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Abstract

Wastewater-based epidemiology (WBE) has emerged as an effective environmental
surveillance tool for predicting severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) disease outbreaks in high-income countries (HICs) with centralized
sewage infrastructure. However, few studies have applied WBE alongside epidemic
disease modelling to estimate the prevalence of SARS-CoV-2 in low-resource settings.
This study aimed to explore the feasibility of collecting untreated wastewater samples
from rural and urban catchment areas of Nagpur district, to detect and quantify
SARS-CoV-2 using real-time qPCR, to compare geographic differences in viral loads,
and to integrate the wastewater data into a modified
Susceptible-Exposed-Infectious-Confirmed Positives-Recovered (SEIPR) model. Of the
983 wastewater samples analyzed for SARS-CoV-2 RNA, we detected significantly
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higher sample positivity rates, 43.7% (95% confidence interval (CI) 40.1, 47.4) and
30.4% (95% CI 24.66, 36.66), and higher viral loads for the urban compared with rural
samples, respectively. The Basic reproductive number, R0, positively correlated with
population density and negatively correlated with humidity, a proxy for rainfall and
dilution of waste in the sewers. The SEIPR model estimated the rate of unreported
coronavirus disease 2019 (COVID-19) cases at the start of the wave as 13.97 [95% CI
(10.17, 17.0)] times that of confirmed cases, representing a material difference in cases
and healthcare resource burden. Wastewater surveillance might prove to be a more
reliable way to prepare for surges in COVID-19 cases during future waves for authorities.

Introduction 1

Wastewater-based epidemiology (WBE) has emerged as a valuable and cost-effective 2

strategy for monitoring the prevalence of severe acute respiratory syndrome coronavirus 3

2 (SARS-CoV-2) within communities and predicting disease outbreaks [1, 2]. This 4

approach capitalizes on the detection of SARS-CoV-2 RNA in wastewater samples and 5

has been widely employed using samples obtained from wastewater treatment plants 6

(WWTPs) in nations with centralized sewage networks [1, 2]. While initially applied in 7

countries with centralized sewage networks, predominantly through wastewater 8

treatment plant (WWTP) samples [3, 4], the applicability of WBE has transcended 9

geographical constraints, encompassing a diverse range of sources such as river water, 10

airport wastewater, hospital effluents, marketplaces, and municipal drains [5–8]. 11

This research endeavours to explore the feasibility of a cross-sectional 12

wastewater-based sampling strategy aimed at detecting and quantifying SARS-CoV-2 13

viral loads in untreated wastewater within the Nagpur district, located in Maharashtra, 14

Central India. Notably, the sampling done for this study coincides with the second wave 15

of the COVID-19 pandemic in India in 2021, marked by an unprecedented surge in 16

transmission and heightened disease impact. However, the comprehensive integration of 17

WBE into disease surveillance systems, particularly in low- and middle-income countries 18

(LMICs), is limited due to inadequate centralized sanitation facilities [3, 4]. One of the 19

major reasons for this underutilization of WBE in LMICs, despite its huge potential, is 20

that in such countries centralized sanitation facilities are often lacking [7]. 21

In the course of carrying out this research, though there are several related 22

works [9–13], one seminal study in the field of WBE that this research utilised was 23

conducted by McMahon et al. [9]. Their study investigates the use of wastewater 24

samples to monitor community-level transmission of SARS-CoV-2, the virus responsible 25

for COVID-19. The authors employ a Susceptible-Exposed-Infectious-Recovered (SEIR) 26

model to estimate the number of infected individuals based on SARS-CoV-2 RNA 27

concentrations detected in wastewater. Via their rigorous analysis, McMahon et al. [14] 28

demonstrate the utility of the SEIR model in predicting infections by considering 29

various parameters such as transmission rates and viral shedding dynamics. In addition, 30

their work introduces a simplified equation that aids in estimating infections from 31

wastewater data, enhancing the accessibility of the model’s application. The study’s use 32

of Monte Carlo simulations further strengthens the accuracy of predictions, revealing a 33

notable discrepancy between estimated infections and confirmed cases, thus highlighting 34

the potential value of the SEIR model in informing public health strategies [14]. 35

To this end, the integration of wastewater-based estimates complements traditional 36

clinical testing and bolsters the accuracy of surveillance efforts, especially in 37

resource-constrained settings where extensive clinical testing might be challenging [15]. 38

Thus, by integrating data from wastewater samples with demographic information and 39

clinical data, a model is proposed which generates robust estimates of the number of 40

COVID-19 infections within a given population. Crucially, this approach provides a 41

April 30, 2024 2/18



comprehensive perspective on viral transmission dynamics, assisting public health 42

officials in understanding the disease’s impact on a broader scale. The imperative of 43

this study is to develop wastewater-based surveillance systems in LMICs, particularly 44

those with resource limitations and complex infrastructural challenges and underscores 45

the necessity of adapting WBE to a broader global context [16,17]. In these settings, 46

the translation of wastewater surveillance data into effective public health tools requires 47

the integration of mathematical models and simulations. 48

To address these challenges, the adaptation of mathematical models is crucial. The 49

use of a modified version of SEIR modelling and Monte Carlo simulation (MC) in this 50

study is motivated by the ability to effectively capture and analyze the transmission 51

dynamics of infectious diseases, such as SARS-CoV-2. The SEIR model and MC 52

simulation have established themselves as valuable tools in epidemiological research 53

because of their ability to provide insights into the complex systems involved in 54

infection transmission, population dynamics, and uncertainty analysis. The SEIR 55

compartment model forms the foundation for understanding disease transmission 56

dynamics [18–22]. The SEIR model categorizes individuals into different compartments 57

based on their disease status, encompassing susceptible, exposed, infectious, and 58

recovered individuals. This model enables the estimation of disease prevalence over 59

time, aiding in the interpretation of wastewater surveillance data and its linkage to 60

community infection dynamics. MC simulations, on the other hand, are a robust 61

computational technique used to account for uncertainties and variations in parameters. 62

