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Abstract

Endorheic lakes, lacking river outflows, are highly sensitive to environmental changes and

human interventions. Central Asia (CA) has over 6000 lakes that have experienced substantial

water level variability in the past century, yet causes of recent changes in many lakes remain

unexplored. Modelling hydrological processes for CA lakes poses challenges in separating cli-

matic change impacts from human management impacts due to limited data and long-term

variability in hydrological regimes. This study developed a spatially lumped empirical model to

investigate the effects of climate change and human water abstraction, using Shortandy Lake

in Burabay National Nature Park (BNNP) as a case study. Modelling results show a significant

water volume decline from 231.7x106m3 in 1986 to 172.5x106m3 in 2016, primarily driven by

anthropogenic water abstraction, accounting for 92% of the total volume deficit. The highest

rates of water abstraction (greater than 25% of annual outflow) occurred from 1989 to 1993,

coinciding with the driest period. Since 2013, the water volume has increased due to increased

precipitation and, more importantly, reduced water abstraction. Despite limited observational

data with which to calibrate the model, it performs well. Our analysis underscores the chal-

lenges in modelling lakes in data-sparse regions such as CA, and highlights the importance

and benefits of developing lake water balance models for the region.

Introduction

The CA region comprises around a third of the world’s arid areas [1]. The region is character-

ised by high spatio-temporal variability in temperature and precipitation [2] and freshwater

lakes are a critical source of water for ecosystems and population. Competition for water to

support economic development is often cited as the primary driver of the demise of several

major endorheic lakes in the region, including the Aral Sea and Lake Balkhash [3, 4], but cli-

mate change is also recognised as being an important factor [5–7]. A lack of success in balanc-

ing the needs of water for economic development versus ecosystem maintenance and health,
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and generally low levels of water efficiency, underpin the crisis facing CA lakes. High levels of

surface and ground water abstraction to support agriculture (more than 90% of the region’s

water supply is used to irrigate crops [8]), and economic development remain significant issues,

which are often cited as being of primary concern [9]. Future climate scenarios for CA project

rising air temperatures at a rate of 0.37˚C per decade [10] and changes in precipitation and snow

patterns [11, 12], which are expected to contribute to water scarcity in the region [13].

To ensure future water security, a detailed understanding of climatic and anthropogenic

drivers of water scarcity is essential due to uncertainty surrounding freshwater availability and

factors influencing water availability. Previous research has attributed lake volume changes in

Kazakhstan primarily to climate variability rather than human activities (i.e. water abstraction)

[14, 15], but contemporary thinking in the wider CA region challenges this perspective [16–

18]. Therefore, it is unclear whether addressing climate or human impacts should be the pri-

mary focus for water management practices in Kazakhstan.

Endorheic lakes, which have no outflow, are critical water resources in the region and yet

are hydrologically sensitive and vulnerable to climate change [19]. CA endorheic lakes provide

a valuable focus for study. They provide a closed system for hydrological analysis that provides

opportunity in unravelling the relative impacts of climate and anthropogenic activity. They are

highly sensitive to changes in the different components of their overall water balance [19]

which has resulted in long-term water volume variability [16, 20].

To evaluate water resources, it is crucial to measure and analyse the quantities and patterns

of water movement and storage changes across large areas across in both spatial and temporal

dimensions. Among the challenges in developing hydrological models for endorheic lakes

worldwide is the scarcity of data and lack of field-based measurements [21]. The significance

of on-site measurements and comprehensive modelling has been demonstrated in endorheic

lake systems, such as Lake Chad [22], Lake Urmia [23], and the Aral Sea [18]. These factors

contribute to the complexity of hydrological models and affect their accuracy [23, 24]. For CA

lakes, environmental monitoring data is generally limited to a few sub-regions, primarily

urban and industrial centres. The dissolution of the Soviet Union resulted in the discontinua-

tion of many monitoring stations, particularly in remote areas [25]. This has led to insufficient

monitoring of important water balance components, including precipitation [26, 27] and

streamflow [28], and is considered a crucial factor hindering global research efforts to identify

areas experiencing significant changes in water resources [29]. Additionally, restrictive data

policies, especially in transboundary basins further compound these challenges [30]. These

constraints pose significant difficulties in modelling hydrological processes in CA lakes and

distinguishing between climatic changes and human interventions.

Here we adopt a spatially lumped empirical modelling approach to quantify the relative

importance of climatic and anthropogenic water abstraction by analysing the historical pat-

terns of change that have occurred in Shortandy Lake, a small endorheic lake in Burabay

National Nature Park (BNNP) in the north of Kazakhstan. This study examines the difficulties

and implications of developing hydrological models for endorheic lakes, using the case study

of Shortandy to illustrate the challenges associated with incomplete data, highlighting the

importance and potential usefulness of such models despite limited observational data with

which to calibrate them.

Study area and materials

Study area

BNNP has a total area of 1,296 km2 and consists of nearly 30 lakes which are mostly endorheic.

Shortandy Lake (52˚590N, 70˚130E, 398m a.s.l.) is the largest endorheic lake within the BNNP
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(Fig 1) with a catchment area of 69.15 km2 (Table 1). The river network is sparse and most riv-

ers and streams are fed by melting snow during the spring [31]. The Kylshakty River formerly

drained Shortandy Lake until 1920, when the lake level dropped below 408m [14]. Shortandy

Lake levels have fluctuated over the 20th century, from a maximum of 408m a.s.l. between

1900–1920 [14] followed by a declining trend [32–35], with the maximum lake depth decreas-

ing from 31m in 1956 to 23m in 2014.

Similar to most lakes in the BNNP, Shortandy Lake is a tectonic lake that lies at the foot of

the Kokshetau mountain ridge oriented from the north-west to the south-east. The lake was

formed at the beginning of the Holocene in an aeolian depression [36]. The catchment orogra-

phy is flat steppe and forested hills, where the lowest part (388m) is the lake and the highest

area is 713m a.s.l. Vegetation cover is currently boreal forest with pine (65%), birch (31%),

aspen (3%), and shrubs (1%) [31].

The lake shore is formed by Quaternary eluvial-deluvial deposits and sandy lacustrine sedi-

ments [36]. Most of the lake bottom is represented by sand and silt, and the central part is

gyttja. The catchment is underlain by Ordovician sedimentary rocks (limestones, marls, argil-

lites). The lake bed and local groundwater have good connectivity owing to the high perme-

ability of the fractured zone [38]. Shallow groundwater provides water for boreal forest

Fig 1. Location of the study area. The administrative boundary shapefile of Kazakhstan and its districts is obtained from an open license source known as the

geoBoundaries Global Administrative Database [37].

https://doi.org/10.1371/journal.pone.0305721.g001
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transpiration during dry summers and recharges mainly by snowmelt [38]. The major propor-

tion of snow accumulates in the forested areas and eventually recharges groundwater storage

by the end of the snowmelt season [39].

