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Abstract: To distinguish the contributions of electromagnetically induced transparency (EIT)
and Autler-Townes splitting (ATS) in their applications in precision laser spectroscopy, we
propose a real-imaginary spectrum decomposition method to investigate the transparency spectra
in a four-level microwave (MW) dressed Rydberg system. We show that the opening transparency
windows in the absorption spectra of probe field is a prominent character by EIT, EIT-ATS
crossover, and ATS when the MW field is turned off and the intensity of the control field is
adjusted. When the MW field is turned on and gradually increased, the EIT is destroyed and
disappears. In addition, the most prominent characters that open a transparency window are
the EIT-ATS crossover and the ATS. Then, if we further increase the intensity of the MW field,
we find that the transparency windows open mainly due to the ATS. Compared to the previous
considerations of this issue, which were limited to three-level systems, our four-level scheme
reported here is useful for understanding the features of quantum interference in multilevel atomic
systems, and has potential applications to study enhanced sensitivity, measurement spectroscopic,
quantum processing, quantum communication, and transmission.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Due to similar spectra being induced by different mechanisms, spectrum decomposition technology
is attracting more and more attention in the field of precision measurements. For example,
electromagnetically induced transparency (EIT) [1–6] and Autler-Townes splitting (ATS) [7–14]
are depending on a strong control field, by which the optical absorption of a probe field in resonant
atomic systems can be suppressed. Although both EIT and ATS effects can open transparency
windows in probe absorption spectra, the physical mechanisms behind them are different, leading
to applications in different areas [9,10]. EIT is a destructive interference phenomenon induced by
two competing transition pathways and finds applications in the enhanced nonlinearity [3,15], slow
light [16–18], optical soliton [19–22], optical storage [23–25], and high-precision magnetometry
[26]. The ATS is a dynamical Stark shift caused by the gap between two resonances and is
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related to the modification of the atomic level [10]. ATS has applications in microwave (MW)
measurement, superconducting, and sensing [8,11,12,27–29].

In multilevel atomic systems, the absorption spectra between EIT and ATS appear to be
similar. Hence, distinguishing between EIT and ATS poses a challenge, as the mere presence
of a transparency window does not inherently elucidate whether the phenomenon corresponds
to ATS or EIT. Recently, various studies have been carried out to distinguish between the EIT
and ATS effects in various systems and using different methods [30–39]. In 1997, Agarwal
proposed a spectrum decomposition method to analyze probe field absorption spectra of cold
three-level atomic systems, theoretically distinguishing the nature of quantum interference [40].
In 2011, Anisimov et al. proposed the Akaike information criterion (AIC) [41] to distinguish
EIT and ATS. Later, Giner et al. [31] carried out an experimental investigation of the transition
between EIT and ATS using the method proposed by Anisimov et al. [41]. Subsequently, Zhu
and Tan et al. studied the transition from EIT to ATS in different three-level atomic systems using
the spectrum decomposition method [9,10,42]. Several typical three-level systems have been
extensively investigated in the EIT and ATS studies. However, systematic analysis in four-level
systems has been lacking. It is imperative to delineate this distinction analytically.

Moreover, much interest has been focused on the Rydberg excitation in cold and hot atomic
gases, where MW dressed schemes have been widely employed to improve the sensitivity of the
measurement spectroscopy [26,43–47]. Nevertheless, how to distinguish between EIT and ATS
in such multilevel MW dressed schemes has not been carried out thoroughly. In addition, several
experimental studies have explored ATS or EIT in molecular systems. However, observing
and analyzing the spectral behaviors in these systems pose significant challenges due to the
comparatively smaller transition-dipole-moment matrix elements in molecules compared to
atoms, alongside the intricate vibrational and rotational energy level structures inherent to
molecules. Therefore, the practical significance of studying the spectrum decomposition in
multilevel systems is readily apparent.

In this work, we extend our study to a four-level system and propose a real-imaginary
spectrum decomposition method and use the methods in Ref. [9,10,42] jointly, to investigate the
transparency spectra and phase diagram for the EIT-ATS crossover in a MW dressed Rydberg
system. We show that the dispersion relation depends strongly on the Rabi frequencies of control
and MW fields, respectively, and we obtain the clear features of the probe field absorption
spectrum and phase transition in this multilevel system through multi-dimensional adjustment.
The theoretical scheme proposed here remains applicable to both atomic and molecular systems,
offering a promising avenue for advancing understanding quantum interference in multilevel
systems. Our results have potential applications in the study of enhanced sensitivity, measurement
spectroscopy, quantum processing, quantum communication and transmission in optical systems.

