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ABSTRACT Continuous monitoring of ventilatory parameters such as tidal volume (TV) and minute
ventilation (MV) has shown to be effective in the prevention of respiratory compromise events in hospitalized
patients. However, the non-invasive estimation of respiratory volume in non-intubated patients remains
an outstanding challenge. In this work, we present a novel approach to respiratory volume monitoring
(RVM) that continuously predicts TV and MV in normal subjects. Respiratory flow in 19 volunteers under
spontaneous breathing was recorded using respiratory inductance plethysmography and a temperature-based
wearable sensor. Temperature signals were processed to identify features such as temperature amplitude and
mean value, among others. The feature datasets were then used to train and validate three machine-learning
(ML) algorithms for the prediction of respiratory volume based on temperature-related features. A model
based on Random-Forest regression resulted in the lowest root mean-square error and was subsequently
chosen to predict ventilatory parameters on subject test data not used in the construction of the model. Our
predictions achieve a bias (mean error) in TV and MV of 16.04 mL and 0.19 L/min, respectively, which
compare well with performance metrics reported in commercially-available RVM systems based on electrical
impedance. Our results show that the combination of novel respiratory temperature sensors and machine-

learning algorithms can deliver accurate and continuous estimates of TV and MV in healthy subjects.

INDEX TERMS Hypoventilation, machine learning, respiratory monitoring, ventilatory parameters.

I. INTRODUCTION

The development of respiratory monitoring systems has
received continuous attention as respiratory parameters such
as rate of breathing are routinely assessed in the physical
examination of patients [1], [2]. Abnormal values in respi-
ratory parameters are currently recognized as early signs of
patient deterioration, and have long been associated to respi-
ratory failure in non-intubated patients [3], in-hospital cardiac
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arrest [4], and post-anesthesia respiratory depression [5],
among others.

Respiratory monitoring is a common practice in intubated
patients undergoing mechanical ventilation, but remains an
open challenge in non-intubated patients that breathe sponta-
neously [6]. Current gold-standard methods for non-intubated
patients available in the clinical setting are based on capnom-
etry and impedance pneumography systems, which provide
continuous estimates of the respiratory rate (RR). However,
they require the use of nasal cannulas and chest electrodes that
may not be well tolerated by some patients, and that typically
require wired connection to external devices for analysis,
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which has hindered their massive adoption [7]. More recently,
RR has been estimated in patients by means of advanced
processing of signals acquired from photopletismography [8],
[9], video recording [10], [11] and thermal imaging [12],
all of which deliver a less invasive and more comfortable
experience to the patient. For a review of recent contact-less
respiratory monitoring systems see [13].

The large majority of current monitoring technologies for
non-intubated patients are focused on the estimation of RR.
While useful, RR provides an incomplete assessment of the
ventilatory condition of the patient, as it cannot offer a
measure of the air available for gas transfer in the lungs.
In effect, parameters such as tidal volume (TV), defined as
the volume of air during one inspiration/expiration cycle,
and minute ventilation (MV), defined as the total volume
of air inspired/expired during one minute, are better suited
to describe the ventilatory status of the patient [14]. These
parameters, which are a standard in patients connected to
mechanical ventilation, have shown to be a reliable predic-
tor of adverse respiratory events in non-intubated patients.
For example, recent studies have shown that monitoring
the evolution of MV, and not RR alone, can be effectively
used to anticipate events respiratory depression in patients
that are discharged from post-anesthesia care units [15] and
hypoventilation in sedated patients undergoing gastrointesti-
nal interventions [16].

The relevance of monitoring TV and MV in delivering
early warnings of respiratory complications has motivated
the development of respiratory volume monitors (RVMs)
for non-intubated patients. Current RVM technologies rely
on measuring electrical impedance changes of the thorax,
which are then analyzed to estimate the MV and TV [17].
Impedance-based RVMs have been extensively validated in
the clinical setting [18], but they require a calibration step
using spirometry to enable accurate predictions of TV and
MYV [17]. Further, impedance-based respiratory monitors are
subject to motion artifacts which that may hinder their oper-
ation [19]. More recently, respiratory monitoring has been
approached using disposable strain sensor [20] and over-
clothing radio-frequency sensors [21], which have shown
promising results in the estimation of respiratory volume in
healthy volunteers under spontaneous breathing. However,
these systems also require individual calibration to determine
model parameters that are specific to the user.