The climate of Shortandy is characterised by significant seasonal variability in air tempera-

ture, with cold season temperatures mostly below zero and ice cover on the lake surface

(Table 1). The warm season arrives around March to April with subsequent snowmelt and ice-

break-up on the lake. Total annual precipitation is on average 332mm, with 70% of the precipi-

tation falling as rain (Table 1), but, the warm seasons are relatively dry, and the lake net bal-

ance is negative during these seasons.

Historically, the water level regime is characterised by so-called wet-dry periods where pre-

cipitation varies between years [32]. Previous water balance studies show that Shortandy’s

water comes from surface runoff during snowmelt which varies annually and results in water

level variability between 1-6m, whereas water output is mostly driven by open water evapora-

tion [32, 35].

Water abstraction. BNNP is a major tourist attraction in Kazakhstan and Shortandy Lake

is one of the most visited places with the largest settlement in the area (45,000 population).

Water supply for domestic water consumption and recreation derives from surface and

groundwater abstraction from several of the BNNP lakes. Water abstraction from Shortandy

Lake has been the greatest of all the BNNP lakes [39]. Since the establishment of BNNP in

2000, the rapid development of tourism created a higher demand for water, especially during

warm periods. Since 2010, declining water levels in Shortandy Lake prompted the government

to limit water abstraction to 0.5 million m3 annually from the lake. Currently, Shortandy has a

centralised water supply and both surface and groundwater abstraction barely exceeds the

threshold of 0.5 million m3.

Data sources

Meteorological data. Mean daily meteorological data (1986–2016) were obtained from

the only local weather station in the study area (Fig 1, Table 1). Missing parameters required

for open lake evaporation and FAO-56 Penman [40] models were derived from empirical

equations using climate data (e.g., solar and extraterrestrial radiation). Lake ice formation and

break-up dates for open lake evaporation, and snowpack measurements for snowmelt runoff

modelling were obtained from KazHydroMet (https://www.kazhydromet.kz/). Groundwater

level records are not publicly available. Therefore, daily water level records were obtained from

the weather station, and used to validate the model and to estimate groundwater flux. Monthly

Table 1. Physical characteristics of Shortandy Lake and local meteorological variables.

Feature Value Unit Source

Lake area 15.7 km2 Landsat 8

Lake level 388.9 m a.s.l. KazHydroMet, 2007

Maximum depth 22.7 m Bathymetric survey in 2014

Total catchment area 69.15 km2

Mean annual temperature 1.9 ˚C From 1986–2016 in Schuchinsk weather station

Mean temperature (Nov-Apr) -9.3 ˚C From 1986–2016 in Schuchinsk weather station

Mean temperature (May-Oct) 13.1 ˚C From 1986–2016 in Schuchinsk weather station

Mean wind speed 2.7 m/s From 1986–2016 in Schuchinsk weather station

Mean annual precipitation 332 mm/yr From 1986–2016 in Schuchinsk weather station

Mean precipitation (Nov-Apr) 77 mm/yr From 1986–2016 in Schuchinsk weather station

Mean precipitation (May-Oct) 255 mm/yr From 1986–2016 in Schuchinsk weather station

https://doi.org/10.1371/journal.pone.0305721.t001
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values of water abstracted from the lake between 1989 and 2016 were obtained from the local

water agency.

Remotely sensed data. A Shuttle Radar Topography Mission Digital Elevation Model

(SRTM DEM) with a 30-meter resolution was used to represent the catchment topography.

Landsat 5-TM with a 30-meter resolution during the ice-free period and Normalized

Difference Water Index (NDWI) were utilised to estimate the lake area in 1986. Similarly,

The Normalized Difference Snow Index (NDSI) was used to derive a snow cover area

parameter required for the Snowmelt Runoff Model (SRM), which models daily snowmelt

runoff.

Leaf Index Area (LAI) required for the calculation of actual evapotranspiration was esti-

mated by MOD15A2H (a MODIS product combining Leaf Area Index and Fraction of Photo-

synthetically Active Radiation), which is an 8-day composite dataset with 500-meter

resolution.

Due to the lack of evapotranspiration measurements, Global Potential Evapotranspiration

(Global-PET) geospatial datasets (at 30 arc-second resolution) [41] and Terra MODIS product

gap-filled 8-day composite data at 500-meter resolution for potential evapotranspiration

(MOD16A3GF PET) were used to validate the evapotranspiration values produced from the

catchment. Lake evaporation values were compared with the actual evapotranspiration for the

lake using the Operational Simplified Surface Energy Balance (SSEBop) model for the years

2012–2016. Similarly, the outcomes of the snowmelt runoff modelling were compared to

monthly surface runoff values produced by the Global Land Data Assimilation System Noah

Land Surface Model Version 2.1 (GLDAS) monthly product at 0.25 degree resolution [42]

available from 2000 to 2016.

Methods

The water balance model

A monthly spatially lumped empirical model was developed (Fig 2), defining the water balance

as:

DV=t ¼ Psnow=rain þ Qrain=snow � Esub � EO � Eact � Wabs þ ðGi � GOÞ ð1Þ

where V (m3) is volume, t is time (month), with inputs of precipitation P (mm month-1) from

snow (t<0) Psnow and rainfall (t>0) Prain, and runoff from rain Qrain and snowmelt Qsnow (mm

month-1). Output variables were sublimation from snow Esub (mm month-1), lake evaporation

EO (mm month-1), actual evapotranspiration from the catchment Eact (mm month-1), and total

water abstraction Wabs (mm month-1) from surface and groundwater combined. Gi−Go (mm

month-1) is the flux of water through subsurface flow delivered to and leaked from the lake.

Detailed explanations of the areas associated with each variable required to estimate the volu-

metric equivalent are provided in Fig 3.

The modelling routine was developed in accordance with the steps reflected in Fig 3.

Monthly values of Prain, Psnow Eo and Esub are a function of the lake area (AL), whereas Qrain,

Qsnow and Eact variables depend on the lake catchment area (Acatch) without AL. The total

amount of water abstraction from groundwater and surface water combined was obtained

from the regional water agency—Su Arnasy (https://www.astanasu.kz/). The model results

were calibrated between 1986 and 2016, then validated using the lake volume dynamics

derived from measured water levels between 2003 and 2016.
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Quantifying change in storage

The relationship between volume and lake area (the final step in Fig 3) were computed using a

GIS-based volumetric model. The model was built by merging the SRTM DEM with the

bathymetry data (S1b Fig), and interpolated with the Inverse Distance Weighted (IDW)

Fig 2. Spatially lumped empirical model for Shortandy Lake.

https://doi.org/10.1371/journal.pone.0305721.g002

Fig 3. Modelling steps where input and output variables are estimated based on temperature (t) changes. Prain is

rainfall, Psnow is snow, Qrain is rainfall-generated runoff, Qsnow is snowmelt runoff and Gi−Go is a groundwater flux,

Acatch is Shortandy Lake catchment area, AL(i-1) is the lake area of the previous month, Eo is lake evaporation, Wabs is

total water abstraction from surface and groundwater combined, Eact is evapotranspiration from the catchment

excluding Eo, Esub is sublimation, ΔVi is water volume change, ALi is lake area corresponding to ΔVi, and t is mean air

temperature.

https://doi.org/10.1371/journal.pone.0305721.g003
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method (S1a Fig). The lake volume and lake area were modelled as a 4th-order polynomial in

water volume (August 2016), with a significant correlation between the lake area and volume

(r2 = 0.98, p<0.0001) (S1c Fig). Owing to the lake’s bathymetry, the relationship between lake

area and volume is non-linear, where AL greater than 15km2 corresponds to shallow areas of

the lake becoming water-filled. The AL and lake level relationship (S1D Fig) shows that a lake

level change occurring between 388–375.5m results in a small change in volume, yet consider-

able change in AL.

