
RESEARCH ARTICLE

Unoccupied aerial vehicles as a tool to map lizard operative
temperature in tropical environments
Emma A. Higgins1,2 , Doreen S. Boyd1 , Tom W. Brown3 , Sarah C. Owen1 ,
Geertje M. F. van der Heijden1 & Adam C. Algar4

1School of Geography, University of Nottingham, Nottingham NG7 2RD, United Kingdom
2Department of Biological and Forensic Sciences, University of South Wales, Pontypridd CF37 4BB, United Kingdom
3Kanahau Utila Research and Conservation Facility, Isla de Utila, Islas de Bahia, Honduras
4Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada

Keywords

Climate change, ectotherms, forest canopy,

random forest, thermal suitability, UAVs

Correspondence

Doreen S. Boyd, School of Geography,

University of Nottingham, Nottingham NG7

2RD, United Kingdom.

Email: doreen.boyd@nottingham.ac.uk

Funding Information

This work was funded by the University of

Nottingham’s Life in Changing Environments

Research Priority Area and a School of

Geography PhD studentship to EAH.

Editor: Temuulen Sankey

Associate Editor: Larissa Sayuri Moreira Sugai

Received: 18 July 2023; Revised: 28 February

2024; Accepted: 19 March 2024

doi: 10.1002/rse2.393

Abstract

To understand how ectotherms will respond to warming temperatures, we

require information on thermal habitat quality at spatial resolutions and extents

relevant to the organism. Measuring thermal habitat quality is either limited to

small spatial extents, such as with ground-based 3D operative temperature (Te)

replicas, representing the temperature of the animal at equilibrium with its

environment, or is based on microclimate derived from physical models that

use land cover variables and downscale coarse climate data. We draw on aspects

of both these approaches and test the ability of unoccupied aerial vehicle

(UAV) data (optical RGB) to predict fine-scale heterogeneity in sub-canopy liz-

ard (Anolis bicaorum) Te in tropical forest using random forest models. Anolis

bicaorum is an endemic, critically endangered, species, facing significant threats

of habitat loss and degradation, and work was conducted as part of a larger

project. Our findings indicate that a model incorporating solely air temperature,

measured at the centre of the 20 × 20 m plot, and ground-based leaf area index

(LAI) measurements, measured at directly above the 3D replica, predicted Te

well. However, a model with air temperature and UAV-derived canopy metrics

performed slightly better with the added advantage of enabling the mapping of

Te with continuous spatial extent at high spatial resolutions, across the whole

of the UAV orthomosaic, allowing us to capture and map Te across the whole

of the survey plot, rather than purely at 3D replica locations. Our work pro-

vides a feasible workflow to map sub-canopy lizard Te in tropical environments

at spatial scales relevant to the organism, and across continuous areas. This can

be applied to other species and can represent species within the same commu-

nity that have evolved a similar thermal niche. Such methods will be imperative

in risk modelling of such species to anthropogenic land cover and climate

change.

Introduction

Thermal habitat quality, i.e. favourable microclimatic

conditions, is an important factor for ectothermic organ-

isms (Higgins et al., 2021). The thermal environment

impacts both performance and distribution of ectotherms

by influencing metabolic and ecological function, as well

as evolutionary fitness, through the interaction between

physiology, behaviour, biophysics and microclimate

(Campbell & Norman, 1998; Gates, 1980; Huey & Slat-

kin, 1976). This can scale to influence population dynam-

ics (Diaz, 1997; Sinervo et al., 2010). Although

temperature influences all levels of biological organization

(Niehaus et al., 2012), the spatial resolution at which

thermal environments have usually been measured is

often far too coarse to be relevant to the thermal land-

scape experienced by individual organisms (Logan

et al., 2013; Sears et al., 2011; Sears & Angilletta, 2015).
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Quantifying fine-scale thermal environments for ecto-

thermic organisms has traditionally taken two approaches:

microclimate–biophysical modelling and field-based mea-

sures using thermal replicas. The former generally relies

on mechanistic models that downscale broad-scale (usu-

ally monthly) macro-climate (≥1 km grid) data to esti-

mate microclimate in specific habitats, e.g. NicheMapR,

Microclima and Microclimc (Kearney & Porter, 2017;

Maclean et al., 2018; Maclean & Klinges, 2021). These

estimates of microclimate must then be combined with

biophysical heat exchange models to estimate animal

operative temperature (Te), the temperature of the animal

at equilibrium with its environment (Bakken, 1992; Logan

et al., 2013), e.g. the ectotherm model in NicheMapR

(Kearney & Porter, 2020). These models have revolution-

ized our ability to model thermal environments across

broad spatial extents, especially for species distribution

modelling, and new developments have the potential to

model much finer variation (e.g. Microclimc), but appli-

cations at scales of individual organismal movement (e.g.

cms to m) are still rare.

