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Abstract 

 
Direct Energy Deposition (DED) is being widely used to repair damaged components to 

increase service life and economical operation. Process parameters including laser power, 

traverse speed and the mass flowrate of the feedstock material may be adapted in-situ. This 

allows bespoke repair strategies to be devised to match the variability in the condition of the 

parts supplied that require repair; however, there are limited modelling techniques that 

allow the adaptive control within the DED process to be represented. In this study, a novel 

modelling strategy is presented which allows the DED process to be modelled in a transient 

state. This allows varying process parameters to be included in the model, to predict the 

transient track geometry and the associated thermomechanical effects of the process. Here, 

a single-track deposition of IN718 with a varying cross section has been modelled utilising 

the proposed approach. The modelling methodology was validated with a corresponding 

experimental study on a deposition made using a Nd:YAG laser source with a coaxial nozzle. 

An in-situ modification was generated by variation of the laser power profile. The track 

profile was compared against focus variation microscopy images and the thermomechanical 

portion of the model was validated through in-situ temperature measurements, 

micrographs and residual stress, obtained from neutron diffraction measurements. A good 

agreement between the predicted and experimental findings were observed. The track 

height and width were predicted with a maximum error of 6.5% and 7.6% respectively. The 

peak temperature and residual stress were predicted within 6.2% and 11.4% respectively. 
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Overall, the modelling method presented will allow complex and bespoke multi parameter 

repair strategies to be rapidly developed.  

 

Keywords: Direct Energy Deposition; Repair; Laser Cladding; Numerical Modelling; Residual 
Stress 
 
 
 
 
 

1 Introduction 

Additive Manufacturing (AM) techniques, such as Direct Energy Deposition (DED), are being 

used within the advanced manufacturing sector to repair high value components, this 

removes the need to remanufacture or replace the component, reducing operational costs. 

Often, DED is utilised over traditional welding techniques due to the high material utilisation 

ratio, increased accuracy and increased flexibility during manufacture. The nature of the 

DED process allows for in-situ modifications to the process parameters, which could result 

in greater control of the track geometry, cooling rates and subsequently the mechanical 

properties of the component. As not all repair requirements are identical, this type of 

deposition strategy would inherently allow bespoke and flexible repairs to be implemented. 

The development of more flexible solutions could also allow the distortion and the evolution 

of stresses within a component to be controlled during repair, reducing the need for 

additional processing such as heat treatment or further machining.  

The DED process involves a laser source irradiating a metallic substrate to generate a 

moving melt pool. The feedstock material may be delivered in powder, wire or strip form 

and conveyed to the work area using a nozzle and an inert gas stream [1]. A moving melt 

pool is generated from the deposition head moving relative to the substrate surface [2], 

which, coupled with the incoming material forms a raised track. The entire process is 

controlled through CNC, therefore in-process modifications can be implemented with ease. 

When no modification is made to the parameters a steady-state track geometry is formed. 

Variations in the process parameters will not only lead to a transient geometry being formed, 

but variations in the temperature fields, which drive the stress condition during 

solidification, will occur. Therefore, a tool which allows the prediction of the track profile, 

thermal field and residual stress evolution, due to process parameter variation, would allow 

bespoke repair procedures to be developed. 

Experimental depositions and numerical predictions of a track geometry with an in-situ 

parameter variation have not been reported to date. Despite this, predictions of track 

geometries and the thermomechanical effects of the process, utilising different modelling 

methods, has received attention within the literature. Early models to determine track 

profiles were derived empirically across a range of process parameters, often neglecting the 

physical complexities of the process such as the interaction of the powder feed distribution 
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and the melt pool [3]. An empirical model, presented by Kumar et al. [4], allowed the track 

height to be derived based on the laser power and the material mass flow rate. Although the 

time required to predict the track height was minimal, experimental data was required to 

calibrate the model. This was required to reduce the maximum error between the predicted 

and experimental height from 50% to 13%. To increase the accuracy of the approach, an 

empirical statistical model was later used to include more parameters of the process. Davim 

et al. [5], utilised a similar method, with the final equation being derived using a Multiple 

Regression Analysis (MRA) model. The track height and width were determined with an 

error of 7.6% and 6% respectively. Despite the volume of data collected to inform the model, 

the percentage error for the predicted melt pool depth was 20.1% showing a level of 

inaccuracy with this approach. The main issue with using empirical/statistical models is the 

experimental data needed to derive the model. This would not be feasible to design repair 

strategies as each repair would be bespoke. In addition to this, the empirical approach is 

limited in providing accurate predictions within the bounds of the process parameters used 

to define the model. Therefore to enable the effects of in-situ modification to be evaluated 

for bespoke repair applications, a high number of experiments would be required to enable 

the correct repair scheme to be designed.  As this would be an inefficient approach, leading 

to a lengthy and costly design process, a generalised modelling method which allows the 

process to be simulated is therefore required.  

Analytical models have recently been used to allow for a more flexible modelling 

approach, as the methodology is no longer bound by a range of process parameters. An early 

model presented by Picasso et al. [6] determines the parameters required to fabricate a 

deposition of a prescribed height through solving a series of analytical expressions. An 

iterative solution procedure was utilised to reassess the thermal field through recalculation 

of the power absorbed by the workpiece. The power loss and interaction between the laser 

beam, substrate and powder particles were considered at each iteration. The solution 

procedure was terminated when the relative change between the absorbed power, laser 

velocity and the powder mass flow rate was less than a prescribed value. A major drawback 

of this approach was that the track height had to be predefined, therefore, no assessment 

could be made on how the process parameters affected the deposition geometry. A 

simplified approach presented by Pinkerton and Li [7], modelled the geometry of a moving 

melt pool and the subsequent deposition track through an energy and mass balance. The 

laser process was simplified by assuming that the heat source and track profile could be 

represented as a point source and a circular arc respectively. The approach was relatively 

simple and was not computationally demanding, therefore providing a quick prediction of 

the track geometry. The model was used to assess the effect of the laser power on the steady-

state track width and height, with a maximum error of 11.1% and 38.9% respectively; 

therefore, the validity of the approach has to be assessed when analysing the effects of the 

process parameters on the deposition geometry. A hybrid model of a numerical and 

analytical approach was presented by Ahsan and Pinkerton [8], which determined the track 
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height, utilising a fully-coupled mass-enthalpy balance. Similar to Picasso et al. [6], the 

thermal field was reassessed to include the power losses associated with the process. An 

analytical temperature field, solved through numerical integration, was used to determine 

the melt pool geometry. The track profile was calculated from analysing the interaction 

between an analytical representation of the powder flux distribution and the predicted melt 

pool geometry. The model was verified experimentally, with a maximum error of 8.4%, 3% 

and 20% for the peak temperature, track width and height respectively. Through 

representing the key physics of the process, a more accurate representation of the track 

profile was determined. For most analytical models, the time required to determine a 

solution is minimal, as the models are not computationally demanding as a discretised 

domain is not required. Therefore, when designing bespoke repair strategies and evaluating 

the effects of the process parameters on the track geometry, these models are beneficial. 

However, as a quasi-static solution of the thermal field is calculated, the time dependent 

history of the process is neglected; therefore, the effect of in-situ parameter modifications 

cannot be evaluated using analytical models. Also, when determining an analytical thermal 

field, the geometry is often simplified to an infinite plate. Therefore, no real assessment of 

the repair strategy can be assessed with these methods using the true component geometry. 

It should be noted that analytical modelling to predict residual stresses are very limited for 

DED; however, a model presented by Tamanna et al. [9] predicted the residual stress for 

laser cladding using a one-dimensional model. The model was used to evaluate the effects of 

preheating the substrate at different temperatures on the final residual stress field. No 

experimental validation of the proposed methodology was completed and only a one-

dimensional representation of the stress field could be predicted. Therefore, evaluation of 

the thermomechanical effects for the entire component would not be possible utilising this 

approach.      

Numerical models of the DED process tend to focus on calculating the thermal histories 

and thermal distributions of the final part. In some cases these types of models are used to 

predict track geometries and can be extended to predict residual stress fields. Early 

numerical models applied the heat flux to an unchanging surface, however, the inclusion of 

material deposition can be incorporated through element manipulation techniques [10]. 

Numerical models using computational fluid dynamics (CFD) have been used to predict the 

physical phenomena from the deposition head to the melt pool dynamics, with some of these 

models allowing the formation of the track to be included [11], [12]. However, as CFD cannot 

be used to predict the thermomechanical effects of the process, a review of these 

methodologies will not be included. Therefore, the focus will be on the finite element method, 

specifically to predict the track geometry and the thermomechanical effects of the process. 

