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Abstract

We construct an optimal investment portfolio model for an individual investor saving in

a retirement plan. The investor earns stochastic labour income with both permanent and

temporary shocks, and has access to equity, conventional bond, inflation-indexed bond

and cash, as well as two types of deferred annuities: nominal and inflation-protected.

The objective function consists of power utility in terms of real retirement income from

the annuities as well as bequest from remaining wealth in tradable securities. Asset

returns are represented by a vector autoregressive model underpinned by Nelson-Siegel

real and nominal yield curves. The optimization problem is solved numerically using

multi-stage stochastic programming with a hybrid scenario structure combining a sce-

nario tree with scenario fans. Our numerical results show that deferred annuities are

bought early and in increasing amounts during the working lifetime of the investor, with

portfolio risk declining with age. Welfare is diminished by 40% if deferred annuities are

not available. Inflation-protected deferred annuities are marginally more important in

the presence of real labour income risk, but nominal deferred annuities are bought as a

cheaper alternative if real yields are low or negative. Portfolio composition and annuity

allocation vary depending on financial market expectations, but our central result about

the importance of deferred annuities is robust to a variety of financial market conditions.
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1. Introduction

A life annuity is a product which is sold by life insurers to individuals and which

makes a regular stream of payments to the annuity-holder while alive. An annuity is

termed an “immediate annuity” if it starts paying out from the time that it is purchased.

The insurer can also design an annuity which has a deferment period between the time

that the annuity is purchased and its first payout date, and this is known as a “deferred

annuity” (or deferred income annuity). Annuities are a key product in retirement plan-

ning since retirees face longevity risk, i.e. the risk that they will outlive their savings.

By purchasing an annuity, individuals transfer longevity risk to life insurers, which can

pool this risk by writing a large portfolio of annuities. Unsurprisingly, the annuity mar-

ket is very large. In 2017 in the U.S., sales of annuities totaled $203.5 billion, of which

deferred annuities accounted for $2.2 billion (Chen et al., 2019). In addition to the retail

market, a type of deferred annuity is also provided by social security and defined benefit

pension plans, in which case governments and employers, rather than insurers, back the

retirement benefits.

All life annuities help individuals by removing longevity risk, but deferred annuities

have a specific role in reducing longevity risk at very old ages for retirees (Ezra, 2016;

Scott, 2008). Deferred annuities are also useful for younger working individuals as

they can be used to secure retirement income well before retirement (Horneff et al.,

2010; Maurer et al., 2013). Annuity payments may be fixed in nominal terms or may

be linked to a specific index, for example an index of inflation. Inflation-indexed (or

inflation-protected) deferred annuities can be particularly useful since payments may

continue for a long time in the future, and retirees’ purchasing power should be protected

(Merton, 2014) .

Although deferred annuities are potentially very useful in retirement, there is little

research on optimal retirement planning with these annuities. Target-date funds in the

U.S. are authorised to include deferred annuities in 401(k) pension plans (U.S. Treasury

Department, 2014), but in practice many pension plans implement simple so-called glide-

path strategies (Donaldson et al., 2015) which disregard deferred annuities. Glide paths

reduce equity allocation and increase bond allocation as retirement draws nearer, but

such a strategy does not maximize utility in terms of retirement income in real terms

(Merton, 2014).

Only a few studies look at optimal investment with deferred annuities prior to re-

tirement. Horneff et al. (2010) and Maurer et al. (2013) find that it is optimal to start

purchasing deferred annuities from about age 40 with continual purchase of up to about

80% of wealth at retirement. They assume one risk-free asset with constant interest

rate, one risky asset, and stochastic labour income. A similar conclusion is reached by

Konicz & Mulvey (2013) in a different setting with full consumption of annuity income

during retirement. Huang et al. (2017) seek the conditions for purchase of deferred an-

nuities when interest rates are mean-reverting but their analysis is limited because there

is neither investment portfolio optimization nor labour income.
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Unlike the sparse research on the use of deferred annuities in optimal investment

prior to retirement, there is considerably more research on immediate annuities on and

after retirement. Koijen et al. (2011) calculate the optimal allocation to three types

of immediate annuities (nominal, inflation-protected and variable) when wealth is fully

annuitized at retirement. They also find the optimal pre-retirement consumption and

investment to hedge the optimal annuity portfolio at retirement. Another strand of

annuity research concerns the timing of purchase of immediate annuities. Horneff et al.

(2008, 2009) solve numerically for the optimal annuitization and investment decisions

when nominal immediate annuities are available in retirement and variable immediate

annuities, stocks and bonds are available before retirement. They find that annuity

holdings increase over an individual’s lifetime. They also obtain the typical life-cycle

result that equity allocation falls while bond allocation increases over time.

An important aspect of retirement planning is labour income. Most occupational

retirement plans require employees to make a pension contribution which is a fixed

proportion of their income. Viceira (2001), Cocco et al. (2005) and Benzoni et al.

(2007) examine how risks to labour income influence optimal investment choices over an

individual’s lifetime. An individual, whose labour income stream is deterministic and

non-tradable during her working lifetime, can be regarded as holding a risk-free coupon

bond. Therefore, the investor’s optimal allocation to a risky asset is higher than if she

had an uncertain labour income, and it decreases over time. On the other hand, if labour

income is volatile and positively correlated with the risky asset return, the fraction of

wealth invested in the risky asset decreases (Cocco et al., 2005). A similar result is found

by Benzoni et al. (2007) who show that cointegration between labour income and stock

dividends can lead the investor to take a short position in the risky assets. However,

if labour income risk is idiosyncratic, risky asset allocation can be larger than in the

absence of labour income (Viceira, 2001).

Our main contributions in this article are five-fold. First, we employ a rich and

realistic model of financial markets which means that our results can be implemented

by pension and financial planners. Previous studies on deferred annuities in individual

portfolio optimization, such as by Horneff et al. (2009, 2010), Maurer et al. (2013), and

Konicz & Mulvey (2013), use only a constant risk-free rate and a geometric Brownian

motion-driven risky asset. Koijen et al. (2011) employ a model with time-varying eq-

uity return and a full term structure, which they argue is critical to long-term port-

folio allocation. In this paper, we use a vector autoregressive model underpinned

by a Nelson-Siegel model of the term structure of nominal and real interest rates,

similar to Konicz et al. (2015). However, we go further than Koijen et al. (2011) and

Konicz et al. (2015) in that we include deferred annuities whereas they do not.

Second, we model a richer set of instruments and features, again making our model

implementable by retirement planners. In particular, we have inflation-indexed bonds

as well as inflation-indexed annuities, both immediate and deferred. We assume that

pension savers have stochastic labour income, with an inflation component, as would
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be the case in the real world. It is especially important to include inflation given the

long-term nature of retirement planning. To our knowledge, no other study on deferred

annuitization incorporates all these features. Further, short-selling is not allowed in

our model. Koijen et al. (2011) find that large amounts of short-selling occur in their

optimal solution (with immediate annuities only), but this cannot be implemented as in-

dividual investors do not have access to short positions within their long-only retirement

funds.

Third, we use multi-stage stochastic programming (MSP) to contend with the nu-

merous state variables that our more realistic setting imposes. Numerical dynamic

programming is used by Koijen et al. (2011) but they fail to incorporate realistic fea-

tures and constraints such as deferred annuities and no short sales. MSP is also used by

Consigli et al. (2012), Dempster & Medova (2011), Konicz & Mulvey (2013, 2015) and

Konicz et al. (2015) in individual retirement planning, but we extend these works either

with a richer financial market model or with a richer set of instruments or both. MSP re-

quires the use of scenarios, and we generate several scenario trees that are arbitrage-free.

Furthermore, we introduce a new scenario structure which combines a scenario tree with

scenario fans in order to track inflation scenarios which are used for projecting annuity

income in retirement. We also devise an optimization model to construct scenarios of

labour income shocks which are independent of the financial market scenarios.

Our fourth contribution in this article is to evaluate explicitly the welfare gains when

individuals have immediate and deferred annuities at their disposal, in both nominally-

fixed and inflation-indexed varieties. This is important because it enables individual

investors as well as their financial advisers to observe in monetary terms the advantage

of including these instruments in their pension planning.

The fifth and final contribution of our paper is that we carry out sensitivity analyses

over different historical periods. Financial market conditions change, particularly after

momentous events such as the 2008 financial crisis, and we generate new scenario trees

and find the optimal investment over different periods. This should reinforce financial

planners’ confidence in the model, and provide them with a robust tool with which to

advise investors saving for retirement.

2. Investment problem for a retirement plan

Assume that there is an individual, aged δ years old at time 0, who makes regular

contributions to a personal retirement plan until his retirement at time T . He lives to a

maximum age ω (the last age in an actuarial life table), so he cannot live beyond time

τ = ω − δ. The amount of the contributions is a fixed proportion φ of his uncertain

nominal labour income Lt (at time t) during in the pre-retirement period [0, T ).

In the retirement fund, the individual can hold equity, nominal bond, inflation-

linked bond, and cash. In the remainder of the paper, these financial assets are denoted

using subscripts E, B, B̃ and C respectively, with the set of financial assets being

F = {E,B, B̃, C}.
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Withdrawals from the retirement fund are allowed but only to buy deferred annuities

(DAs) which will pay out, if he is alive at retirement time T , every year from time T

until he dies. Two types of annuities can be purchased: nominal and inflation-protected

annuities, denoted by the subscripts A and Ã respectively. The set of annuity products

is A = {A, Ã}. Both types of annuities are irreversible contracts, so the individual can

buy them from insurers, but not sell them back to insurers or on a secondary market.

There is no payout from the annuities if the individual dies before retirement. How-

ever, any remaining wealth in his retirement fund is bequeathed to his heirs. If the

individual survives till retirement, then all of his accumulated wealth in the fund is used

to purchase nominal and inflation-protected immediate annuities which pay out from the

retirement date until death. An immediate annuity is merely a deferred annuity with

a zero deferment period, so in the following we do not distinguish between immediate

and deferred annuities.

We assume that the investor exhibits constant relative risk aversion (CRRA) with a

power utility function u(t, x) = e−ρt
(
x1−γ) / (1− γ), at time t, with γ > 0 being a risk

aversion coefficient, 0 ≤ ρ ≤ 1 being a time preference coefficient, and x representing

either annuity income or wealth bequest, both of the latter being in real terms.

If the individual survives to retirement at time T , then utility is gained by retirement

income in real terms (i.e. net of inflation), following the policy prescription of Merton

(2014). Real income in retirement is denoted by It for t ∈ [T, τ) and it is the nominal

income from annuities deflated back to time 0 at the realized log-rates of price inflation

{Πt, t ∈ (0, τ ]} . We assume implicitly that all income from the retirement plan is used

for consumption, so utility u(t, It) is gained for annuity income, in real terms, every year

in retirement.

If the individual dies before time T , then his wealth in the retirement plan (minus

the value of deferred annuities purchased) is bequeathed to his estate, and utility is

gained by the amount, in real terms, that is bequeathed. Real wealth bequeathed is Wt

for t ∈ (0, T ], and it is the nominal value of wealth deflated back to time 0. A bequest

parameter κ, to be introduced shortly, captures the relative importance of the bequest

to retirement income.

During the pre-retirement period [0, T ), the investor can dynamically adjust his

investment portfolio and purchase deferred annuities in order to maximize the expected

utility of real annuity income in retirement and of real bequest before retirement. Let

the total number of units of nominal deferred annuity purchased by time t be XA,t

and, similarly, the total number of units of inflation-protected deferred annuity be X
Ã,t

.

