g. The limit of detection was 19.5 nmol/g. CVs for low, medium and high QCs were 241 
10.4, 6.3 and 6.5% and the inter-assay CV was 4.7%. 242 
 243 
For MMA, 250 μL 80% MeOH was added to 50 mg frozen liver, homogenised for 2 min and cooled on ice 244 
for 10 min. The sample was ten centrifuged for 15 min at 14,500 x g and 200 μL liver homogenate 245 
transferred to a 2.5 mL screw capped glass vial. To this, 4 μL internal standard (1 mM 4-chlorobutyric acid 246 
(CBA) in 1 mM HCl) followed by 250 μL 12% BF3-Methanol were added, vortexed for 1 min and heated at 247 
95°C for 15 min. After cooling, 250 μL cold distilled water and 250 μL cold dichloromethane (CH2Cl2) were 248 
added to the vial, vortexed for 30s and centrifuged for 10 min at 14,500 x g. The lower dichloromethane 249 
layer was transferred to a screw capped glass auto-sampler vial with insert for GC-MS analysis. The 250 
method used a DB-WAX column (cross-linked polyethylene glycol; J&W Scientific Agilent technology) (30 251 
mm x 0.25 mm; 0.15 μm film thickness). The carrier gas (He) was set at a constant flow rate of 1.0 ml/min. 252 
The injection volume was 1 μL for SCAN mode (for qualification) and SIM mode (for quantification), both 253 
using splitless mode. The injection port and MS selective detector interference temperatures were 260°C 254 
and 280°C respectively. The chromatograph was programmed for an initial temperature of 50°C for 2 min, 255 
increasing to 150°C at 8°C min-1, then to 220°C at 100°C min-1 and held for 5 min at the final temperature. 256 
MS was tuned regularly and operated in EI ionization mode with the ionization energy of 70eV. The limit 257 
of detection was 0.75 nmol/g for both MMA and SA and inter-assay CVs were 8.4% for MMA and 11.0% 258 
for SA.   259 

Dataset-2: Determination of GWAS for 1C-metabolites. 260 
Preliminary data analysis indicated the need to log-transform using the natural logarithm (Supplemental 261 
S3) to approximate normality. Transformed data were then pre-corrected for the fixed effects of farm (F) 262 
and sex (S) in ASReml using the following model, y୧୨ = μ + F୧ + S୨ + e୧୨, where y୧୨ is the log-transformed 263 
phenotype, that is the log-transformed metabolite concentration studied; μ is the overall mean for the 264 
log-transformed metabolite concentration; F୧ is the effect of the ith farm (i =1,..,11); S୨ the effect of jth Sex 265 
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(Male vs Female) and, e୧୨ is the residual. The genotype dataset was filtered using PLINK (HWE p-value 266 
threshold of 10-6, call rate for genotypes of 10% and a MAF of 5%), the number of independent SNPs was 267 
determined using BCFTOOLS (r2-threshold=0.1) and the GWAS Manhattan plots, linked to the 268 
determination of pୋ୛୅ୗ, were obtained using GEMMA. The same genotype and residual phenotypes as 269 
filtered by GWAS were used by GIFT.   270 

Data representation using GIFT. 271 
Adjusted phenotypic data (i.e., residuals, from Dataset-1 and Dataset-2) were used for this study.  272 
Regarding the representation of GIFT, upon selecting a SNP for all individuals, the different corresponding 273 
genotypes, aa, aA/Aa and AA, were assigned the arbitrary values +1, 0 and -1, respectively. With this 274 
convention any barcode can be represented by a string of numbers from which a GIFT analysis can be 275 
inferred. More specifically, the assignment of values +1, 0 and -1 were done as a function of the base pairs 276 
as follow: AA=TT=+1, GG=CC=-1 and 0 otherwise. As shown schematically in Fig.1, the residuals obtained 277 
were ranked by order of magnitude and the cumulative sum of their corresponding genotypic values 278 
performed to obtain the ‘genetic path’ for the SNP considered. The genetic path of a SNP is noted 𝜃(𝑖) in 279 
the text (Fig.1). The null hypothesis for GIFT as well as the notion of significance when GIFT is used will be 280 
introduced and fully explained in the RESULTS section.  281 
 282 

RESULTS 283 
Analyze of the null hypothesis θ଴(i) for GIFT  284 
While θ(i) is obtained using phenotypic information ( configuration ① in Fig.1 and ‘Data representation 285 
using GIFT’ in MATERIALS AND METHODS), it is also possible to plot the cumulative sum of microstates 286 
when no phenotypic information is present that is equivalent to ‘scrambling’ or permutating the string of 287 
microstates in Fig.1A also corresponding to the configuration ② in Fig.1B. Recall that since our focus is 288 
on a given SNP, then the number of microstates, Nା, N଴ and Nି, are identical between the configurations 289 
① and ②. This new cumulative sum noted θ଴(i) is expected to be a sort of null hypothesis solely 290 
dependent on the bulk microstate frequencies Nା/N, N଴/N and Nି/N, where N୯ q ∈ {+,0, −} is the 291 
number of microstates of type q. This is so because there is no further information that could inform on 292 
the positioning of microstates in their list when the scrambled state is considered. However, while θ(i) is 293 
unique since phenotypic information is used to generate it, θ଴(i) is not as each time the string of 294 
microstates from Fig.1A is scrambled, a new θ଴(i) appears. Accordingly, one needs to consider the set of 295 
possible θ଴(i)s generated bounded to the microstate frequencies Nା/N, N଴/N and Nି/N.  296 
Using a selection of theoretic SNPs defined by different microstate frequencies (Table-1). Fig.3A illustrates 297 
the global shape resulting from simulating 1000 θ଴(i)s. The results demonstrate that the global shape of 298 
the θ଴(i)s plotted as a function of the position in the string is ellipsoidal with short and long axes changing 299 
as a function of microstate frequencies involved, and where the different averages of θ଴(i)s represented 300 
by black lines in Fig.3A, are straight lines with slopes linked to the difference, ∆N/N = (Nା − Nି)/N. The 301 
fact that the averages of θ଴(i)s for a given set of microstates, Nା, N଴ and Nି, is always a straight line 302 
linked to microstate frequencies, Nା/N, N଴/N and Nି/N, can be understood intuitively by the fact that 303 
scrambling or permutating an infinite number of times the string of microstates is equivalent to 304 
determining, for any position i, the presence probability, N୯/N, of each microstate in the string. 305 
Accordingly, for a given set of microstates, Nା, N଴ and Nି, the average of θ଴(i)s, noted 〈θ଴(i)〉, is 306 