A three dimensional model for DED, utilising both an analytical and numerical approach was 

derived by Labudovic and Kovacevic [13]. An analytical model based on Green’s function 

was used to determine the thermal field of the process and this was compared to the FE 

simulation. A numerical model to determine the residual stress field for a wall structure was 
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also presented, in an attempt to determine a feedback control to reduce residual stresses 

during the deposition. Experimental data for both the thermal and mechanical portions of 

the model were used to validate the approach, with the use of a high speed camera and x-ray 

diffraction data. Although a good agreement was present between the experimental data and 

the modelling method, a square track geometry was used for the FE model which does not 

reflect the true track geometry. The interaction between the powder feed and melt pool were 

not included; therefore, a prediction of the track profile was not possible. Utilising this 

methodology, a bespoke repair solution could not be designed, as a true representation of 

the track geometry was not included in the model; also, as the powder feed was not included, 

in-situ variation of the process parameters could not be incorporated with this approach. A 

model was presented by Farahmand and Kovacevic [14] which included a more accurate 

representation of the track geometry and was used to predict the thermomechanical effects 

of high power direct laser deposition. The track geometry was not determined through a 

numerical method and was implemented into the model through geometrical measurements 

of the experimental track. A good agreement was attained between the experimental and 

predicted melt pool geometry with a maximum error of 3.8%; therefore, validating the 

approach used to determine the melt pool geometry. The residual stresses were determined 

for a planar section and compared to x-ray diffraction results. A maximum error of 10% was 

reported for the peak stress. Although the presented methodology for the thermomechanical 

portion of the model was accurate when compared to experimental data, the flexibility of the 

approach was reduced as no track profile could be determined without prior measurement 

of the experimental geometry. Peyre et al. [1] proposed a three step numerical-analytical 

model to predict the track geometry and thermal loadings induced by the process. The first 

step required calculation of the temperature profile in the powder stream, giving a factor of 

2 overestimation. This was used as a boundary condition for the thermal model. A fixed laser 

heat source with a quasi-spherical formulation was used. The track height was predicted by 

discretising the melt pool further and analysing the total element contribution to the layer 

growth. The track width and height were predicted to within 10% and 13% of the 

experimental findings. No track profile was derived from the model, with the track being 

represented as square elements in the subsequent thermal models. As no track geometry 

was determined, the method would not allow a true representation of the repair scheme to 

be modelled.  It should also be noted that as no moving heat source was used within the 

thermal model, a transient history of the process could not be predicted, therefore neglecting 

the flexibility in repair solutions that could be obtainable. A more recent study presented by 

Zhang and Kovacevic [15], determines the thermomechanical effect of DED using an 

uncoupled FE model to simulate cladding of dissimilar materials. The interaction between 

the laser and powder was introduced by altering the power attenuation. Element birth and 

death was utilised to include the effect of material addition during the process; however, the 

cross-section of the track was uniform and determined through experimental 

measurements. Validation of the thermal model was completed through thermocouple 
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measurements and the maximum error between the peak temperatures was 5.8%. No 

experimental validation for the mechanical model was presented as part of this study. 

Although a better representation of the process was conducted using this model, the track 

geometry could not be implemented into the FE model until an experimental deposition has 

been completed; therefore, reducing the flexibility of the modelling approach. Walker et al. 

[16] presented a 3D analytical-numerical model of the deposition process to predict the 

thermomechanical effects induced from a single-track deposition. A mass-enthalpy balance 

was used to predict the track geometry from an analytical powder distribution, with the melt 

pool geometry being determined from an analytical temperature field. The track width and 

height were predicted within 1.98% and 0.43% of the experimental track respectively. 

Implementation of the predicted track geometry, within the thermomechanical analysis, 

gave a maximum error for the peak temperature and residual stress of 3.1% and 19% 

respectively. Although an accurate modelling strategy was presented for the deposition 

process, the model could not predict geometries or thermomechanical fields that contained 

an in-situ parameter variation.  A more advanced model presented by Alimardani et al. [17] 

determined the formation of a 3D track geometry for the entire deposition process, utilising 

a constant set of process parameters. A 3D numerical heat transfer model was utilised to 

determine the boundary of a moving melt pool. At each time step of the analysis, the mesh 

was altered to introduce the addition of material to the domain. The height and width of the 

track were determined from the powder feed rate, elapsed time and the interaction between 

the melt pool and powder stream. A standard objective function in the form of an implicit 

second order polynomial was used to represent the track geometry; therefore, an idealised 

representation of the geometry was used for the model. The model allowed a transient 

representation of the track profile to be determined and the subsequent thermal fields 

during the process.  The peak temperatures were overestimated by the model with a 

maximum error of 8%. Experimental validation of the average track height was completed 

with a maximum error of 19.35% for single track geometries. No attempt was made to 

determine the residual stress fields based on the derived thermal field. It should be noted 

that although the track formation could be determined over a defined time period, no 

attempt was made to investigate in-situ parameter variation on the track geometry.  

The current uptake of in-situ parameter variation for repair processes is restricted by the 

modelling approaches not incorporating these phenomena; therefore, the only method to 

quantify the effect of process variations would be through the use of costly experimental 

trials. Although methodologies exist to predict the track formation within DED, using 

transient formulations or steady-state equivalents, these approaches are limited to a 

constant set of process parameters; therefore, to allow the inherent manufacturing flexibility 

of the DED process to be encapsulated in a modelling approach, a method which can 

incorporate variation of the process parameters during the deposition is required. In 

response, this study presents a generalised modelling strategy which predicts a 3D transient 

track profile determined from in-situ variations of the process parameters. Through the use 
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of an analytical and FE numerical model, the track formation was predicted by considering 

the interaction of the powder flow distribution with the melt pool geometry. This was solved 

using a fully coupled mass and enthalpy balance to calculate the associated power losses 

through assimilation of the powder. To allow the thermal and mechanical effects of the 

deposition strategy to be predicted, a sequentially coupled thermomechanical analysis was 

implemented. To validate the proposed methodology, at each stage of the modelling process, 

an experimental case study is presented. With the use of the FE method for the proposed 

modelling strategy, an assessment of the repair methodology can be completed for the true 

component geometry. The developed method will therefore allow for bespoke repair 

strategies to be designed, without the need for lengthy and costly experimental trials. 

Complex parametric studies during the design process can be conducted using the presented 

methodology allowing an assessment of the proposed repair strategy on the distortion and 

residual stress formation within the repaired component to be completed. As the model 

predicts deposition tracks with varying cross sections, an optimum tool path can also be 

determined to ensure a more efficient use of the deposition material by only refilling the 

damaged area of the component. As a more tailored repair solution can be determined using 

the proposed tool, a reduction in the secondary processing of the repaired component may 

be possible, which is advantageous for reducing repair costs.  

 

2 Methodology 

The DED process allows for in-situ variation to process parameters during the deposition of 

a track. As the heat source, powder feed and traverse table are all coupled with a CNC system, 

effectively near infinite combinations of process parameters are achievable. In-situ 

modification of the parameters results in the process being in a transient state. When a 

constant set of parameters is utilised, a uniform track is produced which can be referred to 

as the steady-state region.  

A novel methodology is presented in this work which allows a transient track profile to 

be determined based on the physics of the process. The approach was then extended to 

determine the thermomechanical effects through the use of a sequentially-coupled finite 

element analysis. To validate each stage of the model, an experimental case study is 

presented in which a deposition, with a varying cross section, is fabricated through an in-

situ modification to the laser power. The predicted track profile was compared to focus 

variation microscopy images of the experimentally deposited track. The thermomechanical 

section of the model was validated through in-situ temperature measurements, 

metallographic examination of the fusion zone and residual stress, determined using 

neutron diffraction (ND) measurements.  

 

2.1 Numerical Modelling Strategy  
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The modelling strategy presented in this study incorporates the key process variables in 

order to model the DED process as a single entity. A flowchart of the modelling strategy used 

in this study is presented in Figure 1. Firstly, the model predicted the transient track 

geometry utilising a FE heat transfer model to calculate the evolution of the melt pool 

geometry. This enabled a 2D track profile to be predicted at each time step (𝑡𝑛 ) of the 

analysis. The predicted track geometry was then implemented into a sequentially-coupled 

thermomechanical FE analysis, allowing the thermal and mechanical effects induced by the 

process to be predicted.  All of the FE models in this study were solved using the commercial 

code ABAQUS.  

 

 

 

Figure 1 Flowchart of the modelling strategy used to predict the track profile, thermal 
histories and residual stress fields. The associated inputs and corresponding outputs are 

shown at each stage of the modelling process. 

 

2.1.1 Track Profile Model  

Through the adaptive control of the process parameters, a variation in the track geometry 

will be present and the thermal field will be in a transient state. To allow this phenomena to 

be represented, a transient FE heat transfer analysis, coupled with an analytical model was 

utilised. The process parameters, material properties and the meshed FE domain were 

specified manually with each subsequent step of the analysis being automated. The 

flowchart of the modelling process is presented in Figure 2.  
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To determine the thermal field during the deposition, the transient heat conduction 

equation was solved, which has the form: 

 

 𝜌𝐶𝑝

𝜕 

𝜕𝑡
       𝑡 =  −∇. 𝑞⃗       𝑡 + 𝑄       𝑡  (1) 

  

where 𝜌 is the material density, 𝐶𝑝 is the specific heat capacity, T is the temperature at time 

t, Q is the internal heat generation rate, ∇ is the spatial gradient operator and 𝑞⃗ is the heat 

flux vector. The process parameters were input as a function of time (  𝑡    𝑡  and    𝑡 ) 

and were used to determine the track profile at each time step of the model.  The heat flux 

was implemented into the FE model through the user subroutine DFLUX, utilising the 

circular disc heat source model presented by Pavelic [18]: 

 

 𝑄       𝑡 =  
𝛼  𝑡 −   𝑚 +  𝑒𝑣𝑎𝑝 

𝜋𝑟0
2 exp [−

 2 +   −   𝑡 𝑡 2

𝑟0
2 ] (2) 

 

where 𝛼  is the material absorptivity, which was not considered to be temperature 

dependent,   𝑡  and   𝑡  are the laser power and traverse velocity expressed as a function 

of time,  𝑚 is the power required to sustain mass addition,  𝑒𝑣𝑎𝑝 is the evaporation power 

loss at the melt pool,     and   are the Cartesian coordinates and 𝑟0 is the Gaussian radius. 

