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Abstract: Pavement structures are designed to withstand continuous damage during their design life.
Damage starts as soon as the pavement is open to traffic and increases with time. If maintenance
activities are not considered in the initial design or considered but not applied during the service life,
damage will grow to a point where rehabilitation may be the only and most expensive option left.
In order to monitor the evolution of damage and its severity in pavement structures, a novel data
compression approach based on cumulative measurements from a piezoelectric sensor is presented in
this paper. Specifically, the piezoelectric sensor uses a thin film of polyvinylidene fluoride to sense the
energy produced by the micro deformation generated due to the application of traffic loads. Epoxy
solution has been used to encapsulate the membrane providing hardness and flexibility to withstand
the high-loads and the high-temperatures during construction of the asphalt layer. The piezoelectric
sensors have been exposed to three months of loading (approximately 1.0 million loads of 65 kN) at
the French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR)
fatigue carrousel. Notably, the sensors survived the construction and testing. Reference measurements
were made with a commercial conventional strain gauge specifically designed for measurements in
hot mix asphalt layers. Results from the carrousel successfully demonstrate that the novel approach
can be considered as a good indicator of damage progression, thus alleviating the need to measure
strains in pavement for the purpose of damage tracking.

Keywords: accelerated pavement testing (APT); fatigue; piezoelectric sensor; pavement responses;
longitudinal strain

1. Introduction

Flexible pavements are considered to be the most expensive assets in modern society [1]. However,
pavement engineers have not found a way to delay its weakening or to provide an easy enough tool to
monitor its condition during the design period [2–5]. Like any other structure, pavements age and
deteriorate as a function of time which is generally accelerated by the repeated application of loads [6,7],
environmental conditions [8], and by inadequate maintenance plans. Knowing the current state of a
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pavement and estimating its future performance has become a matter of great importance not only for
road owners but also for decision makers [9]. Following the line of structural evaluations, it is possible
to separate traditional methods, developed around the use of external monitoring equipment such as
the falling-weight deflectometer (FWD) [10,11], and relatively new methods, such as in-situ embedded
sensors [12–16]. Early damage detection has become essential when planning future maintenance
actions and budgets. Nevertheless, defining accurate damage models is usually a complicated task
and sometimes impossible due to the economic cost that this could have. Mechanical responses of the
damaged structure through computational simulations generally supplement this task when making
comparisons between an initial state, without damage, and a final state, with damage.

Farrar and Worden [17] define damage as the change of material and/or geometric properties of the
system, including changes in boundary conditions and system connectivity, a definition that has been
widely accepted. They have also defined structural health monitoring (SHM) as the process in which a
damage identification strategy is implemented in the infrastructure. A correct implementation of SHM
must provide the necessary tools to replace traditional maintenance activities, based on time, with
more practical activities which rely on the real condition of the structure. However, technical, economic,
and practical challenges have been identified when implementing wired sensors. In that sense, the use
of wireless sensor networks (WSNs) have increased in the past two-decades and nowadays, it is seen
as a viable alternative to traditional monitoring systems [18]. Researchers at Michigan State University
and Washington University at St. Louis have developed a new class of self-powered piezoelectric
sensor that couples the physics of piezoelectric (energy harvesting) with the physics of low-power
analog circuitry to sense, compute, and store mechanical usage statistics [19–23]. The self-powered
piezoelectric sensor offers several novel features such as low power requirements (80 nW) (which is
two orders of magnitude better than any commercially available technology), self-powered continuous
sensing, low cost, small size, and wireless communication.

Aim of This Paper

This paper focuses on the validation of a novel data compression approach based on the statistical
response of piezoelectric sensors. A successful validation will directly benefit not only pavement
engineers but road agencies as a new method for monitoring real road pavement conditions will
become available. These methods eliminate the need for complex models relying on the measurement
of absolute strain values. The piezoelectric devices in this experiment have been exposed to three
months of accelerated test, equivalent to 20 years of loading, giving robustness to the data analysis.
Reference pavement measurements were collected with a conventional strain gauge. Furthermore,
validating this new approach will also accelerate the usage of low-cost high-tech technology such as
the piezo-floating-gate sensors [24–26].

