
Citation: Cardoso, A.S.; Whitby, A.;

Green, M.J.; Kim, D.-H.; Randall, L.V.

Identification of Predictive

Biomarkers of Lameness in Transition

Dairy Cows. Animals 2024, 14, 2030.

https://doi.org/10.3390/

ani14142030

Academic Editors: Alfonso Zecconi

and Ceferino Manuel López

Received: 23 May 2024

Revised: 23 June 2024

Accepted: 7 July 2024

Published: 10 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Article

Identification of Predictive Biomarkers of Lameness in Transition
Dairy Cows
Ana S. Cardoso 1 , Alison Whitby 2 , Martin J. Green 1 , Dong-Hyun Kim 2 and Laura V. Randall 1,*

1 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus,
Sutton Bonington, Leicestershire LE12 5RD, UK

2 Centre for Analytical Bioscience, Advanced Materials & Healthcare Technologies Division,
School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
dong-hyun.kim@nottingham.ac.uk (D.-H.K.)

* Correspondence: laura.randall@nottingham.ac.uk

Simple Summary: Lameness, an impaired gait, results from the pain dairy cows feel, which impacts
their behaviour and performance, and consequently farmer income. Mobility scoring by visual
inspection is the current gold standard in the UK for detecting this condition; however, it is prone
to scoring biases and can only detect lameness once the cow feels pain, which may come too late
for effective action to be taken. Conversely, the early detection of lameness allows for the better
management and treatment of lameness cases, which is decisive in minimizing economic losses
and animal pain, thereby improving cow welfare and the sustainability of the dairy industry. In a
previous study, metabolites predictive of lameness were identified; however, the annotation of these
metabolites has not yet been conducted. Although some annotation ambiguity is acceptable when
performing untargeted analysis, accurately identifying compounds is crucial to understand which
pathways are differentially altered between lame and non-lame cows. This study aimed to annotate
the metabolites identified as predictors of lameness in the transition period and understand their
biological role in the pathways and processes that lead to lameness. As a result, three metabolites
predictive of lameness in dairy cows were identified at the highest confidence level, thus allowing for
the understanding of the interactions between metabolism and immunity in lameness to be improved.

Abstract: The aim of this study was to identify with a high level of confidence metabolites previously
identified as predictors of lameness and understand their biological relevance by carrying out
pathway analyses. For the dairy cattle sector, lameness is a major challenge with a large impact
on animal welfare and farm economics. Understanding metabolic alterations during the transition
period associated with lameness before the appearance of clinical signs may allow its early detection
and risk prevention. The annotation with high confidence of metabolite predictors of lameness
and the understanding of interactions between metabolism and immunity are crucial for a better
understanding of this condition. Using liquid chromatography–tandem mass spectrometry (LC-
MS/MS) with authentic standards to increase confidence in the putative annotations of metabolites
previously determined as predictive for lameness in transition dairy cows, it was possible to identify
cresol, valproic acid, and gluconolactone as L1, L2, and L1, respectively which are the highest levels of
confidence in identification. The metabolite set enrichment analysis of biological pathways in which
predictors of lameness are involved identified six significant pathways (p < 0.05). In comparison,
over-representation analysis and topology analysis identified two significant pathways (p < 0.05).
Overall, our LC-MS/MS analysis proved to be adequate to confidently identify metabolites in urine
samples previously found to be predictive of lameness, and understand their potential biological
relevance, despite the challenges of metabolite identification and pathway analysis when performing
untargeted metabolomics. This approach shows potential as a reliable method to identify biomarkers
that can be used in the future to predict the risk of lameness before calving. Validation with a larger
cohort is required to assess the generalization of these findings.
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1. Introduction

Lameness is a complex, painful condition with multifactorial aetiology mostly stem-
ming from infectious and non-infectious hoof lesions, both likely to alter the lame cow’s
metabolome [1,2]. This condition affects the welfare of dairy cattle, commonly resulting
from pathology in the foot [3,4], with a reported prevalence in Great Britain of approx-
imately 30% [5,6]. Lameness has major implications for production efficiency and sus-
tainability due to impacts on production [7,8], reproduction [9], and the early culling of
cows [8,10]. Together with increased veterinary and trimming costs [11], lameness neg-
atively impacts farm economics [12]. Early detection is of utmost importance to reduce
the negative impacts associated with lameness and improve treatment outcomes, thereby
reducing its prevalence [8,13]. In 2021 [14], guidelines were outlined to implement early
detection and prompt and the effective treatment (EDPET) of new cases of lameness to
break the cycle of chronicity. However, this approach is dependent on the reliable and
accurate identification of early lameness, which is challenging using current methods, and
the use of predictive biomarkers may be a tool that in future can provide an earlier alert
to lameness risk [1]. It is also well recognized that mobility scoring alone to detect digital
dermatitis is insufficient. It is known that the transition period, the periparturient period
between 3 weeks before and 3 weeks after calving, is a critical phase triggering metabolic
alterations thought to be associated with subsequent lameness risk that can be measured in
urine metabolic profiles [1,15,16]. These metabolic changes appear to be associated with the
stress caused by calving and preparation for lactogenesis, inducing physiological changes
(metabolic and endocrine) that affect immunity [15,17], although fundamental knowledge
gaps still exist concerning the pathogenesis of lesions that cause lameness and the effect of
the transition period on pathological pathways.