To be consistent with the analytical approach, convective and radiative heat losses were 

neglected.  Before the track profile could be predicted, an initial heat transfer model was 

used to determine the time required (t’) for the melt pool to reach a steady-state during the 

early time steps of the analysis. This time was then used to determine the starting location 

for which the first track profile was predicted. A schematic of the analysis stages and 

subsequent outputs are presented in Figure 3.  

At each time step (𝑡𝑛), a 2D track profile was predicted. The melt pool width and length 

were determined from the nodal FE temperatures. As only a 2D representation of the melt 

pool geometry was required, the through thickness nodes were neglected from the post-

processing stage. The melt pool geometry was represented using front and rear elliptical 

sections [8]: 

 

  𝑓 = 𝐿𝑛
𝑓√1 −

4 2

𝑊𝑛
2

 (3) 

  𝑟 = 𝐿𝑛
𝑟 √1 −

4 2

𝑊𝑛
2

  

 

where: 
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  (±
𝑊𝑛

2
 0 0) =  𝑚 (4) 

  (0 𝐿𝑛
𝑓
 0) =  𝑚   

   0 𝐿𝑛
𝑟  0 =  𝑚  

 

where Wn,  𝐿𝑛
𝑓

  and 𝐿𝑛
𝑟  are the width, front length and rear length of the melt pool at the 

current time step. 
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     Figure 2 Flowchart of the modelling procedure used to determine the transient track 
geometry. 
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Figure 3 Schematic of the methodology used to determine a transient track profile (a) shows the 

substrate geometry identifying the two regions of the modelling process; (b) presents the concept 

of varying process parameters during the deposition process ;(c) schematic of the calculated 

track profile at each time increment.  

 

The track profile (ℎ𝑧   ) was predicted at each time step by integrating a Gaussian surface 

representing the powder flux distribution, between the melt pool limits: 

 

 ℎ𝑧   =
𝜂𝑐 𝑡𝑛 

𝜌  𝑡𝑛 
∫ 𝑞𝑝𝑓

𝑦𝑓

𝑦𝑟

𝑑  (5) 

 𝑞𝑝𝑓 =
2   𝑡𝑛 

𝜋𝑟𝑝
2

𝑒 𝑝 [−2
 2 +  2

𝑟𝑝
2

]  

 

where 𝜂𝑐 is the powder catchment efficiency,   𝑡𝑛  and    𝑡𝑛  are the traverse velocity and 

the powder mass flow rate at the current time step and 𝑟𝑝  is the Gaussian feed radius. The 

Gaussian feed radius was determined from the powder concentration distribution, where 

the peak value was equal to [19]:  
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 𝐶′ =  
2[𝑟𝑖 + 𝑟0]   𝑡𝑛 

√𝜋0.843   𝑠 tan 𝜃 
 (6) 

 

where 𝑟𝑖  and 𝑟0 are the inner and outer radius of the nozzle respectively,    is the volumetric 

flow rate of the carrier gas,  𝑠 is the stand-off distance and 𝜃 is the initial powder stream  

angle. It can be assumed that the powder distribution has a Gaussian profile across the 

stream width [19]. Therefore, the final form of the powder concentration distribution was 

as follows: 

 

 𝐶       = 𝐶′exp [
 2 +  2

𝑤2
] (7) 

   

where 𝑤 is the width of the powder stream equating [19]: 

 

 𝑤 =  
2 𝑟0 − 𝑟𝑖 tan  𝜃 

 𝑟0 + 𝑟𝑖 
 𝑠 (8) 

 

The Gaussian feed radius equates the radial position where the powder concentration (eq.7) 

falls to 𝑒−2  of the peak value (eq.6). To quantify the powder catchment efficiency, an 

analytical model was used to represent the powder flow from the coaxial nozzle. The 

analytical model takes into consideration the geometry of the nozzle, the stand-off distance 

and the powder flow characteristics at the nozzle outlet. The current model presented by 

Ahsan and Pinkerton [8] assumes that all the powder is assimilated by the melt pool, 

however a more realistic approach was implemented here. The realistic approach included 

the effect of the stand-off distance, melt pool geometry and the powder flow characteristics 

on the catchment efficiency. The analytical value was modified using the following 

expression [13]:  

 

 

𝜂𝑚 = ∫ ∫ 𝑆     𝑑 𝑑 
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2

−
𝑋𝑚𝑖𝑛

2

4

0

𝑦𝑟𝑋𝑚𝑖𝑛
𝑊𝑛

𝑊
2 √1−

𝑥2

𝑦𝑟
2

0

0

𝑦𝑟

]
 
 
 
 

 

(9) 

 

 

where 𝑆      and 𝑋𝑚𝑖𝑛 are equal to [20]: 
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𝑆     =
1

2𝜋 𝑠
2tan  𝜙 [cot 𝜁 − 𝜙 − cot  𝛼 ]

𝑒 𝑝 [−
1

2
[

 2

  𝑠 tan 𝜙  2

+
 2

  𝑠 cot 𝜁 − 𝜙 −  𝑠 cot 𝜁  
]] 

(10) 

 

 𝑋𝑚𝑖𝑛 =
𝜋𝐷𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝜌𝑝𝑜𝑤𝑑𝑒𝑟𝐶𝑝  𝑚 −  𝑎𝑚𝑏  2𝐷𝑙𝑎𝑠𝑒𝑟 

2𝑣𝑝𝑜𝑤𝑑𝑒𝑟

6𝛼𝑝𝑜𝑤𝑑𝑒𝑟  𝑡 
 (11) 

 

where 𝜁 is the inclination angle between the nozzle and the substrate, 𝜙 is the divergence 

angle of the powder stream, 𝐷𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  is the diameter of the powder, 𝜌𝑝𝑜𝑤𝑑𝑒𝑟  is the density of 

the powder, 𝐷𝑙𝑎𝑠𝑒𝑟  is the spot diameter of the laser, 𝛼𝑝𝑜𝑤𝑑𝑒𝑟  is the absorptivity of the powder 

and the velocity of the powder, 𝑣𝑝𝑜𝑤𝑑𝑒𝑟 , was given by [21]: 

 

 𝑣𝑝𝑜𝑤𝑑𝑒𝑟 =
4𝑉 

𝜋 𝑑0
2−𝑑𝑖

2 
  (12) 

 

where 𝑑0  and 𝑑𝑖  are the outer and inner diameter of the nozzle respectively. The final 

catchment efficiency was therefore given by [16]: 

 

 
𝜂𝑐 𝑡𝑛 =

∫ ∫ 𝑞𝑝𝑓 𝑑 𝑑 
∞

∞

∞

−∞ 

∫ ∫ 𝑞𝑝𝑓𝑑 𝑑 
𝑦𝑓

𝑦𝑟

𝑊𝑛
2

−
𝑊𝑛
2

𝜂𝑚 
(13) 

 

As the computational deficit of the modelling approach was through determining the 

thermal field through a FE analysis, an efficient method to solve the analytical equations for 

each iteration was required; therefore, the thermal properties were assumed to be 

temperature independent when solving for the track profile, as this increased the 

convergence rate for each iteration [8] and in turn, the global computational time was 

reduced. When implementing eq.4-14, material properties were defined at a temperature 

halfway between the melting and ambient temperature (20◦C) of the substrate based on the 

assumptions outlined in [8]. 

Two sources of power loss were accounted for; the energy required to melt the powder 

particles ( 𝑚) [8] and the evaporation losses within the melt pool ( 𝑒𝑣𝑎𝑝) [22]. These losses 

were calculated at each time step of the analysis. The total power loss ( 𝑙𝑜𝑠𝑠) in the system 

was therefore equal to:  

 

  𝑙𝑜𝑠𝑠 =  𝑚 +  𝑒𝑣𝑎𝑝 (14) 

  𝑚 = 𝜌  𝑡𝑛 [𝐶𝑝  𝑚 −  𝑎𝑚𝑏 + 𝐿𝑚]∫ ℎ𝑧   

𝑊
2

−
𝑊
2

𝑑   
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  𝑒𝑣𝑎𝑝 =
𝜋

4
𝑊𝑛(𝐿𝑛

𝑓
+ 𝐿𝑛

𝑟 )(
455.32 exp [4.834 − (

18836
 𝑚𝑒𝑎𝑛

)]

√ 𝑚𝑒𝑎𝑛

)ℎ𝑣  

 

where 𝐿𝑚 is the latent heat of melting,  𝑚𝑒𝑎𝑛 is the mean temperature in the melt pool and 

ℎ𝑣 is the latent heat of vaporisation. To allow the effective power to be defined at each time 

step in the transient region, the power loss was expressed as a function of time ( 𝑙𝑜𝑠𝑠 𝑡 ). 