(Recall that the subscript A stands for nominal annuity and Ã for inflation-protected

annuity.)

One unit of nominal annuity guarantees a nominal income of £1 annually in retire-

ment until death. One unit of inflation-protected annuity also guarantees a nominal

income of £1 annually in retirement until death, but the number of units is increased

in line with price inflation every year. Thus, income from the inflation-protected an-
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nuity is perfectly correlated with price inflation. Let the prices of one unit of nomi-

nal and inflation-protected annuities be SA,t and S
Ã,t

respectively at time t ∈ [0, T ].

Then, at time t, the investor pays SA,t(XA,t −XA,t−1) to buy the nominal annuity and

S
Ã,t

(X
Ã,t
−X

Ã,t−1
eΠt) to buy the inflation-protected annuity, where Πt is the log-rate

of price inflation in year (t− 1, t). (In both cases, XA,−1 = X
Ã,−1

≡ 0.)

The investor can also buy and sell units of a cash fund, equity fund, nominal bond

fund and inflation-linked bond fund. (Recall that these are denoted by C, E, B and B̃

respectively.) Let XE,t be the number of units of the equity fund held in the retirement

plan at time t, and SE,t be the price of equity units at time t. A corresponding notation

holds for the cash, nominal bond and inflation-linked bond funds. Note that we assume

perfect divisibility of assets and that fractional units can be held.

At time t ∈ [0, T ), the individual can adjust asset allocations of the retirement plan

by deciding how much to hold in cash, equity, and bonds, and how many annuity units to

buy. At the retirement date T , all financial wealth is sold and the investor decides how

many units of nominal and inflation-protected annuities to buy. The decision variable for

the individual at time t ∈ [0, T ] is therefore Xt = [XC,t, XB,t, XE,t, XB̃,t
, XA,t, XÃ,t]

′.

3. Formulation for multi-stage stochastic programming

3.1. Preliminary notation and definitions

Stochastic programming is a mathematical framework for optimization problems

with uncertain scenarios. The scenarios can be economic, financial, and demographic.

Both the state space and time are discretized in multi-stage stochastic programming

(MSP). The multiple discrete-time points are known as stages. An MSP model is con-

structed in a nodal form by using state variables generated in a scenario tree. The

scenario tree starts at the initial stage from a unique root node and it ends at the termi-

nal stage with multiple leaf nodes. The root node branches out to a number of children

nodes at the second time stage. Each child node itself branches out to further nodes at

the third time stage, and so on, until the leaf nodes are reached. Every node, except

the root node, has a unique parent node. A scenario is the connected path through a

series of parent nodes from a leaf node to the root node. In general, the scenario tree is

non-recombining.

We set out here some notation pertaining to the scenario tree. For convenience, this

notation is summarized in Table 1. The scenario tree is depicted in schematic form in

Fig. 1. The root node is located at the first stage and is denoted by n0. The set of all

nodes in the scenario structure is N , and Nt is the set of nodes at time t. Thus, N0 =

{n0} contains the root node only, Nτ is the set of leaf nodes, and N =
⋃
t∈[0,τ ]Nt. A

node n 6= n0 branches off a parent node, denoted by n−, which may itself have its own

parent node n−−, etc. It is convenient to denote by sn the set of all predecessor nodes of

node n, i.e. sn = {n, n−, n−−, . . . , n0}. A node n /∈ Nτ forks into a set of children nodes,

denoted by {n+} at the next stage, and these children nodes may themselves have their

own children nodes {n++} at the following stage, etc. The time between each stage may
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Table 1 – Variables and parameters for the MSP optimization problem.

Sets
N =

⋃
t∈[0,τ ]Nt All nodes in the hybrid scenario structure

Nt All nodes at time t

A = {A, Ã} Set of annuities guaranteeing fixed-nominal (A) and
inflation-protected (Ã) payments

F = {C,B, B̃, E} Set of financial assets: cash (C), conventional bond (B),
inflation-linked bond (B̃), equity (E)

sn = {n, n−, n−−, . . . , n0} All predecessor nodes of node n, including itself, up to root
node n0

{n, n+, n++, . . . } All successor nodes of node n, including itself

Decision variables

Xbuy
i,n , i ∈ A ∪ F The unit number of asset i to buy at node n

Xsell
i,n , i ∈ F The unit number of asset i to sell at node n

Xn Vector collecting all the buy and sell decision variables at
node n

Xi,n, i ∈ A ∪ F The unit number of asset i held at node n after rebalancing

Other main variables
In Real retirement income at node n
Wn Real financial wealth at node n (excludes the value of

annuities)
Parameters

tpδ Probability that a δ-year old person survives until age δ + t

∆tqδ+t Probability that a (δ + t)-year old person dies over the
following ∆t years

prn Unconditional probability that a node n occurs
Si,n, i ∈ A ∪ F Nominal price of asset i at node n
Ln Nominal labour income per annum at node n
Πn Inflation log-rate over a ∆t-long time interval ending at

node n
∆t, T, τ Portfolio holding period, retirement date, maximum time

respectively (all in years)
δ Investor’s starting age at t = 0
(γ, ρ, κ) Investor’s preference parameters; risk aversion, time

preference, and bequest motive respectively
w0 Current nominal wealth in cash at the root node n0 before

contribution and rebalancing
φ Fixed contribution rate, as a proportion of nominal labour

income Ln, to the retirement plan

vary, in general, but it is fixed in our model and is denoted by ∆t. The unconditional

probability that a node n occurs is prn and the conditional probability that a node n

occurs given its parent node n− is prn.

We make use of a hybrid structure of scenario tree followed by scenario fans, as

illustrated in Fig. 1. The scenario tree consists of multiple branches from every node

and it spans the decision period [0, T ], i.e. the period up to retirement during which

investment and annuitization decisions are made. The scenario fans consist of only two

branches from every node at retirement, and they span the projection period (T, τ ],
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decision period projection period

0
t

T

Fig. 1 – A hybrid structure of a scenario tree (from time 0 to T ) and scenario fans (from T + 1 to τ).

i.e. the post-retirement period. It is important to highlight that decisions are only

made up to retirement, and the relevant scenarios are captured in the scenario tree.

The scenario fans after retirement are only used to project inflation forward. They are

required because income is received during retirement but it is the utility of retirement

income in real terms (i.e. net of inflation) that must be evaluated. As explained by

Dupačová et al. (2000), the scenario fan structure can be used in the special case in

which the probability distributions of supporting variables are only affected by decisions

made before the scenarios.1

In the following, survival and death probabilities are represented using standard

actuarial notation. The probability that a δ-year old person survives until age δ + t is

denoted by tpδ. The probability that a (δ + t)-year old person dies over the following

∆t years is denoted by ∆tqδ+t (typically abbreviated to qδ+t when ∆t = 1).

3.2. Optimization problem

The optimization problem for the investor in a retirement plan can be formulated

on the scenario structure as a multi-stage stochastic programming (MSP) problem as

follows. Let Xi,n be the number of units of asset i ∈ A∪F held at node n in the scenario

structure. We separate buy and sell decisions: Xbuy
i,n is the number of units of asset i to

buy at node n, and Xsell
i,n is the number of units of asset i to sell at node n. Annuities

cannot be sold, so the decision variable at node n is Xn =
[
Xbuy
C,n , Xsell

C,n, Xbuy
B,n, Xsell

B,n,

Xbuy
E,n, Xsell

E,n, Xbuy

B̃,n
, Xsell

B̃,n
, Xbuy

A,n, Xbuy

Ã,n

]′
.

1 The combined structure of the scenario tree and scenario fans, depicted in Fig. 1, still satisfies
the non-anticipative condition. Here, the supporting variable is the inflation process to project annuity
income, and decisions are all made before starting the scenario fan.
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The objective function, budget constraints, and variable constraints for the retire-

ment planning problem are given in nodal form suitable for MSP by the equations below

(the equations in the usual time representation are reproduced in the online supplemen-

tary appendix, section S-1):

max
{Xn,n∈{Nt,t∈[0,T ]}}

 ∑
t∈[T,τ)

∑
n∈Nt

tpδ u(t, In) prn +

∑
t∈[0,T )

∑
n∈Nt+∆t

tpδ ∆tqδ+tκ
γu(t+ ∆t,Wn) prn

 , (1a)

s.t. In =

(∑
i∈A

Xi,n

)
exp(−

∑
m∈sn Πm) for n ∈ {Nt, t ∈ [T, τ)}, (1b)

Wn =
∑
i∈F

Xi,n− · Si,n exp
(
−
∑

m∈snΠm

)
for n ∈ {Nt, t ∈ (0, T ]}, (1c)

1{n=n0}w0 + 1{n/∈NT }φ Ln ∆t +
∑
i∈F

Xsell
i,n Si,n

=
∑

i∈A∪F
Xbuy
i,n Si,n for n ∈ {Nt, t ∈ [0, T ]}, (1d)

Xi,n = 1{n 6=n0}Xi,n− + Xbuy
i,n − Xsell

i,n

for i ∈ F and n ∈ {Nt, t ∈ [0, T ]} , (1e)

XA,n = 1{n 6=n0}XA,n− + 1{n∈{Nt,t∈[0,T ]}}X
buy
A,n

for n ∈ {Nt, t ∈ [0, τ)}, (1f)

X
Ã,n

= 1{n 6=n0}XÃ,n− e
Πn + 1{n∈{Nt,t∈[0,T ]}}X

buy

Ã,n

for n ∈ {Nt, t ∈ [0, τ)}, (1g)

Xi,n = Xbuy
i,n = 0 for i ∈ F and n ∈ NT , (1h)

Xi,n, X
buy
i,n , X

sell
i,n ≥ 0 for i ∈ F and n ∈ {Nt, t ∈ [0, T ]}, (1i)

Xbuy
i,n ≥ 0 for i ∈ A and n ∈ {Nt, t ∈ [0, T ]}. (1j)

In Eq. (1a) above, the decision variables over which the expected utility is maximized

are the portfolio and annuity purchase decisions over the planning horizon [0, T ]. It is

implicit in the objective function in Eq. (1a) that summations occur over the time stages

in the scenario tree during the investor’s lifetime t ∈ [0, τ). The decision variable must

be chosen at every node n in the scenario tree component of the scenario structure,

{Nt, t ∈ [0, T ]}. Eq. (1b) shows the real retirement income In at time t ∈ [T, τ) during

retirement, this being the nominal income from annuities deflated back to time 0. Recall

that the number X
Ã,n

of inflation-protected annuity units increases in line with price

inflation, whereas the corresponding number for nominal units does not. Wealth Wn in

Eq. (1c) is evaluated in real terms and does not include the value of annuities, so it is

the inflation-adjusted total value of financial assets before rebalancing the portfolio at

node n.
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The cash balance constraint in Eq. (1d) sets off cash inflows against outflows. At

the root node, wealth is initialized at the non-random amount w0 specified on the l.h.s.

of Eq. (1d). The incidence of cash flows in our model is such that contributions occur in

advance every ∆t years. A financial asset inventory constraint appears in Eq. (1e) and

tracks the number of units of cash, equity, nominal and inflation-indexed bond funds

held at node n. The annuity inventory constraints in Eq. (1f) and Eq. (1g) allow the

investor to buy the two types of annuities during the pre-retirement planning period

as well as at retirement, and they track the number of units of annuities for the whole

lifetime [0, τ). Notice that the number of units of inflation-protected annuities in Eq. (1g)

increases in line with inflation every year. At retirement time T , all assets are sold to

purchase nominal and inflation-protected immediate annuities, and constraint Eq. (1h)

guarantees this full annuitization. Eq. (1i) represents the no short-sales constraint, while

Eq. (1j) ensures that annuities can only be bought and not sold.