By generating multiple simulations with randomly sampled inputs, MC simulations 63

enable the exploration of a range of possible outcomes. This is particularly valuable in 64

epidemiological studies where factors such as contact rates, transmission probabilities, 65

and intervention effects can vary or are uncertain. MC simulations provide a way to 66

quantify the uncertainty associated with model predictions, helping researchers 67

understand the potential variability in their results [14,23–27]. 68

This research initiative represents a pioneering effort in the Indian context, 69

harnessing the SEIPR model and MC simulations to illuminate the transmission 70

patterns of SARS-CoV-2 through wastewater. By addressing critical knowledge gaps 71

within LMICs and regions confronting infrastructural limitations, this study contributes 72

not only to scientific advancement but also furnishes actionable insights for policy 73

formulation and disease mitigation. Amidst the complex landscape of the COVID-19 74

pandemic, this endeavour augments the global repository of knowledge, empowering 75

communities and authorities alike to respond effectively to this ongoing public health 76

challenge. 77

In this study, we explored the feasibility of conducting a cross-sectional 78

wastewater-based sampling study for the detection, determination, and comparison of 79

SARS-CoV-2 viral loads from untreated wastewater in urban and rural areas of Nagpur 80

district, Maharashtra, Central India. We selected our sampling period during the second 81

wave of COVID-19 in India in 2021. We next developed a modified version of the SEIR 82

compartment mathematical model that has been frequently used to model COVID-19 83

dynamics in different populations [18,19,22], herein termed the “SEIPR model” to 84

predict the number of infected individuals within specific Nagpur district partitioned 85

zones and the total urban population under study. After predicting the number of 86

infected individuals, the estimates were used to perform Monte-Carlo simulations to 87

model the variations in the concentration of SARS-CoV-2 RNA in wastewater over time. 88

These modelled changes were then compared to the actual measurements recorded to 89

evaluate the accuracy of our SEIPR model. The urban incident COVID-19 cases were 90

also used to calculate the basic reproduction number R0 based on the SEIPR model. 91

This data was correlated to air temperature, relative humidity (a loose proxy for rainfall 92

as we did not have the precise precipitation data), and population density to enhance 93
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epidemiological understanding of environmental and human factors that may impact 94

SARS-CoV-2 transmission dynamics in Central India. To the best of our understanding, 95

this is the first Indian report that has employed the SEIPR model to measure the 96

transmission patterns of SARS-CoV-2 through wastewater. This study could prove 97

valuable for local authorities and government officials as it provides important insights 98

to make well-informed policy decisions. 99

Materials and methods 100

Wastewater sampling, SARS-CoV-2 detection, and quantification 101

Untreated (raw) wastewater samples were collected prospectively from the drainage 102

systems in the Nagpur district of Maharashtra, India, during the second wave of the 103

COVID-19 pandemic from January 31st to July 9th, 2021. Nagpur district is divided 104

into 13 rural talukas and the Nagpur urban region, governed under Nagpur Municipal 105

Corporation (NMC). The Nagpur urban region is further divided into ten municipality 106

zones with each further divided into municipal wards. Individual grab samples were 107

collected from sewers within each urban municipality zone as well as open 108

drains/groundwater sources of rural talukas representing the complete Nagpur district, 109

as illustrated in Fig 1 right panel (urban taluka) and left panel (rural talukas in relation 110

to urban taluka). Each sample ( 1000 mL) was collected in sterile wide-mouth 111

autoclaved plastic bottles sealed in plastic bags and transported under a cold chain at 112

4◦C within 18-24 hours. All sampling was conducted during the morning hours between 113

07:30 to midday using appropriate COVID-19 precautions. Samples were transported to 114

Dr B. Lal Institute of Biotechnology, Jaipur, for pre-processing, RNA extraction and 115

SARS-CoV-2 detection by RT-qPCR, as previously described [28]. No specific permits 116

were required for this study for field site access. We have only informed NMC regarding 117

this study. Detailed sample processing methodology is presented in S1 Appendix of 118

Supplementary information. 119

Fig 1. Map of Nagpur district (study area) showing sampling locations for
wastewater study. Each dot represents a location of wastewater collection in Nagpur
urban and rural talukas. The map was created using the ArcGIS 10.4 version from a
GIS student. Source of map used “ESRI, Maxar, Earthstar, Geographics and the GIS
user Community”.

Data collection for COVID-19 cases and environmental 120

characteristics 121

Demographics, and climatic factors including the presence of rainfall, air temperature, 122

and relative humidity, along with GPS coordinates, were also recorded by field workers 123

based at the Central Indian Institute of Medical Sciences (CIIMS) and assisted by the 124

NMC. Daily laboratory-confirmed COVID-19 positive cases and deaths between 1st 125

February and 30th July 2021 within the ten different municipality zones in urban 126

Nagpur were obtained from the health department of the NMC. 127

Epidemiological modelling and estimation of infected individuals 128

We based our study of the transmission of SARS-CoV-2 infections on a deterministic 129

ordinary differential equation (ODE) disease model in which the individuals in an entire 130

population can present in five mutually exclusive compartments according to their 131
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disease status and other measures. These compartments are susceptible, exposed, 132

infectious, confirmed positive and recovered, abbreviated as the SEIPR model, which is 133

a modification of the SEIR model and that described by Acheampong et al. [20], where 134

additional compartments were given to reflect the Ghanaian environment [20]. We 135

denote the proportion of susceptible individuals by S(t), the proportion of 136

asymptomatic infected individuals by E(t), the proportion of symptomatic infectious 137

individuals by I(t), the proportion of confirmed positive infectious individuals by P (t) 138

and the proportion of recovered individuals by R(t). It must be noted here that 139

individuals in the confirmed-positive class are carriers of the SARS-CoV-2 virus who 140

have had clinical confirmation of this status. However, individuals in an infectious class 141

show clear symptoms and have high infectivity but have not yet been clinically 142

confirmed positive. Notably, as highlighted by Acheampong et al. [20], individuals 143

classified within the infectious class I(t) represent an abstract concept that is often 144

unmeasurable. This underscores the significance of introducing a compartment like the 145

confirmed-positive class P (t), enabling comparison with the actual reported cases 146

within the population. The SEIPR model was applied to study COVID-19 dynamics in 147

ten zones within Nagpur’s urban area. Each zone operates independently. Disease 148

transmission is driven by a force of infection (λ), determined by the effective contact 149

rate per day (β1) and reductions in transmissibility for exposed (β2) and confirmed 150

positive (β3) individuals. Disease-induced deaths are assumed to only occur within the 151

infectious (I) and confirmed positive (P ) compartments. The model describes how 152

individuals transition between these compartments based on rates of entry and exit, 153

such as exposure to infection (λ), testing (ω), recovery (ρ), and disease-induced death 154

