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Abstract: A method of generating an aberration- and distortion-free wide-angle 
holographically projected image in real time is presented. The target projector is first 
calibrated using an automated adaptive-optical mechanism. The calibration parameters are 
then fed into the hologram generation program, which applies a novel piece-wise aberration 
correction algorithm. The method is found to offer hologram generation times up to three 
orders of magnitude faster than the standard method. A projection of an aberration- and 
distortion-free image with a field of view of 90x45 degrees is demonstrated. The 
implementation on a mid-range GPU achieves high resolution at a frame rate up to 12fps. The 
presented methods are automated and can be performed on any holographic projector. 
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1. Introduction 

2D holographic projection presents numerous advantages over traditional projection, namely: 
the potential for miniaturization, high efficiency, shock resistance due to the absence of 
moving parts [1–7] and aberration correction [7–9], the subject of this paper. To achieve 
optimal image reproduction using conventional methods, high-quality optical elements need 
to be used. Lenses of such quality have complex optical designs in order to minimize optical 
aberrations, but this makes them bulky and expensive. Holographic projectors rely on the use 
of Spatial Light Modulators (SLMs), but SLMs that exhibit the required flatness are difficult 
to manufacture and are therefore also expensive [1,7]. Another source of aberrations is the 
misalignment of optical components, which is always introduced to some degree in the 
manufacturing process. 

It is therefore substantially more cost-effective to correct aberrations in situ using a 
holographic aberration correction algorithm rather than optimizing all of the factors 
mentioned above. 

 

Fig. 1. Aberrations of a holographic system: (a) ideal situation with no aberrations, (b) 
aberration-free spot, (c) real scenario with aberrations, and (d) the resultant aberrated spot. 

Aberrations are disturbances in the phase of the wave [10]. In contrast to the ideal, 
spherical wavefront shown in Fig. 1(a), which focuses to a diffraction-limited spot on a screen 
as in Fig. 1(b), an aberrated wavefront like that in Fig. 1(c) will depart from the ideal shape 
and, after focusing, will lead to a smeared-out point with low contrast, like that of Fig. 1(d). 
Holography allows a high degree of control over the wavefront, and hence enables aberration 
correction [1,7–9]. When the aberration profiles of the lens and the SLM are known, the 
virtual counter-aberration phase mask can be added to the wavefront. When such a wavefront 
passes through a lens, the virtual aberration cancels out the actual aberrations of the system, 
leading to an aberration-free, diffraction limited image, as illustrated in Fig. 2. 

 

Fig. 2. Concept of the holographic aberration correction: a wavefront is modified to ideally 
cancel out the system's aberration. 

To demonstrate the principle of aberration correction, in this work we deliberately use a 
low-quality sapphire ball lens [7–9]. Because of its wide field-of-view, such a lens produces a 
substantial amount of aberrations, which varies spatially across the replay field (explained in 
detail in section 2.2). 

The method most commonly used to compensate the spatially-varying aberrations of a 
ball lens is the Pixel to Wrapped Phase Summation (PWPS). Instead of employing a Fourier 
Transform operation, the PWPS method splits the image into single-pixel contributions 
(gratings) on which the correction is then superimposed [8,9]. All existing implementations 
require an initial aberration characterization of every point in the replay field, which can only 
realistically be achieved by simulating the system. In this case the corrections are of limited 
quality due to discrepancies between simulations and the real physical system. In this work, 
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an experimental approach to spatially varying aberration correction is therefore presented. 
Traditional PWPS is also very slow as a different correction hologram must be applied to 
every point. A MATLAB implementation can take up to 15 hours to generate a single 
corrected hologram. A parallelized GPU implementation of the same algorithm can speed up 
the process significantly reducing running time to a few minutes. Nonetheless, this method is 
still too slow to provide real-time hologram generation. 