Metabolomics is a cutting-edge scientific field involving the measurement of low-
molecular-weight molecules (metabolites) in biological specimens [18]. Its use has been
increasingly adopted to diagnose complex metabolic diseases and identify disease biomark-
ers [19]. The urine metabolome, in particular, provides an important source of information
about physiological states in response to disease manifestations [20]. However, the corre-
lation of statistical variables to biochemical functions of metabolomics relies on accurate
metabolite identification [21–23]. Metabolite identification is a fundamental tool to link
the raw data generated by metabolomics studies into the biological context [24,25]. Before
performing biochemical pathway analysis and formulating a hypothesis, it is crucial to
increase confidence in the proposed metabolite identification method [26].

The use of urine (urinalysis) to assess the health status of dairy cows has already
been proven to be a non-invasive diagnostic method that could be routinely used [27,28].
Previous studies have shown that metabolomics analysis allows for the detection of poten-
tial metabolites that discriminate the metabolic profiles of lame and healthy cows using
urine [1,16], milk [29,30], and blood [15,17]. Randall et al. [1] used liquid chromatography–
mass spectrometry (LC-MS) and machine learning (ML), applying a suite of five algorithms
(support vector machine (SVM), elastic net regression, partial least squares (PLS) regres-
sion, random forest (RF), and multivariate adaptive regression splines (MARS)) to predict
lameness. In this study, SVM was the best-performing ML predictive model with a mean
accuracy of 82% at the time of lameness. In He et al.’s work [29], a set of four of the same
algorithms, except for MARS, was also applied, achieving accuracies of 100% for RF (with
15 selected variables) and 95% for Elastic net, PLS, and SVM (with 10 selected variables).
Using a targeted approach, Zhang et al. [15] found that increased serum concentrations
of cytokines released into the circulation in cows that developed lameness postpartum,
compared with the control group of cows, were evident at 4 and 8 weeks before calving.
These findings suggest a subclinical phase to lameness, making the use of biomarkers to
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predict lameness an interesting approach. Potential biomarkers of lameness were also
identified in a study on transition dairy cows using targeted quantitative metabolomics [16].
To assess the analysis of the biomarker performance of the top five metabolites, the authors
used the area under the receiver operator characteristic curve (AUC), achieving accuracies
between 0.98 and 1 (95% CI) for the different time points assessed. Although these are
good indicators showing the predictive ability of these particular metabolites to poten-
tially predict lameness, it is important to highlight that they were not the same across
all time points, which makes it difficult to interpret the results. The transition period
covers parturition, as well as the nutritional and environmental changes immediately
after calving that are stress-inducing, causing metabolic changes [31]. The identification
of metabolites that are predictive for lameness in the transition period enables the early
prediction of cows at risk of lameness in that lactation, and the annotation and pathway
analysis of these metabolites may provide valuable information relating to pathogenic
pathways. The potential of untargeted LC-MS-based metabolite profiling and combined
machine learning methods to predict lameness pre-calving and prior to clinical symptoms
in first-lactation dairy cows with high accuracy has also been demonstrated, in addition to
targeted methods [1]. The untargeted approach allows a more extensive analyte coverage
when compared with targeted approaches [32]. Untargeted LC-MS analyses are open to
hypothesis generation and biomarker discovery [33], and may find different pathways
associated with lameness that have not been identified in the studies previously described,
since targeted metabolite analysis focuses on a specific class of molecules or pathways.

Metabolite identification was not a focus of the study by Randall et al. [1], and therefore
top-ranking mass ions were used in their predictive lameness model regardless of their
ability to be identified and without knowing their biochemical roles in the cows. This is
useful for a predictive model, but metabolite identification is crucial for understanding the
underlying biological pathways associated with lameness. They noted that further work is
needed to confirm the identity of mass ions identified in their study and that the pathway
analysis of predictive metabolites would give important insights into the pathogenesis of
lameness. This study aimed to identify the metabolites previously determined as predictors
of lameness in the transition period [1] and to understand their biological role by conducting
pathway analysis. Metabolic pathway analysis allows us to understand the interactions
between metabolism and immunity in lameness.

2. Materials and Methods
2.1. Previous Generation of LC-MS Data

The data utilized in this study were generated from a previous case–control study [1],
for which ethical approval was granted by the University of Nottingham Committee for
Animal Research and Ethics (Reference No. 3120 200220 and 3132 200309). A detailed
description of the methodology was previously reported [1].

A quality control (QC) sample was made by mixing equal volumes of all samples.
This was used in the current work for accurate metabolite identification as a representative
of 82 samples corresponding to Cohort 2 previously published by Randall et al. [1]. In
summary, urine samples were collected from 67 Holstein dairy heifers (entering their
first lactation) from one herd, who were subjected to weekly mobility scoring (0–3 scale,
AHDB [34]) from 3 weeks pre-calving to 70 days in milk (DIM) to identify lame and non-
lame cows. Samples were selected from lame and non-lame cows at three time points;
pre-calving (PRE, n = 28), post-calving (POST, n = 28), and at the time of lameness (AT,
n = 26). Cohort size was based on a pilot work published by He et al. [29] on dairy cows
using a similar statistical analysis. Exclusion criteria were surgery or any treatment with
antimicrobials or anti-inflammatories that the heifers had been subjected to in the current
lactation. Urine was diluted and untargeted metabolomics data were obtained via LC-MS
with MS/MS for the putative identification of the most abundant metabolites. A set of 5 ML
models (SVM, elastic net regression, PLS regression, RF, and MARS) [1] was applied within
the caret package [35] using R [36] to analyse the pre-processed datasets to create a list of
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important metabolites associated with lameness (Table 1). Recursive feature elimination
was used for each of the 5 models to select the smallest number of variables (mass ions)
that provided the best accuracy. Stability selection [37] was used to prevent overfitting
and model triangulation was employed to reduce the probability of selecting false-positive
variables, as previously described by Randall et al. [1].