〈θ଴(i)〉 =
(୒శି୒ష)

୒
i. Further theoretic details can be found in (10, 11). Using 〈θ଴(i)〉 as a reference for the 307 
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null hypothesis, Fig.3B show the sur-imposition of the differences, ∆θ଴(i) = θ଴(i) − 〈θ଴(i)〉, obtained 308 
from simulations using SNPs from Table-1.  309 
Finally, to assess the impact of the sample size (population size) on the null hypothesis the initial size 310 
(N=565, Table-1) was divided (N=280) and multiplied (N=1130) by a factor ~2 while keeping constant the 311 
microstate frequencies Nା/N, N଴/N and Nି/N from Table-1. The simulations Fig.3A show that the 312 
appearance of ellipsoids is affected when the sample size changes, becoming thinner as the population 313 
size increases. Plotting the standard deviation, σ(i/N), as a function of the position once normalized by 314 

the sample size, σ(i/N) = ටቂ〈൫θ଴(i/N)൯
ଶ

〉 − 〈θ଴(i/N)〉ଶቃ /N, resulting from the different simulations in 315 

Fig.3C demonstrates that the standard deviation from GIFT is quadratic, and independent of the sample 316 
size, as expected from a random allocation of different microstates in the string of positions.  317 
At first sight and with this primary analysis one could suggest that any genetic path departing from the 318 
cloud of genetic paths formed by the set of θ଴(i)s upon the permutation of microstates (grey surface in 319 
Fig.3A or black surface in Fig.3B) would likely result in an association between the genotype and the 320 
phenotype. While true this assumption needs to be handed out carefully as it is not exhaustive. Indeed, 321 
some genetic paths may be highly structured and of relatively small amplitude. Examples of genetic path 322 
using real data from Dataset-1 will demonstrate this point.  323 
 324 
Examples of genetic path using the bone area of the ischium (BAI) as phenotype (Dataset-1) 325 
The resulting average, 〈θ଴(i)〉, and variance, σ(i), can be used to inform the null hypothesis of a particular 326 
SNP from ‘real’ datasets. However, since there are as many different sets of  θ଴(i)s as number of SNPs, 327 
each SNP will return its own 〈θ଴(i)〉 (null hypothesis) upon scrambling. A comparison between SNPs using 328 
GIFT/genetic paths requires then to concentrate on the differences, ∆θ(i) = θ(i) − 〈θ଴(i)〉. In the 329 
remaining text one shall rewrite 〈θ଴(i)〉 as θ଴(i) to simplify notations. 330 
Concentrating now on ‘real’ dataset, the genetic paths were obtained further to ranking BAI residual 331 
values (Dataset 1) using an incremental rank from small to large values. As an example, Fig.4 shows the 332 
two genetic paths θ(i) and  θ଴(i) for six SNPs, renamed SNP1-6 (see Table-2 for accurate genetic 333 
information) enabling us to appreciate the qualitative difference between the genetic paths. While the 334 
null hypothesis, i.e.,  θ଴(i), resulting from the scrambling of phenotypic values many times always returns 335 
a straight line with a different slope for each SNP as seen above, the θ(i)s have different shape. To 336 
represent the set of θ(i)s in relation to the different microstates involved, each datapoint of the θ(i)s is 337 
colour coded as in Fig.1C. 338 
Since  θ଴(i) is linked to the difference between the genetic microstate frequencies of homozygotes, ∆N =339 
Nା − Nି, in Fig.4 we represent by the angle α such difference. Since tan(α) = +Nା/N − Nି/N where N 340 
is the total number of positions (i = 1, 2, … , N) θ଴(i) can be rewritten as, θ଴(i) = tan(α)i. As any analysis 341 
must concentrate on the difference, ∆θ(i) = θ(i) −  θ଴(i), such as to cancel the apparent variability in 342 
the null hypothesis across SNPs, we represent the plots of the different ∆θ(i)s obtained in the right panel 343 
of Figs.4A-4F.  344 
Figs.4A-4B display two distinct genetic paths that are globally similar. While they have different number 345 
of microstates of each type (see Table-2) the ∆θ(i)s of SNP1 and SNP2 are characterized by their small 346 
amplitudes and the fact that they are erratic crossing several times the axis of position corresponding to 347 
the null hypothesis. In those cases, using the information contained in the phenotypic residuals, namely 348 
ranking the phenotypic residuals from small to large values, does not permit to fully differentiate θ(i) 349 
from  θ଴(i). On the other hand, the right panel in Figs.4C-4D for SNP3 and SNP4 demonstrates, in a more 350 
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noticeable way, a paraboloid shape for the ∆θ(i)s resulting from a segregation of microstates upon 351 
ordering the phenotypic residuals. The segregation of microstates +1 and -1 in opposite direction is 352 
reminiscent of Fisher theoretic works (Fig.1). As it turns out Figs.4C-4D show some similarities with Fig.1C 353 
based on a simulation inspired by Fisher’s seminal works. Importantly the ∆N-values of SNP1 and SNP4 354 
while of opposite sign are similar in absolute value, are as those of SNP2 and SNP3, suggesting, in turn, 355 
the ∆N-values do not impact on the ability to differentiate θ(i) from θ଴(i). Namely that a segregation of 356 
microstates can be inferred also with relatively large and opposed ∆N-values.  357 
Envisaging the migration of microstates +1 and -1 in opposite direction as initially postulated by Fisher as 358 
the sole framework to associate genotype and phenotype is not always valid. This is demonstrated by 359 
SNP5 and SNP6 and the appearance of structured genetic paths displaying clear sigmoidal shapes for the 360 
∆θ(i)s as shown in Figs.4E-4F. Theoretically this phenomenon can be understood and explained by the 361 
presence of non-linear phenotypic fields, see (11) also reviewed in (12), in turn breaking the symmetry 362 
postulated by Fisher assuming the sole presence of linear phenotypic fields. This type of sigmoidal shapes 363 
is of interest since they inform on potential regulation mechanisms involving very probably ‘regulatory 364 
variants’ (21). Indeed, the right panels in Figs.4E-4F can be envisioned as representing the genetic 365 
organization of two distinct subpopulations of phenotypic residual values, one above the dashed line and 366 
the other one underneath it. Taken separately those two subpopulations draw curves like Figs.4C-4D or 367 
Fig.1C. In this context it is tempting to suggest that sigmoid genetic paths reveal a type of genotype-368 
phenotype association that is inherently ‘scale-dependent’, namely function of the magnitude of 369 
phenotypic residuals. Because traditional GWAS concentrates on averages and variances, these sigmoid 370 
paths would be remarkably difficult to characterize with traditional methods. This is so because there is 371 
no clear antisymmetric segregation of microstates.  As an example, using SNPs1-6 (from Fig.4) we have 372 
plotted, in Fig.5, the average values of phenotypic residuals for each microstate, and in Table-2 we provide 373 
the resulting gene/size effects and the dominances associated with those. Fig.5 and Table-2 demonstrate 374 
that sigmoid genetic paths (SNP5 and SNP6) are much less detectable with traditional methods while 375 
paraboloid genetic paths (SNP3 and SNP4) are. Note that the numerical determination of ‘−Logଵ଴(pୋ୍୊୘)’ 376 
in Table-2, that is the significance for GIFT, is explained in the next part below. 377 
To conclude, based on Fisher’s theoretic works, the traditional GWAS method has been optimized to map 378 
SNPs that, using GIFT, would draw paraboloid genetic paths (see Fig.1C). The potential novelty using GIFT 379 
resides in its ability to provide new information and detect relatively regular/structured sigmoid genetic 380 
paths that would otherwise not be detected by traditional methods.  381 
 382 
𝐩𝐆𝐈𝐅𝐓: p-value for GIFT  383 
GIFT and GWAS extract information on genotype-phenotype associations in totally different ways. While 384 
GIFT concentrates on the significance of curves drawn using ∆θ(i) = θ(i) −  θ଴(i), GWAS focuses solely 385 
on the significance of difference of averages. However, to compare GIFT to GWAS it is essential to 386 
determine a p-value for GIFT that is exhaustive enough such as to also capture the information that GWAS 387 
provides. To this end a p-value was derived that concentrates on the maximal amplitudes difference of 388 
genetic paths (see Figs.6A-6B).  389 
The p-value for GIFT can be understood as follows. Since the number of possible paths is linked to the 390 
number of configuration possible resulting from lodging Nା, N଴ and Nି microstates into a list composed 391 

of N = Nା + N଴ + Nି components, the number of possible paths is, N୮ୟ୲୦
଴ =

୒!

୒శ!୒బ!୒ష!
. Let us now divide 392 

the genetic paths into regions, Δiଵ, Δiଶ and Δiଷ as shown in Figs.6A-6B. As the number of microstates of 393 
each sort can be determined in each region using an adequate algorithm, then the total number of 394 
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possible genetic paths in this first, second and third regions are, respectively,  Nଵ =
୼୧భ!

(୬శ)భ!(୬బ)భ!(୬ష)భ!
, Nଶ =395 

୼୧మ!

(୬శ)మ!(୬బ)మ!(୬ష)మ!
 and, Nଷ =

୼୧య!