(d). Recovery of individuals (R) depends on recovery rates from the confirmed positive 155

(P ) and symptomatic infectious (I) compartments (ρP (t) and ργP (t), respectively). 156

Additionally, no natural birth and death are considered, and their exclusion may be 157

justified given the assumed short-term focus on COVID-19 dynamics and the neglect of 158

population-level demographic changes, simplifying the model for this specific 159

epidemiological context. These underlying assumptions guide the model’s representation 160

of COVID-19 transmission and progression in the Nagpur urban area. The transmission 161

dynamics of the SARS-CoV-2 infections are described by the five nonlinear systems of 162

ODEs shown in Eq (1): 163

d

dt
Xt = f

(
Xt, t, θ

)
, (1)

with X0 = [S0, E0, I0, P0, R0]
T is initial number of individuals, t denotes time, 164

Xt = [S,E, I, P,R]T denotes the number of individuals in these compartments at time t, 165

T denotes matrix transposition, denotes the parameter vector and f(·) denotes the 166

nonlinear relationship describing the state variable (see S2 Appendix in the 167

Supplementary Information for detailed mathematical derivation of SEIPR model). The 168

force of infection used in this model is λ = β1(β2E(t) + β3P (t) + I(t)), with β1 denoting 169

the effective contact rate per day, and β2 and β3 respectively accounts for the reduction 170

in disease transmissibility of exposed and confirmed positive individuals. A value of 171

epidemiological importance in infectious disease modelling is the basic reproductive 172

number, which in this study is referred to as the number of secondary SARS-CoV-2 173

infections generated by a single active SARS-CoV-2 infected individual during the entire 174

infectious period [29]. It is given by the Eq (2): 175

R0 = β1S
0

(
β2
ϵ

+
β3(1− ω)

iT
+
δ(1− ω) + iTω

iT pT

)
, (2)

where iT = δ + γρ+ d and pT = ρ+ d. The effective reproductive number (R0) is made 176
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up of contributions from secondary infections from the exposed class generated by 177

asymptomatic individuals (first term), confirmed positive individuals’ class (second 178

term), and the infected (symptomatic) class (third term). S0 is the proportion of the 179

population that is initially susceptible. Other parameters in Eq (2) are defined as 180

follows: ϵ denotes the incubation period, σ denotes the progression rate of susceptible 181

individuals to the confirmed positive class via testing per day, δ denotes the progression 182

rate of infectious individuals to the confirmed positive class via testing per day, d 183

denotes the disease-induced death rate per day, ω denotes the fraction of exposed 184

individuals that transient to confirmed positive class, γ denotes the fraction of 185

infectious individual that transient to recovery class and ρ denotes the recovery rate of 186

confirmed positive individuals per day. In this study, the nonlinear least squares scheme 187

is used to estimate the parameters involved in the calculation of R0. The model fitting 188

was first carried out for each zone to obtain zone-specific parameter estimates and 189

secondly for all zones put together as a single unit. Further details about model 190

derivation and parameter estimation can be found in the Supplementary (see S2 191

Appendix for a full description of model parameters and variables). For this study, the 192

number of SARS-CoV-2 infected individuals within urban Nagpur was estimated using 193

the modelling approach proposed by McMahon et al. [14], which combines our disease 194

model (SEIPR) to the viral concentration estimations [14]. As already mentioned, there 195

are ten zones within urban Nagpur and each zone is modelled independently. Based on 196

McMahon et al. [14], using our SEIPR disease model, the number of newly detected 197

infections on the jth day Inj is modelled as a Poisson process with rate parameter 198

Nβ1[β2E(j) + β3P (j) + I(j)], which is expressed as Eq (3): 199

Inj ∼ Poisson{Nβ1[β2E(j) + β3P (j) + I(j)]}, for j = 1, 2, . . . , J, (3)

where N is the total number of individuals that reside in the zone of the drainage 200

systems. The viral load being introduced into the drainage system at time t is 201

V0(t) =
∑
j:j≤t

Inj∑
i=1

Vij(t), (4)

where Vij(t) is the number of copies of SARS-CoV-2 RNA entering the drainage 202

systems via faeces of the ith individual of out the Inj who became infected on day j is 203

modelled according to the Eq (5) 204

Vij(t) = ϑij

{
10

ϕij(t−j)
5 I(j < t ≤ 5 + j) + 10ψ

(ϕij−ψij)(t−5−j)
5

ij I(t > 5 + j)

}
, (5)

for i = 1, 2, . . . , Inj (infected individuals) and j = 1, 2, . . . , J (days). In Eq (5), ϑij 205

denotes the log10 g of faeces per ith individual who gets infected on the jth day, 206

modelled as a normal distribution with mean of 2.41 and standard deviation of 0.25 per 207

data from lower-middle-income countries [15], ϕij denotes the log10 maximum RNA 208

copies per g being of faeces shed 5 days after being infected, modelled as a normal 209

distribution with mean of 7.6 and standard deviation of 0.8 [14] and ψij denotes the 210

log10 RNA copies per g being of faeces shed 25 days after being infected, modelled as a 211

normal distribution with mean of 3.5 and standard deviation of 0.4. To correlate the 212

viral load being introduced into the drainage system to that being measured, McMahon 213

et al. [14] proposed the Eq (6) called the downstream RNA copies measured, V (t, τ) to 214

account for the time-dependent degradation in the drainage system, 215

V (t, τ) = V0(t)