In this work, we present and validate an innovative RVM
for non-intubated subjects. To this end, we use a novel
non-invasive wearable temperature sensor that allows for
the time-continuous acquisition of respiratory signals [22].
Further, we employ state-of-the-art machine-learning (ML)
algorithms in the construction of a predictive model for ven-
tilatory parameters. The main motivation behind this work is
to develop an accurate and validated RVM system for the
continuous estimation of ventilatory parameters in a non-
invasive way. Further, the use of ML algorithms seeks to
provide accurate ventilatory estimates that are valid for a
group of users, rather than for a specific subject, potentially
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FIGURE 1. Flowchart of the proposed work and methods.

eliminating the individual calibration step required by current
RVM systems.

This article is organized as follows. In Section II we
describe the sample of volunteers, the experimental setup,
and the protocols for the acquisition of respiratory signals.
In addition, we describe the ML algorithms considered in this
study, and state the error and performance metrics employed
in the analysis of the results, In section III we present the main
results of the study, along with a performance assessment
of the best model for RVM. We close this article in section
IV by discussing the main results and comparing them with
other studies reported in the literature, as well as analyzing
the current limitations and future extensions of this work.

Il. METHODS
A schematic summarizing the proposed work and methods is
included in Figure 1.

A. RESPIRATORY DATA ACQUISITION

Nineteen healthy human subjects were recruited for this
study, signed an informed consent, and completed a pro-
tocol approved by the Institutional Ethics Committee of
the Pontificia Universidad Catdlica de Chile. The inclusion
criteria were: subjects between 18 and 65 years old, non-
smokers, and no record of chronic pulmonary disease or sleep
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TABLE 1. Volunteers’ Anthropometric Data

Age Weight Height BMI
Gender | N 5
[yrs] [kgl [cm] [kg/m~]
Male 12 317 | 750+ 11.6 175+ 8 24.6 +£3.3
Female | 7 37+£13 65.0 £ 8.2 160 £ 5 253+£2.7
Total 19 | 33410 | 713+ 114 | 169+ 10 | 248 +£3.0

Respiratory

Sensor Respiratory

Monitor

Signal Acquisition
System

FIGURE 2. Schematic of the experimental setup. The respiratory sensor
and respiratory impedance pletismography (RIP) bands were installed on
all volunteers to acquire respiratory signals. RIP bands required a
calibration step before respiratory signal acquisition.

apnea. The anthropometric data for the subject group is
included in Table 1. A non-invasive respiratory sensor,
described below, and respiratory impedance pletismography
(RIP) bands were installed in all subjects before directing
them to lie down in supine position, see Figure 2 for an
schematic of the experimental setup. Subjects were then
asked to breathe normally for at least 10 minutes, period
during which respiratory data was acquired.

Oral and nasal respiratory signals were acquired using the
non-invasive temperature-based respiratory monitoring sys-
tem (TRMS) described in [22]. Figure 2 shows an schematic
of the instrumentation setup. The system comprises a wear-
able respiratory sensor and an external monitor that reports
the respiratory signal and other flow parameters in real time.
The respiratory sensor was installed below the nose and
above the upper lip of the user, and collected information
about the airflow by sensing the temperature of the respira-
tion airflow coming in and out the nostrils and the mouth.
Signals from the sensor were transmitted to an external mon-
itor for processing and storage. We note that no calibration
was necessary before acquiring respiratory signals with the
TRMS. In parallel, we measured respiratory activity using
a physiological signal acquisition system BioRadio™for
RIP (Great Lakes NeuroTechnologies, Cleveland, OH, USA).
To this end, two thoracic bands were installed on each subject
before the data acquisition. The calibration of the BioRadio
system was carried out on each patient using the spirome-
try function simultaneously with the RIP bands to measure
3 minutes of spontaneous breathing, after which the mouth-
piece was removed. A linear relation between the spirometry
and the RIP-bands signals was established using multiple
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linear regression, which allowed for a continuous volume
monitoring based on the RIP signal.