(୬శ)య!(୬బ)య!(୬ష)య!
, where ൫n୯൯

୮
 is the number of microstate of type q in the pth 396 

region, q ∈ {+,0, −} and p ∈ {1,2,3}. Consequently, the probability of a genetic path in this context is, 397 
pොୋ୍୊୘ = NଵNଶNଷ/N୮ୟ୲୦

଴ . Using the null hypothesis simulations shown in Fig.3 based on the theoretic SNPs 398 
given in Table-1, pොୋ୍୊୘ may be determined for each genetic path simulated. Its statistic plotted in Fig.6C 399 
for each SNP demonstrates very little variations across SNPs or when the sample size changes by a factor 400 
two. Based on this observation confidence intervals were determined for all SNPs by averaging the pොୋ୍୊୘ 401 
values obtained. The upper and lower red dashed lines represent the 99% and 95% confidence intervals. 402 
To consider the false discovery rate (FDR) and adjust p-values to remove type-I errors, pොୋ୍୊୘-values in 403 
Fig.6C were corrected using the Benjamini-Hochberg procedure leading to a new set of adjusted, i.e., 404 
reduced, p-values, noted pୋ୍୊୘ (see Fig.6D), that may be used to determine the true significance of DNA 405 
variants (SNPs). Returning to Table-2 the numerical value of pୋ୍୊୘ was determined for the genetic paths 406 
shown in Fig.4 demonstrating that GIFT can extract information when sigmoid genetic paths are involved 407 
while traditional GWAS is unable to do so.      408 
Armed with pୋ୍୊୘ an analysis of datasets can now be performed. 409 