3.3. Scenario generation for financial and annuity markets

There are two related features of the scenario tree which call for a modelling decision:

the number of stages in the tree and the branching factor at every stage. (The branching

factor is the number of children nodes that each node has.) A “curse of dimensionality”

occurs in MSP as the number of stages increases and the scenario tree becomes ‘denser’

(Shapiro et al., 2009; Dupačová et al., 2000). This corresponds to a similar curse in

numerical dynamic programming when the number of state variables increases. In MSP,

there is a computational limit to the number of stages and branching factors in the

scenario tree.

A common strategy is to use stages of increasing lengths with decreasing branching

factors along the tree, as used for example by Consigli et al. (2012). We do not employ

this strategy here for two reasons. First, branching factors cannot decrease beyond the

minimum number of branches required to avoid arbitrage (Geyer et al., 2010) and to

match the required moments of the conditional distributions of the variables stored at

every node in our optimization problem (Høyland & Wallace, 2001). Second, we use a

regular time interval between stages to replicate the regular financial reviews that an

individual may have with a financial planner during their financial lifecycle, and the

regular portfolio rebalancing that then occurs. The optimal investment solution that

we obtain is then an approximation to optimal intertemporal investment without the

distortion that would be caused by an uneven time-interval effect.2

To generate scenario trees for a portfolio optimization problem, scenario reduction

and state aggregation are not suitable methods (Geyer et al., 2010). Scenario reduction

methods do not admit no-arbitrage conditions explicitly, while state aggregation involves

2 We thank a reviewer for suggesting that stages of increasing lengths, with a short period of 1 year
between the first two stages, could be useful in a practical setting. For example, the model could be
used in a receding horizon control fashion where it is fully solved but only the first step is implemented.
It is then solved again the following year, when the individual is one year older, and again only the first
step is implemented, etc. until retirement.
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only the risk-neutral measure, not the real-world measure which should be used in a

portfolio optimization problem. To generate the scenario tree, we combine the sequential

approach of Høyland & Wallace (2001) with the moment matching method (Klaassen,

2002).

Details of the scenario generation procedure are given in section S-2 of the online

supplementary appendix. In brief, we have 10 state variables at every node, we use a

regular stage interval of ∆t = 5 years and we have 6 stages (5 periods), so that the

scenario tree spans 25 years in the decision period up to retirement (this is the period

[0, T ] with T = 25 in Fig. 1). Given the values of the variables on any particular node n,

the moments of the conditional distribution of these state variables after ∆t = 5 years

can be calculated using a suitable financial model fitted to market data. (The model will

be described in section 4.) The values of the state variables on the children nodes {n+}
are then determined by matching the first 4 moments of the conditional distribution.

There are 85 moment specifications (10 × 4 central moments and 10(10 − 1)/2 = 45

covariances). Based on this, Høyland & Wallace (2001) suggest that there should be a

minimum of 8 branching factors. Starting from the root node, we can evaluate the state

variables at each node sequentially throughout the scenario tree. This procedure gives

a close fit to market data as is demonstrated in section S-2 of the online supplementary

appendix.

Another consideration relevant to scenario generation is that the scenarios are arbi-

trage-free. The following procedure is used to preclude arbitrage:3

Step 1. Given a node n ∈ {Nt, t ∈ [0, T )}, calibrate the first four conditional moments

of the subtree branching from this node.

Step 2. Check if the generated scenarios preclude arbitrage opportunities among cash,

nominal bond, inflation-linked bond, and equity funds: see Klaassen (2002).

Return to Step 1 if any arbitrage opportunity is found.

Step 3. Check if each of the generated scenarios has conditional moments over the next

stage that are within no-arbitrage bounds: see Geyer et al. (2014).

Step 4. Repeat Step 1 to Step 3, if Step 3 meets the always-arbitrage bound.

Step 2 can be subsumed within Step 1. We proceed in a sequential way and apply

the above procedure from the first to the penultimate stage. To identify arbitrage

opportunities among the four financial assets (cash, nominal bond, inflation-linked bond,

and equity) in Steps 2 and 3, we use the two methods of Klaassen (2002) for two arbitrage

types ex-post and the method of Geyer et al. (2014) for no-arbitrage bounds ex-ante.

3.4. Scenarios for pre-retirement labour income and post-retirement inflation

In the pre-retirement period (this is the period [0, T ) in Fig. 1), labour income is

earned by the individual. In order to incorporate the effects of stochastic labour income

3We are grateful to a reviewer for suggesting the alternative method set out by Consiglio et al. (2016).
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into the retirement planning problem, we generate labour income scenarios superposed

upon the financial market scenarios described in the previous section. We can generate

real labour income scenarios which are independent of the asset return scenarios during

the individual investor’s working lifetime [0, T ) because there are enough degrees of free-

dom in the eight branches of each node within the financial market scenarios, when the

ten state variables are reduced to four financial assets returns for cash, equity, nominal

bond and inflation-linked bond funds. Visiting each node in the working period of the

scenario structure, we generate permanent real labour income shocks and temporary

real labour income shocks on the eight children nodes. Details of the labour income

model are given in section 4.4 below and the relevant scenario generation is discussed in

section S-3 of the online supplementary appendix.

In the post-retirement period (this is the period [T, τ ] in Fig. 1), there is no labour

income, of course, but annuity income is earned. This income must be evaluated in real

terms, i.e. deflated back to the root node n0 at time 0. We use scenario fans to project

inflation forward during retirement. We emphasize again that no decision is made in

the post-retirement period. Log-rates of inflation are Normally distributed in our model

(see section 4.3 below), consequently only two moments need to be matched to create

scenario fans. For the scenario fans, we have an initial branching factor of 2 and we

choose two points at one conditional standard deviation on either side of conditional

mean inflation on each node in NT , i.e. at retirement (Dupačová et al., 2000).

In the scenario tree part of the hybrid scenario structure that we use, there are

eight children nodes for every node over the first six stages (five periods), giving 85 =

32, 768 scenarios in the scenario tree. This is then doubled to 65, 536 in the overall

hybrid scenario structure because of the scenario fans. Since post-retirement inflation

is required only for the purpose of deflating retirement income back to the root node

n0 at time 0, 65, 536 scenarios for inflation is an ample number to capture Normally

distributed log-rates of inflation, conditioned on the root node. Finally, intervals of one

year are used along the fans, from time T + 1 = 26 to the terminal date τ = 80 in

Fig. 1. (As we indicate later, the terminal date will correspond to a maximum age in a

mortality table.)

4. Financial assumptions

4.1. Term structure of interest rates

The Nelson-Siegel model is chosen to model the real and nominal yield curves along

with a vector autoregressive (VAR) model for stochastic cash, bond, equity returns,

and inflation rates. The Nelson-Siegel model is parsimonious and known to avoid the

over-fitting problem and to return better out-of-samples predictions than affine term

structure models (Diebold & Li, 2006). Ferstl & Weissensteiner (2011) combine the

Nelson-Siegel formulation proposed by Boender et al. (2008) with the VAR model. Our

model therefore incorporates asset return predictabilities and produces a seamless yield
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curve for pricing not only the cash and nominal and inflation-indexed bond funds, but

also nominal and inflation-protected annuities.

The entire nominal yield curve is determined by a fitted Nelson-Siegel model with

three time-varying parameters4, βt = [β1,t, β2,t, β3,t]
′. For the real yield curve, we use

the notation β̃t = [β̃1,t, β̃2,t, β̃3,t]
′. The Nelson-Siegel model for the s-year nominal spot

rate at time t is as follows:

y(βt, s, λ) = β1,t + (β2,t + β3,t)

(
1− e−λs

λs

)
− β3,te

−λs, (2)

where the scaling parameter λ is a constant. A corresponding equation holds for the

real spot rate.

4.2. Time-varying investment opportunities

In order to incorporate predictabilities of asset returns and a pair of three Nelson-

Siegel parameters (βt and β̃t), we use a VAR(1) model (for details, see Barberis, 2000;

Campbell et al., 2003). Specifically, we use the combined approach of Konicz et al.

(2015) to model interest rates, equity returns and inflation rates. Here, rt is monthly

log-returns on the equity fund. Monthly inflation log-rates are denoted by πt. Our VAR

model is given by

zt = Φ0 + Φ1zt−1 + vt, (3)

where zt = [rt, πt, β1,t, β2,t, β3,t, β̃1,t, β̃2,t, β̃3,t]
′. The accumulated return RE,t on the

equity fund, defined near Eq. (6) as the log-return from time t − ∆t to t, is simply a

sum of the monthly log-returns. The accumulated inflation Πt, defined near Eq. (8)

and Eq. (12), is a sum of the monthly inflation rates. In Eq. (3), the intercept term Φ0

is a column vector. The slope term Φ1 is a 8 × 8 coefficient matrix of the VAR model.

The error term vt is a column vector of i.i.d. innovations ∼ N(0,Σz), where Σz = E[vv′].

Given fixed values of λ and λ̃, if all eigenvalues of Φ1 have moduli less than one, the

stochastic process in Eq. (3) is stable with the unconditional expected mean µzz and

covariance Γzz of zt in the steady state:

µzz = (I − Φ1)−1c (4)

vec(Σzz) = (I − Φ1 ⊗ Φ1)−1vec(Σz), (5)

where I is an identity matrix and the operator ⊗ is the Kronecker product and vec is a

vectorisation function, which transforms the 8× 8 matrix Σz into a 82 × 1 vector.

Using historical nominal and real yield curves from the Bank of England from Jan-

uary 1985 to June 2017 with 0.5 to 25-year spot rates, monthly FTSE 100 data from

Bloomberg, and retail price index as an inflation rate measure from the Office for Na-

4In the Nelson-Siegel model, the long interest rate is given by lims→∞ y(βt, s) = β1,t and the short
interest rate is lims→0 y(βt, s) = β1,t + β2,t. The parameters β1,t, β2,t, and β3,t determine level, slope,
and curvature of the yield curve respectively (Boender et al., 2008).
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Table 2 – Estimated parameters and t-statistics for the VAR(1) model.