2. Pavement Monitoring System through Piezoelectric Sensors

The data from the piezoelectric sensor is digitized using seven threshold levels while also
successively storing the duration of loading events. The information is processed only when the
amplitude of the input signal (voltage), coming from the thin film of polyvinylidene fluoride, exceeds
one or more levels, simulating the functionality of a piezo-floating-gate system [9,21–23]. At a constant
load frequency, the sensor response is visualized as a histogram of the loading distribution. Figure 1
shows a schematic representation on how the data is processed and stored.
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Figure 1. Representation of the data transformation and processing algorithm (redrawn from [9]). 
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fact, μ and σ are the only viable tools to analyze the results delivered by the piezoelectric sensor. 
These parameters are obtained by means of a curve adjustment of the sensor distribution results taken 
from the threshold levels (D1 to D7). 
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The French Institute of Science and Technology for Transport, Development and Networks 
(IFSTTAR) under the Department of Materials and Structures is responsible for managing and 
handling the use of the fatigue carousel dedicated to accelerated pavement testing (APT). The 
carousel is composed of four arms driven by a central electrohydraulic motor that can provide 
different configurations of load (simple, tandem, or tridem) simulating semi-axles of heavy vehicles, 
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3.1. Pavement Structure and Sensor Ditribution 

Figure 3 shows a schematic representation of the three-layer pavement structure with embedded 
sensors. Figure 4 on the other hand, shows the on-site installation of the piezoelectric sensors (left-
side) and commercial strain gauge (right-side) at the top of the granular material. In order to know 
the on-site mechanical properties of the layers, falling-weight deflectometer (FWD) measurements 
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This study assumes that the sensor results, Figure 1-right, can be characterized by the following
cumulative distribution function (CDF), Equation (1), [27].
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where µ is the mean of the deformation distribution, σ is the standard deviation considering load and
frequency variability, and α is the total cumulative time of the applied strain. Statistical parameters µ
and σ of the deformation distribution can be considered as indicators of damage progression. In fact,
µ and σ are the only viable tools to analyze the results delivered by the piezoelectric sensor. These
parameters are obtained by means of a curve adjustment of the sensor distribution results taken from
the threshold levels (D1 to D7).

3. Accelerated Pavement Testing

The French Institute of Science and Technology for Transport, Development and Networks
(IFSTTAR) under the Department of Materials and Structures is responsible for managing and
handling the use of the fatigue carousel dedicated to accelerated pavement testing (APT). The carousel
is composed of four arms driven by a central electrohydraulic motor that can provide different
configurations of load (simple, tandem, or tridem) simulating semi-axles of heavy vehicles, see Figure 2.
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3.1. Pavement Structure and Sensor Ditribution

Figure 3 shows a schematic representation of the three-layer pavement structure with embedded
sensors. Figure 4 on the other hand, shows the on-site installation of the piezoelectric sensors (left-side)
and commercial strain gauge (right-side) at the top of the granular material. In order to know the
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on-site mechanical properties of the layers, falling-weight deflectometer (FWD) measurements were
made after construction and before the start of the experiment to determine the undamaged modulus.
Back-calculated results of the FWD measurements are presented in Table 1. The back-calculation
process followed layer elastic theory.
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Table 1. Pavement structure back-calculation modulus.