The heat source model was then updated to include this function. A schematic of the power 

loss history and how it was represented in the model is shown in Figure 4.  

 

 

Figure 4 Schematic of the power loss function showing the three possible outputs of the 
model after an iteration during the current time step.  

 

The power loss was calculated using an iterative solution procedure with the initial guess 

equating the power loss for the previous time step of the analysis. When the model was not 

in a transient state, the power loss was assumed to be constant ( 𝑙𝑜𝑠𝑠
𝑠𝑠 ) and was determined 

from Eq.(6). For the first iteration, at the nth time step, the model overestimated the power 

loss and on the second iteration the losses were underestimated [8]. This process continued 

until a stable melt pool was achieved and the power loss converged. To enable the predicted 

and converged values to be accurately inputted into the FE heat source model, the selected 

function had to be able to represent all three possible states of power loss that could be 

encountered, i.e. overestimate, underestimate and converged solution; therefore, a third 

order polynomial was selected of the following form:  

 

  𝑙𝑜𝑠𝑠 𝑡 = 𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑 (15) 

 

where a, b, c and d are the coefficients of the equation. The overall solution procedure was 

iterative to ensure that a stable enthalpy balance and melt pool geometry were achieved at 

each time step. A stable melt pool occurred when the following criteria was valid:  
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 0.05𝑊𝑛−1 ≤  𝑊𝑛 ≤ 0.05𝑊𝑛−1 (16) 

 0.05𝐿𝑛−1 ≤ 𝐿𝑛 ≤ 0.05𝐿𝑛−1  

  

where 𝑊𝑛  is the melt pool width and 𝐿𝑛 = 𝐿𝑛
𝑓
+ 𝐿𝑛

𝑟   for the current time step of the analysis. 

Upon a stable melt pool being determined, the power loss and the track profile for each time 

step were stored. The model was terminated when all the predefined time steps were 

completed. Each 2D track profile was concatenated to determine the final 3D track geometry 

over the transient region of the model. 

 

2.1.2 Thermomechanical Modelling  

To determine the thermal histories and residual stress fields induced from a transient 

deposition, a sequentially coupled thermomechanical analysis was implemented. The track 

geometry obtained from section 2.1.1 was imported into the FE domain; a schematic of the 

process and the adopted modelling strategy is presented in Figure 5.  

A transient heat transfer analysis was used to solve the governing equation outlined in 

Eq.1. The FE model was solved using the full Newton-Raphson integration scheme, with an 

integration time step equal to moving one element length per step. This was adopted for the 

heating steps of the analysis only. The integration time was set to automatic for the cooling 

phase. To simulate the deposition of material, an active/inactive element approach was 

implemented in both the thermal and mechanical FE model (Figure 5) [10] [23]. The 

reactivated elements had a predefined temperature equal to the melting point of the 

material. Thermal effects, due to solidification of the melt pool, were included in the model. 

To ensure that the heat loss was modelled sufficiently, both convective and radiative losses 

were accounted for using the Newton and Stefan-Boltzmann laws respectively. As varying 

portions of the substrate surface were covered during the analysis, the convection and 

radiative losses were defined only on the free surfaces exposed to the external surroundings. 

To model the conduction arising between the substrate and the machine bed, an artificial 

convective boundary condition was applied to the surface in contact. The sink temperature 

for all the defined losses and the initial substrate temperature were set to 20oC. 
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Figure 5 Schematic of the thermomechanical modelling process for DED (a) realistic 
representation of the DED manufacturing process; (b) thermal model showing the 

temperature contour with the adopted element activation strategy; (c) mechanical model 
showing the longitudinal stress distribution and the adopted element activation strategy.  

 

The FE mesh utilised in the thermal model was also used in the mechanical analysis to 

allow the thermal field to be transferred to the model correctly. For all of the numerical 

models, it was assumed that the residual stress formation was driven predominately 

through thermal effects. Therefore, the mass transfer, fluid flow and phase transformations 

were not included in the analysis [24]. The thermal strain was calculated utilising the 

thermal expansion coefficient of the material and the thermal history of the heating and 

cooling phases. This was applied to the FE simulation as a predefined field at each 

corresponding mechanical step. As the melt pool was simulated in the thermal analysis, the 

melting/solidification of the feedstock and substrate material was accounted for in the 

mechanical analysis by applying the annealing function, within ABAQUS, to the temperature 

dependent plastic strain data [25].  

 

2.2 Validation of the Modelling Strategy  
For this current study, a validation case is presented which implemented the proposed 

methodology to predict the transient deposition track, thermal history and residual stress 

field generated by an in-process modification to the laser power. A single track of IN718 was 

deposited along the centre of an IN718 substrate utilising the following laser power profile. 

The laser power was fixed at 900 W for the first 7.5 seconds of the deposition. This value 

was linearly increased to 1800 W over the duration of 3 seconds, with the power remaining 

at 1800 W for the remainder of the deposition. The total time required to complete the 

deposition was 18 seconds.  The selected power profile was based on the upper and lower 
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values of the previously determined process window [26] for the alloy system and the 

experimental setup adopted for this work. For the entire deposition, the traverse velocity ( ) 

and the powder mass feed rate (  ) were set to a constant value of 400 mm/min and 26 

g/min respectively, based on the work by Abioye et al. [26]. A numerical and experimental 

case study was conducted to evaluate the validity of the modelling approach.  

 

2.2.1 Implementation of the Computational Model   

As the thermal field for the track profile model was determined through the use of a transient 

FE model, a mesh independence study was conducted to determine the optimum element 

size which represented the heat flux within the domain. The FE domain used was the size of 

the substrate (120 x 70 x 6 mm) and was meshed with DC3D8 and C3D8R linear brick 

elements for the thermal and mechanical models respectively. As the melt pool geometry 

would determine the accuracy of the predicted track profile, this parameter was used as an 

indicator to determine mesh independence. However, from previous work presented by 

Walker et al. [16], the temperature field should also be considered to obtain a fully 

independent mesh. The starting element volume utilised for the mesh study was 2 x 2 x 2 

mm3 in the vicinity of the HAZ and was increased through the use of mesh biasing to an 

element volume of 16 x 2 x 2 mm3 at the substrate edge. For each iteration of the study, the 

element volume was halved and two convergence parameters were calculated based on the 

current and previous element volume. The coefficient of determination (R2) for the thermal 

history profile and a melt pool profile were used as the convergence parameters. The 

thermal history was extracted from the nodal coordinate (3, 60, 0) and the melt pool profile 

was derived from the through thickness temperature data at the substrate mid length. 

Convergence was achieved when both R2 values were greater than or equal to 0.995 as this 

was consistent with the aforementioned computational model. The study was completed for 

the maximum and minimum laser powers, i.e. P=900 W and P=1800 W, with the results 

presented in Figure 6. 
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Figure 6 Mesh study results for (a) P=900 W and (b) P=1800 W. Each graph presents the 
convergence parameters and computational time for each mesh iteration. Convergence 

criteria is highlighted as a dashed grey line. 

It is apparent that minimal variation was present in the accuracy of the thermal history 

data when the element volume was reduced; therefore, a coarser mesh could be utilised if 

only thermal data is of interest. Through the use of the second convergence parameter, the 

accuracy of the melt pool profile is highly dependent upon the resolution of the mesh, as a 

higher number of iterations were required before convergence was met; therefore, to obtain 

a more accurate representation of the melt pool geometry, a finer mesh was required. As 

expected, the computational time increases through reduction of the element volume.  The 

reduction in accuracy observed at iteration 2, for P=1800 W (Figure 6b), arose from 

increasing the number of nodal points used to represent the through thickness thermal field. 

This caused the shape of the fusion zone to change from the previous iteration, resulting in 

a larger melt pool area. For both sets of process parameters, iteration 4 satisfies the 
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convergence limits, therefore an element volume of 0.25 x 0.25 x 0.25 mm3 was utilised in 

the vicinity of the heat source, i.e. -5 ≤ x ≤ 5 mm. Outside of the heat source region, i.e. x ≤ -5 

mm and x ≥ 5mm, an element volume of 1 x 0.25 x 0.25 mm3 was utilised. The total number 

of elements and nodes in the mesh were 622,800 and 656,850 respectively. An example 

section of the mesh used for the track profile model is presented in Figure 7.   