Φ0 Φ1

rt−1 πt−1 β1,t−1 β2,t−1 β3,t−1 β̃1,t−1 β̃2,t−1 β̃3,t−1

rt -0.0034 -0.0013 -0.0584 0.1265 -0.0425 -0.0342 0.1064 -0.0831 -0.0658
(-0.3415) (-0.0251) (-0.1051) (0.4051) (-0.2886) (-0.3130) (0.2384) (-0.4921) (-0.4000)

πt 0.0021 0.0016 0.0474 0.0288 0.0727 0.0026 -0.0690 -0.0844 -0.0157
(2.2691) (0.3493) (0.9413) (1.0177) (5.4389) (0.2652) (-1.7055) (-5.5114) (-1.0493)

β1,t 0.0031 -0.0021 -0.0402 0.9246 0.0301 0.0046 0.0280 -0.0155 0.0242
(2.9330) (-0.3987) (-0.6907) (28.2607) (1.9470) (0.3996) (0.5994) (-0.8773) (1.4043)

β2,t 0.0047 0.0156 0.0264 -0.1462 0.9498 -0.0243 0.1527 -0.0422 -0.0367
(3.2698) (2.1473) (0.3332) (-3.2800) (45.1243) (-1.5571) (2.3975) (-1.7493) (-1.5619)

β3,t 0.0043 -0.0057 -0.0123 -0.1073 -0.0930 0.8791 0.2206 0.0446 0.0040
(1.3922) (-0.3662) (-0.0719) (-1.1206) (-2.0568) (26.2582) (1.6133) (0.8625) (0.0800)

β̃1,t 0.0007 0.0003 -0.0105 -0.0220 0.0028 -0.0047 1.0178 0.0014 0.0169

(1.2741) (0.1043) (-0.3342) (-1.2418) (0.3383) (-0.7583) (40.2434) (0.1499) (1.8160)

β̃2,t 0.0028 -0.0141 0.3517 -0.1208 -0.0159 -0.0385 0.1352 0.9486 0.0132

(2.2349) (-2.2155) (5.0743) (-3.1007) (-0.8665) (-2.8284) (2.4294) (45.0456) (0.6422)

β̃3,t -0.0002 0.0082 -0.2255 0.0832 0.0234 0.0500 -0.1611 -0.0154 0.8587

(-0.1062) (0.8469) (-2.1284) (1.3969) (0.8337) (2.4032) (-1.8940) (-0.4785) (27.3676)

Monthly data of FTSE 100 from Bloomberg, retail price index from Office for National Statistics and fit-
ted yield curves from Bank of England respectively are used from January 1985 to June 2017 (λ = 0.1519
and λ̃ = 0.2508 for the Nelson-Siegel nominal and real yield curves model); t-statistics in parentheses.
R2: 0.0114 (rt), 0.1396 (πt), 0.9484 (β1,t), 0.9665 (β2,t), 0.8431 (β3,t), 0.9881 (β̃1,t), 0.92626 (β̃2,t),
0.8373 (β̃3,t).

tional Statistics over the same period, the VAR model is stable. We choose the Nelson-

Siegel scale parameters of λ = 0.1519 and λ̃ = 0.2508 such that the sum of squared

errors between the fitted Nelson-Siegel and historical yields is minimized. Our estimates

for Φ0 and Φ1 in Eq. (3), along with t-statistics, are collected in Table 2. The level of R2

for the equity return component is low, so it is difficult to confirm the existence of return

predictability in the U.K. equity market. Table 3 exhibits the standard deviations and

correlations of the residuals. Table 4 presents the unconditional expected mean µzz and

standard deviation σzz =
√
diag(Σzz) of zt at the steady state. The left hand panel of

Fig. 2 displays the nominal term structure at the steady state, and it is clearly upward

sloping and concave (as is the steady-state real term structure, not shown here). The

right hand panel of Fig. 2 shows eight different stochastic realizations of the nominal

term structure after 5 years.

4.3. Price dynamics of bonds and annuities

The investor rebalances his portfolio and buys deferred annuities at regular intervals

of length ∆t years during his retirement planning period [0, T ]. There are N ∈ N such

regular intervals, i.e. T = N∆t. Defining Ri,t as the accumulated log-return of financial

asset i ∈ F from time t−∆t to t, the price Si,t of financial asset i is given by:

Si,t = Si,t−∆t · exp(Ri,t) for i ∈ F , (6)

where Si,0 = 1 without loss of generality.

14



Table 3 – Standard deviations and cross correlations of residuals of the VAR(1) model.

rt πt β1,t β2,t β3,t β̃1,t β̃2,t β̃3,t√
diag(Σz) 0.0442 0.0040 0.0046 0.0063 0.0135 0.0025 0.0055 0.0084

rt 1.0000 -0.0192 0.1104 -0.0786 -0.1136 -0.0587 -0.0387 -0.0261
πt 1.0000 0.0161 0.0191 0.0665 0.0545 -0.0086 -0.0378
β1,t 1.0000 -0.3770 -0.3500 0.3960 -0.0562 -0.1534
β2,t 1.0000 0.5465 0.2576 0.2980 0.0509
β3,t 1.0000 0.3653 0.0040 0.2172

β̃1,t 1.0000 -0.0936 -0.4195

β̃2,t 1.0000 -0.3501

β̃3,t 1.0000

Table 4 – Unconditional expected mean µzz and standard deviation σzz of the VAR(1) model.

rt πt β1,t β2,t β3,t β̃1,t β̃2,t β̃3,t

µzz 0.0022 0.0027 0.0392 -0.0283 0.0135 -0.0012 -0.0191 0.0210
σzz 0.0445 0.0043 0.0219 0.0396 0.0341 0.0293 0.0206 0.0231
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(a) Steady state at initial stage
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(b) After 5 years

Fig. 2 – Left panel (a) shows the initial nominal term structure starting from the steady state. Right
panel (b) shows different realizations of the nominal term structure after 5 years (the thicker the line,
the likelier the occurrence).

The gross return of the nominal bond fund with a maturity of M years over a holding

period of length ∆t from time t−∆t to t is approximated by

RB,t = M · y(βt−∆t,M, λ) − (M −∆t) · y(βt,M −∆t, λ). (7)

The function y(βt,M, λ) denotes the M -year nominal spot rate at time t, determined

by the Nelson-Siegel term structure model with a vector βt of parameters and a scale

parameter λ to be specified shortly.

In a similar fashion, the gross return of the inflation-linked bond fund with a maturity
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of M years over a holding period of length ∆t from time t−∆t to t is approximated by

RB̃,t = M · y(β̃t−∆t,M, λ̃) − (M −∆t) · y(β̃t,M −∆t, λ̃) + Πt, (8)

where Πt denotes the gross rate of inflation between t−∆t and t. The M -year real spot

rate at time t is also denoted by the function y, but with parameters β̃t and λ̃.

The gross interest rate on the cash fund from time t−∆t to t is defined simply by

changing bond maturity M in Eq. (7) to ∆t. The cash fund return is given by

RC,t = ∆t · y(βt−∆t,∆t, λ). (9)

Naturally, the cash return at time t does not depend on the current nominal spot rate

y(βt,∆t, λ) at time t, but on the past spot rate y(βt−∆t,∆t, λ). The price dynamics

of the cash and bond funds are obtained by substituting Ri,t from Eq. (7), Eq. (8)

and Eq. (9) into Eq. (6).

The fair actuarial price of a nominal deferred annuity contract which pays £1 in

nominal terms and in every year of retirement is

SA,t =
τ−t∑

s=T−t
spδ+t · exp (−s · y(βt, s, λ)) . (10)

If t = T in Eq. (10) above, then the annuity is of course an immediate annuity. Eq. (10)

above holds verbatim for an inflation-protected deferred annuity, except that A is re-

placed by Ã and the yield is y(β̃t, s, λ̃). We assume static pricing mortality rates here,

and we also ignore loading factors (expenses).

4.4. Labour income

We model exogenous labour income in accordance with Viceira (2001), Cocco et al.

(2005) and Blake et al. (2007). An individual investor cannot change the amount of

labour supply during his working lifetime [0, T ). Real labour income L̃t at time t is

determined by three components: a deterministic growth function f of age δ+ t, a per-

manent shock υt and a temporary shock εt. The deterministic function f is a polynomial,

which can match the hump shape of the age profile of real wages. The permanent labour

income shock υt can be either independent of, or correlated with, equity returns. Nomi-

nal labour income Lt at time t is the real labour income L̃t inflated by two components:

price inflation Πt and real wage inflation Gt.

The real and nominal labour income processes of the investor are therefore given,

respectively, by:

L̃t = L̃t−∆t exp (f(δ + t)− f(δ + t−∆t) + υt + εt − εt−∆t) , (11)

Lt = L̃t exp
(∑t

1(Πs +Gs)
)
, (12)

for t ∈ (0, T ). Here, L0 = L̃0 w.p. 1, υt ∼ i.i.d. N(0, σ2
υ∆t) and εt ∼ i.i.d. N(0, σ2

ε).
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Table 5 – Percentiles of the nominal and real spot rates at retirement, for different maturities.

Percentile 5y 10y 15y 20y 25y 30y

0.05 -0.0563 -0.0406 -0.0302 -0.0233 -0.0182 -0.0148
nominal 0.50 0.0332 0.0381 0.0407 0.0420 0.0426 0.0430

0.95 0.1212 0.1160 0.1109 0.1065 0.1030 0.1002

0.05 -0.0550 -0.0473 -0.0458 -0.0460 -0.0464 -0.0468
real 0.50 0.0003 0.0042 0.0052 0.0054 0.0054 0.0054

0.95 0.0557 0.0556 0.0560 0.0567 0.0573 0.0576

4.5. Prices and yield curves on the scenario tree

The financial model set out above is used to generate the hybrid scenario structure

as described in sections 3.3 and 3.4. The ten state variables stored at each node are

[Rn, Πn, rn, πn, β1,n, β2,n, β3,n, β̃1,n, β̃2,n, β̃3,n], employing the same notation as before

except that we index by node n. Asset prices can be evaluated at each node of the

scenario tree. For example, the asset price in Eq. (6) is transformed into the nodal form

simply by replacing t with n and t−∆t with n− as follows:

Si,n = Si,n− · exp(Ri,n), for n ∈ {Nt, t ∈ (0, T ]} and i ∈ F ,

with Si,n0 = 1. Pricing formulas for other assets are transformed similarly.

It is useful to consider the yield curves generated by the scenario tree. Percentiles

of the nominal and real spot rates for different maturities at retirement date T , as

calculated from the generated scenarios, are shown in Table 5. It is clear that the

generated nominal yield curve is more volatile at the short end, than at the long end,

consistent with empirical evidence. This is also evident from the right hand panel of

Fig. 2, which shows eight different realizations of the nominal yield curve, with a greater

spread at the short end than at the long end.

5. Numerical Results

In this section, we solve the investment and deferred annuitization problem for an

individual who can invest in equities, cash, inflation-indexed and nominal bonds, and

who can buy both inflation-protected and nominal annuities. We investigate particularly

the welfare enhancement potentially conferred by inflation-protected deferred annuities

in the presence of labour income risk.
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5.1. Numerical example

Consider a 40-year-old individual (δ = 40) who intends to retire at age 65 (T = 25).5

His aim is to maximize and secure his retirement benefits in real terms and to set aside

a portion of his portfolio as a bequest, also in real terms, if he dies before retirement.

His personal retirement plan permits him to invest in an equity fund, a nominal bond

fund (maturity M = 20 years), an inflation-linked bond fund (maturity M = 20 years),

a cash fund (maturity M = 5 years), nominal deferred annuities, and inflation-protected

deferred annuities as described in section 2.

In the base case, the VAR asset return model with Nelson-Siegel real and nominal

yield curves is based on U.K. data from January 1985 to June 2017, as described in

section 4.2. Mean, standard deviations and cross-correlations of key variables from the

model are shown in the online supplementary section, Table S-1. A U.K. mortality table

based on 2000–2006 experience6 is used to price the deferred annuity.

The individual can rebalance his portfolio and buy deferred annuities every 5 years

(∆t = 5) until retirement. There are therefore six stages (five periods) in the scenario

tree part of the hybrid scenario structure. At time 0, the individual has wealth of w0 =

£80,000 in his retirement plan. His annual wage starts at £40,000, so L0 = L̃0 = 40, 000

in Eq. (11) and Eq. (12), or equivalently Ln0 = L̃n0 = 40, 000 in Eq. (S.5) and Eq. (S.6).

He contributes ten per cent (φ = 10%) of his nominal labour income to his retirement

plan.