Comparison between GWAS and GIFT considering the bone area of the ischium (BAI) as phenotype 410 
(Dataset-1)     411 
The first dataset (Dataset-1) analysed 567 pedigree-recorded Scottish Blackface lambs concentrating on 412 
the bone areas of the ischium measured in mm2 from cross-sectional CT scans (13). After adjusting 413 
phenotypic values, the work demonstrated a clear involvement of chromosome 6 as shown in Fig.7A. The 414 
genome-wide significant thresholds applied for GWAS in Fig.7A correspond to Bonferroni corrections at 415 
1% (upper red dashed line) and 5% (lower dashed red line) determined by using independent SNPs only. 416 
Formally a 1% (resp. 5%) Bonferroni correction is given by, −Logଵ଴(0.01/N୧୬ୢିୗ୒୔ୱ) (resp. 417 
−Logଵ଴(0.05/N୧୬ୢିୗ୒୔ୱ) where N୧୬ୢିୗ୒୔ୱ = 10433 is the number of independent SNPs.  Using its own 418 
thresholds (Fig.6D) GIFT was applied using the same set of phenotypic residuals. Figs.7A-7B demonstrate 419 
the results obtained by GWAS and GIFT using Manhattan plots.  420 
The significance threshold by GIFT was defined by a null hypothesis using theoretic SNPs. To demonstrate 421 
that the theoretic results obtained from Fig.6D are transferrable to ‘real’ SNPs (Fig.7B), namely that the 422 
significant SNPs obtained in Fig.7B have null hypotheses with similar properties like those shown in Fig.6D, 423 
each significant SNP (Fig.7B) had its genetic path randomly permutated a thousand times to determine 424 
the distribution of −Logଵ଴(pୋ୍୊୘)-values corresponding to their null hypothesis. Results show that the 425 
null hypotheses are remarkably similar across SNPs and that the threshold determined using theoretic 426 
SNPs (Fig.6D) holds when ‘real’ SNPs are used (Supplemental S5).  427 
Overall, Fig.7A and Fig.7B demonstrate that there is an agreement between GWAS and GIFT that 428 
chromosome 6 is involved. However, differences exist that are shown through the involvement of several 429 
chromosomes when GIFT is used. Considering the thresholds involved, for GWAS the phenotype studied 430 
may be considered as a sort of ‘single gene trait’ while for GIFT, the phenotype looks very much like a 431 
‘complex trait’ involving more chromosomes than chromosome 6. Detailed information of all significant 432 
SNPs by GWAS or GIFT is given in Supplemental S6.   433 
Concentrating on Chromosome 6 to address the overlap of information provided by GIFT and GWAS, a 434 
Venn-diagram including highly significant SNPs only, namely SNPs beyond the upper red dashed-line in 435 
Figs.7A-7B, was plotted. The Venn-diagram (Fig.7C) reveals that most SNPs deemed significant by GWAS 436 
were also deemed significant by GIFT. Curiously, only one SNP seemed highly significant by GWAS but 437 
irrelevant for GIFT. As pୋ୍୊୘ was designed to collect exhaustive information from GWAS, the SNP was 438 
identified (OAR6_40311379) and its genetic path, i.e., its ∆θ(i), plotted (Fig.7D-left) together with its 439 
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GWAS-representations (Fig.7D-right). The genetic path, being erratic of relatively small amplitude and 440 
crossing several times the axis of positions, did not display any obvious ‘parabolic or sigmoidal’ 441 
associations at first sight, in turn justifying its small pୋ୍୊୘-value. The GWAS-representation of 442 
OAR6_40311379 however, demonstrated the absence of microstate ‘-1’ as well as a near overlap of 443 
microstates ‘0’ and ‘+1’ further demonstrated by the similarities between their boxplots, suggesting the 444 
occurrence of a false-positive. To confirm this a comparison of phenotypic means for the microstates ‘0’ 445 
and ‘+1’ was performed returning a t-test value of 1.1485 (p-value of 0.2512), confirming the presence of 446 
a false-positive.  447 
In order to assess the overlap of information between GWAS and GIFT we plotted in Fig.7E the first 100 448 
more significant SNPs detected by GIFT and GWAS. Results confirm an overlap of SNPs associated with 449 
the phenotypic residuals for large values of pୋ୍୊୘ and pୋ୛୅ୗ (see purple dots in Qଶ in Fig.7E). 450 
Interestingly, two SNPs considered as significant by GWAS (two blue dots in Qଶ) were not by GIFT. That is 451 
because the pୋ୍୊୘-values for these dots were less than other SNPs detected by GIFT. As already stated 452 
above many SNPs from other chromosomes were considered significant by GIFT that were not by GWAS 453 
(see red dots in Qସ). Finally, the quadrant Qଵ in Fig.7E confirms that OAR6_40311379, i.e., the false 454 
positive detected by GWAS, is a standalone SNP among the 100 SNPs for which pୋ୛୅ୗ > pୋ୍୊୘.  Finally, 455 
the biotype of significant SNPs on Chromosome 6 for GIFT and GWAS are also presented in Fig.7F.  456 
The primary conclusion provided by Figs.7A-F is that, when compared to GWAS, GIFT returns substantially 457 
more genetic information.  458 
However, a central question concerns the genetic pertinence of the significant SNPs obtained by GIFT. As 459 
GIFT has been designed with the aim to increase the investigative power of biological datasets, we may 460 