Alternatively, measuring the thermal environment and

thermal habitat quality at spatial resolutions relevant to

individual animals is standard practice for thermal ecolo-

gists using ground-based methods. This includes measur-

ing Te by deploying morphologically accurate 3D replicas

of the focal species, fitted with temperature data loggers,

in different microhabitats (Bakken, 1989; Logan

et al., 2013; Muñoz & Losos, 2017). This allows the Te of

the focal species to be measured in different microhabitats

at very fine spatial resolutions. However, each replica pro-

vides a point measure, sampling only a very small extent

of thermal habitat and thus may not represent the condi-

tions mere metres away. This can be partially resolved by

using additional replicas, but this quickly increases,

beyond feasibility, the cost and resources required for

such methods, including replica materials, data loggers

and deployment effort. These limitations of existing

methods are particularly pertinent given the established

importance of spatial heterogeneity of thermal environ-

ment for species, particularly ectotherms (Huey, 1974;

Sears et al., 2016; Sears & Angilletta, 2015).

Continuous mapping of animal operative temperatures

at fine scales relevant to those perceived by organisms has

considerable potential to increase our understanding of

thermal ecology, including how environmental change

alters thermal environments and the implications of these

changes for species occurrence, population persistence

and ecological interactions. For example, spatial structure

and heterogeneity, i.e. patchiness, of thermal environ-

ments, along with the mean temperature, influences ther-

moregulatory performance and movement of ectotherms,

with considerable effects on energy expenditure (Sears &

Angilletta, 2015). Combining fine-scale maps of operative

temperature with organisms’ thermal performance curves

can be used to estimate thermal habitat quality and pro-

vide insights into the vulnerability, or robustness, of spe-

cies to warming environments (Logan et al., 2013, 2015;

Sinclair et al., 2016).

Remote sensing can improve the spatial resolution of

mechanistic microclimate model outputs by capturing

fine-scale measures of important data inputs such as

topography and canopy metrics (Duffy et al., 2021; Mill-

ing et al., 2018; Zellweger et al., 2019). Canopy cover

influences the thermal environment in multiple ways,

including reducing incoming solar radiation (Campbell &

Norman, 1998). In forests, the canopy acts as a thermal

insulator, keeping the understory cool when ambient tem-

peratures are hot, and keeping the understory warm when

ambient temperatures are cold (De Frenne et al., 2019).

Canopy features, such as Leaf Area Index (LAI), which is

the one-sided area of leaves per unit ground area and is a

measure of canopy density, have been found to influence

operative and body temperatures of ectotherms, specifi-

cally lizards (Algar et al., 2018; Kearney et al., 2009), as

well as spatial variation in lizard population abundance

via effects on thermal environment (Higgins et al., 2021).

These relationships suggest that, in wooded environments,

fine-scale variation in canopy density and structure can

be exploited to quantify the thermal heterogeneity avail-

able to individual organisms. Remote sensing technolo-

gies, such as unoccupied aerial vehicles (UAVs), can aid

in capturing this canopy variation via optical sensors

(most commonly RGB) and photogrammetry methods

such as Structure from Motion (SfM) (Duffy et al., 2021;

Milling et al., 2018; Zellweger et al., 2019). Although cap-

turing specific canopy measures such as LAI from UAVs

is challenging (Duffy et al., 2021), other measures of vege-

tation structure, such as greenness indices (Morris

et al., 2013) and texture metrics, can be used as proxies

for canopy cover and heterogeneity and are more

straightforward to capture.

Here, we combine remote sensing and thermal ecology

field methods to predict centimetre-scale variation in Te

of the endemic lizard Anolis bicaorum below the canopy,

across the spatial extent of an entire UAV orthomosaic,

covering the entirety of the 20 × 20 m survey plot. Anolis

bicaorum is an endemic, critically endangered species, fac-

ing threats relevant to its thermal habitat (habitat loss,

tropical forest degradation) that was being studied as part

of a larger research project, where we are aware of its

thermal habitat requirements (Higgins et al., 2021; Logan

et al., 2013). We integrate 3D replicas, air temperature

and high-resolution RGB imagery captured from a UAV

across a series of plots on the island of Utila, Honduras,

to predict fine-scale, continuous variation in Te. We
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compare model performance to models using

ground-based LAI measures taken using a ceptometer and

then demonstrate how we can predict Te across UAV

images for later use in mapping thermal habitat quality.