B. FEATURE EXTRACTION

Respiratory cycles and RR were identified from the TRMS
signal using a mean-cross algorithm [22]. In brief, a
5-second-window moving average was applied to the res-
piratory temperature signal to obtain a filtered signal. Time
instants at the intersection between the original and filtered
signal were determined, to select those points where the origi-
nal signal increased faster than the filtered signal. Subsequent
selected points defined the respiratory cycle period, from
which the RR was computed as the inverse of the period. For
each respiratory cycle the following eight input variables (fea-
tures) were determined: nasal temperature amplitude (AC,),
nasal mean temperature (DC,), nasal expiratory mean rate
(MR,,), oral temperature amplitude (AC,), oral mean temper-
ature (DC,), oral expiratory mean rate (MR,), rise time (RT),
and ambient temperature (AT). The tidal volume (7V) for
each respiratory cycle and the minute ventilation (MV') were
determined from the volume measurements reported by the
RIP system. A total of 2252 respiratory cycles were obtained
from the subject experiments. This dataset was randomly
partitioned into a training dataset containing 80% of the total
data (Nyqin = 1801) and a test dataset containing 20% of
the total data (N5, = 451). A correlation analysis using the
training dataset between the eight input variables was carried
out to detect colinearity.

C. MACHINE-LEARNING ALGORITHMS AND TRAINING
FOR THE PREDICTION OF TIDAL VOLUME AND

MINUTE VENTILATION

Three supervised regression algorithms for the prediction of
TV were considered: Linear regression (LR), Support vector
regression (SVR) and Random forest regression (RFR) [23].
Each model was trained by performing a k-fold cross-
validation (k = 10) using the training dataset. The training
performance was assessed in terms of the root mean squared
error (RMSE) defined as

N
| .
RMSE = 172 [TVi—TVl-}

i=1

2

€]

where TV; corresponds to the prediction of the model for
the i—th cycle, TV; is the target output for the same cycle,
and N is the total number of cycles in the training dataset.
After the validation of the 10 cases, the average and standard
deviation of the obtained RMSE values were computed for
each algorithm. Based on these results, we selected the best
algorithm as the one whose model delivered the least RMSE
in average. For the selected model, the tuning of hyperparam-
eters was performed by carrying out a k-fold cross validation
(k = 10) using the training dataset. Several combinations of
hyperparameters were analyzed, from which we computed
the mean and standard deviation of the RMSE to select the
best hyperparameter combination based on the lowest RMSE.
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To further understand how the size of the training dataset
affected the model predictions, we performed a learning curve
analysis, where the chosen model is trained using different
sizes of the training dataset.

Using the chosen model for TV, we estimated the minute
ventilation for the i—th respiratory cycle as

MV;=2) TV, )

JES;
where S; is the set of respiratory cycles that fall within a
30-second window that ends with the i — th respiratory cycle.

D. PERFORMANCE ASSESSMENT OF TV AND MV
PREDICTION AND STATISTICAL ANALYSIS

The best model for the TV estimation was assessed using
the test dataset. To this end, we computed the RMSE and
performed a Bland-Altman analysis both on the prediction of
TV and the MV. Let X; be the model prediction for the i — th
respiratory cycle and X; be the benchmark value measured by
the RIP system, which was considered as the gold standard in
this study. We defined the cycle error as

Error(X;) = X; — X;. (3)

Then, the absolute bias, precision and accuracy of the model
estimation were determined as

N
Bias()A() = %;Error(f(i), 4
o 1 N 512
Precision(X) = | — Z {Error(X,-) — Bias(X)} , (5
N NI
. g .2
AccuracyX) = | — Z {EWOF (Xi)} . (6)
A\ N i=1

Relative bias, precision and accuracy were also computed by
redefining the error in relative terms as

oo i
Error(X;) = T oo @)
X + Xi}

and using (7) in evaluating (4), (5) and (6). Bland-Altman
plots were generated to visually assess the agreement
between the selected model with the reference for the TV and

MYV estimations.

Ill. RESULTS

The correlation matrix for the input features is shown in
Figure 3, where we observe that the absolute correlation
between different features does not exceed 0.8. The highest
correlation was found for the case of AC, and MR, followed
by the case of AC, and MR, with a correlation of 0.7. Despite
this high correlation, we kept MR, and MR,, as input features
in the model as they are important physiological quantities
that inform us about the rate of the breathing process, which
is not contained in the AC, or AC,, values. As a sensitivity
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FIGURE 3. Correlation matrix for input features. The highest correlation
found was between the oral temperature amplitude AC, and oral
expiratory mean rate MR,.

analysis, for the final model we also considered a reduced
set of input features selected so that correlation between
variables did not exceed 0.5. As a result, the reduced set
included input variables AC,, AC,, DC,,, DC,, AT.