For the thermomechanical model a second mesh was required to include the predicted 

track geometry. As a variation in the track profile was present, a reduction in element size 

was required in the transient region. From the mesh sensitivity study (Figure 6), the 

maximum element volume within the vicinity of the heat source, which allowed for a 

converged solution, was 0.25 x 0.25 x 0.25 mm3. This element volume was utilised for the 

high-power region, i.e. P=1800 W, with the element volume reducing to 0.125 x 0.125 x 0.125 

mm3 for the low power region, i.e. P=900 W. From Figure 6a it can be observed that the use 

of a 0.125 x 0.125 x 0.125 mm3 element volume provides a negligible difference in the 

solution accuracy; therefore, mesh independence was still achieved. Square elements with a 

constant volume were used throughout the domain to allow the predicted stresses to be 

volumetrically averaged to compare against the experimental ND data. As the thermal 

solution was independent of the mesh, an accurate prediction of the transient temperature 

field was achieved, allowing the residual stress fields to be predicted with accuracy [27]. A 

total of 717,818 nodes and 672,000 elements were present in the domain. Sections of the 

mesh from each track region are presented in Figure 8.   

 

 

Figure 7 Final mesh design utilised for the numerical track prediction mode (a) section of 
the mesh used in the traverse direction; (b) through thickness mesh design. For both images, 

the laser scanning direction is denoted by the red arrow (y-direction).  
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Figure 8 FE mesh utilised for the thermomechanical model showing the through thickness 
design at (a) y=30 mm; (b) y=60 mm; (c) y=90 mm; (d) top view of the mesh design in the 

transient region 

 

Due to the variation in the laser power, the circular disc heat source model was modified 

for both the track profile model and the thermomechanical model. The FE heat source model 

therefore had the following form:  

 

 𝑄       𝑡 =  
𝛼  𝑡 −  𝑙𝑜𝑠𝑠

𝜋𝑟0
2 exp [−

  2 +   −   𝑡 𝑡 2 2

𝑟0
2 ] (17) 

 

for 𝑡 ≤ 𝑡𝑠𝑠  1 →   𝑙𝑜𝑠𝑠 =  𝑙𝑜𝑠𝑠  1 
𝑠𝑠

 

 

for 𝑡 ≥ 𝑡𝑠𝑠  2 →   𝑙𝑜𝑠𝑠 =  𝑙𝑜𝑠𝑠  2 
𝑠𝑠

 

 

for 𝑡𝑠𝑠  1 < t <  𝑡𝑠𝑠  2 →   𝑙𝑜𝑠𝑠 =  𝑙𝑜𝑠𝑠 𝑡  

 

where  𝑡𝑠𝑠 1  and 𝑡𝑠𝑠 2  are the total times for which the deposition was in a steady-state 

condition,   𝑡  is the laser power, which was expressed as a function of time when analysing 

the transient portion of the deposition and  𝑙𝑜𝑠𝑠  is the total power loss within the system, 

determined from the track prediction model. The Gaussian radius was assumed to equal half 

of the measured spot diameter of the laser, which took a value of 1.3 mm in this work. From 
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geometrical measurements of the nozzle (Table 1) and assuming that the material 

properties of the powder are equal to the substrate properties, the Gaussian feed radius was 

calculated as 2.0 mm for this study.  Through implementing Eq.(8), the power loss for both 

the steady-state track regions ( 𝑙𝑜𝑠𝑠  1 
𝑠𝑠  and  𝑙𝑜𝑠𝑠  2 

𝑠𝑠 ) was constant due to the melt pool having 

a fixed width and length in this region. Therefore, the power loss in these regions were 

represented within the FE heat source model as a single value at the corresponding time 

steps; however, in the transient region, due to the changes in the melt pool dimensions at 

each time increment, the power loss function   𝑙𝑜𝑠𝑠 𝑡   was defined within the user 

subroutine DFLUX.  

   

Table 1: Geometrical parameters for the coaxial nozzle used for this study. 

Parameter Dimension 

Nozzle stand-off distance (𝑍𝑠) 12 mm 

Nozzle inclination angle (𝜁) 90◦ 

Annulus distance (𝑟0-𝑟𝑖) 0.25 mm 

Initial powder stream angle (𝜃) 60◦ 

Powder stream divergence angle (𝜙) [20] 8◦ 

 

As different melt pool sizes were present throughout the analysis, the number of elements 

reactivated to simulate the deposition of material, per time step, was not uniform. This was 

required to ensure that a stable energy balance within the melt pool itself was achieved. For 

the region where P=900 W, two element lengths per time step were reactivated, in all other 

regions a total of four element lengths were reactivated.  

For all of the numerical FE models, temperature dependent material properties were 

utilised, as presented in Figure 9. Poisson’s ratio, was assumed to be independent of 

temperature, with a value of 0.33 [28]. The latent heat of melting was included for the 

respective solidus (1260◦C) and liquidus (1336◦C) temperatures. The thermal properties 

used to implement the analytical expressions (eq.5 and eq.14) for the track profile model are 

presented in Table 2. The density and specific heat capacity were assumed to be temperature 

independent defined at 630◦C.  

 

Table 2: Thermal properties for IN718 used to determine the track profile. 

Density (kg/m3)  [28] 7993  

Specific Heat Capacity (J/KgK) [28] 536 

Latent Heat of Melting (J/Kg) [29] 210 

Latent Heat of Vaporisation (kJ/Kg) [30] 6400 

Solidus Temperature (◦C) [29] 1260 

Liquidus Temperature (◦C) [29] 1336 

Laser Absorptivity [31] 0.3 
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The material properties were assumed to be equal for the substrate and track geometry. 

Although there will be metallurgical differences in the grain size and the microstructure 

between the HAZ, track region and far field in the substrate, this assumption is valid from 

the work presented by Deshpande et al. [32]. Alteration of the stress fields due to phase 

changes were neglected from the mechanical model, as no allotropic phase transformations 

occur for IN718 at elevated temperatures [33]. As no solid state transformations are present 

between the ambient temperature and the melting temperature of IN718 [34], the 

transformation strains are not included. This was supported by Denlinger and Michaleris 

[35], where the effect of phase transformations had no effect on the final residual stress field 

for IN718. Therefore, the total strain (𝜀𝑇) consisted of three strain components for the FE 

solution:  

 

 𝜀𝑇 = 𝜀𝑒 + 𝜀𝑝 + 𝜀𝑡ℎ (18) 

 

where 𝜀𝑒 is the elastic strain component modelled using an isotropic Hooke’s law material 

model, 𝜀𝑝 is the plastic strain which was determined using the von Mises yield criterion and 

𝜀𝑡ℎ  is the thermal strain. The plastic strain was rate independent, with an isotropic 

hardening coefficient defined as 0.01 E [28]. During a single track deposition, no thermal 

cycling is present because no reheating of previously deposited tracks is present, therefore, 

based on the work by Muransky et al. [36], the isotropic hardening law is considered to be 

valid. It should be noted that the stress relaxation effect, which could occur from applying 

thermal loads to pre-stressed structures, was not included within the mechanical model. 

From previous work presented by Salerno et al. [37], stress relaxation was not observed for 

IN718, when welding of a pre-stressed component was completed. A reduction in residual 

stress was observed due to mechanical redistribution of the stress and this was captured 

without inclusion of a mechanism to account for stress relaxation.        

The convective heat transfer coefficient and emissivity were set to 25 W/m2K and 0.8 

respectively [32]. The artificial convective boundary condition was defined with a high heat 

transfer coefficient, taking a value of 800 W/m2K [38]. As no fixed clamping mechanisms 

were used in the experimental set up, the mechanical boundary conditions were set to only 

restrict rigid body motion and to reflect the conditions at the symmetry plane ( = 0   𝑦 =

0   𝑧 = 0). The mechanical analysis was solved without taking into consideration large 

displacements or the resulting geometric non-linearity. 
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Figure 9 Temperature dependent thermomechanical properties of IN718 used for all FE 
models (a) Thermal conductivity, k, and density, ρ (b) Specific heat capacity, Cp, and thermal 

expansion coefficient, α (c) Young’s modulus, E, and yield stress, σy [28]. 

 

2.2.2 Experimental Validation  

A single track of IN718, consisting of a varying cross-sectional geometry, was deposited 

utilising a variation in the laser power profile as outlined previously. Two IN718 plates (120 
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x 70 x 6 mm) were used for the substrate material and were supplied sand-blasted in the 

solution heat treated state by Haynes International (Manchester, UK.). The chemical 

composition of the material is presented in Table 3.  A 2 kW Ytterbium doped, continuous 

wave, fibre laser (IPG Photonics) operating at a wavelength of 1070 nm was used. A Precitec 

YC 50 cladding head, fitted with a coaxial deposition nozzle, delivered powder to the 

substrate using argon as the carrier gas. The laser beam was operated in-focus, which 

produced a 2.6 mm spot diameter. A Praxair (Model 1264) powder feeder was used to 

deliver gas atomised MetcoAdd 718C powder to the substrate with a nominal size ranging 

from -45 μm to 15 μm [39]. The argon carrier gas was set to 10 L/min and the mass flow rate 

of powder was calibrated to 26 g/min.  

 

Table 3: Chemical Composition of IN718 in wt %. 