Lake evaporation

Lake evaporation was estimated for the period when the lake is free from ice cover, using a

simplified version of the classic Penman equation [43] developed by Valiantzas [44]:

EO � 0:051ð1 � aÞRS

ffiffiffiffi
T
p
þ 9:5 � 2:4ðRS=RAÞ

2
þ 0:048ðT þ 20Þð1 � RH=100Þðau � 0:38

þ 0:54uÞ ð2Þ

where EO (mm day-1) is open water evaporation, α is surface albedo for open water (0.08) [45],

RS (MJ m2 day-1) is solar radiation, RH (%) is relative humidity, u (m s-1) is wind speed, au is

the wind function for the original Penman equation and is equal to 1, RA (MJ m-2 day-1) is

extraterrestrial radiation and T (˚C) is temperature estimated as follows:

T ¼ ðTmax þ TminÞ=2 ð3Þ

where Tmax and Tmin (˚C) are daily maximum and minimum temperature respectively. Rn for

Shortandy Lake was derived from daily solar radiation (RS) and the reflection coefficient (α).

The wind function was estimated by Linacre [46], where f ð3Þu ¼ 0:54u for larger lakes (greater

10km2).

Runoff model

The Snowmelt Runoff Model (SRM) [47] was used to evaluate daily Qsnow from the catchment.

The SRM and model parameters are described in detail in Martinec [47]. The SRM is a semi-

distributed hydrological model that simulates daily catchment runoff and it can also forecast

snowmelt. Despite limited climate and hydrological data for Shortandy Lake, SRM estimates

surface runoff with minimal input parameters. Daily Qsnow in the Shortandy catchment was

calculated using SRM, as:

Qnþ1 ¼ ½cSn∗/nðTn þ DTnÞ∗SCA�∗A∗0:116∗ð1 � knþ1Þ þ ðQnknþ1Þ ð4Þ

and adding the rainfall-generated runoff:

þ½crn∗Pn�∗A∗0:116∗ð1 � knþ1Þ þ ðQnknþ1Þ

where Qn+1 (m3 s-1) is the average daily discharge, c is the runoff coefficient expressing the

losses as a ratio (runoff/precipitation) with cSn referring to snowmelt crn to rainfall, αn (cm ˚C-1

day-1) is the degree-day factor indicating the snowmelt depth from one degree-day, Tn (˚C

day) is the number of degree-days above the base of 0˚C, ΔTn is the adjustment by temperature

lapse rate; SCA is ratio of the snow-covered area of the catchment; Pn (cm) is precipitation on

n day contributing to runoff, A (km2) is area of the catchment, kn+1 is the recession coefficient

indicating the decline of discharge in a period without snowmelt, n is the number of degree

days (˚C d) and 0.116 is the conversion factor from cm km2 day-1 to m3 s-1.

The elevation range of the catchment is below 500m, meaning the extrapolation of tempera-

ture with elevation due to lapse rate is not necessary (Fig 1). The SRM model requires a
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degree-day factor that considers snow density properties for all elevation zones, regardless of

land cover types. However, snow density changes throughout the melt season and is influenced

by both land cover type and snow albedo [48]. Thus, Eq 4 was re-written as follows:

Qnþ1 ¼ cSnF½/FnðTn þ DTnÞSCAF�∗AF∗0:116þ cSnG½/GnðTn þ DTnÞSCAG�∗AG∗0:116∗ð1
� knþ1Þ þ Qnknþ1 ð5Þ

where F and G refer to forest and grassland respectively. The empirical degree-day factor was

updated according to Kuusisto [49] equations, where degree-day was aFn ¼ 10:4
rFs
rw
� 0:7 for

forest and aGn ¼ 19:6∗ rGs
rw
� 2:39 for grassland, where ρFs, ρGs (kg m3) is the snowpack density

in forest and grassland respectively; forest and grassland areas are derived based on land cover

maps (S2 Fig).

Snow-cover area (SCA) is another important input to the SRM. The NDSI for grasslands

and the relationship between point-measured snow water equivalent (SWE) and degree-day

factor for forests were utilised to simulate the SCA. Depletion of snow in forest areas was esti-

mated as a linear function of SWE and degree-day factor (snowmelt depth) which results in an

SCA reduction the following day. The recession coefficient (k) was within the range of 0.2–1.0,

where the lowest coefficient is established at the start of the melt season and increases towards

1.0 at the end.

In the SRM, runoff coefficients (cSn, crn), which are applied to Qrain/snow, can be adjusted at

half-monthly intervals to accommodate seasonal variations in evapotranspiration or, more

broadly, to address systematic under- or over-estimations of simulated runoff volumes. Losses

of Qsnow at the beginning of the snow-melt period were assumed to be minor, due to the mini-

mal effect of evaporation from the snow-covered surface, and cSn is near 1.0 [44]. After that,

when the growing season starts, more losses must be expected due to evapotranspiration and

interception, causing the runoff coefficient to decline. Thus, the cSn value ranged from approx-

imately 1.0 to 0.5. The crn value, which changes based on evapotranspiration losses during the

warm season was replaced by estimated Eact.

The outputs of the SRM were evaluated by calculating the Nash-Sutcliffe coefficient (R2)

and also the volume difference (DV) to understand the SRM’s performance. These metrics

were estimated as follows:

R2 ¼ 1 �

Pn
i¼1
ðQi � Q0iÞ

2

Pn
i¼1
ðQi �

�QÞ2
ð6Þ

where Qi is measured monthly discharge, (m3 s-1), Q0i is computed monthly discharge, (m3 s-1)

and, �Q is the average measured monthly discharge (m3 s-1).