2. Model

We consider a cold dilute atomic gas coupled with laser and MW fields, as shown schematically in
Fig. 1(a). For suppressing the Doppler effect, the probe field and MW field propagate along the z
direction and the control field propagates along counter-direction. The diagram of atomic levels is
shown in Fig. 1(b). The probe field with half Rabi frequencyΩp drives the transition from ground
state |1⟩ to intermediate state |2⟩, and the control field with half Rabi frequency Ωc drives the
transition from intermediate state |2⟩ to the Rydberg state |3⟩. This ladder-type three-level atom
is dressed by a MW field with half Rabi frequency Ωm, which couples the transition between the
Rydberg states |3⟩ and |4⟩. The total electric field E(r, t) = Ec+Ep+Em =

∑︁
l elElei(kl ·r−ωlt)+c.c.,

with el, El, kl, and ωl are the unit polarization vector, envelope, center wave vector, and center
frequency of lth laser filed (l = p, c, m), respectively. ∆α and Γα are corresponding detunings
and the spontaneous emission decay rates from |α⟩ (α = 2, 3, 4). So far, there are some highly
sensitive detection experiments based on this system [27–29], for instance, Jing and Hu et al.
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developed a novel technique for phase and frequency resolved quantum sensing of MW electric
fields in experiments [26].
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Fig. 1. (a) The Rydberg atomic cell setting, where blue and green solid balls denote atoms
and Rydberg atoms, respectively. The probe and MW fields (with half Rabi frequency Ωp
and Ωm) propagate along the z direction and the control field (half Rabi frequency Ωc)
propagates along the opposite direction. (b) MW dressed Rydberg atomic levels. The weak
probe (green), strong control (red), and strong MW field (blue) with half Rabi frequencies
Ωp, Ωc, and Ωm drive the transitions |1⟩ ↔ |2⟩, |2⟩ ↔ |3⟩, and |3⟩ ↔ |4⟩, respectively.
States |1⟩ and |2⟩ are ground and excited states, respectively. States |3⟩ and |4⟩ are both
highly excited Rydberg states. ∆α and Γα are corresponding detunings and spontaneous
emission decay rates from |α⟩ (α = 2, 3, 4), respectively. (c) The linear absorption Im(K)

as a function of frequency ω in the two-level system (dotted blue line, Ωc = Ωm = 0),
three-level system (dash orange line, Ωc = 20 MHz and Ωm = 0), and four-level system (red
solid line, Ωc = Ωm = 20 MHz), respectively. (d) The phase diagram of J as a function of
Ωc illustrates the transition from EIT to ATS for the four-level system with Ωm = 1 MHz.
See text for details.

The dynamics of the system is described by Hamiltonian Ĥ = Na
∫
Ĥ(r, t)d3r, here Ĥ(r, t) is

Hamiltonian density and Na is atomic density. In this work, we consider a dilute atomic gas,
atomic density is relatively weak, and the Rydberg-Rydberg interaction can be neglected. Under
the electric dipole and rotating-wave approximations, the Hamiltonian density is

Ĥ = −ℏ
4∑︂

α=2
∆αŜαα − ℏ

(︂
ΩpŜ12 +ΩcŜ23 +ΩmŜ34 + H.c.

)︂
, (1)

here ∆2 = ωp − (ω2 − ω1), ∆3 = ωc + ωp − (ω3 − ω1), and ∆4 = ωc + ωp − ωm − (ω4 − ω1).
The half Rabi frequencies of the laser and MW fields are, respectively, Ωp =

(︁
ep · p21

)︁
Ep/ℏ,

Ωc = (ec · p32) Ec/ℏ and Ωm = (em · p34) Em/ℏ with pαβ the electric dipole matrix element
associated with the transition between the states |α⟩ and |β⟩. The time evolution of the atoms is
governed by the optical Bloch equation

∂ρ

∂t
= −

i
ℏ
[︁
Ĥ, ρ

]︁
− Γ [ρ] , (2)
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where ρ(r, t) = ⟨Ŝ(r, t)⟩ is a 4× 4 density matrix describing the atomic population and coherence,
Γ is a 4 × 4 relaxation matrix describing the spontaneous emission and dephasing. Explicit
expressions of ραβ(r, t) are presented in Appendix A.

The motion of the probe field is described by the Maxwell equation, which under paraxial and
slowly varying envelope approximations reads

i
(︃
∂

∂z
+

1
c
∂

∂t

)︃
Ωp +

c
2ωp

∇2
⊥Ωp + κ12ρ21 = 0, (3)

where ∇2
⊥ = ∂

2/∂x2 + ∂2/∂y2 describes diffraction, κ12 = Naωp
|︁|︁ (︁ep · p12

)︁ |︁|︁2 /(2ϵ0cℏ) is a
parameter describing the coupling between the atoms and probe field. Note that the model given
above is valid also for a MW dressed Rydberg system, which can be obtained by taking Γ2 = 2π×
6.1 MHz, Γ3 = 2π×16.7 kHz, Γ4 = 2π×16.7 kHz. In convenience, we assume ∆2 = ∆3 = ∆4 = 0.