Ni Co Fe Cr Co+Ta Mo Mn Si Ti Al C B 

52 1 19 18 5 3 0.35 0.35 0.9 0.5 0.05 0.004 

 

Two identical samples denoted sample A and sample B were manufactured, with a 

schematic of the experimental set up shown in Figure 10. The coordinate system remained 

constant throughout, with the build direction being in the positive z axis and the x-y axis 

forming a plane perpendicular to the build direction. Sample A was used for in-situ 

temperature measurements, metallurgical examination and for the ND measurements. To 

obtain the elastic strain within sample A using ND, a strain-free reference value for the lattice 

spacing (d0) in each region of interest was required [40].  Sample B was used to fabricate a 

comb specimen (detailed below) required to measure the strain-free reference value 

through ND measurements. To prevent rigid body motion during the fabrication of both 

samples A and B, four equispaced restraining bolts were positioned along the width and the 

length of the substrate. No other clamping mechanisms were used in the experimental set 

up. It should be noted that to ensure a track was formed instantaneously upon the laser being 

activated, the powder feed was switched on before the laser as highlighted in Figure 10. The 

full track length equated 110 mm and upon its completion, the sample was cooled in air to 

room temperature.  
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Figure 10 Schematic of the experimental set up showing the locations of the restraining 
bolts, thermocouples used to collect thermal histories and the order in which the laser and 

powder feed were activated/deactivated.  

 

A total of nine in-situ temperature measurements were recorded in the region of the Heat 

Affected Zone (HAZ) using K-type thermocouples. Each thermocouple was spot welded to 

the upper surface of the substrate, using an open junction arrangement, at a distance of y=30 

mm, 60 mm and 90 mm. The positioning of the thermocouples relative to the substrate are 

shown in Figure 10. Data was captured using a National Instrument SCXI-1000 chassis in 

conjunction with a SCXI-1102B voltage input module.  

To verify the predicted melt pool geometry, metallographic analysis was conducted on 

sample A.  Specimens were removed from each of the three regions of the track by waterjet 

cutting, as shown in Figure 11. Each of the three specimens were mounted in conductive 

resin using a 30 mm press. Each specimen was ground using SiC abrasive paper to a 1200 

grit size, then polished using a 6 and 1 μm diamond wheel. To reveal the fusion zone of the 

material, the specimen was etched using Marble’s Reagent (10g CuSO4 50 ml HCL and 50 ml 

H2O). The etchant was swabbed onto the exposed surface of the specimen and removed after 

no longer than 10 seconds. Optical microscopy was used to examine each specimen. To 

determine the experimental track geometry, images of the top surface of the substrate were 

measured using focus variation microscopy. An Alicona InfinteFocus fitted with a 5x optical 

lens was used. The entire top surface was scanned, with cross sectional profiles being 

extracted from the image at 5 mm intervals.  
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Figure 11 Locations of the three specimens extracted from sample A used for 
metallographic examination. Horizontal line scan locations used for the ND measurements 

shown in red.  

 

ND measurements were completed at the ENGIN-X facility using the ISIS neutron source 

located at the Rutherford Appleton Laboratory, UK [41]. Two strain components were 

collected simultaneously using two directly opposing detector banks at 2𝜃 = ±90°. Three 

line-scans were taken at three locations along the length of the sample (Figure 11). All 

measurements were conducted at 2 mm below the surface of the substrate using a gauge 

volume of 2 x 2 x 2 mm3. Through rotation of the sample, a full triaxial stress analysis was 

conducted. To quantify the high magnitude residual stresses expected in the region of the 

track, an increased spatial resolution (smaller spacing between ND measurement positions) 

was used. To obtain the strain-free reference measurements, comb shaped specimens [40], 

as shown in Figure 12, were manufactured using Electro Discharge Machining (EDM). The 

same spatial resolution used to acquire the strain-free lattice spacing was also used for the 

measurements in sample A, therefore two d0 specimens (4 mm Thick) were required to 

ensure that the gauge volume could be situated within each tooth of the comb. The 

specimens were removed from sample B at y=77 mm and y=81 mm (Figure 11). It should be 

noted that the beam time allocation did not allow for a strain-free reference sample to be 

measured at each line scan location.  
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Figure 12 Details of the strain free reference (d0) specimen’s after EDM (a) d0 sample one 
(b) d0 sample two. Red circles mark the target location of the beam for the ND measurements. 

 
 
The Rietveld refinement method was used to determine the lattice spacing implementing 

the General Structure Analysis System (GSAS) to process and analyse the ND data. The elastic 

lattice strain was calculated as follows:  

 

 𝜀 =
𝑑 − 𝑑0

𝑑0 
 (19) 

 

where d0 is the strain free lattice spacing and d is the lattice spacing of interest. The 

macroscopic stress components in the i direction can be obtained from Hooke’s law:   

 

 𝜎𝑖𝑗 =
𝐸

1 + 𝑣
[𝜀𝑖𝑗 +

𝑣

1 − 2𝑣
 𝜀11 + 𝜀22 + 𝜀33 ]  (20) 

 

where the numerical subscripts denote the direction in the sample, E is the Young’s modulus 

and v is Poisson’s ratio, with values of 209 GPa and 0.29 respectively for IN718 [42]. Through 

using GSAS, the uncertainty from fitting the nominal diffraction peaks to the measured 

diffraction spectra were calculated for both the strain-free lattice parameter (d0) and the 

lattice spacing of interest (d). Through propagation of uncertainty, a combined error analysis, 

using Eqs.(1) and (2), can be conducted to determine the uncertainty in the experimental 

stress for all three macroscopic stress components.    
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3 Results  

3.1.1 Numerical Track Prediction 

A contour map of the deposited track, created from 25 profiles extracted from the focus 

variation microscopy image, is presented in Figure 13. An average profile was determined 

for the two steady-state regions, these are compared to the predicted profiles in Figure 14. 

For the transient region, an average profile was not determined due to the evolving track 

geometry. The comparisons of the two data sets for this region are shown in Figure 15. The 

error and coefficient of determination ( 2) between both data sets is presented in Table 4. 

From analysing both sets of data, the track width and height increase during the transient 

phase, reaching a steady-state profile at the end of the transient region. However, the 

experimental track width appears to reach a constant value before the end of the transient 

region. The predicted shape of the track profile in all three regions agrees well with the 

experimental data, as the majority of the  2  values are greater than 90%, showing 

confidence in the predicted values. It should be noted that for y=60 mm and y= 65 mm, the 

experimental bead geometry was asymmetric, therefore the error between the track height 

and width maybe due to the model not accounting for this phenomena.  The numerical model 

predicts the track profile with a greater accuracy at the low laser power. During the transient 

phase of the process, the height is captured well by the model; however, the predicted track 

width is overestimated when compared to the experimental data. The maximum error 

between the predicted and experimental data arises at the final transient profile and for the 

profile used in the second steady-state region. In these regions, the peak height of the profile 

has been predicted with accuracy, therefore the error must arise from the derivation of the 

melt pool width.  

 

Figure 13 Contour plot showing the variation in track height derived from the surface 
variation microscopy data with the three distinct track regions have been highlighted.   
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Figure 14 Comparison of the experimental and predicted track geometry for two laser 
powers (a) P=900 W and (b) P=1800 W. 

 
 

Figure 15 Comparison of the experimental and predicted track geometry at four locations 
within the transient region. (a) y=55 mm (b) y=60 mm (c) y=65 mm (d) y=70 mm. 
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Table 4 Error and R2 Values for Experimental and Predicted Track Profiles 

Distance (mm) Error Wmax (%) Error hmax (%) 
Coefficient of  

Determination 

5 ≤ y ≤ 50 3.79 4.81 0.962 

55 5.38 6.50 0.934 

60 7.08 4.38 0.921 

65 3.47 1.77 0.937 

70 7.62 4.25 0.992 

75 ≤ y ≤ 115  6.73 3.25 0.994 

 
 

The power loss history and effective power utilised in the transient portion of the 

numerical FE model is presented in  

Figure 16. For the steady-state regions, i.e P=900 W and P=1800 W, the power loss ( 𝑙𝑜𝑠𝑠
𝑠𝑠 ) 

was calculated as 71.1 W and 165.7 W respectively. The power loss over the duration of the 

deposition follows a linear trend, with a greater reduction in the effective power observed 

for an increase in the laser power. This is due to the melt pool geometry enlarging at each 

time step; therefore leading to an increase in the mass of powder which is being assimilated 

by the melt pool, resulting in a higher energy requirement to sustain mass addition. This 

therefore reduces the power available at the substrate, which is represented by the effective 

power in the model.  

 

 

Figure 16 Predicted power loss and effective power utilised during the transient portion of 
the model.  

The catchment efficiency used for the transient portion of the model is presented in Figure 

17. For the steady-state regions, the calculated value for the catchment efficiency was 0.38 

and 0.48 for P=900W and 1800W respectively. The overall trend for the transient catchment 

efficiency was approximately linear. At higher laser powers, the melt pool geometry 

increases in size due to the increase in heat energy available at the substrate; therefore, the 
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total amount of powder which can be assimilated will rise as the melt pool covers a greater 

portion of the powder flux distribution at the substrate.  

 
Figure 17 Predcited catchment efficiency used during the transient portion of the 

deposition.  

 

3.1.2 Thermal Analysis 

In-situ temperature measurements were compared with the thermal histories from the FE 

model as shown in Figure 18. For all three locations, the overall trend has been replicated 

well. The peak temperatures for all thermocouple locations have been overestimated by the 

FE model, with a maximum error of 6.2% in the transient region. The predicted thermal 

gradient prior to the heat source pass, for all three regions, has a sharper gradient than 

expected when compared to the experimental data. For the thermocouple measurements at 

y=60 mm, there are fluctuations in the temperature collected by the far most thermocouple. 