Currently, the only algorithm that can achieve real-time hologram generation is the One-
Step Phase Retrieval (OSPR) Algorithm [1–4,11], but it is not able to achieve spatially-
varying aberration correction such as aberrations of the ball lens discussed here. Another 
benefit of using an OSPR-type approach is the fact that there exist a number of variations of 
OSPR, such as an Adaptive OSPR or Adaptive OSPR with Liu-Taghizadeh optimization, that 
can be used to further improve the image quality [1,11]. 

In this paper we present a novel approach that combines these two algorithms by dividing 
a replay field into a set of regions and assuming that within each region, the aberrations are 
approximately spatially invariant. The regions chosen approximate concentric rings, a 
selection that reflects the spherical symmetry of the system. This allows an approximate 
version of PWPS to be applied that relies on experimentally characterized aberrations. 
Further, because only a small number of different corrections need to be applied, rather than 
one for every single point in the replay field, the algorithm can be applied in real-time. For 
the projector used in this research, 6 regions proved sufficient to correct a replay field of 90 
by 45 degrees. It is possible to use an even wider field of view but further from the center, the 
size of the point spread function grows significantly because of the diffraction limit of the 
system. It is shown that this approach is substantially faster than existing algorithms and 
allows real-time correction for video-rate projection. 

2. Theoretical background 

2.1 Aberrations in holography 

The replay field of a hologram in the presence of aberrations can be represented as [1]: 

 ( , )( , ) ( , ) ( , ) i x yu v B x y H x y e φ Ψ = × ×   (1) 

where ( , )u vΨ  is the replay field, ( , )H x y  is the hologram, ( , )B x y is the illumination 

profile of a laser, ( , )x yφ is the aberration phase profile and [ ] denotes the Fourier 

Transform operation. In this work, it is assumed that the illumination is uniform. In order to 
correct the distorted replay field, a corrective phase profile must be determined that 
compensates ( , )x yφ . This corrective profile can be approximated as a linear combination of 

Zernike Polynomials. 
Zernike Polynomials are frequently used in optics [7–10], because they correspond to 

common aberrations, such as defocus, astigmatism, coma, spherical aberration and higher-
order aberrations [10]. They also form a complete, orthogonal set, which means that any 
smooth function defined on the unit circle can be approximated up to an arbitrary precision 
given a large number of terms. We will use this property and rewrite the corrective phase 
profile as a sum of Zernike Polynomials: 

 
4

( , ) ( , )
N

i i
i

x y a Z x yφ
=

= ×  (2) 

where ia is the i -th Zernike Coefficient and iZ  is the i -th Zernike Polynomial (using a 

single-numbering scheme used in ZEMAX as Zernike Fringe Phase [12] and described by 
Wyant and Creath [10]) and N is the index of the last term used in the expansion. We have 
ignored the first three terms: piston and tip and tilt, hence, the summation starts at 4a  

(defocus coefficient). 
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This corrective phase profile can be thought of as being like a virtual Fresnel lens 
typically used to correct for defocus [1]. However, in this case instead of being a quadratic 
surface, the phase profile has a generalized high-order polynomial surface. If this virtual 
aberration component is chosen so as to exactly cancel out the system's aberrations, 
diffraction-limited performance can be achieved. 

2.2 Spatially-varying aberrations 

In the case of spatially-invariant aberrations, i.e. dependent only on the hologram coordinates 
but not on the image coordinates, one phase mask ( , )x yφ  is sufficient to correct the entire 

replay field: 

 ( , )( , ) ( , ) i x y
uncorrH x y H x y e φ−= ×  (3) 

Substituting Eq. (3) into Eq. (1), it can be seen that the phase aberrations with opposite 
signs cancel each other out inside the exponent, leaving the replay field as the Fourier 
Transform of the original, uncorrected hologram as if the aberrations were not present: 

 
{ }

[ ]

( , ) ( , )( , ) ( , ) ( , )

( , ) ( , )

i x y i x y
uncorr

uncorr

u v B x y H x y e e

B x y H x y

φ φ− Ψ = × × × 
= ×




 (4) 