Table 1. List of mass ions selected by machine learning models and stability selection from LC-MS
data generated using untargeted metabolomics on urine samples of dairy heifers. The urine samples
were collected at three different time points (PRE, POST, and AT).

Mass
[m/z] Name Formula Species Polarity RT 1

[min] Type of Identification

MSI 2

Classification of
Confidence in
Identification

Sample
Collec-

tion Time

91.0541 Unknown Unknown [M+H]+1 Positive 4.90 NA L4 AT
107.0500 * 4-Methylphenol C7 H8 O [M−H]−1 Negative 4.44 Accurate mass, MS/MS L2 AT
120.1019 Unknown Unknown [M+H]+1 Positive 6.79 NA L4 POST

129.0561 * Ketoleucine C6 H10 O3 [M−H]−1 Negative 8.24 Accurate mass L3 POST
133.1335 Unknown Unknown [M+H]+1 Positive 8.17 NA L4 AT
143.1080 Valproic acid C8 H16 O2 [M−H]−1 Negative 3.87 Accurate mass L3 AT

151.0613 * Unknown Unknown [M+H]+1 Positive 6.75 NA L4 PRE
158.0811 CEGABA C7 H13 N O4 [M+H−H2O]+1 Positive 6.94 Accurate mass L3 AT
163.0963 Unknown Unknown [M+H]+1 Positive 7.00 NA L4 AT
174.0562 Indole-2-acetic acid C10 H9 N O2 [M−H]−1 Negative 7.16 Accurate mass L3 AT
177.0406 D-Glucono-delta-lactone C6 H10 O6 [M−H]−1 Negative 7.57 Accurate mass L3 POST
193.0700 Unknown Unknown [M−H]−1 Negative 6.29 NA L4 PRE

195.0664 * AH0675000 C10 H12 O4 [M−H]−1 Negative 7.55 Accurate mass L3 PRE
195.1225 Unknown Unknown [M+H]+1 Positive 4.76 NA L4 PRE
199.1440 Unknown Unknown [M+H]+1 Positive 6.36 NA L4 AT
201.0771 Unknown Unknown [2M−H]−1 Negative 7.66 NA L4 POST

201.1596 * Unknown Unknown [M+H]+1 Positive 6.62 NA L4 PRE
203.0021 Unknown Unknown [M−H]−1 Negative 7.07 NA L4 AT

215.0203 * Unknown Unknown [M−H]−1 Negative 7.39 NA L4 POST
216.0514 Unknown Unknown [M−H]−1 Negative 8.31 NA L4 POST
229.9764 Unknown Unknown [M−H]−1 Negative 8.28 NA L4 AT
243.1236 Unknown Unknown [2M−H]−1 Negative 6.83 NA L4 AT

251.0771 * Unknown Unknown [M+H]+1 Positive 7.05 NA L4 POST
256.1751 Unknown Unknown [M+NH4]+1 Positive 4.45 NA L4 PRE
280.1385 Unknown Unknown [M+H]+1 Positive 7.12 NA L4 PRE
283.1034 1-Methylinosine C11 H14 N4 O5 [M+H]+1 Positive 6.75 Accurate mass L3 PRE
290.1229 Unknown Unknown [M+H]+1 Positive 7.91 NA L4 POST

291.0180 * Unknown Unknown [M−H]−1 Negative 6.65 NA L4 POST
299.0229 Unknown Unknown [M−H]−1 Negative 3.58 NA L4 POST
301.0748 Unknown Unknown [M−H]−1 Negative 3.36 NA L4 PRE
312.1297 N2-Dimethylguanosine C12 H17 N5 O5 [M+H]+1 Positive 6.69 Accurate mass L3 PRE
314.1593 Unknown Unknown [M+H]+1 Positive 4.23 NA L4 AT
316.1384 Unknown Unknown [M+H]+1 Positive 5.03 NA L4 POST
322.0930 Unknown Unknown [M−H]−1 Negative 4.85 NA L4 AT
489.1922 Unknown Unknown [M+H]+1 Positive 8.70 NA L4 PRE
661.2039 Unknown Unknown [M−H]−1 Negative 6.41 NA L4 PRE
881.2806 Unknown Unknown [M+H]+1 Positive 7.82 NA L4 AT

* Mass ions selected by both stabiliser and machine learning models. 1 RT—retention time; 2 MSI—Metabolomics
Standards Initiative.

2.2. Previous Metabolite Annotation and Identification

At the time of the previous LC-MS analytical run [1], metabolite identification was
carried out by matching accurate masses and the polarity of the detected ion peaks with
metabolites in the Bovine Metabolome Database [38], and retention times (RTs) with 268 au-
thentic standards and/or ddMS/MS with the mzCloud fragmentation database (Thermo
Fisher Scientific, Hemel Hempstead, UK) using Compound Discoverer 3.1 SP1 software
(Thermo Fisher Scientific, Hemel Hempstead, UK). The confidence in the metabolite iden-
tification of the annotations resulting from pre-processing was then classified using a
four-level scale (L1–4) based on the recommendation by the Chemical Analysis Work-
ing Group, Metabolomics Standards Initiative (MSI) [24,25]. In this classification, the
metabolites identified using the mass-to-charge ratio (m/z), RT, and MS/MS with refer-
ence standards were classified as level 1 (L1); putatively annotated metabolites using m/z,
RT, and/or MS/MS from the spectral library and no reference standards as level 2 (L2);
putatively characterized metabolite classes as level 3 (L3); and unknowns as level 4 (L4).
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2.3. Further MS/MS and Identity Confirmation with Standards

To further increase the confidence in the proposed annotations, LC-MS/MS with
standards was performed. A QC sample was used for chemical analysis, performed in
the same laboratory, using the same instrument (Dionex 3000 LC system coupled with
Q-Exactive Plus mass spectrometer, Thermo Fisher Scientific, Hemel Hempstead, UK), and
the same analytical methodologies as in previous LC-MS analyses [1].