This could be due to noise or as a result of the junction not being in contact at x=5 mm, 

potentially leading to the difference observed in the peak temperature value at this 

thermocouple location. In the cooling phase of the model, the artificial boundary condition, 

in conjunction with the convective and radiative losses, provides a good estimate of the 

cooling rate after the heat source passes the measurement location. 

A comparison of the predicted weld pool and the experimental micrograph are compared 

for each of the three track regions in Figure 19. The isotherms presented were taken at the 

widest point at each location investigated. The grey region represents the fusion zone with 

contour restricted to the solidus temperature (1260◦C). Overall a fair agreement between 

the predicted and experimental weld pool is apparent at all three locations. However, the 

greatest deviation between the two data sets is for the weld pool depth at y=35 mm and y=65 

mm. Overall, the shape of the fusion zone has been captured with accuracy, with the 

variation in penetration depth and melt pool width being captured at all three locations. It 

can be observed, that through the use of a laser heat source, the heating effects to the 

substrate are minimal due to the reflectivity of the material.  For the predicted data set in 
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both the transient and high laser power region, the melt pool geometry no longer 

encompasses the track material. However, it can be observed in Figure 19b and Figure 19c 

that this happens in reality due to a layer of powder adhering to the track surface. The layer 

of powder varies from a thin layer at the low laser power and increases in thickness 

throughout the deposition.  
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Figure 18 Comparison of experimental and numerically predicted thermal histories at 
three locations along the substrate at (a) y=30 mm; (b) y=60 mm and (c) y=90 mm for three 

thermocouple’s positioned at 3 mm, 4 mm and 5 mm from the track centreline.  
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Figure 19 Comparison of the numerically predicted fusion zone and the metallographic 

specimen at three locations (a) y=35 mm; (b) y=65 mm and (c) y=95 mm. 

 

3.1.3 Mechanical Analysis  

The evolution of stress at a position in the melt pool for each track region is presented in 

Figure 20. Prior to the heat source pass, the stress state is not in equilibrium, due to the 

evolution of a compressive and tensile stress for the longitudinal and transverse 

components respectively. The normal stress component is zero until the peak temperature 

is reached. As the temperature approaches the melting temperature (1260◦C) of the material, 

all three stress components, at all three locations, become compressive. The magnitude of 

the compressive stress upon reaching the peak temperature is constant at all three locations, 

therefore, the stress evolution directly below the track is independent of the size of the melt 
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pool. Shortly after the peak temperature is achieved, all three components of stress enter a 

tensile state, at the same rate, for all three locations. Upon cooling the component to room 

temperature, the time required to reach the final residual stress state reduces with an 

increase in laser power. In the region where P=1800 W, the transverse stress reaches a peak 

value and does not decay to a lower value upon cooling. This arises due to the increased 

cooling rate (−𝑑 /𝑑𝑡   observed in the high laser power region (2150◦C/s) compared to the 

low laser power region (1560◦C/s); therefore maintaining the current stress state within the 

component. At room temperature, the longitudinal and transverse stresses are tensile, with 

varying magnitudes at each location. The variation in stress magnitude occurs due to the 

evolution of the melt pool geometry at each location, this dictates the amount of expansion 

and contraction of material occurring in front and behind the heat source. The normal 

component returns to approximately zero for the low laser power; however, an increase in 

magnitude is observed with an increase in laser power.   

To validate the mechanical analysis, a comparison between residual stress predictions 

and Neutron Diffraction (ND) measurements was conducted for all three horizontal line 

scans. Figure 20 shows the two data sets for the longitudinal, transverse and normal stress 

directions. A good agreement between the experimental and predicted data sets is apparent 

for all three stress components. The majority of predicted stress values fall within the 

experimental error showing a high degree of confidence in the results. Due to the variation 

in the laser power, a higher magnitude longitudinal stress is present in the high laser power 

region compared to the low power region; therefore, following the expected trend. This 

component of stress, for all three locations, follows the typical trend of a traditional single 

weld. The transverse stress component in the track vicinity is of equal magnitude at all three 

locations, exhibiting a tensile stress state. At the location of y=30 mm and 60 mm, a sharp 

stress gradient is present in the vicinity of the track for the transverse stress component. In 

this location, a compressive stress is observed; however, this is not present for y=90 mm as 

the transverse stress profile remains tensile for the entire width. The normal stress follows 

the same trend as the transverse component at each horizontal location. The largest error 

occurs below the track at y=30 mm, for the transverse stress, as a greater magnitude was 

measured than predicted at x= 3 mm and 3.5mm. 
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Figure 20 Numerical prediction of the transverse, longitudinal and normal stress components 
during the deposition process, in three regions of the track (a) y=30 mm; (b) y=60 mm and (c) 

y=90 mm. The nodal point was at the track centreline 0.25 mm below the substrate surface. 
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Figure 21 Comparison of experimentally measured and numerically predicted tri-axial 
residual stresses at 2 mm below the surface for each line scan position (a) y=30 mm; (b) y=60 

mm and (c) y=90 mm. 
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4 Discussion 

The work conducted in this study presents a novel modelling strategy, allowing in-situ 

process parameter control within DED to be modelled, by encompassing the key physics and 

parameters of the process. The modelling strategy can be extended to conduct parametric 

investigations to determine the effects of the process parameters on the resultant 

temperature and residual stress fields. Through the use of the modelling strategy presented 

here, tailored repair strategies can be devised and implemented for the repair of 

components utilising DED.  

 

4.1 Track Profile Prediction  

The evolution of the track profile was predicted using a numerical method and compared to 

focus variation microscopy measurements. A good agreement was attained between the 

predicted and experimental shape of the track profile at all of the locations. As the shape of 

the profile is governed by the powder distribution, an accurate representation of this 

variable has been achieved through the estimated Gaussian feed radius. The maximum error 

for the track profile shape was 7.9% this was due to the formation of an asymmetric bead 

profile. This was not captured by the model as the fluid flow upon solidification was not 

included. The variation in track height, through altering the laser power, has been captured 

well by the numerical prediction. Through increasing the laser power by a scale factor of 2, 

the track height increased by 58.7%; therefore, a directly proportional relationship is not 

observed. A maximum error of 6.5% was determined between the predicted an 

experimental track height. As the track height is predominantly governed by the powder 

catchment efficiency, the low error validates the method by which these parameters were 

derived. Therefore, the error in the predicted height could be because some powder particles 

may not reach the melt pool, as they could be melted in flight and/or be deflected from the 

substrate due to the high velocity carrier gas used in the experimental procedure. Overall, a 

higher percentage error was seen between the predicted and experimental track width. As 

this is governed by the maximum melt pool width, the assumption that the absorptivity was 

temperature independent may have caused this error as this would determine the peak heat 

flux entering the domain. Another potential reason may be due to the assumption that the 

Gaussian radius of the heat source was equal to the laser spot radius, as this would govern 

the distribution of thermal energy across the substrate and in turn would alter the geometry 

of the melt pool. For the track profile model, temperature independent material properties 

were used to implement the analytical expressions. The reason for this was to enable a more 

efficient solution to the analytical equations [8]; however, this simplification may cause the 

discrepancies observed between the predicted and experimental track profile. To assess the 

validity of this assumption, track profiles were derived for the steady-state regions, defining 

the density and specific heat capacity properties for temperatures greater than 630◦C. Across 

this range of material properties, the maximum error was associated with the track height 
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was 1.4%; therefore, using temperature independent properties has a negligible effect on 

the derived bead geometry, validating the assumption. It should be noted that the convective 

and radiative losses were neglected from this section of the model. Therefore, the predicted 

thermal energy within the domain is overestimated and in turn will result in an overestimate 

of the melt pool geometry. Therefore, this can lead to the discrepancies observed between 

the predicted and experimental track profiles. The overestimate in heat flux could also arise 

from the method in which the laser heat source is represented within the FE model.  It was 

assumed for this work that the Gaussian radius was equal to half the size of the laser spot 

radius. This value was validated for the thermomechanical analysis; however, calibration of 

the heat source would have been more accurate without the deposition material present. It 

should also be noted that, from the substrate deforming, the laser spot size will change; 

therefore, it cannot be assumed that the Gaussian radius is constant throughout. As the melt 

pool width is also dependent upon the power loss history, derived from the mass-enthalpy 

balance, the analytical approximation of the power loss may provide an underestimate. This 

may result in the overestimate between the predicted and experimental size of the melt pool 

as observed in Figure 19. 

 

4.2 Thermal History and Melt Pool Profile 

The experimental and numerical predictions of the thermal histories correlate well with one 

another. The heating and cooling phases were captured by the FE model with accuracy, with 

slight discrepancies in the thermal gradient before the heat source pass. An overestimate in 

the peak temperature values for all thermocouples was observed, this is due to the method 

in which ABAQUS applies the heat source model to the FE domain [32]. It appears that the 

cooling rate at each horizontal location changes, which may arise due to the in-situ 

deformation of the substrate, reducing the contact area between the substrate and the CNC 

bed. As this heat loss was modelled using an artificial, convective boundary condition, this 

could not be accounted for. To model the CNC bed within the FE domain would increase the 

number of elements within the mesh, therefore reducing the computational efficiency of the 

simulation. It should be noted that the thermocouple was mounted to the substrate manually 

and from the FE model, a 0.2 mm position change gave rise to a 9% difference in the 

temperature.  