However, for spatially-varying aberrations in their most generic form, the aberration 
phase profile depends not only on the hologram coordinates, but also on the spatial 
coordinates: ( , , , )x y u vφ  [10,13]. The problem of spatially varying aberrations can 

alternatively be viewed as considering the spatially sampled optical system to have a 
transmission matrix that contains non-zero off-diagonal elements. As such, it represents a 
subset of a broader class of problems that seeks to shape wavefronts to correct aberrations of 
generalized scattering media [14]. A system with spatially invariant aberrations can be 
considered to have a perfect memory effect, while this effect is reduced in the case of 
spatially varying aberrations [15]. 

Now, assume that we perform aberration correction at some spatial coordinate 0 0( , )u v  

and then attempt to apply the correction to the entire hologram: 

 
{ }

[ ]

0 0

0 0

( , , , )( , , , )

( , , , ) ( , , , )

( , ) ( , ) ( , )

( , ) ( , )

i x y u vi x y u v
uncorr

i x y u v x y u v
uncorr

u v B x y H x y e e

B x y H x y e

φφ

φ φ

−

− −

 Ψ = × × × 
 = × × 




 (5) 

It is noted that this phase correction will cancel out exactly only at the point 0 0( , )u v , but 

some degree of aberration will remain as the spatial coordinates deviate from this, due to a 
memory effect. In this work, we present a novel variant of One-Step Phase Retrieval (OSPR) 
suited for correcting such wavefront errors termed Piecewise Corrected OSPR and compare it 
with the previous Pixel-To-Wrapped Phase Summation method developed in [8,9]. 

3. Aberration correction algorithms 

In the following discussion, it is assumed that the aberration coefficients for the different 
regions of the reply field have been previously determined by an algorithm such as that 
presented in [7] or [8,9]. Consequently, we are only concerned with the generation of 
appropriate holograms that correct these aberrations in multiple spatial regions to form high 
quality images. 

3.1 Pixel-to-Wrapped Phase Summation (PWPS) 

The PWPS algorithm is a standard aberration correction algorithm for spatially varying 
aberrations [8,9]. In order to introduce the development of this algorithm, it is noted that a 
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hologram of a single point in the replay field is a continuous phase surface - an unwrapped 
grating: 

 ( , )( , ) ( , ) e
uv
pixeli x yH x y A u v Φ= ×  (6) 

where ( , )H x y is the complex hologram, A  is the amplitude of the pixel, and uv
pixelΦ  is the 

continuous phase surface corresponding to a pixel at a position ( , )u v : 

 
max max

2 ( , )uv
pixel

u v
x y u v

u v
π ϑ
 

Φ = − + + 
 

 (7) 

where ( , )u vϑ  is the phase of the pixel at a position ( , )u v  and max max( , )u v  is the size of 

the replay field in pixels. In the case of this research, it is 1280x640. However, in general 
such a hologram will not produce a clean point in the replay field due to optical aberrations in 
the system. As discussed in section 2.2, in order to correct an arbitrary optical aberration for a 
point, a corrective phase mask has to be applied: 

 ( , ) ( , )( , ) ( , )
uv
pixeli u vuv i x y

pixelH x y A u v e e φΦ −= × ×  (8) 

where ( , )x yφ  is a phase mask defined in Eq. (2). However, this model does not place any 

constraints on the corrective phase profile. Therefore, we can instead use the spatially-varying 
representation of the aberration phase mask: ( , , , )x y u vφ . The complex hologram that 

corrects the entire replay field containing spatially-varying aberrations can then be 
constructed: 

 
,

( , ) ( , , , )

0, 0

( , ) ( , )
uv
pix

a
e

m x max
l

u u v v
i u v i x y u v

u v

H x y A u v e e φ
= =

Φ −

= =

= × ×  (9) 

If the phase mask was not present, the preceding equation would be equivalent to an 
ordinary Discrete Fourier Transform. With the introduced phase component, however, it can 
be thought of as a summation of virtual aberrating Fresnel lenses. Each lens is designed to 
exactly cancel out the aberrations of the optical system at the particular replay field position. 