A set of important mass ions selected from previous statistical analyses (Table 1) was
used to create an inclusion list, which increased the number of metabolite identifications
compared to the standard data-dependent acquisition [39]. Briefly, if a scanned ion m/z
matched an ion in the inclusion list, within a 2 min RT range, it was then selected for
MS/MS fragmentation [40]. The inclusion list was exported from the previous Compound
Discoverer results dataset [1]. Data-dependent MS/MS was performed with a resolution of
17,500, maximum ion injection time (IT) of 50 ms, automatic gain control (AGC) target of
1 × 105, isolation window of 0.5 m/z, and stepped normalized collision energies of 20, 30,
and 40, both in ddMS/MS with others picked if idle, and in parallel reaction monitoring
(PRM) mode with the inclusion list.

The first stage in the process of choosing the authentic standards to include in the
LC-MS/MS analysis was a search for LC-MS spectra in the Bovine Metabolome Database
(BMDB) [38] and the Livestock Metabolome Database [41] using the m/z (within 5 ppm
tolerance), ion mode, and adduct type of the 37 important ions presented in Table 1. Then,
the in-house availability of authentic standards in chemical libraries was searched, as
illustrated in Figure 1. Authentic standards (Table 2) were used at a concentration of 20 µM.
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Figure 1. Sankey diagram showing the process for choosing the authentic standards to include in the
LC-MS/MS analysis.

Table 2. List of authentic standards used for metabolite identification.

Target m/z
(i.e., the m/z of the Metabolite in the Inclusion List)

Standards

Adduct Polarity Name

107.0500 M−H Negative p-Cresol (4-methylphenol)
120.1019 M+NH4 Positive 2-Methybutyric acid
120.1019 M+NH4 Positive Ethyl propionate
120.1019 M+H Positive N-Methyldiethanolamine
120.1019 M+NH4 Positive Pivalic acid
120.1019 M+NH4 Positive Valeric acid
129.0561 M−H Negative Acetylbutyric acid
133.1335 2M+H−H2O Positive 1-Amino-2-propanol
133.1335 M+NH4−H2O Positive Diisopropylamine
143.1080 M−H Negative Valproic acid
151.0613 M+IsoProp+H Positive Oxalate
174.0562 M−H Negative 3-Indoleacetic acid
177.0406 M−H2O−H Negative D-Gluconic acid
177.0406 M−H Negative D-Glucono-1,4-lactone
177.0406 M−H Negative Gluconolactone
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Table 2. Cont.

Target m/z
(i.e., the m/z of the Metabolite in the Inclusion List)

Standards

Adduct Polarity Name

177.0406 M+FA−H Negative Glutaric acid
177.0406 M+FA−H Negative Methyl succinate
177.0406 M+Hac−H Negative Methylmalonic acid
177.0406 M+Hac−H Negative Succinic acid
195.0664 M−H Negative Dimethoxyphenylacetic acid
195.0664 M+FA−H Negative Hydroxycoumarin
195.0664 M+Hac−H Negative Phenylacetic acid
195.0664 M+Hac−H Negative Toluic acid
195.0664 M+FA−H Negative Tolylacetic acid
195.1225 M+IsoProp+H Positive Deoxyribose
215.0203 M+FA−H Negative Gallate
251.0771 M+H−H2O Positive Inosine
283.1034 2M+H−H2O Positive D-Arabinose
283.1034 2M+H−H2O Positive D-Ribose
290.1229 M+NH4 Positive Arbutin
312.1297 M+IsoProp+Na+H Positive Deoxyuridine
316.1384 2M+2H+3H2O Positive 1-Naphthol
316.1384 2M+2H+3H2O Positive 2-Naphthol

Qual Browser in Xcalibur 2.2 SP1.48 (Thermo Fisher Scientific) was used to conduct an
RT search of the m/z of each important predictive metabolite in all raw data files (QC and
standards). Differences in retention times between QCs and standards were calculated and
ions with differences less than or equal to 0.5 min were considered for further confirmation.
Standard MS/MS spectra were input to mzVault (Thermo Fisher Scientific) to build a library,
which was then used to compare the m/z and fragmentation spectra of the QC.RAW data
files. Confidence in identification was checked using CFM-ID (Competitive Fragmentation
Modelling for Metabolite Identification) [42], which uses in silico fragmentation techniques
to predict ESI-MS/MS.

2.4. Enrichment and Pathway Analysis

Metabolite set enrichment analysis (MSEA) [43] was performed using the Metabo-
Analyst 5.0 platform [44] to identify the biological pathways relating to the metabolites
associated with lameness. Over-representation analysis (ORA) was performed using a list
of 9 compounds of interest identified with L2 or L3 levels of confidence (Table 1), and the
reference metabolome used as background was a list containing all the annotated com-
pound names in the dataset (n = 524) [45]. The ORA used hypergeometric testing to assess
whether compounds of interest were represented above what would be expected within
the reference metabolome. RaMP (integrating HMDB/KEGG, Reactome, and WikiPath-
ways) [46] was selected as the library pathway for this study and only metabolite sets
containing at least three entries were considered. Both lists (9 compounds of interest and
the reference metabolome) were previously subjected to compound name standardization
in order to match the compound identity to the knowledge base used by MetaboAnalyst.