assume that the significant SNPs obtained by GIFT once translated into gene names should underline some 461 
level of non-random gene-gene interactions. The latter point is particularly relevant since GIFT is expected 462 
to detect regulatory variants (c.f. sigmoidal genetic paths). To assess this point we performed an 463 
enrichment analysis based on gene names using the String database, which helps determine known and 464 
predicted protein-protein interactions. In order to apply String the significant SNPs obtained using GWAS 465 
and GIFT were mapped to the reference sheep genome assembly from ensembl (Oar_v3.1) to obtain the 466 
gene names. Using those gene names String analyses were performed for GWAS and GIFT using a 467 
minimum required interaction score of 0.4. Fig.7G and Fig.7H show the networks obtained. With 468 
enrichment p-values for GWAS and GIFT of 0.176 and 0.00008, respectively, these results confirm that the 469 
set of genes determined by GIFT have more interactions among themselves than what would be expected 470 
for a random set of genes of the same size and degree distribution drawn from the genome. Namely that 471 
GIFT increases the investigative power of biological datasets. 472 
At present, we do not know how the whole information provided by GIFT may inform on the putative 473 
biology of the phenotype studied (BAI). As it turns out, a full validation of the information provided by 474 
GIFT on Dataset-1 would require an in-depth mutational/deletion/insertion/gene-editing analyses in live 475 
animals, extending beyond the scope of this present article.  476 
To demonstrate the relevance of the information provided by GIFT we decided to challenge GIFT using a 477 
different dataset (Dataset-2) concentrating on a complex trait related to 1C-metabolism.  478 
         479 
Comparison between GWAS and GIFT considering 1C-metabolites as phenotype (Dataset-2) 480 
Dataset-2 concerns biochemical data which seeks to identify risk allele variants in genes whose products 481 
direct a specific series of metabolic pathways, known as one carbon (1C) metabolism (Fig.2). The 482 
significance of 1C metabolism is that it is a complex trait involving a series of interlinking metabolic 483 
pathways that provide 1C units (methyl groups) for the synthesis and methylation of biological molecules. 484 
After 1% and 5% Bonferroni corrections for GWAS and the Benjamini-Hochberg procedure applied to GIFT, 485 
the Manhattan plots were obtained (Fig.8A). Note that the number of independent SNPs in this case is 486 
624 (out of 3923 SNPs from the gene array). Fig.8A demonstrates clearly that the informational power of 487 
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GWAS is less than that of GIFT. Finally, in Fig.8B we provide the biotypes of the most significant SNPs 488 
shown by the upper red dashed lines obtained using GIFT. Detailed genetic information of the most 489 
significant SNPs obtained using GIFT is provided in Supplemental S8.  490 
Since the gene array was synthesized using SNPs from known genes involved in 1C metabolism, the 491 
relevance of String analyses (i.e., enrichment p-values) would be minimal and of little interest.  492 
Besides validating that GIFT may extract more information from genotype-phenotype datasets, it is worth 493 
underlying the biological importance and novelty of results obtained. One carbon metabolism in sheep is 494 
comparable to that in humans. The significance of 1C metabolism is that it is a complex trait involving a 495 
series of interlinking metabolic pathways that provide 1C units (methyl groups) for the synthesis and 496 
methylation of chromatin among other molecules (15). S-adenosylmethionine (SAM) is a potent methyl 497 
donor within these cycles and serves as the principal substrate for methylation of DNA, associated 498 
proteins, and RNA. It was previously demonstrated in sheep, cattle, rodent and human studies that 499 
disrupting these cycles during early pregnancy, by either dietary means (i.e., reducing dietary vitamin B12, 500 
folate, choline and/or methionine), or through exposure to environmental chemicals such as cigarette 501 
smoking, can lead to epigenetic dysregulation and impaired foetal development with long-term 502 
consequences for offspring cardiometabolic health (22–25). It was also advocated that interindividual and 503 
ethnic variability in epigenetic gene regulation arises because of single-nucleotide polymorphisms (SNPs) 504 
within 1C genes, associated epigenetic regulators, and differentially methylated target DNA sequences 505 
(15). However, information concerning the nature and extent of interactions between parental genotype, 506 
diet and EC exposure was, until now, limited to just a few 1C genes in humans (15). Consequently, data 507 
obtained by the current study provide new evidence concerning significant genetic variants in 1C-508 
metabolism and directly associated metabolic genes and epigenetic regulators that rely on SAM as the 509 
methyl donor, potentially applicable to the human species. 510 