Layer Thickness (mm) Poisson’s Ratio Elastic Moduli (MPa)

Bituminous Surface 100
0.35

10,524 at 27.9 ◦C
Unbound Granular Base 760 122

Subgrade 1600 202

Figure 5, shows the schematic distribution of the piezoelectric sensors as well as the reference
sensor along the pavement structure. As it can be seen, piezoelectric sensors are positioned 2.7 m after
the reference sensor in order to reduce the effect that construction may have on the measurements.
Another important point to observe is the transverse distributions of the piezoelectric sensors (H5, H6,
and H8) allowing to study the effect of wandering. A brief description of the sensors is given below.
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The used reference conventional strain gage is a precision transducer used especially for
deformation measurements in hot mix asphalt. The transducer has an apparent modulus of elasticity
of approximately 2.2 N/mm2, resistance of 120 ohms (Ω) 1

4 bridge, physical range of up to 1500 µε,
sensitivity of 0.11 N/µε, and temperature range between −30 and 150 ◦C. Equation (2) is used to
transform measured voltage values (Vout) into deformation values where minimum voltage (Vin) and
gauge factor (GF) have been set at 10.0 volts and 2.0 respectively.

ε =
Vout ∗GF

Vin
(2)

On the other hand, piezoelectric sensors have gained popularity in deformation and vibration
measurements due to their ability to store mechanical energy from environmental variations. Under
traffic loads, the piezoelectric transducer stores energy produced by the micro deformation suffered on
the surface of the pavement which serves to activate the sensor. This study has used a rectangular
polyvinylidene fluoride film to convert strain energy into electrical signal. Equation (3) is used to
calculate the voltage (V) generated by the piezoelectric transducer where S, Y, d31, h, and ε are the
applied strain, Young’s modulus of the piezoelectric material, piezoelectric constant, thickness, and the
electrical permittivity, respectively. Similarly, the generated energy (En) of a piezoelectric transducer
through a load resistance (R) is shown in Equation (4), where tf is the load time.

V =
S Y d31 h

ε
(3)

En =

∫ t f

0

V2(t)
R

dt (4)

3.2. Data Collection Program

Data collection started on 14 November 2017 and ended on 15 February 2018 where a total of
999,200 load applications were performed at a speed of 76.0 km/h (10.0 rotations per minute). Surface
temperature varied between 0.4 and 16.8 ◦C with a mean value on surface of 9.5 ◦C, and in the middle
of the asphalt layer of 8.9 ◦C. Sensor responses were measured at approximately every 20,000 load
applications. Figure 6 shows the longitudinal deformation from the reference strain gauge and the
sensor voltage after 5000 load repetitions where it can be seen how each arm of the carousel provokes a
slightly difference response.
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This paper has studied the effect of wander through eleven positions, equidistant every 0.11 m.
Position one is located at radius 18.48 m while position eleven is located at 19.53 m. The loading
program followed a Gaussian distribution where position six, located at radius 19.0 m (see Figure 5)
supports the maximum percentage of passes (22.0%), whereas positions one to five supports 1%, 3%,
7%, 11%, and 17% percentage of passes respectively.

4. Results and Discussions

This section presents the findings of the study once the APT was concluded. Figure 7 shows how
the longitudinal deformation of the reference sensor, DYN, and the sensor voltage of H3 increase with
the number of load repetitions. It should be noted that sensor H3 remains at the same level until 500,400
load repetitions where the main increment occurs, and changes become noticeable. Table 2 shows the
maximum sensor voltages values, average of the four arms, obtained for the other piezoelectric sensors
where a similar behavior is seen for the other sensors having the main increments after 500,400 loads
except for sensor H8 sensor where it decreases. Sensor H8 is located at radius 19.30 m, see Figure 5.
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Figure 7. Measurement of strain and sensor voltage for reference and H3 sensor.

Table 2. Evolution of deformation and voltage versus number of loads.

Number
of Loads

Reference Sensor
[µε]

Sensor–Voltage [V]

H3 H4 H5 H6 H7 H8

5000 121 0.027 0.038 0.012 0.028 0.073 0.045
500,400 194 0.026 0.017 0.011 0.012 0.055 0.044
999,200 276 0.059 0.041 0.014 0.027 0.067 0.010