In the final step, the hologram is quantized to binary phase due to the ferroelectric binary-
phase SLM used in this research: 

 
( )
( )

( , ) 01
( , )

( , ) 01

real H x yif
h x y

real H x yif

 ≥=  <−
 (10) 

It would be memory-inefficient to store all the values of ( , , , )x y u vφ , therefore we 

represent it as: 

 
4

( , , , ) 2 ( , ) ( , )
N

i i
i

x y u v zmap u v Z x yφ π
=

= ×  (11) 

where ( , )izmap u v  are arrays that store the Zernike Coefficients for the i -th Zernike 

Polynomial iZ , and are termed Zernike Maps [8,9]. This procedure reduces the memory 

requirement significantly (from 118.5 10× entries to 73 10×  in our case). 
This procedure again produces a complex-valued hologram, which is quantized to become 

a binary hologram. In order to reduce the quantization noise, many binary holograms with 
different random phases need to be produced. Therefore, the same set of operations with 
different input ( , )u vϑ  has to be executed. Constructing such a set of holograms significantly 

increases computation time. 
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The key shortcoming of all implementations of PWPS to date is the requirement to know 
the spatially varying aberration Zernike Maps for every point in the replay field. This can 
only feasibly be achieved by modelling the optical system as a point-by-point characterization 
of the replay field. Furthermore, applying this correction to each hologram is very slow. A 
MATLAB implementation of this algorithm can take up to 15 hours to generate a single 
corrected hologram, excluding the time it takes to obtain correction parameters initially. 
Using General-Purpose Graphical Processing Unit (GPGPU) programming, this time can be 
reduced to less than 4 minutes, but that is still orders of magnitude too long for real-time 
video projection. 

3.2 One-Step Phase Retrieval (OSPR) with field-independent correction 

Over a small area of the replay field, the aberrations can be assumed to be spatially invariant 
and so a single set of Zernike phase polynomials can be used to describe a correction valid 
over the whole region. This can be determined using a point-spread function in an 
optimization routine, as described in [7]. 

However, even after this correction is applied, there is still noise in the produced replay 
field caused by the phase quantization present when using a binary-phase hologram. One-step 
phase retrieval (OSPR) is a technique to overcome this, commonly used in projectors. OSPR 
evolved from the realization that the human perception of noise is more sensitive to the noise 
variance rather than noise mean [1–4,11]. Therefore, for the purpose of video projection, it is 
better to display a series of noisy images, which are straight-forward to calculate, rather than 
trying to optimize a single frame trying to reduce noise. This is achieved by calculating 
multiple Inverse Fourier Transforms of the image with different random phases. To display 
these different frames in quick succession, binary-phase ferroelectric devices are used due to 
their high switching speeds. The algorithm in its simplest form is: 

Step 1: Add a random phase to a target image: 

 2 ( , )( , ) ( , ) i u vT u v A u v e π ϑ×= ×  (12) 

where ( , )A u v  is the input grayscale image and ( , )u vϑ  is a uniformly distributed 

random variable. 

Step 2: Perform an inverse Fourier Transform: 

 [ ]1( , ) ( , )H x y T u v−=   (13) 

Step 3: Apply a phase mask determined using an optimization algorithm in order to 
correct aberrations: 

 ( , )( , ) ( , ) i x y
corrH x y H x y e φ−= ×  (14) 

Step 4: Quantize the hologram to binary phase modulation as in Eq. (10). 

Step 5: Repeat steps 1-4 multiple times with different random phases ( , )u vϑ  and display 

the results sequentially on the Spatial Light Modulator with a high frame-rate. 
This approach is extremely efficient at reducing noise, but is not suited for spatially-

varying aberration correction, because all of the replay field points are processed at the same 
time in a single Fourier Transform operation. 