Materials and Methods

Study area and species

We carried out fieldwork on the island of Utila, Hondu-

ras (16.0950° N, 86.9274° W). The island is relatively

homogenous in elevation, with a single notable elevation,

Pumpkin Hill which reaches 74 m above sea level

(Fig. S1). We surveyed sixteen 20 × 20 m plots that varied

in their level of human disturbance, from relatively intact

neotropical dry forest (no. of plots= 8), urban/degraded

forest areas (no. of plots= 4), to heavily disturbed,

sparsely treed areas in Utila Town (no. of plots= 4). For

further information on plots, including locations, please

see (Fig. S2; Table S1). The work was conducted between

March and June of 2019, in the dry season of Utila, Hon-

duras, where temperatures are on average around

29–31°C. The island experiences its rainy season between

October and February, where temperatures are on average

slightly lower at around 28°C and there is a higher inci-

dence of rainfall.

Anolis bicaorum, the focus species of this work, was

first described by Köhler (1996). A. bicaorum is endemic

to the island of Utila, Honduras, and is found predomi-

nantly in forests (Brown et al., 2017) and its thermal ecol-

ogy reflects these relatively cool, thermally homogeneous

environments (Logan et al., 2013). Its preferred tempera-

ture range (Tpref) is 25.5� 1.29°C to 28.0� 1.27°C (Hig-

gins et al., 2021), and its critical thermal maximum

(CTmax) is 33.2°C (Logan et al., 2013). It faces significant

threats from habitat loss and habitat degradation from

development on the island of Utila (personal

observation).

Ground measures

We measured Te of different microhabitats in each plot

using 20 morphologically accurate 3D replicas of A.

bicaorum fitted with iButton dataloggers, as in Higgins

et al. (2021). Replica position within the plot, substrate

(trunk vs. ground), height (0–250 cm in 15-cm incre-

ments) and compass orientation (0–360° in 45° incre-

ments) were randomly chosen using a random number

generator, as in Higgins et al. (2021). Replicas were

placed randomly within the plot and all replica locations

were recorded with a Spectra Pro Mark 120 differential

DGPS. Mean horizontal recording error of the DGPS was

0.86 cm. The iButtons recorded Te every 15 min. To

determine the influence of the canopy structure directly

above the replica on incoming solar radiation, we

extracted Te at solar noon on each day for subsequent

modelling. Hourly plot air temperature (Ta) was recorded

at a height of 1.5 m using a shaded DS1921G-F5 iButton

as close to the centre of each plot as possible. The Ta of

each plot at solar noon was extracted for each day the

replicas were in situ. For detail on solar noon data extrac-

tion please see Supporting Information.

We measured leaf area index (LAI) above each of the

3D replicas at solar noon using an Accupar LP80 cept-

ometer, with a spatial resolution of 1 m. LAI was calcu-

lated using a simplified version of the Norman-Jarvis

model (1975) See Supporting Information for details.

Unoccupied aerial vehicle (UAV) imagery

Ultra-high spatial resolution aerial imagery of each plot

was acquired using a DJI Phantom 4 Advanced quadcop-

ter UAV equipped with an integrated RGB (red, blue,

green), 1-inch, 20-megapixel CMOS sensor mounted on a

three-axis, gyro-stabilized gimbal. The UAV has an inte-

grated GPS and GLONASS positioning system. The flights

were conducted during calm conditions to avoid wind

effects on leaves (Waite et al., 2019). A flight altitude of

between 40 and 50 m was required to fly at a height of

×1.5 the height of the canopy, a full list of flight altitudes

per plot can be seen in Supporting Information. All

flights captured data at a 90 by 90% forward and side

image overlap, affording orthomosaics of the canopies in

each plot. UAV images were processed in Agisoft Meta-

shape Professional V1.6.6, to create a 3-band RGB ortho-

mosaic image for each plot, projected to WGS1984 UTM

zone 16N. Resultant orthomosaics had a mean pixel spa-

tial resolution of 0.9 cm per pixel and validated for spatial

accuracy by visually comparing known points (buildings,

roads etc.) to base maps and also DGPS points taken in

the field at each plot. No shifting of the coordinates was

necessary.