3. Real-imaginary spectrum decomposition method

According to Bloch Eq. (2) and Maxwell Eq. (3), we can get dispersion relation K(ω)

K(ω) =
ω

c
− κ12

(ω + d31)(ω + d41) − |Ωm |
2

(ω + d21)|Ωm |2 + (ω + d41)|Ωc |2 − (ω + d21)(ω + d31)(ω + d41)
. (4)

The absorption of the probe field is determined by the imaginary part of K(ω), while the real
part gives the dispersion. From the Eq. (4), the dispersion relation depends on two laser fields. The
first is the ac Stark effect induced by the control field, reflected in the denominator, corresponding
to the appearance of dressed states out of states |2⟩ and |3⟩, by which two Lorentzian peaks in
the probe field absorption spectrum are shifted from the central frequency. The second ac Stark
effect induced by the MW field, reflected in both the numerator and denominator, corresponding
to the appearance of dressed states out of states |3⟩ and |4⟩, by which a new Lorentzian peak in
the probe field absorption spectrum occurs in the central frequency.

To verify the dependence, we show numerical results in Fig. 1(c), the linear absorption Im(K)

as a function of frequency ω. When Ωc = Ωm = 0, the atom is a two-level system. An absorption
peak is visible at the central frequency (i.e., ω = 0) as shown by dotted blue line. When Ωc = 20
MHz and Ωm = 0, the atom is a three-level system. Transparency window is found at the
central frequency and two absorption peaks are visible at ω = ±Ωc as shown by dashed orange
line. When Ωc = Ωm = 20 MHz, two transparency windows are found at ω = ±Ωm and three
absorption peaks are visible at ω = 0, ±

√︁
Ω2

c +Ω
2
m as shown by the solid red line [48].

Therefore, the dispersion relation strongly depends on the intensity of control and MW fields
(i.e., Ωc and Ωm). Figure 2(a) and (b) show the numerical results of Im(K) as a function of Ωc
and Ωm, respectively. We see that Im(K) undergoes a transition from a single absorption peak to
a deep transparency window when Ωc changes from 0 to 16 MHz with Ωm = 0. Additionally, we
see that Im(K) undergoes a transition from a deep transparency window to two deep transparency
windows when Ωm changes from 0 to 16 MHz with Ωc = 16 MHz. Figure 1(c) and Fig. 2 are
obtained from numerical calculations. To obtain analytical insights, we use the methods in
Ref. [9,10,42] jointly, i.e. real-imaginary spectrum decomposition method. We find that the
dispersion relation Eq. (4) is long and complicated. In order to analyze the quantum interference
effect, the expression of dispersion relation Eq. (4) can be decomposed [10]. The second term in
Eq. (4) can be written as three parts

K(ω) =
ω

c
+ κ12

[︃
A1

(ω − ω1)
+

A2
(ω − ω2)

+
A3

(ω − ω3)

]︃
, (5)

where Aj = Aj + iBj (j = 1, 2, 3), Aj and Bj are the real and imaginary part of Aj. ωj are three
spectrum poles of K(ω). The explicit expressions are given in Appendix B.
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Fig. 2. The absorption spectrum of probe field Im(K) as a function of ω. (a) The absorption
spectrum of three-level system have a transition from a single absorption peak to a deep
transparency window when Ωc changes from 0 to 16 MHz with Ωm = 0. (b) The absorption
spectrum of the MW dressed Rydberg system have a transition from a deep transparency
window to two deep transparency windows when Ωm changes from 0 to 16 MHz with
Ωc = 16 MHz.

Now, we turn to consider the quantum interference character. In the weak control field region,
we can get the coefficient of Eq. (5), leading to an analytical expression,

Im(K) = κ12

[︄
B1

ω2 +W2
1
+

B2

ω2 +W2
2
+

B3

ω2 +W2
3

]︄
≡ L1 + L2 + L3. (6)

In the other control field region, an analytical, but complicated expression can be obtained, too

Im(K) = κ12

{︄[︄
A1W1

(ω − δ)2 +W2
1
+

A2W1

(ω + δ)2 +W2
1
+

A3W3

ω2 +W2
3

]︄
+

[︄
B1(ω − δ)

(ω − δ)2 +W2
1
+

B2(ω + δ)

(ω + δ)2 +W2
1

]︄}︄
≡ LLontz + LInter,

(7)
with Wj = Im[ωj], Bj = AjWj, Lj = κ12Bj/

(︂
ω2 +W2

j

)︂
, δj = Re[ωj], and δ1, 2 = ±δ. In the

Eq. (7), B1 and B3 are real positive values, and B2 is real negative value. The probe-field
absorption profile comprises three Lorentzians centered at the central frequency (ω = 0), one
broad positive (L1), one narrow positive (L3), and the other narrow negative (L2). Hence, weak
control induced transparency, where EIT dominates, has a transparency window without splitting
[9,10,41,42]. In the Eq. (7), the first three terms contribute from two equidistant Lorentzians,
shifted from the central frequency by ±δ, and a Lorentzian at the central frequency, denoted
as LLontz. While the last two terms, B1 and B2 possess opposite values, originating from the
quantum destructive interference effect, represented by the interference term LInter [9,10,42].
Details of the calculation are given in Appendix B.