Figure 8 on the other hand shows the evolution of the longitudinal microstrain (DYN) and
sensor voltage (H3) during the 999,200 load repetitions. It is necessary to highlight how both trends
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correspond to each other especially at 136,800 and 507,000 load repetitions where the signal decrease
and increase respectively. The responses decrease at 136,800 load repetitions as the pavement starts to
heal itself as the result of letting it rest without applying load on the surface. However, this “healing”
process is rapidly lost once the loading program restarts. On the other hand, at around 507,000 load
repetitions both responses show a change in their slopes indicating that damage has increased and is
now spreading its way to the surface.
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Figures 9 and 10 show the effect that varying the load “wandering” has on the measured responses.
From these figures, it can be seen how both responses decrease their values as the load moves away
from the center (position six, radius 19.0 m). This is seen for the reference sensor (DYN) as well as
for piezoelectric sensors (H3, H4, and H7) also located at radius 19.0 m, see Figure 5. On the other
hand, sensor H5 located at radius 18.40 m which receives merely 1% of the total load passes, is the
one showing the lower values since most of the time the load is far away from the location of the
sensor. Finally, sensors H6 and H8 show how the measured responses fades with respect to the
load positioning.
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Figure 10. Sensor-voltage evolution versus number of loads and transverse position.

A correct definition of the threshold levels, Figure 1-left, is essential for the proposed approach.
This paper has used percentiles P-95 and P-05 to define the upper and lower limits based on the
entire signal. Figure 8 shows the evolution of sensor H3 during the 999,200 load repetitions where
the maximum average response (0.0723 V) is seen at 964,000 load repetitions whereas the minimum
average response (0.0171 V) is seen at 151,200 load repetitions. Following percentiles P-95 and P-05,
the upper and lower limits are calculated and shown in Table 3.

Table 3. Definition of threshold levels for novel data compression approach.

Level Number H3 H4 H7

D1 0.018 0.028 0.041
D2 0.025 0.033 0.048
D3 0.031 0.039 0.054
D4 0.038 0.044 0.061
D5 0.045 0.049 0.067
D6 0.051 0.055 0.074
D7 0.058 0.060 0.080
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Once the seven thresholds have been defined, the measured average signals are then subdivided
in order to measure the time that each level is open. Figures 11–13 show the novel data compression
approach for sensors H3, H4, and H7 respectively.
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Finally, Table 4 show the activation times in terms of number of repetitions for the upper threshold
levels. Activation “wake-up” time means that the measured average signal (voltage) has exceeded
the threshold levels at a certain number of loads. Level wake-up times are directly related to the
appearance of damage in terms of surface cracking on the pavement structure.

Table 4. Threshold activation versus number of loads.

Level Number H3 H4 H7

D3 591,200 591,200 125,600
D4 591,200 910,000 125,600
D5 789,200 N/A N/A
D6 789,200 N/A N/A
D7 789,200 N/A N/A

As shown above, sensor H3 is the one providing the best results for assessing damage in the
structure. In essence, when the amplitude of the strain increases under the influence of repetitive loads,
the stored voltage also increases, resulting in the activation of higher thresholds. Figure 14 shows the
condition of the pavement structure at the end of the experiment. Two paint colors, white and blue,
were used to illustrate the appearance of cracks with time. Paint color white denotes surface cracking
after 1.0 million load repetitions, whereas color blue denotes later cracking.
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5. Conclusions

This study has successfully validated, through full-scale testing, the usefulness of embedding
piezoelectric sensors in pavement structures for long-term monitoring. The innovation of the
proposed data compression approach relies in using cumulative pavement responses instead of
single measurements (i.e., longitudinal strains) which are highly dependent on external conditions.

This study has found that the cumulative loading time of piezo voltage can be considered as a
good indicator of damage progression while different activation times for the threshold levels can also
be considered as good indicator of damage severity.

From the results presented above, this study can conclude that the observations made using the
reduced data obtained from the piezoelectric sensors, which are significantly cheaper and easier to
install, match the observations obtained using reference strain gages that continuously measure the
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strain response, which is impractical for long term monitoring. Both technologies provide similar
trends in terms of damage growth.

Finally, the next steps will focus on scaling up the implementation and testing of the piezoelectric
sensors and associated data management approaches.
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