Imagery canopy metrics

As a proxy for canopy presence and density, the propor-

tion of green (greenness) of each pixel within the ortho-

mosaic was calculated using Equation (1) (Morris

et al., 2013). An example output can be found in Sup-

porting Information.

Greenness ¼ Green

Redþ Greenþ Blueð Þ (1)

To capture measures of canopy heterogeneity and

structure, texture analyses were carried out on the green-

ness output. Grey-level co-occurrence matrix texture
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analysis was undertaken using the glcm package in R ver-

sion 4.1.0, using a 3×3 moving window to produce the

following texture metrics: Homogeneity, Contrast, Dis-

similarity, Entropy, Mean, Second-Moment and Variance.

Example output can be seen in Figure S3.

Extracting UAV canopy metrics

We extracted values for the 8 canopy measures (7 texture

layers and 1 greenness layer) above each 3D lizard replica

using a 1 m buffer. This ensured capture of canopy varia-

tion across a sufficient spatial area given spatial accuracy,

rather than based on a single 0.9 cm pixel. The mean

pixel values for each layer within the buffer area around

the 3D replica locations were extracted using the raster

package in R version 4.1.0 (Hijmans, 2022).

Statistical analyses

We fitted regression random forest (RF) models using the

ModelMap (Freeman & Frescino, 2009) package (Fig. 1).

Random forest algorithms are particularly useful in work-

ing with linear and non-linear relationships within the

same model; they also provide estimates of variable

importance (Breiman, 2001). We randomly divided the

data into a training (75%) and test set (25%) for inde-

pendent model validation. We fitted four RF models to

the Te data. The first included plot Ta and ground-based

LAI measures as predictors, the second included only

UAV-based canopy measures, the third included

UAV-based canopy measures and plot Ta, and the fourth

incorporated all variables (ground-based LAI, plot Ta,

and UAV canopy measures). All RF models were run with

500 trees, as varying tree number made little difference to

model outcomes; for full details and model parameters of

RF models, see the Table S3.

To validate RF models, we used the model diagnostic

function in ModelMap to compare observed and pre-

dicted Te values for the test dataset. The function also

provided variable importance plots based on mean

decrease accuracy (%IncMSE), which expresses the accu-

racy lost by the model when each variable is excluded; the

higher the value, the more important the variable is to

the model. Random forest algorithms are generally insen-

sitive to multicollinearity of variables (Tang et al., 2020),

but it can be a factor when trying to disentangle the

influence of two correlated variables. Although our tex-

ture variables were correlated (See Supporting Informa-

tion), we did not attempt to disentangle specific variables

of importance between the texture variables, so our inter-

pretation will be robust to this multicollinearity.

To evaluate predictive performance across different sur-

vey plots, we used a Jackknife approach where one plot

was omitted from the RF training data and the data from

the remainder of the plots were used to predict the omit-

ted plot. This was then repeated omitting each plot sepa-

rately and refitting the Te.Air.UAV model.

To determine whether RF modelling with UAV data

improved the ability to predict Te compared to air tem-

perature alone, we also fitted a regression of Te against

Ta. As simple biophysical models of Te predict a linear

relationship between Ta and Te (Algar et al., 2018), we

Figure 1. Simple workflow of data included in Random Forest Regression models.
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first fitted a simple linear regression. However, as the

Te–Ta relationship exhibited potential curvilinearity, we

also fitted a third-order polynomial relationship.

Mapping thermal habitat

To map Te across the whole of each plot, we used the

predict function in ModelMap to predict across the UAV

orthomosaics. We assumed Ta was homogeneous across

the plot. Mean Ta at solar noon across plots was 30.4°C.
Therefore, using the conditional function in Raster Calcu-

lator in ArcMap 10.4.1, a uniform raster layer with the

same spatial resolution and spatially matching pixel grid

as the other input variables was used to represent Ta, at

30.4°C. The Ta was kept continuous between plots to

demonstrate that users can compare suitability of differ-

ent habitats at similar air temperatures and that the

model can be run at any air temperature, which can be

helpful to look at air temperature warming scenarios.

Results

Prediction of Te

Te increased with Ta and the linear regression was

significant (F= 1162, d.f.= 793, P =\0.001; adjusted

r2= 0.59). However, the relationship showed considerable

heteroscedasticity (Fig. 2), with greater variance at

warmer temperatures. Fitting a third-order polynomial

did not substantially improve model fit (Fig. 2; F= 392.9,

d.f.= 791, P=\0.001, adjusted r2 = 0.60).