3.2 Piecewise-Corrected OSPR (PC-OSPR) 

Since all of the optical components are continuous in their shape, one can expect the optical 
aberration profile to be a continuous function with respect to spatial coordinates ( , )u v . 
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A first inspection of the correction using an array of spots suggested that it changes 
relatively slowly with distance, shown in Fig. 3. In this case, the correction was designed for 
the point indicated by the circle (inset figure), but because of the approximate cylindrical 
symmetry of the system, is also valid within the ring of pixels enclosing approximately 10% 
of the replay field (the area enclosed between red circles). This is an indication that it might 
be possible to correct an entire replay field by splitting it up into a small number of regions. 

 

Fig. 3. Spatial variation of aberrations. The small white dotted circle in the inset figure shows 
the exact position where the correction was made. However, the correction is also valid for the 
nearby points. The approximate boundaries of correction are indicated by the two red circles. 

Mathematically, if a replay field can be divided into a set of n regions 1R Rn  for which 
the aberration-correcting phase mask can be approximated as constant: 

 

1

2

( , ) ( , ) 1

( , ) ( , ) 2
( , , , )

( , ) ( , )n

x y if u v R

x y if u v R
x y u v

x y if u v Rn

φ
φ

φ

φ

∈
 ∈= 

 ∈

 
 (15) 

Then, Eq. (9) can be rewritten: 

 

max max,
( , ) ( , , , )

0, 0

( , ) ( , )

1 ( , )

( , ) ( , )

( , )

uv
pixel

uv
pixel q

u u v v
i x y i x y u v

u v

q n
i u v i x y

q u v Rq

H x y A u v e e

A u v e e

φ

φ

= =
Φ −

= =

=
Φ −

= ∈

= × ×

 
= × × 

 



 
 (16) 

The term inside the curly braces is equivalent to a Discrete Fourier Transform, so we can 
write: 

 ( , )2 ( , )

1

1( , ) ( , ) ( , ) q

q n
i x yi u v

q
q

H x y M u v A u v e e φπ ϑ
=

−×

=

−  = × × ×   (17) 

where the mask ( , )qM u v  has been introduced in order to filter only the points that belong 

to the region Rq , defined as: 

 
1 ( , )

( , )
0q

if u v Rq
M u v

otherwise

∈
= 


 (19) 

This important result demonstrates that PWPS and OSPR can be applied over a large 
replay field using a piecewise approximation consisting of fixed phase masks ( , )q x yφ . To 

correct an entire replay field, it is sufficient to correct each region with a separate phase mask 
and sum the resulting complex holograms. This novel algorithm is termed Piecewise-
Corrected OSPR (PC-OSPR). 
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The full algorithm can be summarized as: 

Step 1: Add a random phase to a target image: 

 2 ( , )( , ) ( , ) i u vT u v A u v e π ϑ×= ×  (20) 

Step 2: Divide the target image into a set of n  sub-images by multiplying it with 
appropriate masks ( , )qM u v : 

 ( , ) ( , ) ( , )q qT u v T u v M u v= ×  (21) 

where 1...q n=  

Step 3: For each of the n  sub-images, perform an inverse Fourier Transform operation 
and apply the phase correction: 

 1 ( , )( , ) ( , ) qi x y

q qH x y T u v e φ−−  = ×   (22) 

Step 4: Sum the complex holograms: 

 
1

( , ) ( , )
q n

q
q

H x y H x y
=

=

=  (23) 

Step 5: Quantize the hologram to binary phase modulation as in Eq. (10). 

Step 6: Repeat steps 1-5 multiple times with different random phase ( , )u vϑ  and display 

the results sequentially on the Spatial Light Modulator with a high frame-rate. 

4. Projector characterization 

4.1 Aberration characterization 

So far, we have discussed how to construct an aberration-correcting hologram given the 
spatially-varying aberration parameters. Now we will shed light on how such aberration 
parameters can be obtained. There are two ways to do that: either by performing ray-tracing 
simulations using ZEMAX [8,9] or by employing an Adaptive-Optical Feedback Loop 
mechanism such as that in [7], but modified for the spatially varying case. These two methods 
are compared against each other. 