Another pathway analysis that integrated ORA and topology analysis was performed
using the MetaboAnalyst 5.0 platform [44]. The pathway analysis parameters used were
scatter plot (testing significant features) as the visualization method, the hypergeometric
test for the ORA, and relative-betweenness centrality for the pathway topology analysis.
All compounds in the Kyoto Encyclopedia of Genes and Genomes (KEGG) [47] Bos taurus
(cow) pathway library were selected for the reference metabolome.

3. Results

A total of 37 mass ions found to be associated with lameness, based on previous
work [1], were used for compound identification in this study. Before further MS/MS,
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one mass ion was classified (MSI classification of confidence in identification) as L2, eight
as L3, and twenty-eight as L4. There were no ions classified as L1, the highest level of
identification, as detailed in Table 1.

The comparison of all peaks’ m/z and RTs, obtained after further LC-MS/MS of the QC
with the inclusion list and the standards library, resulted in 10 putative matches (Table 3).
After comparison with standard MS/MS spectra, it was possible to increase the confidence
of m/z 107.0500 (cresol) and m/z 177.0406 (D-glucono-delta-lactone) to level 1, and m/z
143.1080 (valproic acid) to L2 using mzVault. Sometimes there was an MS/MS match in
mzVault, but because of the RT being different, the metabolite was not identified as this
(e.g., gluconolactone). The predicted ESI-MS/MS using CFM-ID [42] also agreed with the
measured MS/MS spectra for valproic acid in the QC sample.

Table 3. Putative annotations and Metabolomics Standards Initiative (MSI) classification of confidence
in identification. Valproic acid standard did not fragment. Some ions had multiple chromatographic
peaks identified with the same name, which were all important metabolites.

Mass [m/z] Name Type of Identification MSI Classification of Confidence in Identification

174.05623 Arbutin NA NA
291.01797 Arbutin NA NA
107.05003 Cresol Accurate mass, RT, MS/MS L1
243.12357 Diethylene Glycol NA NA
216.05141 Gluconolactone NA NA
177.04063 Gluconolactone Accurate mass, RT, MS/MS L1
195.06644 Gluconolactone NA NA
243.12357 Glycerol NA NA
143.10802 Methylpentanoic acid NA NA
143.10802 Valproic acid Accurate mass, RT L2

The top 25 biological pathways impacted by the set of metabolites of interest resulting
from the ORA are presented in Figure 2. When considering the threshold for a one-tailed
p-value of <0.05, provided after adjusting for multiple testing [43], only six pathways
were found to be significantly impacted, including branched-chain amino acid catabolism,
glucose-6-phosphate dehydrogenase deficiency, ribose-5-phosphate isomerase deficiency,
transaldolase deficiency, the valproic acid metabolism pathway, and the valproic acid
pathway. Figure 3 shows the network view of all metabolite pathways created using the
Enrichment Analysis module of MetaboAnalyst 5.0.

The metabolite of interest presented in the main enriched pathway, branched-chain
amino acid catabolism, is ketoleucine (a standard for this metabolite was not available
in-house). D-Gluconolactone is present in glucose-6-phosphate dehydrogenase deficiency,
in ribose-5-phosphate isomerase deficiency, and in the transaldolase deficiency pathway.
Only one match with the metabolites of interest was found for each enriched pathway.

The results from the pathway analysis combining ORA and topology analysis iden-
tified two pathways under the p-value threshold of 0.05: valine, leucine and isoleucine
biosynthesis (p-value = 0.02), in which a single match of ketoleucine was present; and the
pentose phosphate pathway (p-value = 0.04), in which D-gluconolactone was present.



Animals 2024, 14, 2030 8 of 16

Animals 2024, 14, x FOR PEER REVIEW 8 of 17 
 

pathway. Figure 3 shows the network view of all metabolite pathways created using the 
Enrichment Analysis module of MetaboAnalyst 5.0. 

The metabolite of interest presented in the main enriched pathway, branched-chain 
amino acid catabolism, is ketoleucine (a standard for this metabolite was not available in-
house). D-Gluconolactone is present in glucose-6-phosphate dehydrogenase deficiency, 
in ribose-5-phosphate isomerase deficiency, and in the transaldolase deficiency pathway. 
Only one match with the metabolites of interest was found for each enriched pathway. 

 
Figure 2. Summary plot for ORA (adapted from Metaboanalyst 5.0). Figure 2. Summary plot for ORA (adapted from Metaboanalyst 5.0).

Animals 2024, 14, x FOR PEER REVIEW 9 of 17 
 

 
Figure 3. Network view of all enriched pathways (from Metaboanalyst 5.0). Each node (circle) 
within the network represents a set of metabolites. The colour and size of the nodes are based on 
their p-value and fold enrichment, respectively. Two nodes are connected by a line when they share 
more than 20% of metabolites. 

The results from the pathway analysis combining ORA and topology analysis iden-
tified two pathways under the p-value threshold of 0.05: valine, leucine and isoleucine 
biosynthesis (p-value = 0.02), in which a single match of ketoleucine was present; and the 
pentose phosphate pathway (p-value = 0.04), in which D-gluconolactone was present. 