Results of the RF model incorporating ground-based

data alone (Model= Te.ground), indicated that using only

plot level Ta and LAI within the model accounted for

73.2% of the variation in Te. Model validation revealed a

strong relationship between observed and predicted values

(Fig. 3; adjusted r2= 0.89, P=\0.001). The RF model

using only UAV-derived data (Model= Te.UAV)

accounted for only 30.26% of the variation in Te. Model

validation revealed a negligible relationship between

observed and predicted values in the test data (Fig. 3;

adjusted r2 = 0.07, P=\0.001). However, including the

influence of Ta in the random forest along with the UAV

metrics (Model = Te.Air.UAV) accounted for 82.82% of

the variation in Te. Model validation revealed a strong

relationship between observed and predicted values

(Fig. 3; adjusted r2= 0.91, P=\0.001). The RF model,

which included ground and UAV-based variables

(Model= Te.All), explained the most (85.99%) variation

within Te. Model validation revealed a strong relationship

between observed and predicted values in the test data

(Fig. 3; adjusted r2= 0.91, P=\0.001). Variable impor-

tance plots for each of the models can be found in

Figures S6 and S9.

The jackknifing approach to model evaluation showed

that predictions vary substantially between plots and land

Figure 2. Air temperature versus Te fitted with a third-order polynomial curve. Each point is the Te (°C) at solar noon of a 3D replica within a

plot, plotted against the air temperature (°C) within the plot at solar noon. Blue curved line indicates third-order polynomial curve and lighter

shading around the curve= 95% confidence intervals.
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cover classes (Fig. 4). Forested plots generally had higher

r2 values between the observed and predicted values for

Te than those found for urban forest and urban plots with

little vegetation. Figure 4 indicates a bimodal structure in

the majority of forest plots. This is likely due to the clus-

ter of cooler temperatures being where 3D replicas are in

areas where there is a more closed and shaded canopy,

resulting in more stable and lower temperatures, and the

higher temperatures indicating where replicas were

exposed to more solar radiation, likely in canopy gaps.

The plot in Figure 4K is an exception to this bimodal

structure. This plot was a coastal forest located on the

beach at the south-eastern point of the island, with

exposed winds. The canopy consisted solely of Caribbean

almond (Terminalia catappa) trees which form a unique

forest structure with no understory present. Canopy

make-up, coastal winds and proximity to volcanic rock

exposures all may have influenced the thermal regime of

this plot, and the ability for the RF model to predict tem-

peratures within this plot, as the model is based solely on

canopy structure. However, the plots in Figure 4B and C

were also coastal almond forest and still showed the

bimodal structure of other forested plots. Further figures

outlining model performance by land cover, looking spe-

cifically at performance by temperature grouping, can be

seen in the Supporting Information.

Mapping Te

We used the model Te.Air.UAV, which included Ta and

the UAV metrics (greenness and textures), to map Te

across the whole of each plot. Figures 5 and 6 show

example raster layers for areas surrounding survey plots

including the original RGB imagery and the Te prediction

Figure 3. Scatterplot of observed Te versus predicted Te values for the test data for each random forest model. (A) Te.Ground, (B) Te.UAV, (C)

Te.Air.UAV, (D) Te.All. RMSE, root mean square error, adjusted r2 and associated P value derived from correlation of observed versus predicted Te.

Black line indicates linear regression line and the blue line indicates one-to-one line.
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raster based on the Te.Air.UAV RF model. Figures 5 and

6 show RGB and Te raster maps for a subset of forest and

an urban area; similar figures for the remainder of the

plots can be seen in the Supporting Information. Maps

highlight the whole of the orthomosaic as well as regions

of interest to evaluate mapping performance. In forests

(e.g. Fig. 5), the model identifies large Te differences asso-

ciated with closed canopies but also more subtle differ-

ences between tree species, with some species having

more open canopies that allow more solar radiation to

reach sub-canopy dwelling ectotherms. Examining plots

within urban areas (e.g. Fig. 6), the model has picked up

gaps and closed canopy areas, but there are some small

discrepancies in relation to water and buildings (roof-

tops). This corroborates results of the Jackknife approach

for the model (Fig. 4; Table S4), which showed that the

model performed better in forested areas.

Discussion

Canopy structure, measured using UAV RGB imagery,

has the potential to provide fine-scale predictions of

Figure 4. Observed versus predicted Te for each plot using the Te.Air.UAV random forest model with a Jackknifing approach. Labels (A) to (P)

correspond to Plot number sequentially from 1 to 16. Point colours refer to land cover where purple = forested plots, orange = urban forest plots

and black = urban plots. Blue lines indicate a line of best fit.