4.2 Aberration simulation using ZEMAX 

With the exact knowledge of the optical components and the distances between them, the 
ZEMAX model of a projector was constructed as shown in Fig. 4. The SLM is represented as 
a grating, where the pitch corresponds to the position of the pixel. On that grating, the Zernike 
Fringe Phase, representing the aberration correction, is superimposed. For every field 
position, the global optimization tool finds values of Zernike Polynomials that minimize the 
spot size and hence eliminate the aberrations, shown in Fig. 4(b). 

 

Fig. 4. The layout of a projector inputted into ZEMAX ray-tracing software: (a) without 
Zernike correction and (b) with Zernike correction. L1, L2 and L3 indicate the lenses: L1 – 
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beam-expanding lens, f = 5mm. L2 – collimating lens f = 150mm. L3 – 3mm Sapphire ball 
lens, f = 3.4mm. Wavelength of light is 532nm (green). 

After the optimization procedure is carried out for a number of different field positions, 
the experimental points are fit into polynomials to get a smooth variation of parameters. One 
of these fits corresponding to the variation of the fourth Zernike Polynomial is shown in Fig. 
5. 

To get the aberration-correcting phase mask for the PWPS method, one then needs to 
calculate the value of each Zernike coefficient for the particular field position and then 
perform the summation as indicated in Eq. (2). It is also possible to adapt the Zernike 
correction for PC-OSPR by sampling this function at particular points. However, this 
correction proved substantially inferior to the Adaptive-Optical method. 

 

Fig. 5. Spatial variation of Zernike correction for the fourth Zernike Polynomial - defocus. The 
points represent the appropriate field positions and the line is the polynomial fit of this 
function. 

4.3 Aberration measurement using an Adaptive-Optical Feedback Loop Mechanism 

 
Fig. 6. A schematic view of the feedback loop mechanism: an image of a single point is 
displayed on a projector, the replay field is then fed back through the webcam to the computer, 
which performs the correction. 

Alternatively, aberrations can be experimentally characterized using an adaptive optical 
feedback loop mechanism, such as that illustrated in Fig. 6. We have implemented such a 
system here which, based only on the feedback from the projector, is able to measure and 
correct arbitrary spatially varying aberrations. This is essentialy achieved by applying the 
method developed in [7] repeatedly to contiguous spatial regions. Here, we will only 
summarize the method. 

The projector under test displays an image of a single point at a desired location with 
some correction parameters 4 16( ... )a a . The image of that point is taken with a webcam and 

the fit function ( ff ) value based on the peak intensity of the point and its physical size is 

calculated. That procedure can be thought of as a mapping in 13-dimensional space: 

4 16( ... )a a ff→ . 

In order to find a perfect correction, one has to seek the global minimum of this function. 
This is an optimization problem and the solution developed [7] uses a hybrid between Genetic 
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and Steepest Descent Algorithms. Such a correction is performed once for the lifetime of a 
projector and completes within 5 hours. For the spatially varying case, this procedure is 
performed multiple times for different field positions and the correction is found in each case. 
When this system is implemented on a commercial scale, it is possible to substantially speed 
up the process by correcting multiple points at once and employing state-of-the-art hardware 
and software. 

4.4 Distortion measurement and correction 

In the general case an optical system will exhibit both aberrations and distortions that need to 
be corrected. Distortion of a cylindrically-symmetric optical system is always radial, i.e. in 
order to correct for distortion it is sufficient to know a curve of distorted radius vs. paraxial 
radius. That measurement was made by displaying an image of concentric circles of known 
radii, shown in Fig. 7, and measuring the actual radius of each circle when projected. The 
resulting output curve is presented in Fig. 8. 

 
Fig. 7. Image of concentric circles used as an input to the distortion correction algorithm. In 
order to improve the performance of the algorithm, many images of the same target with 
different corrections were averaged to get a sharp image. 