3.1. Applied to three-level systems

In order to verify the feasibility of our decomposition method, we first analyze the quantum
interference in the absence of MW field, i.e., Ωm = 0, then the system successfully degenerates
into a three-level system where the characteristics of spectra have been widely studied [10]. In
this condition, A3 = ω3 = 0 induced B3 = δ3 = 0. To illustrate the quantum interference effect
clearly, we divide Im(K) for different intensity of control field Ωc.

In the weak control field region (Ωc<Ωref), the coefficients of Eq. (6) B1,2 are both real
numbers, and ω1,2 are pure imaginary numbers. Here Ωref is a reference value of intensity of
control field, Ωref = |γ21 − γ31 |/2 = 9.55 MHz (see Appendix B). Therefore, the probe field
absorption comprises two Lorentzians centered at ω = 0 shown in Fig. 3(a). There are a positive
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(L1, dotted green line) and a negative single peak (L2, dashed-dotted blue line). Other one is a zero
flat band (L3, dots on solid blue line) because the MW field is turned off. The superposition of L1
and L2 give Im(K) (the solid red line), which displays two absorption peaks with a transparency
window near ω = 0. Due to the destructive interference between the positive L1 and the negative
L2 in the probe field absorption spectrum, the phenomenon found here belongs to EIT based on
the criterion given in [9,10].
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Fig. 3. The spectrum decomposition in three-level system without MW field. (a) Weak
control field region with Ωc = 7 MHz<Ωref. There are a positive (L1, dotted green line), a
negative single peak (L2, dashed-dotted blue line), and a zero flat band (L3, dots on solid
blue line). The superposition of L1 and L2 give Im(K) (the solid red line). (b) Intermediate
control field region withΩc = 20 MHz>Ωref, absorption spectrum contributed by Lorentzian
(LLontz, dotted-dashed red line) and destructive interference terms (LInter, dotted blue line).
The superposition of Lorentzian and destructive interference give Im(K) (the solid green
line). (c) The same as (b) but for strong control field region, Ωc = 40 MHz≫ Ωref. (d) The
phase diagram of J as a function of Ωc illustrates the transition from EIT to ATS for the
three-level system.

Figure 3(b) shows Im(K) in the intermediate control field region, where Ωc = 20 MHz is
larger than Ωref = 9.55 MHz. As the control field strength increases, the values Bj and Aj are
comparable [in Eq. (7)]. Hence, the absorption spectrum is jointly determined by both LInter and
LLontz. The dotted-dashed red line represents the contribution by the two positive Lorentzians
(LLontz), and the dotted blue line represents the negative interference term (LInter). The sum of
the positive two Lorentzians and the destructive interference constitute the absorption spectrum
[Im(K), solid green line]. In this region, a large deep and wider transparency window appears in
Im(K) due to the combined effect of EIT and ATS. Such a phenomenon is attributed to EIT and
ATS, and is called EIT-ATS crossover.

Figure 3(c) illustrates Im(K) in the strong control field region, where Ωc = 40 MHz ≫ Ωref.
Continuously increasing the control filed, the values Bj become gradually smaller than Aj [in
Eq. (7)]. Eventually, with a sufficiently strong control filed, the contributions from LInter become
negligible. Hence, the opening of the transparency window is mainly due to the contribution of
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the two Lorentzians in this region. Therefore, the phenomenon found in this case belongs to the
ATS.

The above results show that the probe field absorption spectrum experiences a transition from
EIT to ATS as the control field changes from small to large values. We can distinguish the EIT
regions due to the destructive interference between positive and the negative Lorentzians in
the probe field absorption spectrum. It is known that it’s difficult to distinguish the boundary
between the EIT-ATS crossover and the ATS regions. Therefore we define overlap integral of the
Lorentzians and absorption spectrum Im(K), which is called the shape similarity J. A similar
definition is widely used in the study of the fidelity of optical memory in atomic ensembles,
coherence in quantum optics, and waveshape fidelity in optical cloning [24,49,50].

J =
|
∫ ∞

−∞
LLontz · Im(K)dω |2∫ ∞

−∞
|LLontz |2dω ·

∫ ∞

−∞
|Im(K)|2dω

. (8)

Comparing the overlap between Lorentzians and absorption spectrum Im(K), we define J = 0
as the boundary between EIT and EIT-ATS crossover, and J = 0.9 as the boundary between
EIT-ATS crossover and ATS because of the shape similarity between ATS effect and absorption
spectrum almost identical, akin to the alternative definition Im(K)ω=0/Im(K)max = 0.01 as the
border between EIT-ATS crossover and ATS regions [9,10,42].

Figure 3(d) shows the phase diagram of shape similarity J as a function of Ωc illustrates the
transition from EIT to ATS for the three-level ladder type system as a function of Ωc for Ωm=0.
We distinguish three different regions, the EIT region (Ωc<9.55 MHz), EIT-ATS crossover region
(Ωc ∈ [9.55, 27.7] MHz), and ATS region (Ωc>27.7 MHz).