4. Discussion 
By increasing the confidence in metabolite identification and performing pathway 

analysis, this study aims to provide further insights into lameness pathogenesis, as its 
multifactorial aetiology and the involvement of animal-based and environmental risk fac-
tors have not been fully understood [48]. The method for the early detection and preven-
tion of the disease in dairy cattle proposed by Randall et al. [1] showed promise to con-
tribute to reducing lameness costs and increasing dairy cattle welfare, predicting lameness 
with an accuracy of 82% using ML models. The metabolites and the pathways now iden-
tified are the building blocks to developing early detection tools. 

4.1. Metabolite Annotation and Identification 
Overall, the obtained results allowed the identification of metabolites that had previ-

ously been determined as predictive for lameness in transition dairy cows. This study also 
highlighted the challenges of metabolite identification and pathway analysis with untar-
geted metabolomics due to limitations in published spectral libraries, which are discussed 
in Section 4.5. 

4.2. Highest Level of Confidence: L1 
After further MS/MS analysis, cresol (a synonym of 4-methylphenol) was confirmed 

at the highest confidence level of L1 (Table 3, Figure S1). In humans, free p-cresol is higher 
in patients hospitalized for infections [49] due to its ability to inhibit leukocytes from 

Figure 3. Network view of all enriched pathways (from Metaboanalyst 5.0). Each node (circle) within
the network represents a set of metabolites. The colour and size of the nodes are based on their
p-value and fold enrichment, respectively. Two nodes are connected by a line when they share more
than 20% of metabolites.



Animals 2024, 14, 2030 9 of 16

4. Discussion

By increasing the confidence in metabolite identification and performing pathway
analysis, this study aims to provide further insights into lameness pathogenesis, as its
multifactorial aetiology and the involvement of animal-based and environmental risk
factors have not been fully understood [48]. The method for the early detection and
prevention of the disease in dairy cattle proposed by Randall et al. [1] showed promise
to contribute to reducing lameness costs and increasing dairy cattle welfare, predicting
lameness with an accuracy of 82% using ML models. The metabolites and the pathways
now identified are the building blocks to developing early detection tools.

4.1. Metabolite Annotation and Identification

Overall, the obtained results allowed the identification of metabolites that had previ-
ously been determined as predictive for lameness in transition dairy cows. This study also
highlighted the challenges of metabolite identification and pathway analysis with untar-
geted metabolomics due to limitations in published spectral libraries, which are discussed
in Section 4.5.

4.2. Highest Level of Confidence: L1

After further MS/MS analysis, cresol (a synonym of 4-methylphenol) was confirmed
at the highest confidence level of L1 (Table 3, Figure S1). In humans, free p-cresol is higher
in patients hospitalized for infections [49] due to its ability to inhibit leukocytes from
producing reactive compounds that play a role in eliminating infectious agents. In dairy
cows, p-cresol was found to be increased in the urine of dairy cows with sub-clinical ketosis
in a study conducted by Eom et al. [50], leading the authors to identify this metabolite as a
potential biomarker for the diagnosis of ketosis. Significantly different levels of p-cresol
were also observed in the cerumen samples between lame and control calves [51]. However,
the authors make a reservation regarding the use of this potential biomarker and point out
that more elucidation is needed, as it has already been found to be altered in cattle with
other pathological conditions.

In our study, it was possible to identify cresol but not to distinguish which isomer was
present, given that there are three isomers of cresol: ortho-cresol (o-cresol), meta-cresol (m-
cresol), and para-cresol (p-cresol). To distinguish these isomers, nuclear magnetic resonance
(NMR) spectroscopy would be required [52,53]. Thus, the structural identification of
metabolites is carried out mainly by distinguishing MS/MS spectra, since the technique
is theoretically capable of differentiating all metabolites. However, isomers generate very
similar MS/MS spectra, making it difficult to distinguish between them [22]. Isomers,
despite having the same molecular formula, possess a different structure and are widely
distributed in organisms, often assuming completely different roles in metabolic pathways
or even being present in different metabolic pathways [22]. The enrichment and pathway
analyses performed in this study did not find any observed hits between this metabolite and
the most enriched pathways. However, the results of the present study and the literature
suggest that future research should include cresol to clarify its relationship with lameness.

Gluconolactone (m/z 177.0406), previously annotated as L3 (Table 1), increased in
confidence of identification to L1 (Table 3, Figure S2). This metabolite was found to be
associated with the pathways of glucose-6-phosphate dehydrogenase deficiency, ribose-
5-phosphate isomerase deficiency, and transaldolase deficiency after ORA. The role of
gluconolactone in the pathways in which it is involved is described in the section on
enrichment and pathway analysis.

4.3. Next Level of Confidence: L2

Valproic acid increased in confidence of identification to L2 after matching the RT to
the standard after further MS/MS analysis (Table 3), because the ion did not fragment in
the collision cell after stepped normalized collision energies of 20, 30, and 40 V. Therefore,
no fragmentation pattern match to any standard could be obtained. This metabolite was an
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observed hit in both the valproic acid metabolism pathway and the valproic acid pathway.
A discussion about the role of valproic acid in these pathways is described below.

4.4. Enrichment and Pathway Analysis

The new LC-MS/MS analysis based on the previous study provided an increased con-
fidence in the putative metabolite annotations predictive for lameness, enabling enrichment
and pathway analysis to link changes in metabolic compounds to biological pathways
in response to lameness. The pathway analysis performed in this experiment provided
insights into the pathways that may be impacted by lameness; however, the results should
be interpreted with care, since only one match with the metabolites of interest was found for
each pathway. Branched-chain amino acid catabolism, glucose-6-phosphate dehydrogenase
deficiency, ribose-5-phosphate isomerase deficiency, transaldolase deficiency, the valproic
acid metabolism pathway, and the valproic acid pathway were found to be significantly
impacted (p < 0.05). To confirm the results obtained in the present study, further targeted
analysis focusing on these pathways is required. It is also known that the number of
metabolites of interest, the background set, and the chosen pathway-based library make a
substantial difference to the final results [45].