(
1

2

)τ/τ∗

, (6)
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where τ is the time elapsed between waste excretion and arrival at the drainage systems 216

modelled as a uniform distribution from τ = 1h to τ = 1.5h, V0(t) is the viral load 217

introduced into the drainage system modelled by Eq (4), τ∗ is the 218

temperature-dependent half-life modelled according to Eq (7) 219

τ∗ = τ∗0Q
(T−T0)/10

◦C
0 , (7)

where T is the current temperature of the drainage system, modelled as a uniform 220

distribution from T = 19◦C to T = 31◦C, τ∗0 is the half-life (h) at an ambient 221

temperature of T0, modelled as a normal distribution with a means of 3 h and 30 h 222

respectively, with standard deviations of 0.7 and 1.5, Q0 is the temperature-dependent 223

rate of change, modelled as a normal distribution with a mean of 5.5 and standard 224

deviation of 0.5. The choice of distributions and parameter ranges were informed by 225

previous research as well as actual measurements or observations of SARS-CoV-2 in 226

wastewater to inform their selection of parameter ranges for the Monte Carlo simulation. 227

All the above information was used to simulate the viral load of infected individuals 228

generated by our proposed disease model via 500 Monte Carlo simulations, since beyond 229

this number of Monte-Carlo simulations, the value of the simulated RNA copies does 230

not significantly change. Importantly, the number of Monte Carlo samples depends on 231

various factors including the complexity of the model, which is the case here. 232

Finally, McMahon et al. [14] proposed a model for estimating the number of infected 233

individuals in each day given the measured RNA copies quantified from samples 234

collected from the drainage systems and is given by the Eq (8) 235

Jt =
Q× V

A×B
, (8)

where Q denotes the average flow rate at the drainage system in L per day, V denotes 236

the virus copies per L, A is the rate of faeces production per person in g per day with 237

A = 2× 128 for developing countries [15], and B denotes the maximum rate at which 238

the virus is shed in RNA copies for g of faeces per day with B = 107.6 × 128 [14]. In this 239

study, Q was calculated as a point estimate using the product of the at-home 240

population in the catchment of each zone, and the observed average per capita 241

wastewater rate, which we assumed to be either 120 or 135 L/person/day (based on the 242

Ministry of Housing and Urban affairs suggested benchmark for urban water supply). 243

Statistical analyses 244

Due to the lack of COVID-19 incidence data for the rural areas in Nagpur, we explored 245

catchment areas within urban Nagpur by zones to gain insight into the concentration of 246

SARS-CoV-2 viral load in the collected wastewater samples. Based on the model 247

parameter estimates, the distribution of the RNA copies per day existing in the 248

drainage systems by zones was estimated, where we used the 2011 population census 249

data as an estimate for each population zone. Of note, the use of the Monte Carlo 250

simulation approach can help estimate uncertainties and account for variability in the 251

data, which provides some indication of potential uncertainty and variability in 252

prevalence estimates despite the limitations of using this census data, making the 253

margin of error not a major problem. Data on continuous variables are presented as 254

median with interquartile ranges (IQR). Categorical variables are shown as counts and 255

percentages in parentheses. The normality of data was assessed using the Shapiro-Wilk 256

test. Student’s t-test was used for comparing variables which were normally distributed. 257

Mann-Whitney test was used when the normality assumption was violated. The 258

Fisher’s exact test and Proportion tests were applied to compare categorical variables. 259

All p− values and confidence intervals (CIs) are two-sided and a p−value of < 0.05 is 260
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considered statistically significant. All modelling studies were performed using 261

MATLAB, 2022o and Rstudio 2022.07.1+554 software on macOS Monterey Version 262

12.5.1 MacBook Pro (13-inch, M2, 2022). 263

Ethical approvals 264

The study was approved by the Faculty of Medicine and Health Sciences Research 265

Ethics Committee at the University of Nottingham (REC No. 131-1120), and the 266

institutional ethics committees of the Central India Institute of Medical Sciences, 267

Nagpuadjust width. Lal Institute of Biotechnology, Jaipur. 268

Results 269

SARS-CoV-2 detection in wastewater samples 270

A total of 983 wastewater samples were analysed, of which 743 (75.6%) were from the 271

urban and 240 (24.4%) from the rural parts of Nagpur district. Overall, 43.7% (95% 272

confidence interval 40.1, 47.4) of wastewater samples in the urban and 30.4% (95% 273

confidence interval 24.66, 36.66), in rural areas tested positive for SARS-CoV-2 274

(p < 0.001); RT-PCR results revealed significantly higher SARS-CoV-2 viral copies per 275

L in urban zones (p < 0.001). The median temperature of urban Nagpur was 29.0◦C, 276

(IQR: 25.75-31.00) and was significantly lower than that of the rural areas (31◦ C, (IQR: 277

29-33); p < 0.001). The median humidity was also significantly higher in urban (38%, 278

IQR: 26-53) vs rural (32%, IQR: 22-50) Nagpur (p < 0.001) at the time of sampling 279

(Table 1). 280

Table 1. Summary of climatic characteristics and RT-PCR results of wastewater samples collected within
urban and rural Nagpur catchment.