 
Fig. 8. Measured distortion curve. The line is tangential to y = x at x = 0, indicating that no 
distortion is present close to the centre, but curves upwards as y rises, indicating pincushion 
distortion, which drags distorted points outwards. 

In order to correct for distortion, it is sufficient to predistort the image before passing it to 
the hologram generation routine. Figure 9(a) shows the grid of pixels and Fig. 9(b) shows the 
same grid pre-distorted so as to exactly counteract the distortion of the system. 

                                                                                                   Vol. 24, No. 14 / 11 July 2016 / OPTICS EXPRESS 15751 



 
Fig. 9. (a) A target image of a grid, and (b) Grid predistorted to counteract distortions. 

4.5 Region boundary assignment 

Having determined optimal aberration-correcting phase masks at 6 radially separated points, 
the region boundaries can then be assigned. This is done by displaying a grid of single points 
and algorithmically recognizing which of the 6 correction masks minimizes the aberrations at 
each point. From this, groups of contiguous points using the same correction mask emerge. 
Such a grid with one of the corrections applied can be seen in Fig. 10(a). The chosen group of 
points can be seen in Fig. 10(b) and the assigned region can be seen in Fig. 10(c). 

 
Fig. 10. (a) Grid of single pixels with one of the corrections applied, (b) The selection of 
contiguous points for which this correction is best, and (c) an assigned correction region. 

5. Experimental setup 

 
Fig. 11. A schematic view of the holographic projector used. Lenses L1-L3 have the same 
parameters as indicated in Fig. 4, the laser wavelength is 532 nm 

The holographic projector used in this research is shown in Fig. 11. A 532nm laser beam is 
expanded and collimated by lenses L1 and L2, modulated by an SLM in reflection mode. 
Then, the combination of lenses L2 and L3 is used to demagnify the hologram (i.e. expand 
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the image size). Most of the aberrations are introduced by the ball lens L3. Then, the de-
magnified hologram, formed at the focal plane P2, continues to diffract as it propagates to 
form a far field image at the webcam. By displaying images at different positions in the 
replay field and moving the webcam appropriately, the multiple points in the replay field can 
be measured and then corrected. 

6. Results 

The newly developed Piecewise Corrected One-Step Phase Retrieval method is presented 
here and finally compared with the Pixel-To-Wrapped Phase Summation method. There are 
various corrections, which are compared against each other. Distortion correction, which is 
independent of the algorithm, is presented first. Then, there is Piecewise aberration correction 
done using PWPS and OSPR and finally, a Zemax-PWPS correction. 

6.1 Distortion correction 

We projected a regular array of pixels, which, due to a severe distortion, resulted in a 
hyperbolic projection seen in Fig. 12(a). In Fig. 12(b), it can be seen that this error is 
eliminated. 

 
Fig. 12. Grid of single pixels (a) without and (b) and with distortion correction. 

6.1 Aberration correction 

To visually assess the quality of the correction, a box with 5 pixels forming a cross in the 
middle (1 pixel apart) is displayed within each different corrected region. This test shape 
allows visual assessment of various properties of the image, such as quality of vertical and 
horizontal lines, and the interaction between individual pixels. Figure 13(a) shows the points 
selected to analyze the correction. Figure 13(b) shows the uncorrected box test image, Fig. 
13(c) shows the corrected replay field using Zemax and Fig. 13(d) shows the corrected replay 
field using the adaptive-optical feedback mechanism. It is observed that all of the images are 
significantly improved by this correction as seen in the insets 1-6. The correction at points 1-3 
is sub-optimal due to severe distortion of the image in those areas. However, as will be 
demonstrated later this does not noticeably affect the quality of the resultant projected image. 