3.2. Applied to four-level systems

In this part, we focus on the MW dressed four-level Rydberg system, which significantly differs
from the three-level situation in that the quantum interference character depends on two factors
Ωc and Ωm, simultaneously. Due to the appearance of a MW field, the system can exhibit very
different quantum interference characters that are not present for three-level atomic system. To
illustrate the quantum interference characters clearly, we decompose the absorption spectrum
Im(K) for different Ωc (the relatively weak, weak, intermediate, and strong control filed regions)
with fixed Ωm. We consider a weak MW field (Ωm = 1 MHz), firstly, and change the control field
from the weak to the strong region. When the control field is relatively weak (Ωc = 4 MHz), there
are two narrow transparency windows as shown in Fig. 4(a). The dotted-dashed red line denotes
the contribution from the three positive Lorentzians (LLontz), and the dashed blue line denotes a
small positive interference term (LInter). The sum of the Lorentzians and the positive interference
constitute the absorption spectrum [Im(K), solid green line]. We find the positive interference
increases the absorption peak at the ω = 0. Obviously, the opening of the transparency window
is mainly due to the contribution of the three Lorentzians. Therefore, the phenomenon found in
this case belongs to the ATS.

Increasing the control field toΩc = 7 MHz, the coefficient of Eq. (6) Bj are real numbers andωj
are pure imaginary numbers. Therefore, the probe field absorption comprises three Lorentzians
centered at ω = 0 shown in Fig. 4(b). There are two positive single peak (L1 and L3). The other
one is a negative single peak (L2). The superposition of L1, L2, and L3 give Im(K) (the solid
red line), which displays three absorption peaks with two transparency windows near ω = ±Ωm.
Because of the destructive interference between the positive L1,3 and negative L2 in the probe
field absorption spectrum, the phenomenon found here belongs to the EIT.

Figure 4(c) shows Im(K) in the intermediate control field region, i.e., Ωc = 20 MHz. The
sum of the positive three Lorentzians and the destructive interference constitute the absorption
spectrum Im(K). In this region, two large deep and wider transparency windows appear in Im(K)
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Fig. 4. The spectrum decomposition in the four-level MW dressed Rydberg system with
Ωm=1 MHz. The same as Fig. 3, but MW field is turned on. (a) The relatively weak control
field region, Ωc = 4 MHz. (b) Weak control field region, Ωc = 7 MHz. (c) and (d) The
same as (a) but for intermediate control field (Ωc = 20 MHz) and strong control field regions
(Ωc = 40 MHz), respectively.

due to the combined effect of EIT and ATS. Such a phenomenon is attributed to the EIT-ATS
crossover.

Figure 4(d) illustrates Im(K) in the strong control field region, i.e., Ωc = 40 MHz. We find
the negative interference is decrease with the increase of Ωc that we can neglect. Therefore, the
transparency window opens mainly due to the contribution of the three Lorentzians in this region.
Hence, the phenomenon found in this case belongs to the ATS.

The above results show that the probe field absorption spectrum experiences a transition from
ATS to EIT to EIT-ATS crossover to ATS with increasing control field. Figure 1(d) shows the
phase diagram of J as a function of Ωc illustrates the transition for the four-level system with
Ωm=1 MHz. We can distinguish four different regions, where the relatively weak control region
(Ωc<6 MHz) is an ATS region, the weak control region (Ωc ∈ [6, 9.6] MHz) is an EIT region,
in the intermediate control field region (Ωc ∈ [9.6, 28] MHz) is an EIT-ATS crossover region,
and the strong control field (Ωc>28 MHz) is an ATS region. We see that there exists an interval
in the intensity of control field (Ωc ∈ [0, 6] MHz), this belongs to ATS region which is totally
different from the three-level system.

We now consider what will happen for the EIT-ATS crossover if we increase the intensity of
MW field, by taking Ωm = 20 MHz and other parameters the same as Fig. 4. Figure 5 (a), (b), (c)
show the Lorentzians (LLontz), and destructive interference (LInter), absorption spectrum [Im(K)].
In the weak (Ωc = 7 MHz) and strong control field (Ωc = 40 MHz) regions, we find the opening
of the transparency windows are mainly due to the contribution of the three Lorentzians shown
in Fig. 5(a) and (c). Therefore, the phenomenon found in this cases belong to the ATS. In the
intermediate control field region, i.e., Ωc = 20 MHz, two large deep and wider transparency
windows appear in Im(K) due to the combined effect of EIT and ATS. Such a phenomenon is
attributed to the EIT-ATS crossover as shown in Fig. 5(b).
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Fig. 5. The spectrum decomposition in the four-level MW dressed Rydberg system with
Ωm=20 MHz. (a), (b) and (c) The same as Fig. 4 but for weak control field Ωc = 7 MHz,
intermediate control field Ωc = 20 MHz, and strong control field regions Ωc = 40 MHz,
respectively. (d) The phase diagram of J as a function of Ωc illustrates the transition for the
four-level system.