DV ¼
VR � V 0R

VR
∗100 ð7Þ

where Dv is deviation of the runoff volume, %, VR is measured seasonal runoff volume and V 0R
is computed seasonal runoff volume. Positive values of Dv indicate that the SRM underesti-

mates seasonal runoff values, whereas negative shows overestimation. Due to the absence of

discharge measurements in this area, monthly discharge data from Severny station (53˚680N,

69˚630E; GRCD station code 2311340) were obtained from The Global Runoff Data Centre

(GRDC) (https://portal.grdc.bafg.de).
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Groundwater flux

Two methods were used to estimate groundwater flux: (i) using observed water levels and (ii)

using the water balance approach. Both model outcomes were compared, and then validated

with observed lake levels.

(i) Groundwater flux estimated by measured water levels. This approach estimates

groundwater flux when the lake surface is fully covered with ice, and was introduced by Ury-

vayev [32]. A water balance for the cold season gives a better understanding of groundwater

interactions within BNNP lakes and can be accurately estimated in these lakes. Based on this

approach, the groundwater flux of Shortandy Lake can be evaluated as:

Gi � Go � Vb:w � Ve:w: þ hs �
X

cold
Wabs ð8Þ

where Vb.w and Ve.w. (m3) are lake volume before and at the end of winter respectively, hs (m3)

is water content from snowpack formed on the lake surface by the end of winter, and ∑coldWabs

(m3) is the water abstracted during the cold season. The assumption is based on the relation-

ship between Gi and Go being constant during the year.

(ii) Water balance approach. This estimates the groundwater flux by solving Eq 1 where

the annual groundwater flux was expressed as:

Gi � GOð Þ ¼ Vbegin � Vend

� �

�
X

P þ
X

Rrain
snow
�
X

Esub �
X

EO �
X

Eact �
X

Wabs

� �
ð9Þ

where (Vbegin−Vend) (m3) is the annual water volume changes estimated from water levels, ∑P
(m3) is annual precipitation falling on the lake surface,

P
Rrain

snow
(m3) is annual runoff from the

lake catchment, ∑Esub (m3) is annual snow sublimation from the lake surface, ∑EO (m3) is

annual open lake evaporation, ∑Eact (m3) is annual actual evapotranspiration, and ∑Wabs (m3)

is annual water abstraction.

Model input and parameterisation

The model input includes snow sublimation, potential evapotranspiration and land cover

maps. The actual evapotranspiration (Eact) was critical to the simulation of effective runoff

which contributes to the lake volume after excessive rainfall (when Prain>Eact). Eact was calcu-

lated from the potential evapotranspiration (PET) using FAO-56 Penman [40] and crop coeffi-

cient:

kc : Eact ¼ Epet∗kc ð10Þ

where kc crop coefficient. The ratio was estimated as follows:

kc ¼ kc;min þ ðkc;max � kc;minÞð1 � e� 0:7LAIÞ ð11Þ

where kc,min kc,max are the minimum and maximum crop coefficient for deciduous forest dur-

ing the mid-season (July) respectively, and LAI is leaf area index. In this study, kc,min is equiva-

lent to 0.9, as recommended for deciduous forest [40], kc,max was adjusted for semi-arid

climates as suggested by Allen (1998):

kc;max ¼ kc;min þ ½0:04ðu2 � 2Þ � 0:004ðRHmin � 45Þ�ðh=3Þ
0:3

ð12Þ

where u2 (m s-1) is the wind speed at 2m, h (m) is the mean maximum tree height, taken from

field observations [50], and was equal to 9m on average.
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Snow sublimation (Esub) was estimated to evaluate monthly losses from the ice-covered lake

surface during cold seasons. The following parameter was evaluated using correlation analysis

between air humidity and snow ablation in Northern Kazakhstan established by Semenov

[51]. Hence, losses for snow sublimation were expressed as follows:

Esub ¼ nð0:35VPD � 0:06Þ ð13Þ

where n is the number of days in a month and VPD (kPa) is the mean monthly vapour pres-

sure deficit. Snow sublimation was used in the Gi−Go(i) model and for snowmelt runoff simula-

tions. Snowpack losses from the lake surface were incorporated in the SCA simulations and

thus were excluded to avoid double-counting.

Land cover maps were required to derive grassland and forest areas, as well as the SCA vari-

able in Eq 5 and estimate LAI parameter in Eq 11. The land cover classification assessed

changes in i) forest, ii) grassland, and iii) lake areas from 1986 to 2016. Urban areas (less than

5km2) were classified as grassland due to the absence of snowpack measurements. Land cover

types were evaluated using supervised classification in ArcGIS Spatial Analyst. Analysis

showed forest area decreased from 45.7km2 (1986–2009) to 39.9km2 (2010), while grasslands

expanded from 6.7km2 to 12.5km2 (S2 Fig).

Sensitivity analysis

Sensitivity analysis of the lake model was performed for different model parameters to assess

their influence on the water balance. Four model parameters were considered: (1) air tempera-

ture, (2) precipitation, (3) wind speed, and (4) relative humidity, to which simulated lake level

estimates are most often attributed to [52, 53], with the last two parameters are embedded in

the open water evaporation (Eq 2). Based on the variation of the selected parameters within

the sensitivity analysis, groundwater flux was also evaluated, as these parameters ultimately

affect groundwater flux. Sensitivity analysis was conducted following a ‘one at a time approach’

and using the Sensitivity Index [54], as follows:

I ¼
ðy2 � y1Þ=y0

2Dx=x0

ð14Þ

where I is the sensitivity index, y0 was the initial model output estimated with an initial x0 of

the parameter x. In the sensitivity analysis, this initial parameter value varied by 10–25%, with

a 5% increments while others were kept constant, yielding:

x1 ¼ x0 � Dx;

x2 ¼ x0 þ Dx ð15Þ

where corresponding values y1 and y2 were the lake storage. Changes in the lake storage based

on the sensitivity analysis were then compared to the ‘initial model’, which is the lake storage

estimations calculated from Eq 1.

Results

Model validation and sensitivity

The observed lake volume and the volumes simulated by Eq 1 with two groundwater flux mod-

els were both statistically significantly correlated (r = 0.999, p<0.001 and r = 0.989, p<0.001)

(Fig 4A and 4B). The difference between the simulated lake storage and volume estimated by

water levels, was below 10% of the total lake volume. Although the lake storage simulated
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using groundwater model (ii) showed a higher correlation with measured lake volumes,

groundwater model (i) showed minimal deviation between simulated and observed lake stor-

age, especially for wet years (2009–2010 and 2013–2014).

The sensitivity analysis indicates that the model shows negligible sensitivity when model

parameters are varied within the range of 10%, and the model could reproduce adequately the

lake storage changes (r = 0.99, p<0.001). However, the model was sensitive to precipitation

when variation exceeded 10%. The sensitivity analysis indicated that the lake volume is highly

responsive to variability in precipitation, particularly during wet years, which affect runoff val-

ues. In contrast, the model showed less sensitivity to air temperature, and even less sensitivity

to wind and relative humidity.