The RMSE values from the k-fold cross-validation analysis
(k = 10) performed for the LR, SVR and RFR models are
reported in Table 2. The RFR model resulted in the lowest
RMSE value, and therefore was the only one considered
for subsequent analysis. Hyperparameter tuning for the RFR
model considered varying the sampling method (sampling
data with or without replacement, bootstrap = (True, False)),
the number of trees in the forest (NV.;; = (10, 20, 50, 100,
200)), the maximum number of levels in each decision tree
(maxgepr, = (None, 50, 100, 200, 500)), the minimum num-
ber of samples needed to split an internal node (mingp;;; = (2,
5, 20, 50, 100)), the minimum number of samples for the leaf
nodes (minjqr = (1, 2, 10, 20, 50)), the maximum number
of features considered for splitting a node (maxf,, = (auto,
sqrt, log2, None)), and the complexity parameter for minimal
cost-complexity pruning (ccp, = (0.0, le-6, le-4, le-2, 1)).
In total, we examined 25,000 combinations of hyperparame-
ters. For each parameter set, a k-fold cross-validation analysis
(k = 10) was performed using the training dataset, and the
RMSE was calculated. The optimal set of hyperparameters
found from this procedure is reported Table 3, where we
note that the average RMSE was lower than that obtained
by the initial RFR model during the model selection step,
see Table 2. Further, the optimal parameters and RMSE that
resulted from training a RFR model that considers a reduced
set of input features (RFR2) are also included in Table 3.

Table 4 reports the performance assessment in the estima-
tions of TV and MV based on the trained RFR model, where
the bias, precision and accuracy of the prediction of both
ventilatory parameters are evaluated using the test dataset.
The performance metrics of the RFR2 reduced model are
also included. Figures 4 and 5 show the Bland-Altman plots
for the assessment of TV and MV predictions, respectively.
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TABLE 2. k-Fold Cross Validation for LR, SVR and RFR Models

Input Features LRRMSE [L] | SVRRMSE[L] | RER RMSE [L]

ACy,,AC,,DCy,DCy,M Ry, MRy, RT, AT | 0.253 £0.0223 | 0.264 + 0.0285 | 0.104 &+ 0.0159
TABLE 3. k-Fold Cross Validation for Hyperparameter Tuning of RFR Models
Model Input features bootstrap | Nest | MaTgepth | MiNspiit | MiNjeaf | MATfeat | CCPo RMSE [L]
ACy,AC,,DCy, DC,,
RFR " ° " ° False 200 50 2 1 log2 0.0 | 0.0975 £ 0.0161
MR,, MR,, RT, AT
RFR2 | AC,,AC,,DCy,DC,, AT False 100 50 5 1 log2 0.0 0.0974 £ 0.0148
TABLE 4. Performance Assessment for the Prediction of TV and MV 4
Tidal Volume Minute Ventilation 31
[mL] [L/min] I — e _¥1.965D:21 |
RFR Bias 16.04 (9.53%) 0.193 (6.71%) +
Bias 95% CI | [6.24,25.84] [-0.032,0.42] c 14 :‘;; +# R
Precision 105.75 (31.68%) | 0.971 (17.77%) % ﬂiﬂi&#ﬁ _________ . ee___mean:019 ____|
Accuracy 106.96 (33.09%) | 0.990 (18.99%) § 0 ++ﬁ+#::+++ + +
‘ +
RFR2 | Bias 15.85 (9,49%) 0.191 (6.77%) § 1 PR " +
Bias 95% CI | [5.64,26.07] [-0.0398,0421] | | .l e Z1965D:-1T1
Precision 110.26 (32.44%) | 0.995 (18.48%) =27 * "
Accuracy 111.39 (33.80%) | 1.01 (19.68%) 3
-4 ‘ : : :
0 5 10 15 20 25
+ L(MV+MV) [L/min]
400
oo ’ FIGURE 5. Bland-Altman plot for the performance assessment of minute
+ ventilation (MV) prediction.
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FIGURE 4. Bland-Altman plot for the performance assessment of tidal
volume (TV) prediction by the RFR model.

Figures 6 and 7 show the scatterplot of the predicted and
measured TV and MYV, respectively. In both cases, the Pear-
son’s correlation coefficient was greater than 0.9, confirming
the substantial agreement between predicted and measured
ventilatory parameters. The time evolution of the RR, TV and
MV for a representative subject along with the predictions of
the RFR model are shown in Figure 8.