From Fig. 5, we see that the probe field absorption spectrum experiences a transition from ATS
to EIT-ATS crossover to ATS with increasing control field. Figure 5(d) shows the phase diagram
of J as a function of Ωc illustrates the transition for the four-level system with Ωm=20 MHz.
We can distinguish three different regions, where the relatively weak and weak control regions
(Ωc<9.3 MHz) are both an ATS region, in the intermediate control field region (Ωc ∈ [9.3, 35.4]
MHz) is an EIT-ATS crossover region, and the strong control field (Ωc>35.4 MHz) is an ATS
region. One sees that both the relatively weak, weak, and strong control field regions are both
belong to the ATS region. Comparing Fig. 1(d) and Fig. 5(d), we find that the intensity of MW
field can change the phase diagram.

Further increasing the intensity of MW field (Ωm = 40 MHz), the Lorentzians (LLontz),
destructive interference (LInter), and absorption spectrum [Im(K)] are shown in the Fig. 6. In the
weak (Ωc = 7 MHz), intermediate (Ωc = 20 MHz), and strong control field regions (Ωc = 40
MHz), we find the transparency windows opened is mainly due to the contribution of the three
Lorentzians as shown in Fig. 6(a), (b), and (c). One sees that the phenomenon found in all
situations belong to ATS. The phase diagram of J as a function of Ωc illustrates all ATS region
for the four-level system with Ωm=40 MHz can see from the dotted-dashed white line in the
Fig. 6(d), the red, purple, and green stars represent Ωc = 7, 20, 40 MHz, respectively.

From the analysis given above, we see that the probe field absorption spectrum also depends on
the intensity of control and MW fields. Now, we consider the phase diagram of J as a function of
Ωc and Ωm. In the Fig. 6(d), we find that probe field absorption spectrum experiences a transition
from EIT to EIT-ATS crossover to ATS with increasing control field when MW field is switched
off, i.e., Ωm = 0. When the MW field is switched on and the intensity is weak Ωm = 1 MHz, one
sees that probe field absorption spectrum experiences a transition from ATS to EIT to EIT-ATS
crossover to ATS as the control field increases. As the intensity of MW field increases, i.e.,



Research Article Vol. 32, No. 12 / 3 Jun 2024 / Optics Express 21383

-50 -25 0 25 50
 (MHz)

0

10

20
Im(K)

-100 -50 0 50 100
 (MHz)

0

10

20
Im(K)

(a) (b)

-100 -50 0 50 100
 (MHz)

0

10

20
Im(K)

25

0

50

0 25 50

(c)
(d)

(MHz)
(M

H
z)

EIT-ATS
crossover

1

0

ATS

EIT

40
Lontz

Lontz Inter

   
   

   
 

   
   

   
 

   
   

   
 , 

Im
(K

) (
m

-1
)

,In
te

r

,,

Lo
nt

z   
   

   
 , 

Im
(K

) (
m

-1
)

,In
te

r
Lo

nt
z

   
   

   
 , 

Im
(K

) (
m

-1
)

,In
te

r
Lo

nt
z

Inter

InterLontz

Fig. 6. The spectrum decomposition in the four-level MW dressed Rydberg system with
Ωm=40 MHz. (a), (b) and (c) The same as Fig. 4 but for weak control field Ωc = 7 MHz,
intermediate control field Ωc = 20 MHz, and strong control field region Ωc = 40 MHz,
respectively. (d) The phase diagram of J as a function of Ωc and Ωm illustrates the transition
from EIT to ATS for the four-level MW dressed Rydberg system. The white dotted-dashed
line represent the phase diagram J as a function of Ωc for Ωm=40 MHz. The red, purple, and
green stars represent Ωc = 7, 20, 40 MHz, respectively. When Ωm=40 MHz, all regions
belong to ATS.

Ωm = 20 MHz, we find that the probe field absorption spectrum experiences a transition from
ATS to EIT-ATS crossover to ATS with increasing control field. When the intensity of MW
field is sufficiently large, i.e., Ωm = 40 MHz, We find that the probe field absorption spectrum
all belong to ATS region and there is no transition. In Fig. 6(d), the write, blue, and light blue
regions represent the EIT, ATS, and EIT-ATS crossover regions, respectively. From the results,
we conclude that the EIT and ATS transitions in our system can be manipulated by tuning the
intensity of the control and MW fields, leading to applications in different areas.

So far, we have applied the real-imaginary spectrum decomposition method to three-level and
four-level atomic systems. In fact, many multilevel systems above four energy levels have been
widely applied in experimental or theoretical works [50–52]. By applying a similar procedure,
our method can be effectively extended to these systems.