Ketoleucine was present in the pathways identified either by enrichment analysis
(branched-chain amino acid catabolism) or pathway analysis (valine, leucine, and isoleucine
biosynthesis; p = 0.07). Leucine, a proteinogenic branched-chain amino acid (BCAA),
is used in humans for energy production, and the branched-chain α-keto acid (BCKA)
ketoleucine is one of the first products of leucine breakdown. In the study conducted
by Elliott et al. [54], the authors suggested that people who exercise, and therefore have
more substantial energy needs, present more enzymatic activity for breaking down leucine
into ketoleucine. Another study, which aimed to assess changes in adipose tissue and the
activity of enzymes related to BCAA catabolism in early-lactation dairy cows [55], reported
that the abundance of adipose tissue has a role in the reversible degradation of BCAA to
BCKA. Other authors, such as Eckel et al. [16] and Dervishi et al. [17], found alterations
in the concentration of amino acids in the urine and serum metabolomes, respectively,
during dairy cows’ transition period. Ruminants obtain BCAA from ruminal microbial
activity and supplementation since cows cannot synthesize them. However, they play an
important role in many physiological processes that contribute to lameness development
when imbalanced, such as skeletal muscle growth stimulation, metabolic homeostasis in
adipose tissue maintenance, and the improvement of immune performance [56,57].

In this study, D-gluconolactone was also present in the pathways identified by the
enrichment and pathway analysis, but its role in immunity and inflammation is more
difficult to establish. According to the Human Metabolome Database [58], gluconolactone
can be produced by the enzymatic oxidation of D-glucose. In humans, glucose-6-phosphate
dehydrogenase deficiency is a common genetic polymorphism characterized by a defect
in the glucose-6-phosphate dehydrogenase gene [59]. Zachut et al. [60] proposed milk
glucose-6-phosphate (G6P) as a potential indicator of energy balance in early-lactation dairy
cows due to the significant correlation between milk glucose-6-phosphate dehydrogenase
(G6PDH) activity and G6P content. More recently, the same research group [61] found
a similar correlation and proposed G6PDH as a candidate indicator of negative energy
balance in postpartum cows. G6PDH has also been used as a biomarker of oxidative
stress in dairy cattle [62], experienced during the transition period [63], and as a target for
cancer treatment due to its potential oncogenic activity [64,65]. In the ribose-5-phosphate
isomerase deficiency pathway, D-gluconolactone was also present. In humans, ribose-5-
phosphate isomerase is encoded by the RPIA gene, and its deficiency is a genetic disorder
caused by its mutations; RPIA is, in turn, involved in the pentose phosphate pathway
(PPP) as part of carbohydrate degradation. In dairy cows, gene expression levels of
RPIA were considerably higher in animals susceptible to endometritis than in resistant
ones [66]. It is also known that G6P is catabolized by the PPP, which generates ribose-
5-phosphate [67]. In the transaldolase (TAL) deficiency pathway, the D-Gluconolactone



Animals 2024, 14, 2030 11 of 16

metabolite is again present. This pathway is also related to the PPP, which is demonstrated
by Perl [68]. The author states that, to understand the pathogenesis of TAL deficiency,
it is important to understand the role TAL plays in the PPP. The latter pathway was
also identified after performing pathway analysis combining ORA and topology analysis.
The connection between the PPP, the TAL-deficient pathway, and the ribose-5-phosphate
isomerase deficiency pathway suggests that they have a relevant role in inflammation, and
to understand the process they should not be interpreted individually. To our knowledge,
there are no studies relating TAL deficiency to transition dairy cows. D-gluconolactone was
identified as relevant in the group of samples collected post-calving (POST), which makes
it an important metabolite with the potential to be used as a biomarker. Around the time of
calving, the transition period, there is an increased risk of subclinical disorders and systemic
inflammation after parturition [1,69]. Herzberg et al. [70] also performed LC-MS/MS, but
for a proteomic profile of spinal cord samples of chronically lame dairy cattle. The authors
found a relevant upregulation of interacting proteins with chaperone and stress functions
associated with the glycolytic pathway, and also a downregulation function of myelin basic
protein in lame cows. They additionally verified that a considerable number of proteins
were involved in the pentose phosphate pathway.

Valproic acid was another metabolite of interest that was an observed hit in the valproic
acid metabolism pathway (p-value 0.017) and valproic acid pathway (p-value 0.034). In
humans, valproic acid is established as a drug to treat epilepsy [71]. In the serum of high-
yielding dairy cows, this metabolite was reported to be upregulated on the twenty-sixth
day post-parturition after zeolite clinoptilolite supplementation [72]. The authors speculate
that collective interactions between metabolites, including valproic acid and correlated
proteins revealed after joint pathway and interaction analysis, may restore negative energy
balance or infection. The relationship between the findings of these authors and the role
of valproic acid in immunity and inflammation caused by lameness is not immediately
apparent. In the future, the role of valproic acid needs to be further investigated.