DISCUSSION 511 
While statistical association methods should not favor any biases when analyzing datasets, the way they 512 
are built mathematically is often indicative of a particular way of thinking. For example, with GWAS the 513 
phenotype is decomposed onto more fundamental sub-distributions characterized by the distribution of 514 
microstates (see Fig.1A). This approach underlines a sort of bottom-up approach that, within a 515 
reductionist framework, defines genes as biological agents controlling the phenotype aligned with the 516 
‘Neo-Darwinian synthesis’. However, nothing prevents considering the opposite as far as statistical 517 
association methods are involved, and GIFT uses this degree of freedom. By using the full range of 518 
phenotypic information, GIFT transforms a random or disordered string of microstates (the straight line 519 
in the asymptotic limit seen in Fig.1C or Fig.3A) into an ‘ordered’ configuration of microstates (see Fig1C 520 
or Figs.4C-4F), in turn providing the signature of a genotype-phenotype association. Accordingly, since the 521 
phenotypic information controls the configuration of microstates it is a top-down approach, which turns 522 
out to be remarkably sensitive. GIFT has been estimated to be ~1000 more sensitive than GWAS (11).  523 

There are three main reasons as to why GIFT is more sensitive. The first is that GIFT determines the 524 
significance of curves composed of an entire population of datapoints. As curves provide a greater level 525 
of significance than considering differences between microstate/phenotypic averages/variances as 526 
advocated by GWAS, hence GIFT is statistically more powerful. The second reason is that the null 527 
hypothesis for GIFT, namely θ଴(i), is contained in the definition of ∆θ(i) and is therefore specific to the 528 
genome position, or SNP, studied. With GIFT there are as many null hypotheses as SNPs. This contrasts 529 
with GWAS defining a null-hypothesis valid for all SNPs at the population level when the average of 530 
microstate distributions overlap. Consequently, the discriminative power of GIFT is amplified. The third 531 
reason is that GIFT is simpler than GWAS. Indeed, based on R.A. Fisher’s seminal work, GWAS is based on 532 
a complex theory that seeks to determine genotype-phenotype associations on one hand (aim 1), and the 533 
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heritability of phenotypes/traits studied on the other (aim 2). To achieve those two aims, the GWAS 534 
approach relies on frequentist probability to determine the validity of statistical inferences giving the 535 
notions of average and variance fundamental meanings related to aim 1 and 2, respectively. However, 536 
because average and variance are antinomic it is nearly impossible to have a clear picture of associations 537 
(size effects) since the noise (variance/heredity) blurs the average(s). On the other hand, by concentrating 538 
on genetic paths (curves) GIFT determines a global association. This does not mean that GIFT rules out the 539 
notions of size effect, dominance, and heritability, on the contrary, it encapsulates them under the generic 540 
notion of phenotypic field, i.e., size effect, dominance and heritability can be rederived from the 541 
phenotypic field. The term ‘field’ in the acronym GIFT is used to explain the disorder-order transition in 542 
the string of microstates using an analogy related to physics field theory, see (11, 12) for more details.  543 

Finally, it is important to reframe GIFT within current debates in the field of biology. With GIFT it is the 544 
(information on the) phenotype that selects which SNP is required for its subsistence and it is interesting 545 
to note that, at the conceptual level and as a top-down approach, GIFT has some familiarity with the 546 
notion of phenotypic plasticity. Phenotypic plasticity refers to the ability of phenotypes to respond to a 547 
change in the environment favoring a divergence from the ancestor phenotype. As the phenotype relies 548 
on traits (modules), the responsiveness to any new input(s) must involve a re-organization of the 549 
phenotype architecture by allowing phenotypic sub-components (modular traits) to adapt the changes 550 
(26). Namely that genetic accommodation linked to a standing pool of genetic variations characterizing 551 
any trait is central to phenotypic plasticity that, through persistence, may genetically assimilate the new 552 
architecture (selection) (26, 27). In this context the top-down method GIFT, which is essentially a 553 
phenotype-genotype (and not genotype-phenotype) association method, can pull out any standing genes 554 
awaiting to be used by phenotypes.  555 

To conclude, we provide evidence that GIFT enhances the investigative power of biological datasets. 556 
Additionally, we provide evidence also for the need to rethink the conceptual bases of genotype-557 
phenotype association methods, such as use more information from the whole biodiversity of data.  558 
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 707 