4. Conclusion

In conclusion, we have studied real-imaginary spectrum decomposition of the transparency
spectra in the MW dressed Rydberg system. We first derive the analytical expression for the
dispersion spectrum of a four-level system, and then we illustrate the various mechanisms of the
EIT, ATS, and their crossover in this system by comparing the three and four-level systems. We
have demonstrated that both the intensity of the control and the MW fields affect the transparency
window in the Rydberg atom system. When the MW field is switched off, a wide transparency
window appears as the intensity of control field is increased. When the MW field is switched
on, two wide transparency windows appear as the intensity of the MW field increases. The
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EIT, ATS, and EIT-ATS crossover exist for the weak MW filed region. In the intermediate MW
field region, the EIT is destroyed and the ATS and EIT-ATS crossover still exist. In the large
MW field region, the EIT and EIT-ATS crossover are not possible and all cases belong to the
ATS. The theoretical scheme reported here is useful for understanding the features of quantum
interference in multilevel systems, and the results obtained here may have potential applications
in the study of enhanced sensitivity, measurement spectroscopy, quantum processing, quantum
communication and transmission.

Appendix A: Bloch equation and solutions for density-matrix element

A.1 Explicit expressions of the Bloch equation for density-matrix elements

We can obtain the explicit expression of the optical Bloch equation with the following form:

i
∂

∂t
ρ11 − iΓ12ρ22 −Ωpρ12 +Ω

∗
pρ21 = 0, (9a)

i
(︃
∂

∂t
+ Γ12

)︃
ρ22 − iΓ23ρ33 +Ωpρ12 −Ωcρ23 −Ω

∗
pρ21 +Ω

∗
cρ32 = 0, (9b)

i
(︃
∂

∂t
+ Γ23

)︃
ρ33 − iΓ34ρ44 +Ωcρ23 −Ωmρ34 +Ω

∗
mρ43 −Ω

∗
cρ32 = 0, (9c)

i
(︃
∂

∂t
+ Γ34

)︃
ρ44 +Ωmρ34 −Ω

∗
mρ43 = 0, (9d)(︃

i
∂

∂t
+ d21

)︃
ρ21 +Ωp (ρ11 − ρ22) +Ω

∗
cρ31 = 0, (9e)(︃

i
∂

∂t
+ d31

)︃
ρ31 +Ωcρ21 +Ω

∗
mρ41 −Ωpρ32 = 0, (9f)(︃

i
∂

∂t
+ d32

)︃
ρ32 +Ωc (ρ22 − ρ33) −Ω

∗
pρ31 +Ω

∗
mρ42 = 0, (9g)(︃

i
∂

∂t
+ d41

)︃
ρ41 +Ωmρ31 −Ωpρ42 = 0, (9h)(︃

i
∂

∂t
+ d42

)︃
ρ42 +Ωmρ32 −Ωcρ43 −Ω

∗
pρ41 = 0, (9i)(︃

i
∂

∂t
+ d43

)︃
ρ43 +Ωm (ρ33 − ρ44) −Ω

∗
cρ42 = 0. (9j)

Here dαβ = ∆α − ∆β + iγαβ , γαβ = (Γα + Γβ)/2, Γβ =
∑︁

α Γαβ (α<β), Γαβ denoting the
spontaneous emission decay rate from the state |β⟩ to the state |α⟩, with ∆2 = ωp − (ω2 − ω1),
∆3 = ωc+ωp−(ω3 − ω1), and∆4 = ωc+ωp−ωm−(ω4 − ω1) are the one-, two-, and three-photon
detunings, respectively.

A.2 Solutions for density-matrix elements

Since the probe field is much weaker than the control and MW fields, the depletion of the atomic
population in the ground state is small and a standard perturbation method can be applied to
solve the system of Bloch Eq. (9). Then we can take it as a small parameter (i.e., Ωp ∼ ϵ) to make
a perturbation expansion, and the population and the coherence between the states |2⟩, |3⟩, and
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|4⟩ are not changed. We assume Ω(1)
p , ρ(1)21 , ρ(1)31 , ρ(1)41 ∝ exp{i[K(ω)z − ωt]}, then get the linear

solutions
Ω

(1)
p = Feiθ , (10a)

ρ
(1)
21 = −

Dm

D
Feiθ ≡ a(1)21 Feiθ , (10b)

ρ
(1)
31 = −

d41Ωc

D
Feiθ ≡ a(1)31 Feiθ , (10c)

ρ
(1)
41 =

ΩmΩc

D
Feiθ ≡ a(1)41 Feiθ , (10d)

here F is a constant, θ = K(ω)z − ωt, Dm = (ω + d31)(ω + d41) − |Ωm |
2, and D = (ω + d21)Dm −

(ω + d41)|Ωc |
2.

Appendix B: Dispersion relation

The equation of dispersion relation (4) can be written as the form

K(ω) =
ω

c
− κ12

[︃
(ω + d31)(ω + d41) − |Ωm |

2

(ω − ω1) (ω − ω2) (ω − ω3)

]︃
, (11)

with

ω1 = −
b
3
+
−1 −

√
3 i

2
3

√︃
p +

√︂
p2 + q3 +

−1 +
√

3 i
2

3

√︃
p −

√︂
p2 + q3 ≡ iW1 + δ1, (12a)

ω2 = −
b
3
+
−1 +

√
3 i

2
3

√︃
p +

√︂
p2 + q3 +

−1 −
√

3 i
2

3

√︃
p −

√︂
p2 + q3 ≡ iW2 + δ2, (12b)

ω3 = −
b
3
+

3

√︃
p +

√︂
p2 + q3 +

3

√︃
p −

√︂
p2 + q3 ≡ iW3 + δ3. (12c)

Here p = bc/6− b3/27− d/2, q = c/3− b2/9, b = d21 + d31 + d41, c = d21d31 + d21d41 + d31d41 −
Ω2

m −Ω2
c , d = d21d31d41 −Ω

2
md21 −Ω

2
cd41.