Characteristics Urban Rural Significance
N = 743 N = 240

Temperature (◦C) 29.00 (25-75 - 31.00) 31.00 (29.00 - 33.00) ≤ 0.001
Humidity (%) 38.00 (26.00 - 53.50) 32.00 (22.00 - 50.00) ≤ 0.001

Seegene (RT-PCR)
IC 26.00 (26.00 - 28.00) 25.00 (24.00 - 28.00) ≤ 0.05
E(Ct) 32.00 (31.00 - 33.00) 32.00 (32.00 - 36.00) n.s
RdRp(Ct) 35.00 (34.00 - 36.00) 35.00 (34.00 - 36.00) ≤ 0.001
N(Ct) 33.00 (32.00 - 34.00) 32.00 (32.00 - 33.00) ≤ 0.001

Genome load (105 copies per L) 1.40 (0.72 - 3.00) 1.17 (0.48 - 1.60) ≤ 0.001

RT-PCR Resulta

Positive 325 (43.74%) 73 (30.41%) ≤ 0.001
Negative 418 (56.26%) 167 (69.58%)

Data are presented n (%) or median (IQR). NA = not applicable. a: RT-PCR results for wastewater samples; ct: cycle
threshold; n.s.: not significant

Of the 10 sampled urban catchment zones, two zones (7 and 9) yielded no SARS-CoV-2 281

RNA detection but did record the highest humidity levels (Table 2). Only 3 zones 282

experienced rainfall; zones 1 and 8, where rainfall was recorded 1 day prior to sample 283

collection, and zone 7, where sample collection took place during heavy rainfall. It is 284

likely that these rainfall events would also contribute to diluting the sewage prior to 285

sampling. Moreover, rainfall events would also contribute to more rapid and effective 286

flushing out within the sewers. In zone 9, wastewater sampling followed the conclusion 287
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of the main COVID-19 infection wave, and therefore, the cases of COVID-19 at the time 288

of sampling were expected to be very low, as illustrated in Fig S1A –S1E (S3 Appendix). 289

The distributions of the continuous data and their normality plots by individual zones 290

are shown in Figures S3A-D (S3 Appendix). The respective significance p− values 291

shown on the plots are all less than 0.05, indicating the data is not normally distributed. 292

Table S1 (S3 Appendix) summarises the demographic characteristics of the catchment 293

zones where wastewater samples were collected. The demographic and environmental 294

characteristics by zones are presented in Tables S2 and S3 (S3 Appendix). 295

Table 2. SARS-CoV-2 RT-PCR results detected per unit of time and detected viral load results of the
wastewater samples with climatic and population census information for each Nagpur catchment zone.

Catchment Populationa Temperature Humidity RT-PCR Resultb Genome Copy
(◦C) (%) (Positive) (105 Copies per L)

Zone 1 239171 24 (22 - 26) 52 (40 - 65) 24 (24.5) 1.135 (0.875 - 1.359)
Zone 2 159458 24 (22 - 26) 33 (25 - 39) 47 (39.5) 17.003 (3.463 - 298.375
Zone 3 232247 32 (30 - 34) 23 (18 - 34) 57 (87.7) 2.390 (0.776 - 3.753)
Zone 4 208426 30 (27.5 - 33.5) 21 (16.5 - 41) 39 (83.0) 0.883 (0.560 - 2.552)
Zone 5 243953 31 (30 - 32) 39 (27 - 45) 46 (73.0) 2.168 (1.533 - 2.864)
Zone 6 204438 31 (29 - 32) 36 (33 - 44.2) 36 (60.0) 2.509 (1.309 - 3.439)
Zone 7 187044 27 (26 - 29) 92 (88 - 94) 0 (0.0) NA
Zone 8 346287 33 (30 - 34) 40 (28.5 - 52.5) 5 (6.7) 0.066 (0.036 - 0.124)
Zone 9 317321 29 (27 - 32) 83 (74 - 94) 0 (0.0) NA

Zone 10 267320 27 (25 - 29) 27 (24 - 31) 71 (71.7) 0.705 (0.376 - 1.185)

Data are presented n (%) or median (IQR); a: 2011 census data; b: RT-PCR results for wastewater samples per unit of time
for each zone, NA: not available.

Estimation of infected individuals 296

We fitted our proposed SEIPR model to the reported confirmed COVID-19 positive 297

cases and deaths in urban Nagpur via the nonlinear least squares method. Fig 2 (a and 298

b) shows the representative model fit for the SEIPR model to data for all 10 Nagpur 299

catchment zones combined as a single unit for the period of March to July 2021. 300

Both plots show an increase in confirmed positive cases and deaths up to the first 50 301

days and then a decrease over the last 100 days. Thus, the SEIPR model predicts a 302

decrease in the susceptible population as individuals become exposed, infected, 303

confirmed positive, and then either recover or are confirmed dead. The remaining model 304

fittings for the urban zones are presented in Figure S5 (S3 Appendix). The 305

corresponding model parameter estimates for the respective catchment zones and R0 as 306

calculated using clinical incident data only, are presented in Table 3. Each urban 307

catchment zone exhibited different effective contact rates, β1, signifying different 308

contact patterns. In addition, the basic reproduction number, R0 is different for each 309

catchment zone with the highest R0 observed in zone 9 and lowest in zone 2. All the 310

zones have an R0 greater than 1 except for zone 2. All the zones, when combined as a 311

single unit, gave an R0 of 1.11. Linear regression analysis to investigate the variation in 312

R0 and β1 between the zones revealed a statistically significant positive correlation 313

between R0 and population density [R2 = 0.40, p−value= 0.05] whilst for effective 314

contact rate (β1) and R0, there was a negative correlation with humidity [R2 = 0.49, 315

p−value= 0.02]. No significant relationship was seen between temperature and R0 or β1 316

(Figure S8 in (S3 Appendix)). 317

Taking all zones combined, Fig 2 (c) depicts the distribution of the RNA copies per 318

day, similar to the dynamics observed by McMahon et al. [14]. 319
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Table 3. Model parameter estimates and basic reproduction number (R0) for each catchment zone of Nagpur
district.