Figure 5. Left Images = True Colour (RGB) raster layer of area surrounding Plot 1. Right Images =Operative Temperature (Te) raster layer derived

from predictions of Te.Air.UAV random forest model of area surrounding Plot 1. Magenta and black insets highlight areas of interest.
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spatial heterogeneity of thermal habitat quality for ani-

mals at finer resolution than can currently be obtained

from existing mechanistic models, or from ground-based

methods traditionally used in thermal ecology. Here we

have proposed a workflow for mapping sub-canopy

tropical lizard Te at fine spatial resolutions using

high-resolution optical UAV imagery coupled with Ta

data. This proposed workflow allows for high spatial reso-

lution and spatial extent measures of Te below the canopy

and can be easily extended to other taxa, helping fulfil the

need for data on Te for forest-dwelling ectothermic

organisms at ecologically relevant spatial resolutions and

extents.

Results of the RF regression models indicated that the

model including Ta and the combined UAV data (green-

ness and texture) had higher predictive performance of Te

than models using just Ta or coupling Ta with

ground-based LAI measurements. Ta accounted for the

most variation in Te, as a lone variable. In the models

where it was included, it always was the most important

variable within the model, as expected from biophysical

theory (Campbell & Norman, 1998; Gates, 1980; Sears

et al., 2011). Determining whether estimates from Ta

from microclimate models can perform as well as Ta

measures taken in situ is an obvious next research step.

As we predicted, adding a ground-based measure of LAI

into these models increased model performance, again

consistent with theoretical expectations (Maclean &

Klinges, 2021) and empirical findings from broader scales

(Algar et al., 2018). However, we also found that includ-

ing UAV-derived canopy measurements in the model

with air temperature accounted for a higher percentage of

variation within Te than using air temperature and

ground-based LAI. This suggests that greenness and

texture captured biophysically relevant aspects of the can-

opy that influence incident solar radiation beyond that

captured by LAI measurements from the ground. None-

theless, ground-based LAI, as only one variable, does well

in the model when coupled with plot Ta. However,

UAV-derived data also have the advantage of allowing Te

to be mapped across a larger spatial extent at higher spa-

tial resolutions, with relatively simple data acquisition

methods, which is not possible with ground-based LAI

measures.

The Te.Air.UAV model performed best within forested

areas and less well in other land covers, including highly

urban plots. For example, roofs of some urban buildings

were also classified as cooler areas. Such failures are to be

expected since; in such cases, the UAV imagery is captur-

ing variation in the ground surface, rather than the influ-

ence of shade. This highlights the need to train the model

further across different land covers, and, in the case of

urban areas, considers that the modelling approach may

not be suitable due to a general lack of canopy. In forests,

where the model performed best, the findings are consis-

tent with those of Algar et al., (Algar et al., 2018), who

found that LAI improved microclimate-only models of

lizard body temperature in closed canopy environments

but had little influence in environments that were more

open. Our findings demonstrate that these relationships

hold across multiple orders of magnitude of spatial reso-

lutions and extent (1 km2 and global extent in Algar

et al. (2018) versus \1 m2 and 20 m × 20 m plot extent

here). The model is useful to thermal biologist and ecolo-

gists who can set out 20 thermal models in a plot and

subsequently use the method proposed here to get a con-

tinuous prediction of Te, across the survey area, rather

than solely point-based measures from replica location,

Figure 6. Left Images = True Colour (RGB) raster layer of area surrounding Plot 7. Right Images =Operative Temperature (Te) raster layer derived

from predictions of Te.Air.UAV random forest model of area surrounding Plot 7. Magenta and black insets highlight areas of interest.

8 ª 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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allowing us to now calculate thermally suitable habitat

area and to determine heterogeneity of thermal land-

scapes, which is relevant to species fitness and energetics

(Sears et al., 2011; Sears & Angilletta, 2015).