To understand the contribution of input features in the
RFR model predictions, a Random-Forest variable impor-
tance analysis was performed [23], see Figure 9. Ambient
temperature was the most relevant feature in the prediction of
TV, followed by the average nasal and oral temperatures and
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FIGURE 6. Scatterplot of the predicted TV versus measured TV. Pearson’s
correlation coefficient (r) and p-value (P) are reported in the plot legend.

the nasal temperature amplitude. These four features added
up to 73% of the cumulative normalized importance. We also
observed that features AC,, RT and MR, were the least
influential features in the model as they accounted altogether
for less than 8% of the cumulative normalized importance.
The learning curve that assesses the evolution of training
and validation error of the RFR model as a function of
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TABLE 5. Comparison With Other Methods Reported in the Literature. Nomenclature: Pearson’s Coefficient (r), Bias (m), Precision (o)

Author Technology

Performance

Experimental conditions

Tidal Volume

Minute Ventilation

Healthy: m=0mL o=55mL
Patients: m=20mL o=100mL

Briillmann et al [24] RIP chest belts

n: 5 healthy and 12 patients
Gold standard: Flowmeter

Chu et al [20] Strain sensor r=0.96 m=-77mL o=152mL

n: 7 healthy
Gold standard: Spirometer

n: 20 healthy

Sharma et al [21] Wearable RF r=0.84 m=10mL o=109mL -
Gold standard: Pneumotachometer
Day 1: m=-6.3mL 0=53.25mL | Day 1: m=-0.15L/min ¢=0.74L/min n: 31 volunteer
Voscopoulos et al [17] | Electrode pads X . .
Day 2: m=-9.9mL 0=58.45mL | Day 2: m=-0.15L/min ¢=0.76L/min Gold standard: Spirometer
Present work TRMS r=0.92 m=16mL 0=106mL | r=0.96 m=0.19L/min o=0.97L/min n: 19 healthy —
Gold standard: Spirometer
225 as the signal amplitude divided by the expiratory time, which
200 establishes a direct relation between AC and MR values. The
“| r=0.96,FP<0.001 a remaining features did not exhibit high correlations.

17.5 A

15.0

12.5 A

10.0

7.5

5.0 4

Predicted Minute ventilation [L/min]

2.5

0.0 T T T T T T T T
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 225

Measured Minute ventilation [L/min]

FIGURE 7. Scatterplot of the predicted MV versus measured MV. Pearson’s
correlation coefficient (r) and p-value (P) are reported in the plot legend.

the dataset size is reported in Figure 10. The training error
resulted in a small and relatively constant value (RMSE =
1.6e-05 &£ 1.3e-06 [L]) that did not depend on the size of the
dataset. In contrast, the validation error displayed a decreas-
ing trend as the dataset size was increased, but did not reach
the training error level for the largest dataset size.

IV. DISCUSSION

In this work we study the performance of a non-invasive
system for respiratory volume monitoring. The estimation
of ventilatory parameters was approached using three classi-
cal machine-learning methods. After training and validation,
the best model was able to deliver a continuous prediction of
TV and MV in human subjects, see Figure 8.

Eight features were computed from the temperature sig-
nals obtained from the TRMS to estimate the TV and MV.
An initial correlation analysis resulted in pairs AC,, MR, and
AC,, MR,, being the most correlated ones. This high correla-
tion can be partially explained for subjects under spontaneous
breathing in resting conditions, where the respiratory signal
approaches a triangular wave form with constant frequency.
In this case, the expiratory mean rate can be approximated

VOLUME 8, 2020

During the training process, the RFR model delivered a
better performance than the LR and SVR models in the
prediction of TV, see Table 2. The LR model resulted in
RMSE values that were twice those of the RFR model, which
suggests that the relationship between input features and TV
was not linear. The hyperparameter tuning step improved the
model performance as the RMSE was reduced by roughly
6%, see Table 3.

The performance assessment resulted in bias values for
TV and MV of 16 mL and 0.19 L/min, respectively, see
Table 4. The relation between predicted and measured vari-
ables resulted in a Pearson’s coefficient of 0.92 and 0.96 for
the TV and MV, respectively, see Figures 6 and 7. Table 5
presents a comparison of these performance metrics with
other methods for RVM reported in the literature. Our results
compare well with other technologies that predict TV in terms
of bias, precision and Pearson’s coefficient [20], [21], [24].
However, it is worth noting that the performance reported by
other methods is evaluated on systems that include an individ-
ual calibration step and are later assessed on the same suject.
In our work, the ML model is trained using the group training
dataset, which is subject to user variability, and later evaluated
using the group test dataset. While the use of aggregate data
typically hinders the performance of the predictions, here we
have shown that our ML model achieves a performance that is
equivalent, and sometimes better, than current state-of-the-art
methods based on individual calibration.