Catchment Parameter
β1 β2 β3 ϵ∗ σ ω δ γ ρ d R0

(per (10−4) (10−4) (per (10−4 per (10−4 per (10−4 per (10−4 per (10−4 per
day) day) day) day) ( day) day) ( day)

Zone 1 0.91 0.42 143.79 0.2 2.48 19.16 21.81 1.00 1773.70 1.51 1.02
Zone 2 0.80 8.20 170.81 0.2 2.70 5.74 21.192 1.00 1627.00 1.58 0.98
Zone 3 0.92 0.01 8.22 0.2 2.64 10.13 25.811 1.00 1714.30 1.81 1.06
Zone 4 0.93 306.13 139.39 0.2 1.49 8.95 10.09 1.00 1344.40 1.03 1.52
Zone 5 0.99 7.12 1969.00 0.2 2.04 2.66 23.67 1.00 1557.30 1.88 1.26
Zone 6 0.76 1194.60 0.37 0.2 1.08 22.97 0.67 0.99 1333.90 0.56 1.59
Zone 7 0.75 0.02 11.05 0.2 0.522 2.70 3.51 1.00 1376.80 0.06 1.09
Zone 8 0.82 20.31 9990.80 0.2 0.69 1.66 8.46 0.98 1639.90 0.62 1.02
Zone 9 0.49 0.03 4998.80 0.2 0.88 27.16 0.01 0.59 1001.50 0.42 1.66
Zone 10 0.92 1.27 2.07 0.2 2.07 5.51 11.77 1.00 1583.00 0.87 1.15
All Zones 0.80 209.22 242.52 0.2 1.53 0.32 12.65 0.98 1570.60 0.98 1.11

*: fixed parameter estimate adapted from Zhang et al., **: Computation of R0 and all model parameters are based on clinical
incidence data and not wastewater samples. Note: β1 denotes the effective contact rate per day, β2 and β3 respectively
account for the reduction in disease transmissibility of exposed and confirmed positive individuals. ϵ denotes the incubation
period, σ denotes the progression rate of susceptible individuals to confirmed positive class via testing per day, δ denotes the
progression rate of infectious individuals to confirmed positive class via testing per day, d denotes the disease-induced death
rate per day, ω denotes the fraction of exposed individuals that transient to confirmed positive class, γ denotes the fraction of
infectious individual that transient to recovery class and ρ denotes the recovery rate of confirmed positive individuals per day.

Fig 2. Considering a half-life of 30 h. Model fit to the proportion of the
population. (a) (left) confirmed positive COVID-19 infections and (b) (right)
confirmed deaths from COVID-19 infections for all zones as a single unit. (c) SEIPR
model (1) prediction for the mass rate of SARS-CoV-2 RNA in wastewater over time
via Monte-Carlo simulation represented by black points. (d) Zoomed-in plot of
predicted number of active COVID-19 cases versus SARS-CoV-2 RNA mass rate with
individual Monte-Carlo simulations represented by grey points, where 75% CI and 95%
CI are denoted by the green and red solid lines, respectively. Coloured datapoints
denote the measured RNA mass rates and estimated infectious individuals based on
Eq (8) as presented in Table 4, respectively for an assumed average per capita
wastewater rates of 120 L per person per day (red solid points) and 135 L per person
per day (blue solid points) for all zones as a single unit.

There is a positive correlation between the concentration of SARS-CoV-2 RNA in the 320

wastewater and the number of confirmed positive individuals as well as recovering 321

individuals and shedding rates. There was a different association between the measured 322

viral RNA concentration and the confirmed positive cases during the earlier stages 323

(January and February 2021) of the wastewater sampling, with high wastewater viral 324

concentrations but low numbers of confirmed positive individuals. Therefore, zone 1 and 325

zone 2 were not considered for the viral RNA load SEIPR modelling (see Figure S2 in 326

the S3 Appendix). Fig 2 (d) depicts a zoomed-in plot of the predicted number of active 327

COVID-19 cases versus SARS-CoV-2 RNA mass rate with individual Monte-Carlo 328

simulations represented by grey points. The measured RNA mass rates and estimated 329

number of infectious individuals based on Eq (8) are denoted by the coloured datapoints 330

and fall within the 95% CI denoted by the red solid lines. In this particular study, the 331

sensitivity of the model regarding the viral half-life at an ambient temperature of the 332
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drainage is explored. It is observed that for a viral half-life of 3 h, the association 333

between the mass rate of gene copies detected in wastewater and the confirmed positive 334

cases is affected (see Supplementary figures S7A in the S3 Appendix). Data for all other 335

catchment zones are given in the Supplementary figures S6-S8 (S3 Appendix)) except 336

for zone 7 and zone 9, where wastewater samples from these zones tested negative 337

(Table 2). Furthermore, all plots depicting the entire Monte-Carlo simulations of the 338

predicted number of active COVID-19 cases versus SARS-CoV-2 RNA mass rate are 339

presented in Figures S9-S10 (S3 Appendix). 340

Table 4 presents the SARS-CoV-2 RNA wastewater concentrations in samples taken 341

from all the catchment zones considered as a single unit between 1st March and 27th of 342

May, 2021. Results of the other catchment zones are presented in the Supplementary. 343

Each row corresponds to a specific date on which the wastewater samples were taken. 344

The ”RNA (copy per L)” column provides the concentration of SARS-CoV-2 genetic 345

material in wastewater, providing insights into the prevalence of the virus in the 346

population. The following columns, titled “Option 1” and “Option 2”, present two 347

separate scenarios based on different wastewater rates per capita (120 L/person/day for 348

Alternative 1). and 135 L/person/day for ’Option 2). These scenarios are important for 349

estimating the number of infected individuals using RNA concentrations as an indicator 350

of viral activity. Calculated RNA levels are provided for each scenario, showing the rate 351

of change in viral RNA levels per day. In addition, the ”Estimated number of infected 352

individuals” column quantifies the number of potential COVID-19 cases inferred from 353