Average real labour income with age typically exhibits a concave shape unless defla-

tion occurs. National statistics show that the average real wage tends to decline after age

40–50 (Office for National Statistics, 2015). We employ a deterministic quadratic func-

tion for f in the real labour income mode of Eq. (11), and use the parameter estimates

of Blake et al. (2007)7.

5.2. Optimal annuitization and investment without risk to real labour income

First, we consider the case where there is no real labour income uncertainty: there

are no stochastic shocks to real labour income, συ = σε ≡ 0 in Eq. (11).

Our numerical results show that the optimal strategy to secure retirement income

leads to fairly early and continual purchase of deferred annuities over the working lifetime

of the investor. This is illustrated in Fig. 3, which shows average and percentile values of

annual retirement income accumulated in real terms from holdings of nominal deferred

5 In the numerical results that follow, we assume that the individual has a CRRA (power) utility, as
defined in section 2, with representative relative risk aversion coefficient γ of 3 or 5, and time impatience
ρ of 0.02 or 0.04. This is in common with other long-term portfolio and annuity studies, e.g. Huang
et al. (2017), Horneff et al. (2010), Koijen et al. (2011) and Viceira (2001).

6Institute and Faculty of Actuaries, S1PML/S1PFL—All pensioners (excluding de-
pendants), male/female lives www.actuaries.org.uk/research-and-resources/documents/

s1pml-all-pensioners-excluding-dependants-male-lives(www.actuaries.org.uk).
7The real labour income function scaled to 1 at the final age of 60 is w(y) = 0.5963 + 2.3708y −

1.9671y2, where y = (x − 20)/(60 − 20), x = 20, 21, . . . , 60. The coefficients, estimated from the New
Earnings Survey of the Office for National Statistics in 1998, are for a male all-occupation group. For
details, refer to Blake et al. (2007)
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Fig. 3 – Average and percentiles of optimal secured retirement income (×£1,000 p.a.) through either
inflation-protected deferred annuities (IP-DAs) or nominal deferred annuities (N-DAs) for different co-
efficients of risk aversion γ and time preference ρ, in the absence of labour income risk and bequest
motive. All values are presented in real terms.

annuities (N-DAs) and inflation-protected deferred annuities (IP-DAs), at various ages.

From age 65 onwards, the annual annuity payouts, in real terms, are shown and these

are constant for the infation-protected annuity but declining for the nominal annuity.

The four panels represents four different individuals with different risk aversion and time

preferences. There is no bequest motive (κ = 0.).

It is clear from Fig. 3 that nominal annuities are purchased at earlier ages than

inflation-protected annuities. This is because a younger investor implicitly holds larger

human capital than an older one ceteris paribus, labour income is perfectly correlated

with inflation here, so the nominal annuity is riskier than the inflation-protected annuity,

and at younger ages more risk can be taken. We also observe, by comparing the panels

on the right to the ones on the left in Fig. 3, that a more risk-averse investor buys

less nominal annuities and more inflation-protected annuities, the latter being less risky

than the former in real terms. Comparing the bottom panels to the top ones in Fig. 3,

we see that the more impatient an investor, the more he purchases nominal annuities.

This is sensible since cash flows from nominal annuities decline in real terms, satisfying

the more impatient investor.

Average optimal asset allocations over period till retirement are presented in Fig. 4.

The bar graphs in the first and third rows show average asset allocations including
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Fig. 4 – Optimal investment and deferred annuity proportions on average at different ages till retirement
for different coefficients of risk aversion γ and time preference ρ, in the absence of labour income risk
and bequest motive. The second and fourth rows show proportions of financial assets only. IL-Bond is
inflation-linked bond, IP-DA is inflation-protected deferred annuity, N-DA is nominal deferred annuity.

20



40 50 60 70 80 90 100 110 120

age

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

re
al

 r
et

ire
m

en
t i

nc
om

e 
(£

 1
,0

00
 p

.a
.)

(  = 5,  = 0.02)

(a) No labour income risk

40 50 60 70 80 90 100 110 120

age

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

re
al

 r
et

ire
m

en
t i

nc
om

e 
(£

 1
,0

00
 p

.a
.)

(  = 5,  = 0.02)

AVG,IP-DAs
AVG,N-DAs
5PCT,IP-DAs
5PCT,N-DAs
95PCT,IP-DAs
95PCT,N-DAs

(b) With labour income risk

Fig. 5 – Average and percentiles of optimal secured retirement income (×£1,000 p.a.) through either
inflation-protected deferred annuities (IP-DAs) or nominal deferred annuities (N-DAs) in the absence of
labour income risk (left panel) and with labour income risk (right panel). Risk aversion γ = 5 and time
preference ρ = 0.02 are the same. All values are presented in real terms. There is no bequest motive.

deferred annuities, and those in the second and fourth rows concentrate on financial

assets only, excluding deferred annuities. At retirement (age 65), only annuities are

held. Comparing the right-hand panels to the left-hand panels, we find that equity

allocation is lower, bond allocation higher, and annuity allocation marginally higher,

the greater the investor’s risk-aversion is.

A key result from Fig. 4 is the dominance of deferred annuity holdings over financial

asset holdings. This is a function of the historical data, 1985–2017, that we used to

parameterize our financial market model and price annuities. Long-term rates fell during

this period, meaning that annuities were cheap at the start, and our model rightly favours

annuities over financial assets, on average.

We also find that nominal deferred annuities dominate their inflation-protected

cousins, and that nominal bonds dominate inflation-linked bonds. This initially sur-

prising result follows from the fact that long-term real yields were on average negative

over this historical period (the mean of β̃1,t in online supplementary section Table S-1 is

-0.12%) so inflation-indexed securities and products were expensive. Over this historical

period, the long-term nominal yield is highly correlated with the long-term real yield

(the correlation of β1,t with β̃1,t in online supplementary section Table S-1 is 0.7319).

Investing in the long-term nominal bond fund thus helps to hedge price changes in not

only nominal but also inflation-protected annuities to secure real retirement income.

The average long-term nominal rate is 3.92% (the mean of β1,t in online supplementary

section Table S-1), which is higher than the average annual equity return (the average

of monthly return rt in online supplementary section Table S-1 is 0.22% accumulating

to 2.63% p.a.), explaining the preference of nominal bonds over equities.
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(b) With labour income risk

Fig. 6 – Optimal investment and deferred annuity proportions on average at different ages till retirement
in the absence of labour income risk (left panel) and with labour income risk (right panel). Risk aversion
γ = 5 and time preference ρ = 0.02 are the same. There is no bequest motive. IL-Bond is inflation-linked
bond, IP-DA is inflation-protected deferred annuity, N-DA is nominal deferred annuity.

5.3. Optimal annuitization and investment with risk to real labour income

Next, we consider the case where there are risks to real labour income. We use the

parameterization of Cocco et al. (2005), based on income data for a college-educated

worker, for the volatility of permanent and temporary shocks to real labour income:

σ2
υ = 0.02 and σ2

ε = 0.05 in Eq. (11).

Fig. 5 compares secured retirement income without and with labour income risk.

More retirement income is received from the inflation-protected annuities than from the

nominal annuities when labour income risk is present. Fig. 6 compares the average

allocations in the two cases. Allocations to inflation-protected annuities and to bonds

are marginally higher in the presence of labour income risk than in its absence. These

results are as anticipated: implicit wealth, including human capital, is riskier if the

investor has risky real labour income than if he does not, so in the first case he should

choose less risky investment and annuity strategies in terms of achieving real retirement

income.

5.4. Investigating the dynamic solution

The optimal investment and annuity strategies are, of course, dynamic. In this sec-

tion, we investigate the dynamic strategy by considering the decisions made on specific

scenario nodes. We demonstrate how the strategy is explained by realized asset prices

on a node and expected asset returns on descendant nodes. The model parameters and

assumptions are the same as in the case with labour income risk in subsection 5.3.

Table 6 shows optimal investment and deferred annuity decisions on the root node

at age 40 and on selected nodes at age 45, so that we can compare different scenarios.

Case (a) in Table 6 shows that, at age 40, the optimal decision is to buy 12.55 units of

the bond fund and 20.57 units of nominal deferred annuity. The prices of the cash, bond,

equity, and inflation-linked bond fund units are £1,000. The prices of the nominal and

22



Table 6 – Optimal investment and deferred annuity choices with labour income risk at ages 40 and 45
under different scenarios. Risk aversion and time preference are γ = 5 and ρ = 0.02. No bequest motive.

Age Node Conditional expected 5-year returns Net purchases of unitsa

[risk premium in brackets] (prices in parentheses)

Cash Bond Equity IL-Bond Cash Bond Equity IL-Bond IP-DAb N-DAb

40 (a) root node 0.113 0.266 0.134 0.199 0.000 12.555 0.000 0.000 0.000 20.570
[0.153] [0.021] [0.086] (1,000) (1,000) (1,000) (1,000) (15,105) (4,251)

45 (b) the lowest bond 0.394 0.556 0.369 0.351 0.000 31.653 0.000 0.000 0.000 9.379
& N-DA prices [0.163] [-0.025] [-0.043] (1,113) (596) (2,485) (889) (6,703) (1,816)
(c) the largest 0.111 0.330 0.273 0.217 0.000 -8.360 0.000 0.000 0.000 10.796
N-DA purchase [0.219] [0.162] [0.106] (1,113) (1,172) (800) (1,310) (12,644) (3,740)
(d) the largest cash 0.379 0.285 0.214 0.302 8.218 -12.555 0.000 0.000 2.659 0.000
& IP-DA purchases [-0.094] [-0.165] [-0.077] (1,113) (709) (519) (774) (7,108) (2,896)
(e) the largest 0.129 0.239 0.125 0.205 0.000 34.029 0.000 0.000 0.000 0.000
bond purchase [0.111] [-0.004] [0.076] (1,113) (1,184) (949) (1,149) (14,143) (5,262)
(f) the largest -0.194 -0.203 -0.139 -0.140 0.000 -12.555 38.409 8.743 0.000 0.000
equity purchase [-0.009] [0.055] [0.054] (1,113) (2,412) (800) (1,959) (44,020) (16,742)

a Units in funds, or units of deferred annuities. A negative number means that there is a net sale.
b N-DA (IP-DA)= nominal (inflation-protected) deferred annuity. One unit of N-DA (IP-DA) is equiv-
alent to £1,000 p.a. of secured nominal (real) retirement income.

inflation-protected deferred annuities are £4,251 and £15,105 for £1,000 p.a. of nominal

and real retirement income, respectively.

Case (b) in Table 6 displays the scenario at age 45 with the lowest prices of nominal

bond and nominal deferred annuity among all the scenarios at age 45. The lowest price

of the nominal deferred annuity leads the risk-averse investor optimally to buy 9.379

units of this annuity. He also buys 31.653 units of the nominal bond fund because bond

returns will mean-revert and this bond fund has an expected risk premium over cash of

16.3% over the next 5 years till age 50. All other financial assets are expected to have

negative risk premiums, and are not purchased.

Case (c) in Table 6 presents the scenario at age 45 where the most units of nominal

deferred annuity are bought. The price of this annuity has fallen (£3,740 compared to

£4,251 in case (a)) whilst the price of the nominal bond fund fund has increased (£1,172,

up from £1,000 in case (a)). The investor therefore sells about two thirds of his original

holding of the bond fund at age 40 to buy nominal deferred annuities thereby securing

£10,796 p.a. of nominal retirement income.