Fig 4. Model validation for Shortandy Lake. (a) volume simulated by the regional groundwater model, (b) volume simulated by groundwater flux estimated

by water balance approach, and (c) water volume dynamics estimated by Eq 1, where errors bars show standard deviation of the lake volume obtained from a

one-by-one sensitivity analysis with four selected model parameters.

https://doi.org/10.1371/journal.pone.0305721.g004
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Sensitivity analysis on the groundwater flux changes indicated minor variability owing to

changes in wind speed. Both relative humidity and temperature had a similar effect on Gi−Go.

In contrast, precipitation had the most significant impact on groundwater flux, especially dur-

ing wet years, emphasizing the model’s sensitivity to precipitation.

The model sensitivity increases over time (Fig 4C). The overall model accuracy is affected

by the lack of lake level observations for 1988–1990 and 1998–2002, which are required for the

estimation of Gi−Go. Consequently, these factors affect the accuracy of the model during the

aforementioned periods.

Reconstruction of water volume dynamics

The modelling outcomes show a significant water volume reduction in Shortandy Lake (r =

-0.93, p<0.001), from 231.7x106m3 in 1986 to 172.5x106m3 by the end of 2016 (Fig 4). The

most rapid and dramatic water volume decrease occurred between 1986 and 1992. Despite

inter-annual water volume fluctuations, with positive water volume dynamics (1992–1996;

2002; and 2005–2009), the overall trend was downward. However, since 2013, the water vol-

ume trend became positive after the lowest values simulated in 2012 (�166.3x106m3), rising to

172.5x106m3 by 2016.

Historical changes in output variables

Open lake evaporation. The temporal evaporation trend showed no significant change

(r = 0.3, p = 0.08), with an average of 611mm year-1. Estimations of lake evaporation flux

revealed two periods with different lake evaporation patterns (Fig 5A). Between 1986–2005

lake evaporation flux remained stable (r = 0.04, p = 0.37) followed by a slight increase between

2006–2016 (r = 0.4, p<0.05). Annual Eo increased on average from 594mm (1986–2005) to

682mm per year (2006–2016), with a maximum value of 707mm in 2010. The ice break-up

dates, used to identify open lake evaporation periods revealed a significant, strong negative

relationship between the lake ice-off dates and the air temperature deviation of April and

March (r = -0.78 and p<0.001) (S3C Fig). Lake ice-off showed a weak negative temporal trend

(r = -0.47, p<0.05), where ice-free conditions were longer since 2005.

Water abstraction. The total water volume abstracted from the lake during the study

period (1986–2016) was 51.4x106m3, equivalent to 2.3x106m3 of water annually (Fig 5B). The

greatest proportion of water was abstracted between 1989 and 1993, with the maximum annual

abstraction in 1989. Since 1996, water abstraction from Shortandy was approximately

1.6x106m3 annually, until the government instated a policy to reduce water abstraction from

the lake to around 0.5 million m3 annually in 2010.

Historical changes in input variables

Snowmelt runoff. The snowmelt season was highly variable in terms of both the snow-

pack and its distribution across the catchment, with temperature controlling the duration of

the snowmelt season. The estimated parameters used for the model are shown in S3 Fig. Tem-

poral correlation analysis indicates a significant but weak positive trend in snow, (r = 0.41,

p = 0.02) (Fig 5C). Snow values reached their maximum values in 2013 and 2014, however the

highest Qsnow values were observed in 2002 and 2001 (Fig 5D). This can be attributed to the

increased temperature during the snowmelt season since 2010 (Fig 5C), which increased water

losses from evapotranspiration. Furthermore, the total amount of Psnow and SWE accumulated

during the cold-seasons (S3D Fig) is likely to be influenced by increased losses from snow sub-

limation since 2000 (Fig 5E), which, in turn, impacted seasonal Qsnow.
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Fig 5. Historical changes water balance variables of Shortandy Lake. (a) Total annual open water evaporation estimated by the simplified Penman equation

and actual evapotranspiration by SSEBop is the actual evapotranspiration for the lake by Operational Simplified Surface Energy Balance model, (b) Total

annual surface and groundwater abstraction, (c) Total annual snow (Psnow) and mean temperature during snowmelt, (d) Total seasonal snowmelt runoff, (e)

Total annual snow sublimation, (f) Total annual rainfall in the catchment, (g) Total monthly rainfall distribution and total monthly rainfall distribution in wet

years (excessive rainfall events), and error bars show a standard deviation, (h) Total monthly rainfall-runoff produced in the catchment.

https://doi.org/10.1371/journal.pone.0305721.g005
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The overall trend shows a significant reduction in snowmelt duration by 12 days (r = 0.5,

p<0.001) (S3E Fig). Snowmelt duration in the forested area of the catchment was driven by

Tmean and SWE, where the snowmelt duration shows a significant moderate negative relation-

ship between Tmean (r = -0.6, p<0.001) and a significant (but weak) positive relationship with

SWE (r = 0.4, p<0.05). The relationship between snowmelt duration in grassland was statisti-

cally significant with the air temperature only (r = 0.61, p<0.001).

Seasonal snowmelt runoff remained unchanged during the study period (r = 0.1, p = 0.5),

with, on average, 71mm of water contributing to the lake volume annually (Fig 5D). Qsnow in

the catchment varied inter-annually; the lowest runoff was simulated in 1988, 1989 and 1998

(less than 20mm of the lake depth), while the highest peak of runoff was in 2002 and 2001

(more than 130mm).

Rainfall-runoff. There is interannual variability in rainfall, with the average annual total

rainfall value of 256 mm year-1 with a standard deviation of 80mm over the study period. Tem-

poral correlation indicates no significant change in rainfall during the study period (r = 0.26,

p = 0.17) (Fig 5F). Fig 5G compares the monthly distribution of the total mean rainfall with

wet years, during which the highest values of rainfall occurred in July. The average was 31%

(79mm) out of the annual rainfall, while in wet years, July rainfall comprised 44% (149mm) of

the annual total. The lowest amount of rainfall occurred in April (7–6%) and the autumn

months with 9–7% of the total annual rainfall. The SRM simulations showed high variability

in Qrain, with rainfall values exceeding Eact only in July (Fig 5H). For example, in 1990 and

1993 runoff from rainfall was greater than 600mm month-1; however, after the lowest Qrain

value estimated in 1994, the runoff remained below 450mm.

Eact, necessary for assessing Qrain, was estimated using FAO-56 Penman potential evapo-

transpiration (PET) and crop coefficient.The crop coefficient was determined for a forested

area of the catchment, with kc ranging from 0.8 to 0.9. The total annual Eact was on average

625mm, and 129mm in July with a standard deviation of 22mm (S3B Fig).

Groundwater flux

The groundwater flux was estimated using two different approaches (S4 and S5 Figs). The

groundwater modelling showed that groundwater flux was positive, but the groundwater

recharge was small. The average Gi−Go was +0.29x106m3 when estimated by the water level

approach (i) and +0.16x106m3 when estimated by the water balance approach (ii) (S4 and

S5 Figs). Groundwater predictions from both models showed similar trends (r = 0.84,

p<0.001), especially between 2003 and 2011, illustrating similar patterns in groundwater

flux.