FIGURE LEGENDS 708 
Figure 1: (A) For diploid organisms and for a binary (bi-allelic, A or a) genetic marker, any microstate 709 
(genotype) can only take three values that we shall write as ‘+1’, ‘0’ and ‘-1’ corresponding to genotypes 710 
aa, Aa and AA, respectively. The genotypes are color-coded to facilitate the representation of GIFT (+1: aa 711 
(red), 0: aA/Aa (black) and -1: AA (blue)). GWASs rely on probability density functions formed through the 712 
grouping of data into bins/categories. The phenotype distribution density function (A-top left) is then 713 
decomposed onto the distribution density function of genetic microstates (A-top right) for every single 714 
nucleotide polymophism (SNP). Using an analysis of averages and variances such decomposition 715 
determines whether the SNP studied is associated with the phenotype by comparing the average and 716 
variances of distributions. Repeating the same operation for every SNP in the genome permits to map 717 
genotype to phenotype. However, as more precise inferences can only come with, and are only legitimized 718 
by, a reduction in the width of categories, larger sample sizes are needed. To overcome this issue one way 719 
to proceed is to deconstruct density functions and wonder what would happen if one were able to reduce 720 
the width of categories, that is increasing the precision in the measurement of the phenotype or 721 
equivalently getting access to the whole information of datasets, without changing the sample sizes (A 722 
from top-to-bottom). The mathematical object that emerges is then a coloured barcode that is a list of 723 
microstates that can be analysed precisely by GIFT. (B) Such barcode can be obtained simply at the 724 
practical level through field studies. Assume a flock of sheep has been genotyped and that their phenotype 725 
has been measured sufficiently precisely such as to exclude the possibility that any two phenotypic values 726 
are identical. In the figure the magnitude of the phenotypic value for each sheep is characterised by the 727 
(unique) ‘size’ of the sheep. The barcode is obtained by ranking animals as a function of the magnitude of 728 
their phenotypic values (configuration ①in Fig.1B). The null hypothesis is obtained via the random 729 
ranking of sheep that is equivalent to a lack of information on phenotypic values (configuration ② in 730 
Fig.1B). As GWAS works on phenotypic residual values after adjusting for fixed/environmental effects a 731 
similar barcode can be generated considering the magnitude of residual phenotypic values. (C) GIFT 732 
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proceeds by plotting the cumulative sum of microstates as a function of the position in the list generating 733 
a curve called genetic path that is represented by θ(i) in Fig.1C and is unique to the SNP considered. While 734 
the curve θ(i) does not provide any significant information on its own, one may generate, for the same 735 
SNP, a curve (genetic path) corresponding to a sort of null hypothesis when ranking the phenotype does 736 
not bring any informational value. This is possible by scrambling (permutating) the string of microstates 737 
an infinite number of times. It is then possible to show that, in the asymptotic limit, the null hypothesis 738 
returns a straight line, noted  θ଴(i) (Fig.1C) out of which inferences may be suggested regarding potential 739 
association between the genotype and the phenotype by comparing  θ଴(i) to θ(i). Note, the simulation 740 
shown in (A) adhering to Fisher seminal model is based on a constant sample size of 1000 involving an 741 
arbitrary normally distributed phenotype of mean and variance 68 and 4 units, respectively. Each 742 
microstate is normally distributed with a gene effect identical to the standard deviation of the phenotype 743 
but without dominance. The frequency of the genotypes aa (red), Aa/aA (Grey) and AA (blue) are 64%, 744 
32% and 4%, respectively and within Hardy-Weinberg ratio.  745 
 746 
Figure 2: Linked methionine and propionate metabolism adapted from Clare et al. (2019) where all 747 
metabolites studied for this study are in red. The methionine cycle facilitates the re-methylation of 748 
homocysteine (Hcy) to methionine (Met) and ultimately S-adenosylmethionine (SAM) with methyl (CH3) 749 
groups donated either from folate (5-mTHF) or betaine (trimethylglycine; TMG), thus leading to the 750 
formation of dimethylglycine (DMG). Methylcobalamin (mB12) serves as a cofactor for the reduction of 751 
the inactive form of methionine synthase to its active state (MTR), which then transfers a methyl group 752 
from 5-mTHF to Hcy. The linked metabolism of propionate (PPA) to succinate (an intermediary metabolite 753 
in the tricarboxylic cycle) requires adenosylcobalamin (aB12), which serves as a cofactor for 754 
methylmalonyl-CoA-mutase (MUT) leading to the generation of succinyl-CoA and methylmalonic acid 755 
(MMA) in this pathway. Other intermediary metabolites and enzymes listed: glycine (Gly), sarcosine (Sar), 756 
S-adenosylhomocysteine (SAH), tetrahydrofolate (THF), serine (Ser), cystathionine (Cth), cysteine (Cys), 757 
alpha-ketobutyrate (α-KB), methylmalonic acid (MMA); Betaine homocysteine methyltransferase (BHMT), 758 
Methionine adenosyl-transferase (MAT), Glycine methyl-transferase (GNMT), Adenosyl-homocysteinase 759 
(AHCY), Cystathionine beta-synthase (CBS), cystathionine gamma-lyase (Cth).   760 
 761 
Figure 3: (A-left panel) Simulations of genetic paths corresponding to null hypotheses using GIFT as a 762 
method. The data used for the simulation are given in Table-1. (A-right panel) Simulations of genetic paths 763 
corresponding to null hypotheses when the sample size is divided or multiplied by a factor two. (B) 764 
Representation of ∆θ଴(i) = θ଴(i) − 〈θ଴(i)〉 for the microstates data as given in Table-1. (C) Plots of the 765 
standard deviation normalised by the square root of the sample size and where the position is also 766 
normalised by the sample size.  The code for the simulations is given in Supplemental S4. 767 
 768 

Figure 4: A sample of genetic paths selected from Dataset-1. The details of the different SNPs displayed 769 
are given in Table 2.  770 

Figure 5: Analysis of averages (GWAS) for SNP1-6 (see Fig.4 and Table-2). Values for the size/gene effects 771 
(a) and dominances (d) are given in Table 2. 772 

Figure 6: To provide a p-value extracting genotype-phenotype associations in an exhaustive manner for 773 
both GWAS and GIFT a method concentrating on the largest and smallest extreme values of the genetic 774 
path was focused upon. This method can be applied to paraboloid (GWAS or GIFT-like) (A) and sigmoid 775 
(GIFT-like) (B) genetic paths. The overall idea consists in determining how many paths 𝑁ଵ, 𝑁ଶ and 𝑁ଷ can 776 
be generated from the respective interval of positions ∆𝑖ଵ, ∆𝑖ଶ and ∆𝑖ଷ given that the constraints for the 777 
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extrema are Φଵ and Φଶ. Then a p-value (𝑝̂ீூி்) can be determined as seen in the text. (C) Using 778 
simulations (K=1000 replicates) a statistic of 𝑝̂ீூி் for the null hypothesis can be generated using theoretic 779 
SNPs (Table-1). Simulations demonstrate that 𝑝̂ீூி் is relatively independent of the microstate’s 780 
frequencies upon which a 99% (upper dashed line) and 95% (lower dashed line) interval confidences can 781 
be generated.  (D) 𝑝̂ீூி்-values were adjusted to consider FDR using Benjamini-Hochberg procedure 782 
leading to a new set of 𝑝ீூி்-values. The code for the simulations is given in Supplemental S4. 783 

