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Our edits and additions are highlighted in red. Please see also the clean version  

(Lee et al._correspondence_ms_clean.docx). 

 

To the editor: Raman spectroscopy (a type of vibrational spectroscopy) relies upon inelastic 

scattering, in which, after interaction with molecules in a sample, the wavelength of the scattered 

light differs from the wavelength of the incident light, which is typically provided by a laser. This 

shift in wavelength differs according to the type of molecules and their vibrational modes, 

allowing for the analysis of complex sample chemistry in a non-destructive manner (Fig. 1a). 

When Raman spectroscopy is applied for the measurement of microbiological samples, specific 

Raman peaks at different wavenumbers indicate the presence of macromolecules such as 

carbohydrates, proteins, lipids, nucleic acids, and pigments(some refs to be added). Recent advances in 

technology and data analysis now enable the investigation of molecular composition at the 

resolution of a single microorganism with high measurement sensitivity (Fig. 1a). By measuring 

the presence of peaks corresponding to specific macromolecules or differences in spectral shape, 

peak position, and relative intensity of peaks, and often in conjunction with complementary 

techniques, such as stable isotope probing (SIP)1, fluorescence in situ hybridization (FISH)2, or -

omics(ref), Raman spectroscopy enables investigation of cell identity and phenotypes. This 

analytical approach is increasingly being employed to address important questions in both 

fundamental and applied microbiology (Fig. 1b). Notable applications include the measurement 

of microbial diversity in terms of cell identity, metabolic phenotype, and functional role within 

complex microbial communities. Raman spectroscopy is also allowing researchers to untangle the 

complexity of microbial communities, by allowing for the tracking of molecular interactions, 

such as mutualistic, competitive, or antagonistic exchange between microorganisms or between a 

microorganism and its host, and the interactions between microorganisms and their environment. 

In comparison to other technologies offering similar capabilities (enabling analysis of molecular 

composition and structure of samples, for instance, FTIR3, cryogenic electron microscopy (cryo–

EM)4,5, nanoscale secondary ion mass spectroscopy (nanoSIMS)6, nuclear magnetic resonance 

(NMR) spectroscopy7), the versatility in sample size and analysis conditions (in liquid phase or 

dry form) and the ability to measure live microorganisms render Raman spectroscopy applicable 

to diverse sample types, ranging from large nematodes (and beyond) to minuscule viruses 

measuring a few tens of nanometres, collected from various environments spanning oceans, soils, 

mammalian guts, and even other planets like Mars (see refs. 1,8–11 for comprehensive reviews 

about Raman technologies and applications in microbiology). To provide a foundation for this 

growing field, here we announce the establishment of a novel open-access repository for sharing 

of microbiological Raman data within the community and present a set of reporting standards. 



 

5 

 

Despite the potential of Raman spectroscopy in microbiology, the reporting of analytical methods 

and data for microbiological systems has evolved in a haphazard manner and progress in the field 

is hindered by the lack of both a set of standards for data reporting and a common database to 

deposit microbiological Raman data. Raman data from microorganisms is relatively complex to 

analyse because proper interpretation is dependent upon (i) biological context, (ii) experimental 

conditions, and (iii) data processing. We briefly discuss these three aspects here — see refs. 1,8–11 

for detailed information. 

 

Individual Raman spectra from microbiological samples, consisting of discretized wavenumbers 

(typically measured in cm⁻¹) and corresponding Raman scattering signals, typically encompass 

many (often overlapping) peaks that represent chemical bonds of diverse types of 

macromolecules. Identification of the source of each peak often depends on the biological 

context; for example, a peak at 1,570 cm-1 typically corresponds to C–C stretching of nucleic 

acids when analysing microorganisms more generally, but to calcium dipicolinic acids (CaDPA) 

when measuring endospore-forming bacteria8. Moreover, SIP or FISH, often coupled to Raman 

measurements to track metabolic exchange or identify microorganisms of interest, induce a red 

shift of Raman peaks (i.e., peak positions move to lower wavenumbers) or a change in overall 

spectral shape, respectively, adding further complexity to the interpretation of microbiological 

Raman data. 

 

Experimental conditions further complicate the analysis of microbiological Raman data. 

Compared to Raman measurements in research fields in which samples are in the solid state 

(often the case in material science or electrical engineering) or target cells are relatively large (a 

few tens of micrometres, as in biomedical engineering), samples in microbiology often contain a 

diversity of molecules at relatively low concentrations (diverse cell components, with the 

majority in liquid phase) and target cells are rather small (e.g., bacteria or archaea ranging down 

to a few hundreds of nanometres). Microbiological measurements are thus substantially 

influenced by sampling conditions and the biotic and abiotic environment of cells at the time of 

the analysis (Fig. 2). 

 

For both quantitative and qualitative analyses of large datasets, Raman data are often processed 

with computational algorithms8,12 (Fig. 2). Because interpretation can often depend on the 

presence of peak shoulders or small changes in peak locations on the order of a few tens of 
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wavenumbers as is the case in isotope labelling, any computational treatment can potentially 

affect the interpretation of microbiological Raman data. 