6.2 Boundary setting 

For each of the 6 correction masks, the methods described in section 4.5 were applied and the 
resulting set of regions is shown in Fig. 14. It can be seen that there is some degree of 
cylindrical symmetry that disappears further from the center. This set of masks can be then 
used to isolate parts of the image before the Fourier Transform operation is performed. In Fig. 
15 one of these regions is presented before and after the aberration correction. 
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Fig. 13. (a) Target image given as an input to the hologram generation script, indicating 
correction points, (b) uncorrected replay field, (c) Zemax correction and (d) Adaptive Optical 
correction. 

 

Fig. 14. Boundary masks: different shades of gray indicate different regions of the image. 

 

Fig. 15. An example of correction in region 6: (a) an uncorrected and (b) a corrected image. 

6.3 Speed comparison 

In Fig. 16 we can see the comparison of execution times between different algorithms. As we 
can see, the novel PC-OSPR algorithm is independent of the number of pixels and executes 
within 60s on MATLAB and 70ms on CUDA. The PWPS algorithm, however, depends 
linearly on the number of non-zero image pixels. If every pixel in the image is present, a 
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worst-case scenario, the CUDA implementation takes 230 seconds to execute. MATLAB 
would need 15 hours to compute such holograms. 

 

Fig. 16. Execution time of different algorithms. The PWPS and PC-OSPR routines has been 
tested using both: CUDA and MatLAB implementations. 

 

Fig. 17. Correction of a real image: (a) a target image, (b) an uncorrected replay field using the 
OSPR algorithm, and (c-e) Corrected replay fields: (c) Zemax PWPS, (d) Adaptive-optical 
piecewise-corrected PWPS, (e) Adaptive-optical PC-OSPR. The green line at the bottom 
center of (b)-(e) is zero-order diffraction caused by light specularly reflecting off the glass 
SLM cover. This could be reduced with improved anti-reflection coatings or by using off-axis 
holographic projection. 
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6.4 Final correction 

The final corrections as applied to a real image are shown in Fig. 17. It can be seen that both 
Zemax correction, shown in Fig. 17(c) and adaptive-optical corrections, shown in Figs. 17(d) 
and 17(e) improve the image, with the adaptive-optical method performing better in the outer 
edges. Moreover, it can be noticed that the OSPR hologram generation method, shown in Fig. 
17(e) is significantly better at reducing noise in the image than PWPS method shown in Fig. 
17(d). 

6.5 Real-time operation 

Due to its fast execution, the algorithm allowed a real-time operation at up to 12 frames per 
second. This process is pictured in Visualization 1 (see Fig. 18). The program takes input 
from one of the monitors, applies the corrections and displays the resultant hologram on the 
SLM. The program was executed on a mid-range nVidia GTX 760 GPU. Because of various 
hardware and software limitations, the algorithm had to be executed with only 8 OSPR 
frames resulting in a slight reduction of image quality. However, when state-of-the-art 
hardware is employed, it is possible to achieve both exceptional image quality and video 
frame rate of 30 frames per second. 

 

Fig. 18. Real-time projection of a YouTube video (see Visualization 1): (a) an uncorrected 
replay field, (b) a fully-corrected replay field. The bright vertical line is zero-order diffraction 
light, while the horizontal line is a YouTube loading bar. 

7. Conclusions 

A novel piecewise variant of the Pixel-to-Wrapped Phase algorithm for correction spatially 
varying aberrations is presented. When combined with OSPR technique, the novel algorithm 
offers substantial speed improvement over pre-existing PWPS methods while improving 
image quality. 

A working Adaptive-Optical Feedback Loop mechanism is demonstrated that can 
characterize spatially-varying aberrations of the holographic projector. This method is 
contrasted with traditional PWPS aberration correction using ZEMAX ray-tracing software. It 
is shown that while ZEMAX simulations can reduce these errors, the piece-wise adaptive-
optical approach provides better experimental image quality. 

Projection of distortion- and aberration-corrected images over a field of view of 90x45 
degrees is demonstrated. Using highly-parallel GPU programing, a continuous operation of 
the algorithm at a frame rate up to 12 frames per second on a mid-range graphics card can be 
achieved, which is sufficient for real-time projection. 
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