Case (d) refers to the scenario where the most units of the cash fund and inflation-

protected deferred annuities are purchased. Cash is expected to return 37.9% over

the next 5 years whereas the other assets are expected to return less, hence the large

investment in the cash fund. The inflation-protected deferred annuity is cheap, having

more than halved in price from case (a) from £15,105 to £7,108, encouraging the investor

to secure real retirement income of £2,659 p.a. Similarly, the largest purchase of nominal

bond in case (e) may be explained by its relatively cheap price and by its high expected

return, with an expected premium of 11.1% over cash over the next 5 years. On the

other hand, equity is the only asset whose price falls from case (a) to the scenario in

case (f), and it also has the highest expected risk premium among the financial assets.

Unsurprisingly, case (f) is the scenario at age 45 with the largest equity purchase.
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Table 7 – Certainty equivalent values (£ p.a.) when the availability of different types of annuity is
restricted, for different coefficients of risk aversion γ and time preference ρ.

Preferences Availability

γ ρ IP+N IP N IP+N IP N
DA+IA DA+IA DA+IA IA IA IA

3 0.02 14,396.83 9,316.08 13,801.32 12,567.78 8,911.84 8,424.12
(0.00%) (-35.29%) (-4.14%) (-12.70%) (-38.10%) (-41.49%)

3 0.04 20,551.62 13,025.18 20,003.43 17,751.67 12,459.99 12,206.63
(0.00%) (-36.62%) (-2.67%) (-13.62%) (-39.37%) (-40.60%)

5 0.02 13,227.98 10,180.07 11,990.06 11,250.87 9,458.91 8,250.79
(0.00%) (-23.04%) (-9.36%) (-14.95%) (-28.49%) (-37.63%)

5 0.04 15,976.37 12,037.21 14,785.08 13,391.44 11,184.49 10,167.68
(0.00%) (-24.66%) (-7.46%) (-16.18%) (-29.99%) (-36.36%)

IP+N/DA+IA: both inflation-protected and nominal annuities are available, in both deferred and
immediate versions; IP/DA+IA: only inflation-protected annuities are available, both deferred and
immediate; N/DA+IA: only nominal annuities are available, both deferred and immediate; IP+N/IA:
both nominal and inflation-protected annuities are available, but only immediate annuities; IP/IA:
only inflation-protected immediate annuities are available; N/IA: only nominal immediate annuities
are available.

The dynamic optimal annuity and investment strategy is therefore explained by

current asset prices and expected returns. The predictability of asset returns, in the VAR

model fitted to data in section 4, is exploited by the multi-stage stochastic programming

model, and the optimal strategy dynamically responds to market changes.

5.5. Availability of deferred annuities

We wish to compare the situations where the availability of different types of an-

nuities is restricted. We consider six possible situations depending upon which feature

is unavailable: nominal or inflation-protected payments, deferred or immediate payout.

To compare these situations, we calculate a certainty equivalent (CE) value, which is

the level of constant real retirement income which generates a utility equal to the max-

imized expected utility, in each of these situations. We use the numerical example in

section 5.3, i.e. with labour income risk.

The results are tabulated in Table 7. The worst CE value is recorded when only

nominal immediate annuities are available irrespective of the investor’s risk and time

preferences (last column of Table 7 labelled N/IA). Unsurprisingly, when there is utmost

flexibility and all types of annuities are available, the highest CE value is recorded (third

column of Table 7 labelled IP+N/DA+IA), but this is about 60% better in terms of

equivalent real retirement income than the worst case. This suggests that individual in-

vestors’ welfare is severely impaired in the current U.K. markets where the most common

distribution strategies offered are nominal immediate annuities and income drawdown.

An interesting finding is that inflation-protected immediate annuities enhance welfare

compared to their nominal cousins (compare the last two columns of Table 7) but that,

when deferment is available, access to a nominal annuity is better than access to an

inflation-protected annuity (compare the columns labelled IP/DA+IA and N/DA+IA).
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As we saw in section 5.2, the average long-term real interest rate was slightly negative

in the historical period (1985–2017) on which our model is calibrated, making inflation-

protected deferred annuities very expensive.

These results show the importance of the availability of deferred annuities and also

that, for long deferment periods, providing a nominal deferred annuity may be better

than an expensive inflation-protected deferred annuity.

5.6. Model validation and results over different historical periods

In order to validate our results, we generate several scenario structures to verify that

our optimal solutions do not vary significantly both qualitatively and quantitatively. For

any given historical period over which our model is parameterized, we only show the

results on one scenario structure so that comparisons do not involve sampling error.8

However, we also calibrate the scenario structure over different historical periods in order

to test that our central conclusions hold, and we describe this here.

In the earlier sections, our financial market model was parameterized on U.K. data

in the period 1985–2017. Because of the negative average long-term real yield, and the

steep upward sloping nominal yield curve, nominal bonds and nominal deferred annuities

played a significant role in the average asset allocation. In this section, we calibrate our

model on different historical sub-periods to examine if investment and annuity decisions

change. Average allocations are shown in Fig. 7 for four different periods: the original

Jan. 1985–Jun. 2017 period, Jan. 1985–Dec. 1997 (before the Asian financial crisis), Jan.

1997–Dec. 2007 (between the Asian and the global financial crisis), and Jan. 2008–Jun.

2017 (after the global financial crisis).

Average allocations are strikingly different over these different periods. First, this

reminds us that our model produces dynamic asset allocation and annuitization deci-

sions, but that only averages are shown in Fig. 7. Second, optimal portfolio decisions

are sensitive to model calibration. Third, deferred annuities are bought early and in

increasing amounts, on average, in all four periods in Fig. 7, and thus have a signficant

role to play in retirement planning, irrespective of the economic cycle.

We note that our model produces sensible results in each sub-period considered. For

example, in the 2008–17 sub-period (bottom right panel of Fig. 7), negative long-term

real yields and near-zero nominal yields make deferred annuities and bonds expensive

and unappealing, and the model takes advantage of the rising stock market with a large

and falling equity allocation. In the 1985–97 sub-period (top right panel of Fig. 7),

high short rates to combat inflation make cash attractive in the earlier years. This is

discussed further in online supplementary section S-4.

8 We thank a reviewer for suggesting that a number of scenario trees can be generated and used for
formal validation purposes. For robustness, results can also be averaged over several scenario trees.
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(DataSet3: 1998-2007)
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(DataSet4: 2008-2017)

 40  45  50  55  60  65

age

0.00

0.25

0.50

0.75

1.00

av
er

ag
e 

as
se

t p
ro

po
rt

io
n

Fig. 7 – Optimal investment and deferred annuity allocations of overall wealth on average over the
planning horizon and for different datasets. Constant relative risk aversion (γ), time preference (ρ), and
bequest (κ) coefficients are γ = 5, ρ = 0.02, and κ = 0.0 respectively. Volatilities of the permanent and
temporary shocks are 0.02 and 0.05 respectively.

6. Conclusion

We construct an optimal investment model with deferred annuities for an individual

investor who is saving for retirement. The individual’s labour income is uncertain and is

subject to exogenous permanent and temporary shocks in addition to price inflation. Our

results show that buying nominal and inflation-protected deferred annuities, continually

and from an early age, is an optimal strategy when the objective is to maximize the

expected utility of real retirement income and when the retirement income is secured by

annuitization. The balance between inflation-protected and nominal deferred annuities

depends on expectations of long-term real and nominal rates. In the presence of shocks

to real labour income, inflation-protected deferred annuities are marginally preferred to

nominal deferred annuities.

Optimal investment in financial assets (cash, nominal bond, inflation-linked bond

and equity) also depends on financial market expectations, but portfolio riskiness typ-

ically declines with age, consistent with life-cycle models. If welfare is measured in

terms of a certainty equivalent of real retirement income, we find that welfare falls by

about 40% if deferred annuities are not available and only nominal immediate annuities

are available at retirement. When we calibrate our model on different historical sub-

periods, we find that our key result about the importance of early purchases of deferred
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annuities appears to be robust to different financial market expectations. The actual

portfolio composition and annuity allocation vary, but the investment portfolio becomes

less risky as retirement approaches.

Besides the results that we obtain in the context of retirement planning, we make

some contributions in terms of modelling using multi-stage stochastic programming.

We suggest a new hybrid scenario structure which combines a scenario tree in the pre-

retirement phase with scenario fans in the post-retirement phase. We also implement

an unconstrained non-linear program to generate shocks to real labour income which

are independent of financial market scenarios. We also implement a scenario generation

procedure that avoids arbitrage, using the methods of Klaassen (2002) and Geyer et al.

(2014).

Future work will address some of the limitations of our model. Jurisdiction-specific

taxes and transaction costs can be implemented in the model to enhance its practical

usefulness. Retirement provision also takes place through employer-sponsored institu-

tional vehicles, which deserve further investigation (Consiglio et al., 2015). Flexibility in

the labour supply, i.e. hours worked, affects contributions to the retirement plan and is

not considered here. The effects of housing and mortgage costs, and different mortality

rates for impaired lives or different population groups, are also ignored. Power utility

does not capture the elasticity of intertemporal substitution in consumption and an

Epstein-Zin utility may be implemented. Other rational and behavioural factors such as

habit formation and hyperbolic discounting can also be considered. Annuity products

such as variable annuities can be added to the portfolio of annuities available. Life and

health insurance can also affect optimal retirement planning. These extensions will be

studied in subsequent work.
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A time representation of the optimization problem is given in section S-1 below. We

provide further information on the parameterization of the scenario tree in section S-2.

Scenario generation for labour income is discussed in section S-3. Further results, when

our financial market model is parameterized using different historical periods, are stated

in section S-4.

S-1. Time Representation of the Optimization Problem

The optimization problem presented in the paper in Eq. (1a)–Eq. (1j) is given in a

nodal representation suitable for MSP. The equivalent equations in the more usual time

representation are given here.
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{Xt,t∈[0,T ]}

E0

 ∑
t∈[T,τ)
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s.t. Wt+1 = Wte
−Πt+1 + exp

(
−
∑t+1

1 Πs

)[
φLt +

∑
i∈F

(Si,t+1 − Si,t)Xi,t

− SA,t(XA,t −XA,t−1) − S
Ã,t

(
X
Ã,t
−X

Ã,t−1
eΠt

)]
for t ∈ [0, T ),

(S.1b)

It = X
Ã,T

exp
(
−
∑T

1 Πu

)
+ XA,T exp

(
−
∑t

1Πu

)
for t ∈ [T, τ), (S.1c)

Xi,t ≥ 0 for i ∈ A ∪ F and t ∈ [0, T ], (S.1d)

XA,t ≥ XA,t−1 for t ∈ (0, T ], (S.1e)

X
Ã,t
≥ X

Ã,t−1
eΠt for t ∈ (0, T ], (S.1f)

WT =
[
SA,T (XA,T−XA,T−1) + S

Ã,T

(
X
Ã,T
−X

Ã,T−1
eΠT

)]
exp

(
−
∑T

1 Πt

)
,

(S.1g)

Xi,T = 0 for i ∈ F , (S.1h)

Wt ≥ 0 for t ∈ [0, T ], (S.1i)

W0 = w0 w.p. 1. (S.1j)

In Eq. (S.1a) above, the decision variables over which the expected utility is maxi-

mized are the portfolio and annuity purchase decisions over the planning horizon [0, T ].

The budget constraint, in Eq. (S.1b) above, displays the dynamics of real wealth Wt in

the retirement plan, i.e. Wt is nominal wealth at time t deflated back to time 0 using the

realized inflation rates {Πs}t1. Nominal wealth is increased by contribution, which is a

fixed proportion φ of nominal labour income Lt, as well as by price changes in financial

assets (recall that F = {E,B, B̃, C} denotes the set of financial assets). Wealth is also

reduced if there is are withdrawals to buy deferred annuities at time t.