RNA levels, providing a way to assess community spread of the virus. 354

Direct comparison with clinically observed cases is presented in the column 355

“Clinically observed COVID-19 positive cases”, showing actual confirmed positive cases 356

reported by clinical diagnoses. This actual data is used as a benchmark to evaluate the 357

validity of the estimates obtained through wastewater analysis. Side-by-side estimating 358

infected individuals with observed clinical cases helps assess the reliability of using 359

wastewater RNA concentrations as a predictor to monitor trends in COVID-19. Overall, 360

this table highlights the importance of leveraging wastewater-based epidemiology to 361

better understand viral prevalence. The ratio of unreported to reported cases under 362

options 1 and 2 are respectively computed to be 12.42 (95% CI 9.04, 15.15) and 13.97 363

(95% CI (10.17, 17.0). 364

Discussion 365

WBE has been used as a tool for surveillance of COVID-19 infections at the 366

community-level and complements clinical-based surveillance and screening, which is 367

limited by cost, turnaround time, and the bias associated with uncharacterized 368

asymptomatic infections and their contribution to infection spread. WBE captures the 369

totality of symptomatic, pre-symptomatic and asymptomatic carriers within a specific 370

community [16,17] This study is the first to successfully pilot and assess WBE as a 371

methodology for the detection and quantification of SARS-CoV-2 viral RNA in 372

community sewers in Nagpur district of Central India during the second wave of the 373

pandemic in 2021. Whilst several epidemiological models have been described and 374

compared for transmission of SARS-CoV-2 [2, 21, 30], this study employed a new SEIPR 375

model, which adds the extra compartment of “confirmed positive” to estimate the 376

number of infected individuals and was further used to estimate the mass rate of RNA 377

in the wastewater. We observed a low number of clinical cases early in the COVID-19 378

wave that was out of proportion to the observed high SARS-CoV-2 concentration in the 379

wastewater. If we use our modelling results from later in the study and apply them to 380

this earlier period, it reveals that the clinical surveillance data underestimated the level 381

of COVID-19 transmission in the Nagpur district. The model predicts the unreported 382
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Table 4. SARS-CoV-2 RNA concentrations, estimated RNA rate and number of infected individuals from all
the catchment zones as a single unit.

Date RNA (105 Option 1 Option 2 Clinically observed
copies per L)* number of Covid-19

RNA rate Estimated RNA rate Estimated positive cases
(1014 copies number of (1014 copies number of
per day)a infected per day)a infected

individuals individuals
(1014) (1014)

01/03/2021 6.10 1.76 17.28 1.98 19.40 777
02/03/2021 4.01 1.16 11.37 1.30 12.79 897
03/03/2021 3.50 1.01 9.91 1.14 11.15 845
04/03/2021 3.74 1.08 10.59 1.21 11.92 1172
08/03/2021 41.3 1 1.92 116.98 13.41 131.61 1049
09/03/2021 34.1 9.84 96.59 11.07 108.66 1433
10/03/2021 6.26 1.81 17.73 2.03 19.95 1604
05/04/2021 15.1 4.36 42.77 4.90 48.12 2652
06/04/2021 14.10 4.07 3.94 4.58 44.93 3283
07/04/2021 97.40 28.12 275.89 31.63 310.38 2881
08/04/2021 65.10 18.80 184.46 21.15 207.52 4016
13/04/2021 2.73 0.79 7.73 0.89 8.70 3613
15/04/2021 9.34 2.70 26.46 3.03 29.77 3779
19/04/2021 11.30 3.27 32.06 3.68 36.06 4878
20/04/2021 708.00 204.39 2005.44 229.93 2256.12 4787
21/04/2021 24.70 7.13 69.96 8.02 78.71 4619
23/04/2021 20.10 5.80 56.95 6.53 64.06 4936
24/04/2021 23.10 6.67 65.43 7.50 73.61 4720
27/04/2021 19.90 5.74 56.37 6.46 63.41 4803
28/04/2021 6.81 1.97 19.29 2.21 21.70 4422
29/04/2021 19.00 5.48 53.82 6.17 60.55 3649
30/04/2021 9.79 02.83 27.73 3.18 31.20 4085
03/05/2021 14.90 04.30 42.20 4.84 47.48 2498
04/05/2021 12.70 03.67 35.97 4.12 40.47 2534
06/05/2021 10.90 03.15 30.87 3. 54 34.73 2255
07/05/2021 2.63 0.76 7.44 0.85 8.37 2016
25/05/2021 0.07 0.02 0.20 0.02 0.23 339
27/05/2021 0.18 0.05 0.52 0.06 0.58 216

Option 1 assumes an average per capita wastewater rate of 120 L/person/day; Option 2 assumes an average per capita
wastewater rate of 135 L/person/day; a: based on the numerator of Eq (8); b: based on Eq (8); * aggregate SARS-CoV-2
RNA concentration if samples are taken from different locations measured on the day.

number of cases under the per capita wastewater rates of 120L/person/day and 383

135L/person/day to be 12.42 (95% CI 9.04, 15.15) and 13.97 (95% CI (10.17, 17.0) 384

times higher than the reported number of cases, respectively. Hence, SARS-CoV-2 RNA 385

detected in community wastewaters may have come from pre-symptomatic, 386

symptomatic, or asymptomatic cases who did not self-report to their local health 387

monitoring unit due to fear of social stigma, isolation, or quarantine, or simply because 388

they did not know they were infected [31,32]. Under-reporting bias in the clinical 389

incident data is also likely to have arisen due to the limitation of testing resources 390

(analytical kits, personnel), coverage, and accessibility of testing sites [33]. We observed 391
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that SARS-CoV-2 seemed to be suppressed in samples collected from catchment zones 392

recording higher relative humidity, a loose proxy for rainfall. This was further 393

substantiated by observing a statistically significant negative correlation between R0 394

(effective reproductive number) and humidity, and β1 (effective contact rate per day) 395

and humidity, but not temperature. These results partly agree with those reported 396

elsewhere in which temperature and humidity were inversely correlated with daily new 397

cases and deaths of COVID-19 with several studies reporting that SARS-CoV-2 is 398

sensitive to high temperatures and humidity [34,35]. It is likely that rainfall events prior 399

to or during the sampling phase may have contributed to the lack of detection of 400