 

Considering these three aspects, microbiological Raman data share similarities to other types of 

microbiological data, namely those derived from -omics approaches. While fields that rely on the 

use of these data types have greatly benefitted from the availability of organized central and 

public repositories for published data with reporting standards, the lack of an actively maintained, 

open-access data repository for microbiological Raman data has been an obstacle to the wider 

adoption of Raman spectroscopy in microbiology. Currently, published data are scattered across 

various sources (e.g., deposited on a journal publication webpage or an author’s personal or 

institutional repository) in the absence of rational and clear reporting standards, making it 

challenging for researchers to access and use the data. There are several databases commercially 

available, for example, KnowItAll 

(https://sciencesolutions.wiley.com/solutions/technique/raman/knowitall-raman-collection/) and 

one by S.T. Japan Inc. (https://www.stjapan.de/spectra-databases/raman-spectra-databases/). 

These databases aim to cover the broad range of organic and inorganic materials, and are not 

specific to microbiological Raman data. As such, considering the peculiarities of microbiological 

Raman data described above, a database tailored to microbiological Raman data can be highly 

beneficial to promote sharing and reuse of microbiological Raman data across diverse users 

within the community. Moreover, in light of how useful research databases like GenBank 

(https://www.ncbi.nlm.nih.gov/genbank/) and Uniprot (https://www.uniprot.org/) have proven to 

be, we are witnessing the unique power of ‘collective intelligence’, where each user plays an 

important role for data accumulation over time and the amassed data are used for further analyses 

from different perspectives by other users. Given the similarity of microbiological Raman data to 

those in these databases, a bottom-up, open-access data repository would significantly reinforce 

the power and usefulness of Raman spectroscopy in microbiology. 

 

In this context, we announce the establishment of an open-access web-based repository for 

microbiological Raman data, residing within the BioStudies database13 maintained by a public 

institution, the European Bioinformatics Institute (EMBL-EBI). This centralized repository 

minimizes the risk of data loss or eventual abandonment, offering a long-term common reference 

for analysis with advantages in accessibility and transparency over commercial data analysis 

tools. The data collection, called ‘MicrobioRaman’ 

(https://www.ebi.ac.uk/biostudies/MicrobioRaman/studies), was inspired by the great success and 

usefulness of research databases like GenBank and Uniprot, as well as by discussions among the 

https://sciencesolutions.wiley.com/solutions/technique/raman/knowitall-raman-collection/
https://www.stjapan.de/spectra-databases/raman-spectra-databases/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.uniprot.org/
https://www.ebi.ac.uk/biostudies/MicrobioRaman/studies
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authors of this Correspondence. The platform is now open for current and future Raman users — 

covering data from normal Raman spectroscopy to its advanced variant systems8,14 such as, but 

not limited to, resonance Raman spectroscopy, stimulated Raman spectroscopy (SRS), coherent 

anti-Stokes Raman spectroscopy (CARS), surface-enhanced Raman spectroscopy (SERS), tip-

enhanced Raman spectroscopy (TERS), hyper Raman spectroscopy (HRS), spatially offset 

Raman spectroscopy (SORS), polarized Raman spectroscopy, and time-gated (TG) Raman 

spectroscopy. Step-by-step, recipe-style instructions for deposition of novel datasets are provided 

on the help page (https://www.ebi.ac.uk/biostudies/submissions/help). 

 

MicrobioRaman aims to provide a comprehensive repository of Raman data acquired from 

fundamental and applied microbiology research (Fig. 1b). The platform was collaboratively 

developed among the authors of this Correspondence, and it establishes a set of standards for data 

reporting to ensure reproducible Raman measurements across different users. 

 

The standards for data reporting consist of five sections (Table 1): (i) general information about 

the authors and project underlying novel data submitted; (ii) biological context, including both 

general information and specific sample details; (iii) experimental conditions, encompassing the 

setup used for Raman measurements; (iv) data processing, particularly focusing on the treatment 

of the spectrum; and (v) instrument metadata, such as the type of spike filter, detector 

specifications, and details of the microscope objective. Additionally, the platform allows data 

submitters to specify a public release date for newly deposited data, for example, to ensure 

compliance with publication embargos. 

 

As MicrobioRaman grows, it will become a valuable resource with diverse applications. It will 

serve as a chemical catalogue, housing data on the distribution of compounds across taxa and 

ecosystems. Furthermore, it will function as a source of standardised experimental designs, 

inspiring novel approaches. The current wave of applications of machine learning is already 

beginning to impact Raman-based approaches in microbiology. The ability to collect Raman data 

and make them broadly accessible is timely in this regard, as the effectiveness of machine 

learning approaches often relies on collective intelligence — in particular, data in the repository 

may be reused as part of training datasets in supervised approaches8,12.  