Figure 7: Manhattan plots based on p-values obtained by GWAS (A) and GIFT (B) demonstrating significant 784 
differences between the methods concerning potential genotype-phenotype associations. Note that the 785 
presence of a chromosome ‘0’ results from the fact that some SNPs identified by (Matika et al., 2016) 786 
were not allocated to specific chromosomes/genomic positions due to lack of information at the time. A 787 
fathom chromosome (chromosome zero) was created to allocate those SNPs. (C) Venn-diagram 788 
representing the most significant SNPs by GWAS and GIFT. One SNP (OAR6_40311379) demonstrated a 789 
large p-value for GWAS and a small p-value for GIFT. A representation of its genetic path (D-left) did not 790 
underscore any ‘parabolic’ or ‘sigmoidal’ associations. As it turned out this SNP was a false-positive by 791 
GWAS since the difference between the phenotypic means was not significative (D-right). (E) The 100 792 
most significant SNPs by GWAS and GIFT were extracted, and their p-values plotted against each other. 793 
The dashed lines represent the threshold applied for GWAS (blue dashed line) and GIFT (red dashed line). 794 
The SNP OAR6_40311379 pointed by the black arrow is the single one standing out in 𝑄ଵ confirming its 795 
false-positive status. (F) Biotypes of the most significant SNPs by GIFT and GWAS. (G) String analysis 796 
performed to determine gene networks using significant SNPs by GWAS. (H) String analysis performed to 797 
determine gene networks using significant SNPs by GIFT, note that the dashed square underlines mTOR 798 
and FOXO3 determined by GWAS. The code for obtaining Figs.7B, 7C, 7D, 7F is given in Supplemental S7. 799 

Figure 8: (A) Comparison of the information extracted by GWAS and GIFT using Manhattan plots for the 800 
metabolites presented in red in Fig.2. We recall the acronyms, S-adenosyl methionine (SAM), 801 
methylcobalamin (mB12), adenosylcobalamin (aB12), trimethylglycine (TMG), dimethylglycine (DMG), 802 
propionate (PPA) and methylmalonic acid (MMA). It should be noted that due to inherent difficulty linked 803 
to the measure of metabolite the sample sizes were not similar across metabolites, that is the values for 804 
N differ between the Manhattan plots (SAM: N=344; mB12: N=183; aB12: N=338; DMG: N=338; TMG: 805 
N=340; MMA: N=348; PPA: N=345). (B) Biotypes corresponding to the most significant SNPs for each 806 
metabolite determined by GIFT (a detailed list of information concerning those SNPs in given in 807 
supplemental S8).  The code for the Manhattan plots and the determination of biotypes is given in 808 
Supplemental S9.   809 

  810 
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 811 

TABLES 812 
Table 1: Theoretics SNPs used to capture the null hypothesis associated with GIFT upon 1000 simulations 813 
of microstates permutation*.  814 

SNP NAME 𝐍ା 𝐍𝟎 𝐍ି 𝐍 
SNP1 25 25 515 565 
SNP2 25 125 415 565 
SNP3 25 225 315 565 
SNP4 25 325 215 565 
SNP5 25 425 115 565 
SNP6 25 525 15 565 

(*): The difference between consecutive SNPs in the table is linked to the transfer of 100 microstates from 815 
the microstates ‘-1’ to the microstate ‘0’ leaving the number of microstates ‘+’ invariant. By permutating 816 
the microstates ‘+’ and ‘-‘ in the table similar plots as those obtained in Fig.3A could have been obtained, 817 
the only difference would have been the slopes of the average 〈θ଴(i)〉 changing sign. 818 

 819 

Table 2: Determination of gene/size effect (a) and dominance (d) for SNP1-6 from dataset-1. The level of 820 
significance for GIFT and GWAS is colour coded: red=not-significant, green=significant.  821 

(a*): The gene/size effect is calculated considering the mid-distance between the average values of 822 
phenotypic residuals of microstates ‘-1’ and ‘+1’. (d**): The dominance is calculated considering the 823 
difference between the gene/size effect (a) and the position of the average value of phenotypic residuals 824 
for the microstate ‘0’. 825 

CHR NAME POSITION -Log10(pGIFT) -Log10(pGWAS) 𝑵ା 𝑵𝟎 𝑵ି a* d** 
9 OAR9_58767921 (SNP1) 56039025 2.7895 0.2735 391 160 16 N/A N/A 
3 s02120 (SNP2) 213625709 2.8893 0.0018 198 291 78 N/A N/A 
6 OAR6_40855809 (SNP3) 36655091 28.5105 9.8639 229 262 76 96.85 -13.01 
6 OAR6_38315830 (SNP4) 34256151 20.7541 3.7366 24 222 321 -70.02 -0.05 
23 OAR23_35510473 (SNP5) 33556377 19.7239 0.2301 254 260 53 N/A N/A 
25 OAR25_30372586 (SNP6) 29046746 18.5806 1.0692 90 266 211 N/A N/A 
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Fig.8 (continued)

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.04.16.589524doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.16.589524
http://creativecommons.org/licenses/by/4.0/