The results showed a clear relationship between Shortandy Lake volume and groundwater

flux (Fig 6). When the lake volume was high (during the 1980s-1990s), the groundwater flux

was negative. A positive response in groundwater flux with considerable inflow was established

from 2010 onwards, when the lake volume reached the lowest level during the study period.

This relationship was also reported by Uryvayev (1958) [32], who stated that significant

groundwater recharge stabilises water level fluctuations by recharging lakes when they reach

their minimal water level.

Major discrepancies between the two groundwater modelling approaches were observed

for 1994 and 2013 (Fig 6). Specifically, in 2013, there was a discrepancy of one million m3

of water between the two modelling approaches. The deviation in Gi−Go(ii) could result

from an underestimation of groundwater inflow during warm season months. Specifically,

the highest discrepancy corresponds with wet years when annual Prain is more than

350mm.
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Changes in net flux

The inflow-outflow water balance of Shortandy Lake was predominately negative during the

study period, and the net balance was -95mm (Fig 7A). A series of dry years occurred between

1986–1992. During these years, there was a decrease in annual P and a reduction in snowmelt

runoff (except 1990). By contrast, the total annual output increased considerably due to the

water abstraction from the lake, with the relative contribution to the output reaching more

than 25%.

During wet years, the positive water volume response was on average equal to 88mm where

the highest positive net balance (250mm) was estimated for 2013. Wet years were driven by

increases in rainfall of around 30% above the long-term average. However, an increase in the

input variables for years with extensive summer rainfall events made little contribution to the

lake volume due to losses from evapotranspiration. Since 2013, wet years made a greater con-

tribution to the lake volume. Although the evapotranspiration proportion was higher in 2013–

2014 than during the 1990s (33%-30% and 29% respectively), the proportion of the anthropo-

genic water abstraction reduced from 20% to 4%, which in turn resulted in a positive water

volume response.

Overall, dry periods repeated on average every 3–4 years, followed by 1–2 wet years, over

the study period. The input variables showed inter-annual variation, where the highest devia-

tion was established for Qsnow and Qrain (Fig 7B). In dry years total precipitation declined by

30%, whereas the proportion of snowmelt runoff varied considerably (34%-17% of annual

input) with increased losses from lake evaporation.

Fig 6. Groundwater flux modelling. Gi−Go (i) is groundwater flux estimated using the measured water level approach; Gi−Go. (ii) is estimated using the

Shortandy water balance model in Eq 1.

https://doi.org/10.1371/journal.pone.0305721.g006
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Model evaluation

The lake evaporation model exhibited good performance, with an average annual underesti-

mation of 8mm compared to actual evapotranspiration values for the lake by SSEBop. When

comparing the estimated Eo and Eo (SSEBop), both a t-test and Pearson correlation analysis

suggested a moderate linear relationship with no statistically significant difference for both

annual and monthly values (t-value = 0.3, r = 0.57, p = 0.3) (Fig 5A) for the years 2012–2016.

Moreover, a strong correlation was found for the monthly average estimated Eo and Eo (SSE-

Bop) (r = 0.95, p<0.001) (S3A Fig). The highest deviation between estimated Eo and Eo (SSE-

Bop) occurred when lake evaporation was overestimated for summer months and

underestimated for autumn months. This deviation is likely associated with the absence of

heat storage capacity in Eq 2. Lakes with an average depth exceeding 15m exhibit a one-month

lag between net radiation and evaporation flux [55], causing the model to overestimate evapo-

ration in summer due to increased net radiation and, conversely, to underestimate it during

autumn. The assessment of the simplified Penman equation [44] demonstrates that the model

performs accurately, not only for Shortandy Lake but also for other semi-arid lakes [56, 57].

Similarly, both satellite-derived evapotranspiration values (Global-PET and MOD16A3GF

PET) were compared with evapotranspiration estimated using field-observed data (S3B Fig). A

strong correlation was found for all three models (Eact, Global-PET, MOD16A3GF PET),

where the highest correlation established with monthly MOD16A3GF PET and Eact (r = 0.99,

p<0.001). Qrain contributed to the lake volume most in July, with Eact and MOD16A3GF PET

average values of 130-136mm, respectively (1990, 1993, 1994, 2007, 2009, 2013 and 2014). The

highest deviation between Eact and MOD16A3GF PET was established during the spring and

Fig 7. Water balance model outcomes for Shortandy Lake. (a) Total annual input and output variables (mm) (b) Relative contribution and mean values of

input and output variables from 1986 to 2016, where error bars show standard deviation.

https://doi.org/10.1371/journal.pone.0305721.g007
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autumn seasons. There was an overestimation in April to June (on average 65mm) and nearly

equal underestimation between August and October (-67mm), resulting in a negligible annual

average difference of -4mm. In the Akmola region, recent studies on potential evapotranspira-

tion from 1991 to 2021 showed a decreasing trend, ranging between 632mm and 850mm, with

no significant change observed, particularly in the BNNP area [58].

The assessment of results from the influx model was also critical. According to measure-

ments from Severny station, the majority of streamflow occurred during the snowmelt season,

i.e., from March to May, with the peak values in April, which is consistent with the SRM simu-

lations. The GRDC dataset shows that most streamflow measurements ceased in 1987 due to

the closure of most stations within the study area. As a result, streamflow data for only two

years can be compared with the SRM simulations (1986 and 1987). Using discharge data from

the station, Qsnow was calculated for months when snowmelt occurred, resulting in runoff val-

ues of 35mm and 69mm, compared to 38mm and 50mm simulated by the SRM in 1986 and

1987, respectively. The accuracy assessment of SRM outputs showed an average Nash-Sutcliffe

determination coefficient (R2) of 0.98 and the mean absolute value of the volume difference

(Dv) of 5.1%.

Additionally, Qsnow was compared to monthly surface runoff values produced by GLDAS

for 2000–2016. The analysis indicates a positive but weak and statistically non-significant lin-

ear relationship between GLDAS and SRM (r = 0.36, p = 0.15) (S3F Fig). The performance of

the SRM can be considered fair, as the difference between the SRM and GLDAS was on aver-

age 24mm. The highest difference occurred between 2013 and 2016, coinciding with years of

maximum snowfall (except for 2016). In another study, similar findings were observed in Chi-

nese basins, where a substantial increase in errors was noted within the GLDAS dataset during

the transition from precipitation to runoff data [59]. The average annual Qsnow was 71mm and

105mm according to SRM and GLDAS, respectively, with SRM runoff corresponding to the

global average annual surface runoff produced for Shortandy by Fekete [60].