SARS-CoV-2 RNA due to the dilutional effect. The substantial variation in parameter 401

values across the ten geographic zones, as detailed in Table 3, is a consequence of the 402

inherent complexity and diversity of real-world conditions being modelled. These 403

variations are influenced by factors such as population density, healthcare infrastructure, 404

interventions, and social behaviours specific to each zone. While these differences may 405

appear significant, they are expected in epidemiological modelling and reflect the 406

diverse nature of disease spread in different settings. Rather than indicating issues with 407

the model, these variations underscore the need for tailored, context-specific modelling 408

to capture the nuanced dynamics within each zone accurately. This diversity in 409

parameters enhances the model’s ability to represent the unique characteristics of each 410

zone. Moreover, the calculation of R0 considers the complex interplay of these 411

parameters, and the model offers valuable insights into the dynamics of COVID-19 412

within a geographically diverse urban area like Nagpur. The variation in R0 estimates 413

(0.98-1.66) between the different zones in Nagpur urban district may be due to 414

additional factors such as variation in socio-behavioural habits (personal hygiene, 415

wearing masks, handwashing, social distancing, vaccine uptake, social gatherings), 416

sociodemographic, educational levels and dietary factors. Factors such as high levels of 417

youth, income inequality, high population density and social media usage are associated 418

with high R0 and may be important influences shaping zonal-wise variation in R0 in 419

Nagpur as reported across countries [36]. Overall, these R0 estimates for the second 420

wave of COVID-19 in India are consistent with a baseline R0 of 1.450 recorded for 421

Maharashtra and 1.379 for India by Marimuthu et al. [37] but fall below earlier 422

estimates calculated by Shil et al who reported R0 in the range of 2-3 during the initial 423

wave of infection for the majority of Indian districts (March-June 2020) [38]. This 424

depicts that the use of 2011 population census data as a proxy for the modelling process 425

in this study was not out of place as the estimated R0 in this study is consistent with 426

what other studies have found. This feasibility study identified a unique set of 427

challenges in the implementation of WBE in Central India which mirrors those observed 428

in other LMIC settings such as Bangladesh [4]. These include establishing a sampling 429

plan and schedule that is representative of the different urban and rural catchment 430

populations, underdeveloped sewage systems in rural areas necessitating onsite 431

sanitation epidemiology/sampling; development and validation of standardized protocols 432

for lab analysis; complex collaborative efforts from government agencies, public health 433

units and academia and resource limitations (e.g., autosamplers not suitable for large 434

rapid monitoring where passive sampling techniques are more easily implemented) [39]. 435

Supply chain issues for essential goods such as PPE and PCR diagnostic reagents, and 436

logistical constraints such as inaccessibility and poor transport systems made it difficult 437

to reach rural communities in remote areas. In recognition of these challenges, we 438

acknowledge several study limitations. Although we did assess and compare the 439

abundance of SARS-CoV-2 viral concentration in untreated wastewater samples 440

between urban and rural areas, in line with other wastewater research studies in 441

India [40,41] most of our sampling sites were from urban zones of Nagpur, introducing 442

sampling bias. Due to the lack of COVID-19 clinical incident data for the rural areas 443
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sampled, we were not able to apply our SEIPR model to model infectious burden in 444

rural Nagpur. We also had to base our model assumptions on historical rather than 445

current census data which is not available from Nagpur district. Due to the limitation 446

of resources and skilled personnel, we were not able to undertake 24-hour composite and 447

longitudinal sampling which we recognize would have made our data more 448

representative, to assess the impact of seasonality or to obtain detailed information on 449

spatiotemporal trends. Moreover, we were unable to record physiochemical, hydrologic, 450

and anthropogenic parameters of the wastewater samples which would have affected 451

RNA concentrations, and consequently, SARS-CoV-2 RNA detection [31]. Although we 452

did not collect daily rainfall measurements and instead used relative humidity as a 453

proxy for rainfall, the majority of the sampling period was conducted during periods of 454

no rain. We acknowledge the use of air temperature as a surrogate for wastewater 455

temperature in the absence of direct wastewater temperature data, particularly in open 456

drainage systems. While this substitution is a common practice in environmental 457

modelling due to data limitations, it’s essential to recognize its potential limitations and 458

the possible impact on the results. Wastewater temperature can be influenced by 459

various factors beyond just air temperature in open drainage systems, such as ground 460

temperature, flow rates, and interactions with other environmental factors. This 461

assumption may introduce some level of uncertainty into the model, and future studies 462

should aim to collect specific wastewater temperature data to improve the accuracy of 463

the modelling. However, given the data constraints, the use of air temperature can 464

provide a reasonable estimation of wastewater temperature and is a common approach 465

in the field. We recognize that with any modelling efforts, it will be important to 466

explore the sensitivity of the model to different assumptions in future research. Future 467

studies should also adopt the use of rapid in-field testing of SARS-CoV-2 or any 468

pathogenic target as opposed to bringing samples back to a central lab with 469

appropriately trained personnel. This technology is already in proof-of-concept stages 470

and could be easily operationalized ahead of future outbreaks or pandemics. 471

Conclusion 472

We have established a quantitative framework to estimate COVID-19 prevalence and 473

predict SARS-CoV-2 transmission through integrating wastewater-based surveillance 474

data into a SEIPR model. The constructed model may be used to provide accurate and 475

robust estimates of future waves of the COVID-19 pandemic and could usefully be 476

applied to study other infectious diseases or expanded to consider reinfected 477

populations. Our findings showcase the translational value of utilizing WBE to study 478

the health of a population for epidemiological inference and in informing public health 479

actions, particularly where comprehensive individual testing is severely constrained by a 480

shortage of resources and logistical challenges. However, to realize the true value of this 481

tool in India and other LMICs, it will be important for governmental and other funding 482

agencies to invest heavily in building laboratory capacity and sample collection teams. 483

Such efforts should also help re-emphasize the criticality of clean water, sanitation, and 484

waste management as potential control points in the fight against COVID-19 and future 485

pandemics. 486
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