Zhang et al. [15] and Dervishi et al. [17], using targeted metabolomics, reported that
transition cows affected with lameness after calving had alterations in several innate im-
munity serum reactants before the appearance of clinical symptoms that could be detected
by visual inspection, allowing the monitoring of health status in the near future. These
authors recognized the need for further confirmation with larger cohorts for validation.
The conclusion from the study conducted by Eckel et al. [16] was that the metabolomics
approach has the potential to distinguish lame from healthy cows. These authors also
acknowledged that their study should be validated using a larger set of samples. More
recently, Randall et al. [1], using untargeted metabolomics, also concluded that further
work was needed to confirm metabolite identification followed by the pathway analysis of
predictive metabolites, since a better understanding of lameness pathogenesis will allow
for the development of strategies for lameness prevention and management in dairy cattle.
The results obtained in the current experiment demonstrate that determining a reliable set
of metabolites to identify diseased animals, alongside accurate metabolite annotation, is
crucial to understanding the roles of metabolites in the biological pathways of dairy cattle
lameness. The identification of metabolites is essential for the subsequent pathway analysis.

4.5. Usefulness of Metabolite Detection in Urine of Transition Dairy Cows

Though the analysis of metabolite biomarkers in veterinary samples is currently rare,
the collection of urine samples in the field is non-invasive and practically feasible. The
feasibility of this approach for diagnostics was demonstrated in one study conducting
analysis of metabolites called grayanotoxins, which are cardiotoxic and arise from the
ingestion of plants, using LC-MS/MS on samples from a veterinary practice. Analysis
was considered rapid, quantitative, and specific, and therefore is especially suited to
veterinary diagnostic laboratory circumstances when a rapid diagnosis is needed [73].
The analysis of biomarkers of lameness in cows would have similar advantages. Future
cost–benefit analysis is needed to evaluate whether the cost of regular sampling and
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testing for the early detection of lameness outweighs the cost of late-detected lameness
to farmers. Understanding the pathology of lameness was another aim of our study, and
this understanding could enable better future treatments. Research on the potential use of
biomarkers for diagnosis has been increasing, making the topic relevant to be considered
in the training of veterinarians [74], and arguably also technicians and farmers [75].

4.6. Study Limitations

The reliability of the compiled list of important metabolites was a concern that was
mitigated by the use of a combination of different analytic methods [1], such as ML,
including five models, a stabiliser, and triangulation to increase the confidence in the
selection of the final set of metabolites. However, the study also highlights the limitations
of the compound annotation and pathway analysis of untargeted metabolomics.

As Sumner et al. [25] advised in ‘Proposed minimum reporting standards for chem-
ical analysis’, publications should clearly report the level of identification for all listed
metabolites. Theodoridis et al. [26] state that findings can only be validated and potentially
translated into biological functions after identification based on a minimum of two inde-
pendent and orthogonal data (analytical attributes) matched to an authentic compound
(standard) analysed on the same instrument under the same analytical conditions (i.e., L1).
In mass spectrometry, one of these is a mass spectrum of the fragmented metabolite.

Despite advances in detecting compounds due to improved instrument sensitivity,
results show that matching mass spectra remains challenging [26,76], and also that peak
annotation and identification, especially for untargeted metabolomics, is still a major
issue [20,26,77]. Even high-resolution MS is insufficient for isomer identification [22,76], and
putative molecular ions need to be checked to ensure that they are not adducts or in-source
fragments [26] before putative annotations are searched for based on m/z. Metabolomes
of some specimens are not yet fully described and catalogued; therefore, the metabolites
that can be expected in these samples are unknown, and implausible annotations might be
made by researchers lacking chemical standards and orthogonal data [26].

The sample protocol relied on a cohort from a single herd already established in a
previous study [1], which is not ideal. A larger and more diverse sample would reinforce
the results obtained and allow their generalization. Furthermore, for this study, no stan-
dards were purchased. In any case, it is not always possible to acquire all the necessary
standards, since in most cases they are either not available on the market or prohibitively
expensive. With more authentic standards of MS/MS spectra, it would be possible to build
a larger library, which would potentially increase success when comparing the m/z and
fragmentation spectra of the QC.RAW data files.

5. Conclusions

The findings from this study demonstrate that metabolites in lesser-studied samples
such as cow urine can be identified with the highest accuracy using chemical standards, RT,
and MS/MS data. However, it was difficult to identify all ions due to the lack of matches
in m/z databases, leading to no standards being selected, a lack of matches in MS/MS
databases, unavailability and the high cost of buying standards, chimeric MS/MS spectra,
and some metabolites not fragmenting. Several limitations common with other studies
involving untargeted LC-MS/MS analysis are pointed out and discussed in Section 4.6;
in our study specifically, we consider that the limited size of the standards library may
have contributed to reducing the number of metabolites annotated with a high level of
confidence. Despite these challenges, we were able to identify three significant metabolites
at the highest confidence level as predictive of lameness in dairy cows, and thus give
biological insight into the pathology of this disease. The enrichment and pathway analysis
identified six pathways significantly impacted by lameness, despite the few metabolites
identified, giving a better biological understanding of a previously reported lameness
prediction model. Further validation using a larger and more diverse sample is needed to
confirm the results obtained in this study. Future work to increase the level of confidence



Animals 2024, 14, 2030 13 of 16

in metabolite identification could involve using NMR spectroscopy or a combination of
methods such as LC-NMR-MS. Future research may also evaluate the practicality and cost
of integrating the proposed approach into routine clinical practice in the national herd. This
research would also benefit from including a larger and more diverse sample to assess the
generalization of the obtained results.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani14142030/s1, Figure S1: Comparison between cresol standard
MS/MS spectrum (top chromatogram) with cresol MS/MS spectrum in the quality control (QC)
sample (bottom chromatogram); Figure S2: Comparison between gluconolactone standard MS/MS
spectrum (top chromatogram) with gluconolactone MS/MS spectrum in the quality control (QC)
sample (bottom chromatogram).
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