When comparing the performance in the estimation of MV,
our system also compares well to commercially-available
impedance-based RVMs [17], see Table 5. Interestingly, rela-
tive bias and precision values obtained in our study (Table 4)
are higher than those reported in [17]. This can be explained
by the higher range of TV and MV values measured in that
study, which ranged between 500-1600 mL and 7-17 L/min.
In contrast, the range of TV and MV values analyzed here
were 50-1200 ml and 1-20 L/min, see Figures 4 and 5, which
include a lower range of values not validated by previous
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FIGURE 8. Continuous prediction of ventilatory parameters in a representative subject. (a) Respiratory rate (RR), (b) Tidal

volume (TV), and (c) Minute Ventilation (MV).
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FIGURE 9. Random-forest variable importance analysis for the RFR
model. Ambient temperature was the most relevant input feature in the
prediction of TV by the RFR model.

studies. This result is noteworthy, as the ability to accurately
predict MV in the low range is particularly important in
the detection of hypoventilation and respiratory depression
events in hospitalized patients [15].

During the development and analysis of the ML model,
we identified key variables in the prediction of ventilatory
parameters from temperature airflow signals. In particular,
the average temperature and temperature amplitude were
among the most influential input features in the estimation
of TV, as shown in Figure 9. It is important to note that the
amount of heat transfer occurring at the nasal and oral sensors
is affected by the room temperature that surrounds the nasal
sensor, which may explain why AT takes such relevance in
the prediction of TV by the RFR model. Further, we note
that input features that describe oral breathing (ACo, MRo)
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FIGURE 10. Evolution of RMSE during training and validation steps as a
function of the dataset size. Solid line represents the RMSE average value
for the error, while the gray shading reports the standard deviation.

did not seem to be relevant in the prediction of ventila-
tory parameters. We note, however, that this result may be
due to the use of a limited training dataset, as a posterior
analysis of the respiratory signals revealed that most of the
volunteers were nasal breathers. Thus, input features related
to oral flow should not be necessarily discarded, and data
from oral breathers should be included in the training sets in
future work. Further, we note that removing input features
that display a high correlation with others does not result in
better model predictions, as the performance of the RFR and
RFR2 models virtually do not differ, see Tables 3 and 4.

The learning curve analysis reported in Figure 10 shows
that the validation error decreases with the dataset size, but
does not reach the training error for the maximum size avail-
able in this study. This result highlights the need of larger
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datasets to further improve the prediction of the RFR model
developed in our work. As already mentioned, not only the
number of volunteers should be increased in training datasets,
but also a wider variability between subjects that include
variations in anatomy and respiratory physiology is key to
improve the predictions of the RVM system presented in this
work. From this perspective, our study is limited by the fact
that the population recruited considered more male subjects
(70.6%) than female subjects (29.4%). Further, the study
group was predominantly composed by young adults with a
small variability in terms of age (33.2 & 9.5 yrs. old). Future
studies should target a wider and more balanced population
in terms of gender and age. In addition, future applications
of our RVM system in patients with respiratory diseases
will necessitate the development of new ML models that are
trained with datasets that belong to that population, as the
respiratory mechanics and flow dynamics in patients with
pulmonary disease can be markedly different than those in
normal subjects [25].

V. CONCLUSION

In conclusion, we present and validate a novel approach to
the continuous estimation of ventilatory parameters in human
subjects under spontaneous breathing. Our work builds upon
anon-invasive temperature-based respiratory monitoring sys-
tem, whose signals are processed by a machine-learning
model for the prediction of TV and MV. The main advantage
of the proposed solution is the ability to accurately predict
ventilatory parameters for a group of subjects based on model
training on group dataset. This can potentially eliminate the
need of individual calibration when the model training is
previously done on a group that is representative for the sub-
ject, which is one of the premises of machine-learning tech-
niques [26]. An important limitation of this work is the use of
a restricted dataset for model training that is composed pre-
dominantly by healthy male young-adult subjects. This has
the disadvantage that predictions of ventilatory parameters
made by the ML model may not be as accurate for subjects
that do not conform to this population. Future developments
should include the use of larger datasets that provide a larger
intersubject variability that is representative of differences in
gender, age, and medical condition. Finally, future versions
of our RVM system should be tested under relevant clinical
settings to evaluate the effectiveness of RVM in the early
detection of medical conditions [27].
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