Eq. (S.1c) shows the real retirement income It at time t ∈ [T, τ) during retirement,

this being the nominal income from annuities deflated back to time 0. Recall that

X
Ã,T

is the number of units of inflation-protected annuities held at retirement, and this

number increases every year in line with price inflation. The constraint in Eq. (S.1d)

means that short selling is not allowed. The constraint in Eq. (S.1e) means that units of

nominal annuities cannot be sold, but new units can be bought. Similarly, the constraint

in Eq. (S.1f) means that units of inflation-protected annuities cannot be sold, but new

units can be bought, and in addition the number of units held increases in line with price

inflation every year. The terminal conditions in Eq. (S.1g) and Eq. (S.1h) assert that,

at retirement time T , all financial assets, except annuities, are sold off, and all wealth in

the retirement plan is annuitized. Eq. (S.1i) ensures that wealth remains non-negative.

The initial condition in Eq. (S.1j) states that the investor has a known initial wealth at

time 0.
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S-2. Scenario Generation: Moment Matching Method

Recall from section 3.3 that N is the set of all nodes in the structured scenarios; Nt
is the set of nodes at time t. The scenario tree component of the structured scenarios

consists of the nodes set {Nt, t ∈ [0, T ]}. The set of children nodes of node {Nt, t ∈
[0, T )} is denoted by {n+}. Within the scenario tree component, the time interval

between node n and its children nodes {n+} is ∆t. At each node n ∈ Nt, Rn is the

equity log-return over a ∆t-long time interval ending at time t (Eq. (6)); Πn is the log

inflation rate over a ∆t-long time interval ending at time t (Eq. (8) and Eq. (1)); rn is

the equity log-return over a month ending at time t (Eq. (3)); πn is the log inflation

rate over a month ending at time t (Eq. (3)); and β1,n, β2,n, β3,n, β̃1,n, β̃2,n and β̃3,n

are the Nelson-Siegel term structure parameters for nominal and real interest rates at

time t (Eq. (7) to Eq. (10), and Eq. (3)).

The moment matching method (Høyland & Wallace, 2001; Klaassen, 2002) is used

here for generating scenario trees of accumulated equity returns, accumulated inflation

rates, three Nelson-Siegel parameters for real yield curves, and the other three Nelson-

Siegel parameters for nominal yield curves. To be precise, we combine the sequential

approach of Høyland & Wallace (2001) with the moment matching method.

A large multi-period tree consists of many small single-period sub-trees. The first-

period sub-tree has a number of outcomes corresponding to each child node in the set

{n+
0 }. The outcomes for the first-period sub-tree are obtained by matching the first

four moments of the distributions of state variables from the financial model. For the

second-period sub-trees, the conditional outcomes are obtained by matching the first

four moments of the conditional distributions on outcomes of the first-period sub-tree.

This procedure is executed sequentially for the third, fourth etc. sub-trees until the final-

period sub-trees, whose outcomes are the nodes in NT . This ensures that all conditional

distribution properties are matched fully throughout the whole scenario tree.

The scenario tree that we construct in our multi-stage stochastic programming prob-

lem has six stages. The time interval between the stages is ∆t, so T = 5∆t. At each

node n, we store the state variables [Rn, Πn, rn, πn, β1,n, β2,n, β3,n, β̃1,n, β̃2,n, β̃3,n] em-

ploying the same notation as before except that we index by node n rather than by time.

This means that, if node n occurs at time t, then Rn and Πn denote equity log-return

and inflation log-rate respectively over a ∆t-long time interval ending at time t (Eq. (6)

and Eq. (8)); rn and πn denote equity log-return and inflation log-rate respectively over

a month ending at time t (Eq. (3)); and βn = [β1,n, β2,n, β3,n] and β̃n = [β̃1,n, β̃2,n,

β̃3,n] denote the Nelson-Siegel term structure parameters for nominal and real spot rates

respectively at time t (Eq. (2)). Initial state values at the root node n0 are made equal

to the estimated unconditional expected means laid out in Table 4. Every node in the

scenario tree, except nodes at time T , branches off to eight children nodes. We require at

least eight outcomes to perfectly match the first four moments of the ten state variables.

We derive the moments of the conditional distributions of the ten state variables

(Rn+ , Πn+ , rn+ , πn+ , β1,n+ , β2,n+ , β3,n+ , β̃1,n+ , β̃2,n+ , β̃3,n+) on its unique parent
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node n. Let H be the number of monthly time steps of our vector autoregressive (VAR)

model in Eq. (3) which matches the time interval ∆t between the parent node and its

children nodes in the scenario tree.

Eq. (S.2) and Eq. (S.3) show the first-two moments of the accumulated equity return,

accumulated inflation rate, and six Nelson-Siegel parameters. Barberis (2000) and Ped-

ersen et al. (2013) apply these equations to scenario generation for their asset-liability

management models. Let ζn+ = [Rn+ , Πn+ , β1,n+ , β2,n+ , β3,n+ , β̃1,n+ , β̃2,n+ , β̃3,n+

]′
and zn = [rn , πn, β1,n, β2,n, β3,n, β̃1,n, β̃2,n, β̃3,n

]′
, then we have the following equations:

E(ζn+ |zn) =

((
H−1∑
h=1

(I + J (H − h)) Φh−1
1

)
+ ΦH−1

1

)
Φ0 +

(
ΦH

1 +

H−1∑
h=1

JΦh
1

)
zn

(S.2)

V(ζn+ |zn) = Σz + (J + Φ1) Σz (J + Φ1)′ +
(
J + JΦ1 + Φ2

1

)
Σz

(
J + JΦ1 + Φ2

1

)′
+ · · · +

(
ΦH−1

1 +

H−1∑
h=1

JΦh−1
1

)
Σz

(
ΦH−1

1 +

H−1∑
h=1

JΦh−1
1

)′
, (S.3)

where J = diag([1, 1, 0, 0, 0, 0, 0, 0]). Note that Φ0, Φ1 and Σz are the coefficient and

covariance matrices from the VAR model (Eq. (3)). If J = 0 (a 8×8 matrix of zeros), then

Eq. (S.2) and Eq. (S.3) simplify to E(zn+ |zn) and V(zn+ |zn) respectively. In addition,

we can evaluate the covariances: σR,r, σR,π, σΠ,r, and σΠ,π. For example, the covariance

σR,r between Rn+ and rn+ follows:

σR,r = J (1)ΣzJ
(1)′ + Φ

(1)
1 Σz

(
J (1) + Φ

(1)
1

)′
+
(

Φ
(1)
1 Φ1

)
Σz

(
J (1) + Φ

(1)
1 + Φ

(1)
1 Φ1

)′
+ · · · +

(
Φ

(1)
1 ΦH−2

1

)
Σz

(
J (1) +

H∑
h=2

Φ
(1)
1 ΦH−h

1

)′
, (S.4)

where Φ
(1)
1 is the first row of Φ1 and J (1) is the first row of J .

Aggregating the moments information from Eq. (S.2) to Eq. (S.4), the conditional

expectations and covariances of the ten state variables (Rn+ , Πn+ , rn+ , πn+ , β1,n+ , β2,n+ ,

β3,n+ , β̃1,n+ , β̃2,n+ , β̃3,n+) from the unique parent node n can be evaluated. These are

used, as described in section 3.3, to generate the scenario tree component of the hybrid

scenario structure. Table S-1 shows the conditional expectations, standard deviations

and correlation coefficients of the ten state variables from the root node n0, whose state

values are given as the unconditional expected mean µzz in Table 4.

We verify how well our scenario tree captures the financial market model described in

section 4 by comparing unconditional cumulative distributions of some of the variables

generated on the scenario tree together with the actual cumulative distributions from

the financial market model: see Fig. S-1. Although the scenario tree discretizes both

the time set and the state space of variables, it replicates the distributions very closely,

particularly in the later stages.
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Table S-1 – Mean, standard deviations and cross correlations of financial variables Jan 1985–Jun 2017.

Rt Πt rt πt β1,t β2,t β3,t β̃1,t β̃2,t β̃3,t

E 0.1317 0.1602 0.0022 0.0027 0.0392 -0.0283 0.0135 -0.0012 -0.0191 0.0210√
V 0.3717 0.0586 0.0444 0.0043 0.0153 0.0296 0.0315 0.0163 0.0190 0.0204

Rt 1.0000 0.2332 0.1354 0.0324 0.1298 0.0095 -0.1362 0.0352 -0.1305 -0.0639
Πt 1.0000 0.0388 0.2010 0.3571 0.4278 -0.0383 0.4091 0.1041 -0.1926
rt 1.0000 -0.0120 0.1046 -0.0257 -0.0654 0.0407 -0.0484 -0.0398
πt 1.0000 0.0993 0.2135 0.0554 0.1470 -0.1193 -0.0194
β1,t 1.0000 0.1802 -0.0083 0.7319 -0.1772 -0.1432
β2,t 1.0000 0.2242 0.6196 0.4923 -0.3369
β3,t 1.0000 0.3791 -0.0812 0.2356

β̃1,t 1.0000 0.0676 -0.3526

β̃2,t 1.0000 -0.4440

β̃3,t 1.0000

Monthly data of FTSE 100 from Bloomberg, retail price index from the Office for National Statistics,
fitted nominal and real yield curves from the Bank of England are used from January 1985 to June 2017
(λ = 0.1519 and λ̃ = 0.2508 for the Nelson-Siegel yield nominal and real curves model).

S-3. Scenario Generation for Labour Income

The labour income model given by Eq. (11) and Eq. (12) in Subsection 4.4 may be

transformed into a nodal form with inflation Πn already generated from the financial

scenarios. For the sake of simplicity, we assume henceforth that real wage inflation

Gn = G at every node, i.e. it is constant. Then, real and nominal labour income

scenarios follow

L̃n = L̃n− · exp (f(δ + tn)− f(δ + tn−) + υn + εn − εn−) , (S.5)

Ln = L̃n · exp
(∑

m∈sn(Πm +G)
)
, (S.6)

for n ∈ {Nt, t ∈ (0, T )} and an initial value L̃n0 = Ln0 w.p. 1 at the root node. In

equation Eq. (S.5) above, tn is the time at which the node n belongs. And in equa-

tion Eq. (S.6) above, sn is the set of all predecessor nodes of node n, i.e. {n, n−, . . . , n0}.
Evidently from Eq. (S.5), the temporary real labour income shock εn− at the parent node

n− is removed from the real labour income at the current node n, while its permanent

shock υn− persists through L̃n− .

Visiting each node n ∈
⋃
t∈[0,T )Nt, we generate the permanent shocks υn+ and

temporary shocks εn+ . Note that υn+ and εn+ are both column vectors with eight

rows, since each node branches off to eight child nodes in the scenario fan part of the

hybrid scenario structure. Scenarios of the independent shocks are calculated by solving

an unconstrained non-linear optimization problem numerically with residuals en+ of

financial asset returns:

arg min
{υn+ ,εn+}

∑
x∈{υn+ ,εn+}

o(x, en+ , prn+)2 +
∑

m=1,...,4

g(x,m, prn+)2

 , (S.7)
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Fig. S-1 – Cumulative Density Functions (solid) from the financial market model and Cumulative Mass
Functions (dot-dash) generated from the scenario tree for five variables at different times during the
planning period.

where o(x, en+ , prn+) = ‖e′n+diag(prn+)x‖ := x ⊥ en+ , and the function g is a deviation

of the scenarios {υn+ , εn+} from their target m-th distributional moment given condi-

tional probabilities prn+ . This ensures that the real labour income shocks satisfy the

desired distributional properties and are also as close to independent as possible from

the financial asset returns.