UAVs are a promising method for capturing

high-resolution spatial data for microclimate modelling

(Duffy et al., 2021; Kašpar et al., 2021; Milling

et al., 2018; Zellweger et al., 2019). This is, in large part,

because canopy structure, which can be captured with

UAVs, can produce significant differences in microclimate

(Kašpar et al., 2021; Maclean & Klinges, 2021). UAVs

themselves are becoming more accessible; however, they

themselves can be costly, with certain sensors adding to

the overall cost. However, this work was conducted using

a standard RGB drone, and there are open-source

cloud-based options for processing available. Detail on

overall cost of method equipment and alternative cost

options have been provided in Table S5. Our work

extends previous work developing UAV-based approaches

to spatially model microclimate (Duffy et al., 2021; Kaš

par et al., 2021; Milling et al., 2018; Zellweger

et al., 2019), to now map an ecologically relevant temper-

ature measures (Te), for ectotherms. Such maps will be

valuable in testing hypotheses about individual organism

thermoregulation, space use and energetics in response to

the spatial structure of thermal habitat (Sears et al., 2011;

Sears & Angilletta, 2015) thermal quality and to identify

components of thermal habitat that influence population

dynamics (Higgins et al., 2021). While here we only esti-

mated thermal quality at solar noon, further work could

extend our methods to capture fine-scale (e.g. hourly)

variation in thermal quality at daily, weekly or seasonal

temporal extents. Such information on thermally (un)

favourable conditions would provide valuable insight into

constraints on organismal time budgets which influence

distribution, abundance and fitness (Caetano et al., 2020;

Higgins et al., 2021; Logan et al., 2013, 2015). The ability

to model Te, even at a single point in time but across a

complete landscape, including fine-scale heterogeneity, is

step forward in measuring thermal habitat quality for

ectotherms.

For the study species (Anolis bicaourm), this work has

allowed us to capture plot-based thermal habitat measures

at relevant spatial resolutions for the first time. The

model performs well in forest environments, where A.

bicaorum is predominantly found, and predicts the ranges

within Tpref (25.5� 1.29°C to 28.0� 1.27°C) well. The

model does underestimate the temperature at the higher

ranges, which should be noted when looking at measures

such as CTMax for the species, which is 33.2°C. Therefore,
future work will also look to improve model performance

at higher temperatures in tropical forests. The model does

however allow us to now calculate suitable thermal

habitat at a better spatial resolution, rather than solely at

a mean 20 × 20 m plot level. And now allows us to look

at the suitability of the plot based on thermal heterogene-

ity and spatial arrangement of thermal patches, rather

than solely on mean operative temperature measures, as

was done by Higgins et al., 2021. This is major step for-

ward when looking at quantifying thermal habitat for

such species under threat and can help us look at the

impacts of habitat degradation, such as selective logging,

on the thermal environment, and help us predict species

responses to anthropogenic land use and climate change.

Future work toward improving model predictions

could incorporate additional UAV data, such as canopy

volumetric data from structure from motion (SfM) pho-

togrammetry (Duffy et al., 2021; Zellweger et al., 2019).

In addition, UAV-derived tree and canopy height, which

are also significantly related to microclimate (Kašpar

et al., 2021), could also improve models. Such additional

measures are relatively simple to obtain methodologically

from UAV-derived data. Future work will also look to

test this approach with different species of interest and

during different seasons, to test the model’s performance

in different weather conditions. Other recommendations

for future research would be to test the model across dif-

ferent geographic areas. For example, the neighbouring

island of Roatan has dramatically different topographical

features; therefore, the model could theoretically be tested

there to determine its validity across different more topo-

graphically complex landscapes. Another avenue of

research would be to test the workflows and models pro-

posed against well-established mechanistic models such as

NichemapR and Microclimc or even to combine the two

approaches, gathering additional data from mechanistic

microclimate modelling to add to the model proposed

here. Some research has been conducted on differences in

performance of mechanistic and empirical models, e.g.

Kearney et al. (2014), where both modelling avenues were

found to perform similarly, but with different limitations.

Future research on this topic would greatly benefit how

we use such models to map species responses to climate

and land use change.

Our work has provided a step forward in mapping

ectotherm Te at fine spatial resolution using optical UAV

data coupled with Ta. This workflow and model will

allow us to map ecologically relevant measures of the

thermal environment across larger areas at scales relevant

to the individual animals and populations, something that

until now was not feasible with standard ground-based

methods or with mechanistic niche modelling. This opens

new avenues to understanding the impact of anthropo-

genic and climate change on species, especially in forests,

that are dependent on suitable thermal environments, like

A. bicaorum.
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Figure S1. Elevation map of Utila, Honduras using Shut-

tle Radar Topography Mission (SRTM) 1- arc second dig-

ital elevation model. Elevation in metres above sea level.

Figure S2. Plot locations, number refers to Plot ID

number.