There are numerous runoff models that exist, ranging from empirical to physically-based

approaches, where the choice of the model is determined by application objectives and avail-

able input data. Both empirical and conceptual models have been favoured for use in the CA

region [61–64] due to the lack of gauging networks and data quality. In snow-dominated areas

with established long-term runoff measurements, employing statistical methods provides an

alternative approach for runoff estimation [65, 66]. Conceptual snowmelt models, e.g., SRM,

also referred to as the degree-day factor model, have been successfully applied in snow-fed

catchments for accurate runoff modelling [67–70]. Despite having a simple model structure,

the degree-day method has comparable accuracy to process-based models [64], achieved

through improvements in the degree-day factor and modifications to the model structure [71,

72], as supported by several studies [67, 73, 74]. For example, a comparative analysis between

SRM and the semi-distributed process-based variable infiltration capacity model (VIC)

showed a difference of around 10% in simulated results for the Upper Indus Basin [67].

While uncertainties in SRM simulations are widespread for high-elevation and glacial

regions [75], for low and mid-elevation areas, the model’s most sensitive variables are the

degree-day factor and snow cover area [68]. In this study, the original degree-day factor was

refined based on the vegetation coverage using land cover maps (S2 Fig), and was calibrated

using recession coefficients. The high determination coefficient of the SRM for Shortandy

Lake indicates that this model provides robust results for forested catchments. This finding

aligns with previous studies [73, 76, 77], where the degree-day factor model exhibits better per-

formance in forested areas. This is attributed to temperature being a major indicator of the

surface energy balance in forested areas, where the canopy mitigates the effects of direct solar

radiation and wind [78].
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Eq 1 requires the accurate estimation of the lake area, with variables such as Prain, Psnow and

Eo being functions of the monthly lake area. The lake area-volume-level relationship is sensi-

tive to changes occurring when AL exceeds 15km2 or when the lake level is above 388m, corre-

sponding to the shallowest areas of the lake (S1D Fig). Therefore, in this range, any variations

in volume result in a considerable change in AL. However, a substantial change in AL is likely

to occur when the lake level drops below 388m, leading to a reduction from 16.3 to 14.6km2,

with a relatively small change in water volume (around 7x106 m3). It is worth noting that this

study did not observe the water level reaching this specific threshold, however.

Discussion

Impacts of water abstraction on changes in water storage

To assess the role of anthropogenic impacts on lake volume changes, the Wabs parameter was

excluded from Eq 1 and the water balance recomputed. Fig 8 shows that the volume would

have been relatively stable and well above the water volume observed when water abstractions

are omitted. This suggests that climate change played only a minor role in the water volume

decline, with small inter-annual variability. Our findings indicate that the reduction in water

volume in Shortandy Lake is primarily caused by anthropogenic water abstraction, which

caused 92% of the total water volume deficit (i.e. 59x106m3). The highest levels of water

abstraction (greater than 25% of the annual outflow) coincided with the driest periods (1988–

1989, 1998) of the study period. The negative net water balance caused a significant decline in

the lake volume of Shortandy Lake and the lake volume did not naturally recharge during wet

Fig 8. Assessment of the impact of water abstraction on Shortandy Lake. The grey line shows water volume estimated by measured lake levels, the black

line is the lake volume simulated by the water balance model, and the red line shows the water volume changes without water abstraction.

https://doi.org/10.1371/journal.pone.0305721.g008
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periods (1993–1994, 1999–2002, 2007, and 2009). A positive recharge of the lake volume was

observed only after 2013 when water abstraction was reduced due to policy changes.

Endorheic lakes and surface waters such as rivers and streams are essential sources of fresh-

water in CA [20]. During the Soviet Union, water abstraction from the BNNP lakes was

restricted to serving nearby settlements and a few resorts within the Park (2,000 visitors annu-

ally). Previous studies [32] indicated that the lakes had sufficient freshwater resources for local

needs, when taking into account variations between dry and wet years. Following the Soviet

Union collapse, the government aimed to develop the area into a major tourist destination,

leading to increased pressure on the lakes due to the absence of a centralised water supply.

The reduction in the size of endorheic lakes in arid and semi-arid regions presents signifi-

cant challenges to the sustainable development of ecosystems. A large body of evidence reveals

that the primary cause of lake shrinkage in CA is anthropogenic impact. Huang, Duan [79]

studied water storage changes in more than 9,000 lakes across the CA region, observing

shrinkage in lakes below 3,500m between 1990 and 2020. These reductions were attributed to

human activities (rapid population growth, intensification of agriculture, and rising competi-

tion for surface water resources) rather than changes in climate. The shrinking of Balkhash

Lake can be attributed to dam construction, creation of the Kapchagay reservoir, and increases

in land used for agriculture and irrigation [80]. The primary cause of Ebinur Lake’s shrinkage

is the over-expansion of irrigated cropland [81], where an increase in annual inflow by

603x106m3 and a reduction in human water consumption by 320x106m3 would be needed to

restore the lake to 522km2. Bosten Lake, the largest inland freshwater lake in China, has under-

gone drastic changes from 1961 to 2016 [82]. Water balance modelling for Bosten Lake

revealed that climate-driven regime shifts contributed to some of the lake level changes, but

other factors such as ecological water conveyance, agricultural irrigation, and water consump-

tion also played significant roles.

Impacts of climate on water storage

Climate change is an important factor that can alter the hydrological regime of lake catchments

via precipitation, temperature and evaporation [83, 84]. However, even in remote lakes with

no direct human impact, distinguishing the effect of climate change on a lake’s water balance

is difficult due to the effects of background climate variability and atmospheric teleconnections

such as the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO) [85].

The NAO and ENSO are two important factors that influence the precipitation regime in this

region, creating interannual and decadal variations [86, 87]. Our results show that the dry peri-

ods established at Shortandy in 1988–1989 and 1998 coincide with negative phases of the West

Pacific Oscillation released by ENSO over northern Eurasia [88]. This period resulted in

reduced snow and subsequently affected seasonal runoff in Shortandy (Fig 5E).

Changes in lake ice phenology with a changing climate is another important determinant of

a lake’s water balance [89]. The winter temperature anomalies over CA and the West Siberian

region during the past century were associated with the NAO [7, 88]. The NAO is recognised

to have a significant impact on air temperature across the Northern Hemisphere, controlling

winter precipitation [89, 90]. Records of the ice-freeze and break-up in the lake show that the

ice-free condition of the lake has been extended since 2005 (S3C Fig). Similar changes in lake

ice phenology has been reported for other lakes located in the Northern Hemisphere [85]. A

decrease in lake ice phenology suggests earlier stratification and an increase in the lake surface

water temperature, resulting in higher rates of evaporation [19].

Both NAO and ENSO are multidecadal, which makes it difficult to disentangle them from

the effects of climate change [91]. The cycle of wet years that occurred in Shortandy confirms
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results reported by Chen, Huang [92] and Huang, Chen [93] that a cycle of 2–3 years of varia-

tion in precipitation is common for North Kazakhstan. Understanding of the relationship

between precipitation patterns and large scale atmospheric and oceanic systems in CA is lim-

ited [93–95], specifically in the simulation of ENSO [95]. However, Wang, Song [19] revealed

a widespread water loss in the global endorheic system during 2002–2016 that is less influ-

enced by short-term climate variability, suggesting a possible response to longer-term climate

conditions and human water management.