Table S-2 shows the distributional properties of the generated scenarios of real labour

income starting with a salary of £40,000 at time 0. Notice that the standard deviation

(StDev) values of the real labour income growth rate, in the presence of the temporary

real labour shock only, does not change with age (bottom half of Table S-2), whereas it

increases with age when the permanent shock only is present (top half of Table S-2).

Finally, we note that generating the overall scenario structure takes about two hours

with Matlab by using a parallel loop parfor on a HP desktop computer with Intel CPU

i7-7700 3.60 Ghz and 32 GByte memory. We then use an efficient non-linear solver,

6



Table S-2 – Mean and standard deviation (StDev) of annual real labour income growth rate, and per-
centiles of annual real labour income (×£1,000), in the generated labour income scenarios. In the top
half, only permanent real labour income shocks are present, and in the bottom half, only temporary real
labour income shocks are present.

permanent shock only (σ2
υ∆t, σ2

ε) = (0.10, 0.00)
age 40 45 50 55 60

log growth Mean 0.00000 0.01518 -0.01722 -0.10213 -0.25458
log growth StDev 0.00000 0.31623 0.44721 0.54772 0.63246

5th pctl 40.00000 29.72186 17.35576 15.24078 10.89122
(1.00000) (0.04483) (0.03881) (0.04565) (0.04817)

median 40.00000 37.69431 38.51346 35.22053 30.43249
(1.00000) (0.48191) (0.46767) (0.49692) (0.49982)

95th pctl 40.00000 57.27396 86.87215 93.52994 92.30769
(1.00000) (0.81311) (0.91285) (0.94930) (0.94995)

temporary shock only (σ2
υ∆t, σ2

ε) = (0.00, 0.15)
age 40 45 50 55 60

log growth Mean 0.00000 0.01518 -0.01722 -0.10213 -0.25458
log growth StDev 0.00000 0.38730 0.38730 0.38730 0.38730

5th pctl 40.00000 20.66305 23.92481 19.86972 16.47442
(1.00000) (0.18689) (0.04556) (0.04822) (0.04944)

median 40.00000 34.88625 34.96046 35.62132 31.36666
(1.00000) (0.41040) (0.46675) (0.49904) (0.49993)

95th pctl 40.00000 55.25718 80.69439 66.08680 56.81743
(1.00000) (0.78665) (0.93111) (0.94879) (0.94999)

The scenarios are chosen as close as possible to a given percentile (5th percentile, median and 95th
percentile). Actual cumulative probabilities are given in parentheses.

MOSEK, to find optimal investment and deferred annuity choices by maximizing the

objective function in Eq. (1a) subject to the constraints in Eq. (1b) to Eq. (1j).

S-4. Calibrating on Different Historical Periods

The optimal investment and deferred annuity decisions depend on the estimated pa-

rameters of our financial market model. Nevertheless, our objective function drives the

decisions in a consistent way, which is to maximize the expected utility of real retirement

income from annuity. In order to confirm the consistency of our model, we investigate

results with other distinctive datasets. Our original dataset, called DataSet1, is divided

into three datasets: DataSet2 for Jan. 1985–Dec. 1997 (before the Asian financial cri-

sis), DataSet3 for Jan. 1998–Dec. 2007 (between the Asian and global financial crisis),

and DataSet4 for Jan. 2008–Jun. 2017 (after the global financial crisis). Distributional

properties of the state variables for the original dataset are given in Table S-1 in S-2

and, for the new datasets, they are given in Table S-3.

Fig. 7 shows average asset allocations of the four datasets. The optimal asset al-

locations with DataSet2 (before the Asian financial crisis) in the first quadrant shows
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Table S-3 – Mean, standard deviations and cross correlations of financial variables for 3 different periods.

DataSet2: January.1985 - December.1997 (λ = 0.1332 and λ̃ = 0.2345)

Rt Πt rt πt β1,t β2,t β3,t β̃1,t β̃2,t β̃3,t

E 0.5413 0.1866 0.0090 0.0031 0.0669 0.0130 0.0467 0.0399 -0.0121 0.0060√
V 0.4099 0.0681 0.0496 0.0048 0.0121 0.0254 0.0366 0.0051 0.0118 0.0192

Rt 1.0000 -0.1262 0.1326 -0.0140 0.1018 -0.1030 -0.0566 -0.1045 0.0556 -0.0293
Πt 1.0000 -0.0232 0.2266 0.0958 0.3547 -0.2653 0.2631 0.1022 -0.2051
rt 1.0000 -0.0999 0.1865 -0.1449 -0.1628 -0.1238 0.0587 -0.0337
πt 1.0000 -0.0953 0.3412 -0.0173 0.2418 -0.0510 -0.1188
β1,t 1.0000 -0.4008 -0.7540 -0.1216 0.2165 -0.1158
β2,t 1.0000 0.0309 0.5698 -0.1105 -0.0679
β3,t 1.0000 0.0423 -0.2912 0.2279

β̃1,t 1.0000 -0.2425 -0.4648

β̃2,t 1.0000 -0.5353

β̃3,t 1.0000

DataSet3: January.1998 - December.2007 (λ = 0.2989 and λ̃ = 0.3667)

E 0.2044 0.1902 0.0034 0.0032 0.0432 -0.0074 0.0056 0.0048 -0.0135 0.0554√
V 0.3359 0.0312 0.0382 0.0034 0.0057 0.0122 0.0173 0.0077 0.0167 0.0264

Rt 1.0000 0.2533 0.1280 0.0082 -0.2501 0.2584 -0.0327 -0.4097 0.2351 0.1139
Πt 1.0000 0.0603 0.1652 0.0177 -0.1621 -0.1556 -0.4029 -0.1911 0.4097
rt 1.0000 0.0202 0.0119 0.0291 -0.0796 -0.0338 -0.0101 -0.0392
πt 1.0000 0.0537 -0.0025 -0.0752 -0.1092 -0.0636 0.0923
β1,t 1.0000 -0.4621 -0.6696 0.4343 -0.5138 0.1395
β2,t 1.0000 0.2276 -0.0225 0.9047 -0.4680
β3,t 1.0000 0.0785 0.2688 -0.1989

β̃1,t 1.0000 0.0362 -0.6722

β̃2,t 1.0000 -0.6286

β̃3,t 1.0000

DataSet4: January.2008 - June.2017 (λ = 0.4297 and λ̃ = 0.1876)

E 0.2557 0.0521 0.0043 0.0009 0.0100 -0.0084 -0.0463 -0.0243 -0.0178 0.0010√
V 0.2739 0.0430 0.0409 0.0042 0.0120 0.0148 0.0196 0.0092 0.0158 0.0205

Rt 1.0000 -0.0151 0.1331 -0.0875 -0.3064 0.2097 -0.0571 -0.2929 -0.0948 -0.0667
Πt 1.0000 0.0444 0.1677 0.4036 -0.1209 0.2118 0.3188 0.1060 0.2346
rt 1.0000 0.0670 -0.0445 -0.0808 -0.0498 -0.0072 -0.1413 0.0266
πt 1.0000 0.1574 -0.0107 0.0286 0.1554 -0.3150 0.2367
β1,t 1.0000 -0.7769 0.1592 0.8672 -0.2325 0.6199
β2,t 1.0000 -0.1748 -0.6379 0.3254 -0.6287
β3,t 1.0000 -0.2149 0.5491 0.4454

β̃1,t 1.0000 -0.4029 0.2512

β̃2,t 1.0000 -0.3001

β̃3,t 1.0000

Monthly data of FTSE 100 from Bloomberg, retail price index from the Office for National Statistics,
fitted nominal and real yield curves from the Bank of England are used.

that inflation-protected deferred annuity takes priority over nominal deferred annuity.

This is diametrically opposed to the optimal strategy with DataSet1. In addition, the

average optimal investment strategy makes the cash fund dominant in the early stages

and the equity fund in the later stages, among the financial assets. The equity fund is

much more generously used than under DataSet1.
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First of all, in DataSet2, the long-term real interest rate β̃1 starts at 0.0399 (-0.0012

in DataSet1) in which case the investor is more willing to purchase inflation-protected

deferred annuity over nominal deferred annuity. The expected annual inflation rate

(0.0373 = 0.1866/5) is greater than the implied inflation rate (0.0270 = 0.0669−0.0399)

from the yield curves. Volatility of the expected inflation rate is the highest among

the four datasets (0.0681). Thus, the investor needs a way to avoid volatile inflation in

the distant future. For these reasons, the investor does not have to wait for the price

of inflation-protected deferred annuity to drop: he buys inflation-protected deferred

annuity in the early stages, and keep watch to time his purchase of nominal deferred

annuity, in line with this time preference.

The nominal yield curve at the steady state of the VAR model with DataSet2 is

downward slopping: β1 + β2 > β1. The high short-term interest rate compensates its

high volatility. This justifies why investing in cash occurs mainly in the early stages.

Accumulated equity returns are negatively correlated with the long-term real interest

rate β̃1. In other words, positively correlated with price changes in inflation-protected

deferred annuity. On the other hand, the inflation rate Πt is positively correlated with

the long-term real interest rate. The equity fund here is a more suitable hedging tool

for inflation-protected deferred annuity. The long-term nominal interest rate β1 is also

negatively correlated with the long-term real interest rate β̃1. This is one reason why

nominal bonds suddenly disappear in the average optimal investment portfolio.

A similar interpretation can be applied to results from other datasets. For the period

between the Asian financial crisis and global financial crisis, DataSet3 presents a barely

positive long-term real interest rate (0.0048), so that the investor faces the risk of a price

surge in inflation-protected deferred annuity, especially when the rate is negative. The

accumulated inflation shows the highest mean and the lowest standard deviation levels

among the four datasets. These factors push the investor to buy more inflation-protected

deferred annuity much earlier. Inflation is also moderately negatively correlated with the

long-term real interest rate. Because the inflation-linked bond prices depend on changes

in the long-term real interest rate and inflation, under these financial market conditions,

investing in the inflation-linked bond is risky. On the other hand, the long-term real

interest rate, which determines inflation-protected annuity prices, is positively correlated

with the long-term nominal interest rate and negatively correlated with equity returns.

Furthermore, inflation is better hedged by equity than nominal bonds here. For this

reason, investing in equity at later stages is not risky, but is a relatively safe option for

purchasing inflation-protected annuity.

After the global financial crisis in DataSet4, the most notable features are interest

rate levels. The long-term nominal interest rates are close to zero and the long-term real

interest rates are strongly negative. The probability of positive long-term real interest

rates is very low in our scenarios. Thus, purchasing inflation-protected annuity is not

cost-effective, even though the investor desires real retirement income in the context of

positive inflation (0.05325, mean of Πt). As a result, the investor decides to spend a small

9



portion of his wealth on the inflation-protected annuity at retirement. His portfolio is

managed for buying nominal deferred annuity. Equity returns are moderately negatively

correlated with long-term nominal yield β1 (-0.3064), which means that the returns are

somewhat positively correlated with price changes in nominal deferred annuity. The

proportion of long-term nominal bonds increases over the planning horizon, and the

optimal investment and annuitization strategy shifts from a risky to a less risky profile,

in terms of securing retirement income.

The model therefore produces consistent decisions under different financial market

conditions. This also reminds us that the parameterization of the model strongly influ-

ences the optimal decisions that are made by the investor.
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