To further validate the FE heat source, a comparison of the predicted fusion zone and the 

one derived from the experimental micrograph was conducted. The overall predicted shape 

of the fusion zone agreed well with the experimental micrograph, with an increase in 

penetration depth observed with an increase in laser power. The width of the fusion zone 

was predicted accurately; however, the predicted penetration depth was underestimated for 

the low power and transient regions. A possible reason for why this inaccuracy is present 

within the model maybe due to the melt pool and track width not being coherent. This could 

be due to an overestimate in the predicted track geometry for the aforementioned reasons. 
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Another cause maybe due to the assumption that the absorptivity is constant and assumed 

to be temperature independent throughout the analysis.  . 

 

4.3 Residual Stress Predictions 

Through the use of ND measurements, the mechanical aspects of the FE model were 

validated. Overall, the residual stress profiles for the experimental and predicted data sets 

correlated well for all three stress components at each horizontal line scan. At each line scan 

location, the trends of the triaxial residual stresses have been captured well by the FE model. 

Almost all of the predicted residual stress values fall within the confidence limits of the 

experimental measurements; however, the greatest errors occur within the vicinity of the 

track. Limited variation was present during the evolution of stress within the melt pool 

region and in the final residual stress state of the component. The transverse stress 

component differs at each horizontal location, with the stress direction at y=90 mm being 

entirely tensile, as the increased cooling rate in this region does not allow a redistribution of 

stress to occur. At y=30mm and 60 mm a sharp stress gradient is present in the vicinity of 

the track, as the reduced cooling rate allows the track material to contract and exhibit a 

compressive stress at the substrate surface. At each horizontal line scan location, an increase 

in magnitude of the longitudinal stress component was observed, with this being captured 

well by the FE model; however, a greater increase was determined from the experimental 

measurements. This may have arisen due to the underestimate in the penetration depth 

from the thermal FE model, resulting in a smaller volume of material contracting upon 

cooling. Another potential reason for this error may be due to neglecting the restraining 

bolts from the FE model, as this would alter the evolution of stress within the substrate. 

Including this effect within the FE model would inherently increase its complexity and 

simulation time. Other reasons for the discrepancies observed between residual stresses 

obtained from the ND measurements and FE model could include; experimental positioning 

errors, microstructure evolution within the substrate and the variation in measurement 

temperature. To ensure that a reliable stress measurement is derived from the ND 

measurements, the location at which the ND measurement is taken in the region of interest 

and within the strain free reference sample has to be identical. As these measurements were 

not taken utilising the same datum reference, a positioning error could be introduced, 

leading to an incoherent comparison between the two data sets. At the location of y=30 mm 

and y=90 mm, a positioning error at x=3 and 3.5 mm is believed to be the reason for the large 

difference observed between the predicted and experimental residual stress. Minimising 

positioning errors will ensure that the gauge volume is completely filled, neglecting the 

measurement of pseudo strain, giving rise to the error in the direction of the measured and 

predicted stress at these locations. Also, as the substrate will deform during the deposition 

process, the camber and butterfly distortion should be considered and accounted for whilst 
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creating the datum for the ND measurements. This was not completed for this experiment 

and could have led to the error observed between the two data sets.  

Due to the evolution of the track geometry and the variation in laser power, 

microstructure variation will be present at each horizontal line scan. The strain free 

reference sample was extracted from the location where P=1800 W. In this region, the 

highest peak melt pool temperature was present (2598◦C), allowing sufficient time for the 

diffusion of the strengthening precipitates, γ’’ (Ni3Nb) and γ’’ (Ni3Al) [43], to take place. This 

occurs due to the peak temperature in the melt pool exceeding the optimum temperature 

(1150◦C) [44] for the precipitates to enter solution, therefore resulting in crystallographic 

mismatch. This, in turn, gives rise to varying magnitudes of intergranular strain in the 

vicinity of the Heat Effects Zone (HAZ), at the position of each horizontal line scan. From 

analysing the location where the thermal field equated the recrystallisation temperature 

(1020◦C) of IN718 [43], the approximate width and depth of the HAZ was 1.6 x 0.75 mm2 and 

2 x 1.25 mm2 for P=900 W and P=1800 W respectively (Figure 22). In the high-power region, 

the gauge volume included a greater volume of the HAZ compared to the low-power region, 

leading to an incoherent comparison between the strain-free lattice spacing and the region 

of interest. This is true for the horizontal line scan at y=30mm and y=60 mm, as the variation 

of intergranular strain is not accounted for utilising one d0 specimen. As the macrostress is 

of interest, a shift in this variable will be present, as the difference between the lattice 

spacing before cutting of the d0 specimen, and the reference spacing measured for the same 

region was no longer proportional to the macrostress [40]. Therefore, to reduce the error 

obtained in the experimental residual stress profiles, a strain free reference specimen should 

be utilised at each horizontal line scan location. Finally, the ND measurements were not 

completed at constant ambient conditions and would cause thermally induced intergranular 

strains, due to anisotropic thermal expansion [40]. As the measurements were completed 

over a 24 hour period, a significant change in lattice spacing would therefore occur.  
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Figure 22 Schematic of the estimated HAZ and the ND gauge volume for (a) y=30 mm and 
(b) y=90 mm.  

 

 From this work, it is confirmed that high magnitude residual stresses are present within 

DED manufactured components; therefore, methods to control the evolution of these 

stresses in DED parts will need more attention in order to extend the service life of 

components repaired using this technology. From this study, a variation in the laser power 

does not considerably alter the evolution of residual stresses as there is minimal variation 

in the trend and magnitude at each line scan location. As the cooling rates for the process are 

high, it is believed that controlling this phenomenon before or after the deposition would 

help to reduce high magnitude residual stress formation. However, the application of this 

model should be extended to multi-layer deposition, to determine if in-situ parameter 

variation has a substantial effect on the thermomechanical behaviour of the repaired 

component. As the current study presents a generalised model to predict the effect of 

adaptive process control, the modelling approach can be extended for multi-track deposition. 

In general, the current approach can be applied until the melt pool geometry has to be 

determined. Due to the overlap between the melt pool and the previously deposited track, 

the geometry can no longer be represented as two elliptical sections. Methods exist to model 

overlapping melt pool geometries, such as an analytical representation presented by  Ahsan 

et al. [45]; however, the inclusion of this new phenomena is not trivial and the validity of the 

approach has to be evaluated. Therefore, further work to extend the current approach to 

multi-deposition is required.  

 The current modelling methodology presented will aid as a design tool to perform multi 

combination parametric studies of the processing parameters. The track profile and 

thermomechanical effects can then be evaluated to ensure that the optimum repair strategy 

is implemented for the component. The modelling strategy will therefore allow a bespoke 

Temperature  (oC) Temperature  (oC) 

(a) (b)

Gauge Volume Heat Affected Zone (HAZ)

1 mm
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repair application to be adopted which can restore the damaged component to its original 

in-service condition.  

 

5 Conclusions 

A new method is presented which encompasses the manufacturing flexibility of the DED 

process into a single modelling strategy. The modelling method allows a realistic, 3D 

transient track profile to be predicted and then implemented into a FE model to evaluate the 

thermal and mechanical effects of the process. The approach allows multiple process 

parameters to be investigated, allowing a tailored repair strategy to be identified. The key 

findings of this study are presented below. 

 The modelling strategy presented here can aid in devising an optimum set of 

process parameters to ensure a geometrically accurate build is attained and to 

assess the combination of process parameters which can control the cooling rate 

and the evolution of stress within the component. However, as the validity of the 

approach is for a single track, the modelling strategy will be extended to evaluate 

multi track depositions. 

 The validated case presented in this study agrees well with the experimental data 

showing confidence in the modelling strategy.  The maximum track height and 

width were predicted with a maximum error of 6.5% and 7.62% respectively. 

The peak temperatures and residual stresses were underestimated with an error 

of 6.2% and 11.4% respectively.  

 Minimal variation was observed in the trend for the stress evolution and the final 

residual stress state at each horizontal location. The longitudinal stress increased 

with laser power, with negligible deviation in the other two stress components. 

A plane stress condition was not observed due to the interaction of the track 

geometry and the substrate at the interface between them.  

 From this study, total mesh independence can only be achieved when evaluating 

both the accuracy of the thermal history and melt pool geometry. To ensure the 

optimum element size is utilised to represent the heat flux for the selected 

process parameters, a method to calibrate the FE heat source is required to 

reduce the error in the numerically derived results.   

 High magnitude residual stresses are present in a single-track deposition with a 

minimal reduction being observed through controlling the laser power. As these 

types of stresses will reduce the life of the component, further study should be 

conducted to determine methods that adaptively control the evolution of high 

magnitude stresses.  
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