Globally, from 1984 to 2015, around 90,000km2 of surface water evaporated, whereas

184,000km2 of water surfaces were formed [85]. Most of these changes are associated with

background climate variability, water abstraction and reservoir filling, rather than climate

change [96]. Although the hydrological cycle of endorheic lakes is sensitive to climate change,

the actual magnitude of change established in the Shortandy catchment that can be undoubt-

edly attributed to climate change remains unclear, particularly given the key impact of anthro-

pogenic water abstraction. Ramazanova, Bulai [97] findings confirm that water abstraction

from the lakes is one of the major factors in the recent water level decline of BNNP lakes.

Karthe, Chalov [25] and Lioubimtseva and Henebry [98] also confirm that changes in regional

climate are likely to have lesser influence on water resource availability than ineffective water

management and overexploitation of water resources in CA.

The water system in endorheic lakes is evidently fragile worldwide, and the uncertainty sur-

rounding fluctuating water resources is further intensified by global warming. However, the

Shortandy case shows that CA endorheic lakes face heightened vulnerability to shallowing due

to several factors: sparse monitoring as well as inaccessible data hindering the establishment of

hydrological models, which in turn complicates the evaluation of past and future climate fluc-

tuations, as well as the accurate prediction of changes in storage. Without up-to-date models,

deriving recommendations for water resource management is challenging and could result in

unsustainable use of water resources. In the CA region, water is critical resource, and rapidly

increasing freshwater withdrawals imply that the continuation of current water use practices

may contribute to growing conflicts with other water users, aggravation of water stress, and

disputes with neighboring countries [99]. Although lakes are unique in terms of their forma-

tion and functioning [100], the model described here can be used for other CA endorheic

lakes to assess long-term climate variability and water abstractions on lake storage. This makes

it possible to set abstraction limits during dry years, ensuring the sustainable management of

endorheic lakes. Our findings suggest that the future development of tourism in most BNNP

lakes should be implemented with caution, as further exploitation of water resources may have

negative environmental and economic implications for Northern Kazakhstan.

Modelling challenges and limitations

Our study highlights that the scarcity of field-based observations remains a significant limita-

tion in hydrological modelling for endorheic lakes. Insufficient data introduces considerable

uncertainty in the conceptualisation and construction of regional numerical models. The case

of Lake Urmia demonstrates that the absence of adequate data and a reliable model makes it

impossible to achieve successful restoration actions by policymakers [23]. Karthe, Abdullaev

[101] similarly highlight that the absence of data is one of the major challenges in implement-

ing Integrated Water Resource Management (IWRM) in CA.

A significant emphasis is placed on studying the relationship between groundwater and riv-

ers and streams, but there is limited attention given to the interaction with lakes [102]. This

might be associated with missing groundwater data, which is not unique, especially for lakes in

CA. The utilisation of physically-based groundwater models (e.g. Modflow, SUTRA) requires
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observed groundwater levels, accurately assessed hydraulic parameters, and well-defined

boundary conditions. The lack of these parameters presents significant challenges for ground-

water modelling, leading to increased uncertainties that affect the interaction between surface

and groundwater, resulting in notable uncertainties in the total water budget [103]. Many

studies use remote sensing data (e.g. Gravity Recovery and Climate Experiment (GRACE) and

GLDAS [83, 104]), but field data remains crucial for reliable modelling [105]. Among chal-

lenges with remotely sensed data is the low spatial resolution, including the inaccuracy of run-

off data which can lead to inconsistencies and uncertainties in the simulation of groundwater

storage [106, 107], especially for small-catchments. The absence of comprehensive groundwa-

ter data in CA lake studies has necessitated the use of simplified empirical lake models, which

have proven advantageous, as seen in cases such as Bosten Lake [82], Issyk-Kul Lake [108], the

Caspian Sea [109], and Urmia Lake [110].

The sensitivity analysis demonstrated that the inaccessibility of groundwater levels for

Shortandy Lake affected the model’s accuracy, resulting in changes to the accuracy of long-

term storage simulations. Nevertheless, the approach developed in this study is deemed accept-

able for addressing the lack of groundwater data. We successfully modelled all remaining

fluxes (e.g., snowmelt and rainfall runoff, lake evaporation, and water abstraction) and then

validated using measured lake levels. Despite the unavailability of groundwater data, we

employed two different methods to evaluate groundwater storage. The simulated lake storage

using both groundwater flux models exhibited statistically significant correlations with the

observed lake storage and showed minimal differences in the temporal water balance between

the two approaches (Fig 4). Our results also offer valuable insights into the relationship

between lake and groundwater storage, providing answers to the question of when groundwa-

ter storage becomes significant for lake storage. Specifically, our findings revealed that the

assessment of groundwater storage becomes crucial when the volume of Shortandy Lake

declines to its minimal threshold (170x106m3), as observed in 2012.

The interaction of surface and groundwater in BNNP lakes is still not well understood.

Yapiyev, Skrzypek [15] conducted a one-year isotopic analysis for these lakes, suggesting a

larger input of groundwater for Shortandy and Burabay. However, continuous monitoring

and analysis over an extended period is necessary to capture seasonal variations, interannual

variability, and long-term water abstractions for an accurate assessment of the long-term water

balance.

The sensitivity analysis showed that Shortandy Lake is highly responsive to variations in

precipitation, particularly in wet years, which affects runoff and groundwater fluxes. In this

study, precipitation data was based on one station record and is therefore a source of uncer-

tainty due to the small number of rain gauges. Therefore, establishing monitoring stations for

various parameters, such as surface runoff, meteorological conditions, and groundwater levels,

is critical in water resource assessment. Moreover, data availability is essential for effective sur-

face and groundwater management.

Conclusions

We developed a spatially lumped empirical model for the data-sparse endorheic Shortandy

Lake, which is robust for assessing the long-term impacts of climate variability and water

abstractions on lake volume. The model simulations of lake storage were validated and showed

a high correlation with measured lake levels, with an error within 10% of the total lake volume.

This analysis emphasises the significance and potential advantages of the model, especially

when dealing with limited observational data with which to calibrate the model. The model

simulations showed that a significant decline in the water volume between 1986–2016 has
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been predominantly driven by anthropogenic water abstraction. The case of Shortandy Lake

here, suggests that the reduction in water storage in endorheic lakes in A is partially attributed

to a lack of up-to-date hydrological modelling, resulting in the overexploitation of water

resources. Our findings show that water management policies have had a crucial role in the

water volume changes of the Shortandy, emphasising the importance of future water manage-

ment strategies for effective management of small endorheic lakes.
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