Figure S3. UAV RGB Orthomosaic (left), UAV Greenness

raster following Equation 1 (right) where 1= high green-

ness and 0= low greenness values.

Figure S4. Example of all texture layers for area sur-

rounding Plot 1, (A) Dissimilarity, (B) Contrast, (C) Var-

iance, (D) Homogeneity, (E) Mean, (F) Second Moment

and (G) Entropy.

Figure S5. Correlation plot for all variables used in

models.

Figure S6. Variable importance plot derived from model

validation function for model Te.Ground.

Figure S7. Variable importance plot for model Te.UAV.

Figure S8. Variable importance plot for model

Te.Air.UAV.

Figure S9. Variable importance plot derived from model

validation function for model Te.Air.UAV.

Figure S10. Frequency of difference between observed

and predicted Te (°C) grouped by temperature bracket to

determine what temperatures the model (Te.Air.UAV –
Jacknife) is best at predicting for Forest environments

(Land Cover).
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Figure S11. Frequency of difference between observed

and predicted Te (°C) grouped by temperature bracket to

determine what temperatures the mode (Te.Air.UAV –
Jacknife) l is best at predicting for Urban Forest environ-

ments (Land Cover).

Figure S12. Frequency of difference between observed

and predicted Te (°C) grouped by temperature bracket to

determine what temperatures the model (Te.Air.UAV –
Jacknife) is best at predicting for Urban environments

(Land Cover).

Figure S13. Frequency of difference between observed

and predicted Te (°C) for the Te.Air.UAV Jacknife Model

for all three Land Covers (Forest, Urban and Urban

Forest).

Figure S14. RGB raster layer of area surrounding Plot 2

with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S15. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plot 2 with zoomed in and

highlighted areas of interest (magenta and black insets).

Figure S16. RGB raster layer of area surrounding Plot 3

with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S17. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plot 3 with zoomed in and

highlighted areas of interest (magenta and black insets).

Figure S18. RGB raster layer of area surrounding Plot 5

with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S19. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plot 5 with zoomed in and

highlighted areas of interest (magenta and black insets).

Figure S20. RGB raster layer of area surrounding Plot 8

with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S21. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plot 8 with zoomed in and

highlighted areas of interest (magenta and black insets).

Figure S22. RGB raster layer of area surrounding Plots 9

and 10 with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S23. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plots 9 and 10 with zoomed

in and highlighted areas of interest (magenta and black

insets).

Figure S24. RGB raster layer of area surrounding Plot 11

with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S25. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plot 11 with zoomed in and

highlighted areas of interest (magenta and black insets).

Figure S26. RGB raster layer of area surrounding Plot 12

with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S27. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plot 12 with zoomed in and

highlighted areas of interest (magenta and black insets).

Figure S28. RGB raster layer of area surrounding Plot 13

with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S29. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plot 13 with zoomed in and

highlighted areas of interest (magenta and black insets).

Figure S30. RGB raster layer of area surrounding Plot 14

with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S31. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plot 14 with zoomed in and

highlighted areas of interest (magenta and black insets).

Figure S32. RGB raster layer of area surrounding Plot 15

with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S33. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plot 15 with zoomed in and

highlighted areas of interest (magenta and black insets).

Figure S34. RGB raster layer of area surrounding Plot 16

with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S35. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plot 16 with zoomed in and

highlighted areas of interest (magenta and black insets).

Figure S36. RGB raster layer of area surrounding Plot 6

with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S37. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plot 6 with zoomed in and

highlighted areas of interest (magenta and black insets).

Figure S38. RGB raster layer of area surrounding Plot 4

with zoomed in and highlighted areas of interest

(magenta and black insets).

Figure S39. Operative temperature (Te) raster layer

derived from predictions of Te.Air.UAV random forest

model of area surrounding Plot 4 with zoomed in and

highlighted areas of interest (magenta and black inset).
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Table S1. Plot Location and descriptions for survey plots

on Utila, Isla de Bahia, Honduras.

Table S2. Flight altitude of the UAV flight for each plot.

Table S3. Details of all RF models conducted; Mtry = the

number of variables randomly chosen at each split,

Ntrees= number of trees grown within RF model.

Table S4. Random forest validation outcome for each

plot using the Te.Air.UAV random forest model with a

Jackknifing approach, where the plot indicated in the

Plot No. column was omitted from training data and

then used as a validation set, r2 and the associated P-

value derived from correlation of observed versus pre-

dicted Te.

Table S5. Comparison of method equipment and soft-

ware costs and lower cost alternatives (where possible).
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