 

In conclusion, we believe that, by establishing reporting standards and facilitating data sharing 

among Raman users, MicrobioRaman will play an important role in promoting the adoption of 

Raman spectroscopy in microbiology. This initiative represents a cornerstone for reproducible 

https://www.ebi.ac.uk/biostudies/submissions/help


 

8 

Raman measurements and will seed further developments in this field. We envision the 

development of new functions for MicrobioRaman as it grows with active participation from 

Raman users in the community and the accumulation of novel microbiological Raman data. With 

this Correspondence, we pledge to deposit our future data into this newly constructed 

infrastructure and we encourage other Raman users to contribute, further reinforcing the power 

and potential of reproducible Raman measurements in microbiology.  
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Fig. 1 | Overview of Raman technologies and their applications in microbiology. a The 

working principles underlying normal Raman spectroscopy and its advanced variant systems. For 

normal Raman spectroscopy, a laser beam interacts with molecules within a sample, resulting in 

Raman scattering after the interaction. Advanced variant systems, which rely upon modification 

of the system configuration, can be categorised into three groups depending on their specific 

advantages: techniques that provide a higher sensitivity for measurement (resonance Raman 

scattering, surface-enhanced Raman scattering, tip-enhanced Raman scattering), techniques that 

enable rapid measurement by virtue of the selection of specific wavenumbers (coherent anti-

Stokes Raman scattering, stimulated Raman scattering), and techniques that provide other 

functions, such as the ability to measure peaks not detectable using normal Raman spectroscopy 

(hyper Raman scattering), among others including spatially offset Raman spectroscopy, polarized 

Raman spectroscopy, and time-gated Raman spectroscopy. For a more comprehensive 

presentation of the working principles and system configurations, see refs. 8,15–22. b Applications 

of Raman spectroscopy in fundamental and applied microbiology. Raman spectroscopy is a 

versatile technique that enables the measurement of a broad size range of samples across diverse 

geographical regions — from large nematodes to minuscule viruses found in oceans, soils, 

mammalian guts, industrial plant systems, and even other planets. By measuring the presence of 

peaks corresponding to specific macromolecules or differences in spectral shape, peak position, 

and relative intensity between Raman peaks, often in conjunction with other complementing 

techniques (e.g., SIP, FISH), Raman spectroscopy facilitates the investigation of microbial 

diversity in terms of cell identity, metabolism, and functional roles within complex communities 

and the environment. It also sheds light on the interactions of cells with other cells, their hosts, 

and the environment. This wide-ranging applicability of Raman spectroscopy makes it an 

invaluable tool in the field of microbiology. 
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Fig. 2 | Pipeline for measurement and analysis of microbiological Raman data and the 

parameters that influence the resulting data. Experimental configurations, in addition to the 

samples themselves, determine the resulting Raman data. When measured Raman spectra display 

a different level or shape of spectral background, they require computational data processing for 

quantitative or qualitative analyses and comparisons between samples. A section describing these 

factors is a part of the reporting standard in the ‘MicrobioRaman’ repository. 
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Table 1 | Reporting standards for microbiological Raman data. The ‘general’ section 

describes general information about the submission; the ‘sample’ section provides the biological 

context and treatment; the ‘setup’ section provides experimental conditions; the ‘treated 

spectrum’ section describes data processing; and the ‘instrument metadata’ section provides 

additional instrumental information that could help users to reproduce the measurements. 

Parameters are colour-coded according to the level of recommended reporting: mandatory (in 

orange), if applicable (in grey), and recommended (in blue). See also the help page of BioStudies 

(https://www.ebi.ac.uk/biostudies/submissions/help) for general instructions for submission of 

novel data. 

 

Section Parameter Description 

General Title Project title 

Release date Desired release date, for example, to ensure compliance 

with a publication embargo 

Description Brief description of the project 

Contacts Contact details for data authors  

Raw data files Unprocessed raw Raman data composed of wavenumbers 

and corresponding Raman intensities 

Publications Information about associated publications (authors, title, 

journal name, year) 

Sample Name of cell or 

compound 

Sample names 

Source Source of a sample, such as a strain collection, a chemical 

supplier, or the environment or tissue from which a sample 

was obtained 

Composition Entities contained in the sample, including not just the cells 

of interest, but also the medium, as well as any extraneous 

materials such as tissue, debris, biofilm matrix, or soil 

Sample condition Whether the cells were dry or wet, fixed or unfixed, and the 

medium in which they were suspended 

Mounting substrate E.g., glass coverslip, aluminum slide, CaF2 slide 

Image files Image files from Raman imaging 

Setup Raman system  Manufacturer and model of scope  

Measurement type E.g., normal Raman scattering; resonance Raman 

scattering; coherent anti-Stokes Raman scattering (CARS); 

stimulated Raman scattering (SRS); hyper Raman 

scattering (HRS); surface-enhanced Raman scattering 

(SERS); spatially offset Raman spectroscopy (SORS); 

polarized Raman spectroscopy; tip-enhanced Raman 

scattering (TERS); time-gated (TG) Raman spectroscopy 

Lasers Wavelength and power of lasers, laser illumination spot 

diameter, neutral density filter 

Treated 

spectrum 

Processed data files Processed Raman data 

Data treatments List of computational algorithms and their parameters and 

sources used for data processing 

https://www.ebi.ac.uk/biostudies/submissions/help
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Instrument 

metadata 

Annotations E.g., the type of spike filter, detector specifications, details 

of a microscope objective or focusing lens 
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