B.1 Coefficient of the four level system

In order to analyze the quantum interference effect, the expression of dispersion relation Eq. (11)
can be decomposed [10]. The second term of dispersion relation can be written as three parts as
shown in Eq. (5). The coefficient of dispersion relation Eq. (5) can be given by

A1 = −(ω2
1 −Ω

2
m + d31d41 + d31ω1 + d41ω1)/[(ω3 − ω1)(ω2 − ω1)] ≡ A1 + iB1, (13a)

A2 = −(ω2
2 −Ω

2
m + d31d41 + d31ω2 + d41ω2)/[(ω2 − ω3)(ω1 − ω2)] ≡ A2 + iB2, (13b)

A3 = −(ω2
3 −Ω

2
m + d31d41 + d31ω3 + d41ω3)/[(ω3 − ω2)(ω3 − ω1)] ≡ A3 + iB3. (13c)

Then the coefficients Aj of the Eq. (5) can decompose to two parts, i.e., the real (Aj) and imaginary
(iBj) parts

Im(K) = κ12Im
{︃[︃

A1
(ω − ω1)

+
A2

(ω − ω2)
+

A3
(ω − ω3)

]︃
+

[︃
iB1

(ω − ω1)
+

iB2
(ω − ω2)

+
iB3

(ω − ω3)

]︃}︃
.

(14)
It’s called the real-imaginary spectrum decomposition method.



Research Article Vol. 32, No. 12 / 3 Jun 2024 / Optics Express 21386

In the weak control field region, we can get the coefficient of Eq. (5), where A1, 2, 3 are
both real numbers, and ω1, 2, 3 are pure imaginary numbers. Since Re[ωj] = Im[Aj] = 0 (i.e.,
δ1 = δ2 = δ3 = B1 = B2 = B3 = 0) in this region, we obtain

Im(K) = κ12Im
[︃

A1
ω − iW1

+
A2

ω − iW2
+

A3
ω − iW3

]︃
= κ12

[︄
B1

ω2 +W2
1
+

B2

ω2 +W2
2
+

B3

ω2 +W2
3

]︄
≡ L1 + L2 + L3,

(15)

with Wj = Im[ωj], Bj = AjWj, Lj = κ12Bj/
(︂
ω2 +W2

j

)︂
.

In the other control field region, we can get the coefficient of Eq. (5), where the imaginary part
of ω1 and ω2 are same (i.e., W1 = W2), and the real part of ω1 and ω2 have opposite value (i.e.
δ1,2 = ∓δ), and ω3 is pure imaginary number (i.e., δ3 = 0, ω3 = iW3). Since Re[ω3] = δ3 = 0,
Im[A3] = B3 = 0, in the other control field region, we obtain

Im(K) = κ12Im
{︃[︃

A1
ω − ω1

+
A2
ω − ω2

+
A3
ω − ω3

]︃
+
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+
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]︃}︃
= κ12Im

{︃[︃
A1

ω + iW1 − δ
+

A2
ω + iW1 + δ

+
A3

ω + iW3
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{︄[︄
A1W1
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1
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A2W1

(ω + δ)2 +W2
1
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A3W3
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3

]︄
+
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B1(ω − δ)

(ω − δ)2 +W2
1
+

B2(ω + δ)

(ω + δ)2 +W2
1

]︄}︄
≡ LLontz + LInter,

(16)
where the first part LLontz represents the Lorentzians distribution, and the second part LInter
represents destructive interference effect.

B.2 Reduce to three level system

If we turn off the MW field, i.e., Ωm = 0, the four-level system reduce to a three-level system.
The above parameters b = d21 + d31, c = d21d31 −Ω

2
c , and d = 0. Hence, A3 = ω3 = 0, and

A1,2 = ±(ω1 + d31)/(ω1 − ω2), (17a)

ω1,2 =
1
2

{︂
−(d21 + d31) ±

[︁
4|Ωc |

2 + (d21 − d31)
2]︁1/2}︂ . (17b)

According to ∆2 = ∆3 = 0, we can simplify ω1 and ω2 the above equation

ω1,2 =
1
2

[︄
−i(γ21 + γ31) ± 2

(︃
|Ωc |

2 −
|γ21 − γ31 |

2

4

)︃1/2]︄
. (18)

Obviously, when Ωc ≤ |γ21 − γ31 |/2, ω1 and ω2 are pure imaginary numbers. Hence, we can
define Ωref = |γ21 − γ31 |/2 [10].
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