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Page 2: (structured only by paragraphing without subheadings, maximum 1200 words) 1 

The kidney failure risk equation[1] (KFRE) is based on a Cox model first published in 2011 to 2 

quantify the risk of initiating kidney replacement therapy (KRT) over 2 and 5 years in patients 3 

with stage 3-5 CKD. It is commonly described as an accurate model[1-4] achieving excellent 4 

discrimination[5]. These descriptions are grounded in several evaluation metrics, most 5 

prominently the receiver operating characteristic (ROC) curve, the area under the ROC curve 6 

(AUROC), and Harrell’s C-index. However, these metrics exhibit limitations in conveying 7 

model performance in the context of highly censored populations with low event rate. In this 8 

letter we discuss the shortcomings of the aforementioned evaluation metrics and argue for a 9 

greater emphasis on more clinically relevant metrics such as the positive and negative 10 

predictive values (PPV and NPV). 11 

 12 

Using data from the National Unified Renal Translational Research Enterprise-Chronic Kidney 13 

Disease (NURTuRE-CKD) cohort we computed 4-variable KFRE scores for all participants with 14 

eGFR less than 60 mL/min/1.73m2 and a UACR result available at baseline (N=2444, 60% 15 

male). Baseline statistics are shown in Table 1. Detailed baseline characteristics of the 16 

NURTuRE CKD cohort have been published previously[6]. 17 
 

mean std min 25% 50% 75% 

Age (years) 63.6 14.1 18.0 55.0 66.0 74.0 

eGFR (mL/min/1.73m2) 33.2 12.0 6.2 23.2 32.2 42.4 

UACR  (mg/g) 787.5 2333.3 1.1 33.4 203.8 897.4 

KFRE 2yr risk (%) 8.6 13.7 0.0 0.8 2.8 9.8 

KFRE 5yr risk (%) 22.4 26.4 0.1 3.1 10.6 32.9 

KRT at 2 years (%) 6.0      

KRT at 5 years (%) 20.8      
Table 1: NURTuRE baseline statistics. The rows labelled „KRT at 2 (5) years“ indicate the proportion of participants that had 18 

initiated KRT within 2 (5) years. 19 

The mean time between the baseline measurements and the most recently compiled 20 

records was 4.4 years. For all 2444 participants, more than 2 years had elapsed between the 21 

baseline measurements and the most recently compiled outcome records. For 250 22 

participants, more than 5 years had elapsed. Discrimination at 2 and 5 years was evaluated 23 

in terms of AUROC, average PPV, and average NPV. Overall performance was evaluated in 24 

terms of Harrell’s C-index, both on the full cohort and on the subset of participants who had 25 

initiated KRT within the observation period (we call this the uncensored C-index). The results 26 

are shown in Table 2 and Figure 1. 27 

Metric Value 

2-year AUROC 0.911 (95% CI 0.885–0.937) 

2-year Average NPV 0.991 (95% CI 0.987–0.995) 

2-year Average PPV 0.500 (95% CI 0.412–0.589) 

5-year AUROC 0.837 (95% CI 0.778–0.896) 

5-year Average NPV 0.947 (95% CI 0.923–0.971) 

5-year Average PPV 0.591 (95% CI 0.451–0.732) 

Harrell’s C-index 0.867 (95% CI 0.850–0.884) 
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Uncensored C-index 0.674 (95% CI 0.645–0.704) 
Table 2: KFRE evaluation metrics. 2-year metrics calculated with respect to all 2444 participants. 5-year metrics calculated 1 

with respect to the 250 participants where more than 5 years elapsed since the baseline measurements. 2 

 3 

Figure 1: KFRE discrimination curves at 2 and 5 years. 4 

Our findings are in agreement with prior validation studies in terms of the ROC and Harrell’s 5 

C-index. The NPV was excellent for both 2- and 5-year discrimination. In contrast, however, 6 

the PPV was low for both 2- and 5-year discrimination (average PPV 0.50 and 0.59 7 

respectively). Similarly, the uncensored C-index was significantly lower than Harrell’s C-8 

index. 9 

 10 

It could be argued that PPV, NPV, and the uncensored C-index are more appropriate metrics 11 

of clinical utility than the ROC and Harrell’s C-index computed on the full cohort. The KFRE—12 

given the patient’s age, sex, eGFR, and UACR—produces a risk score quantifying the risk of 13 

initiating KRT. Thus, by selecting a risk threshold, we can study the KFRE’s ability to 14 

differentiate between patients that do and do not initiate KRT. In other words, if we suppose 15 

that any patient whose KFRE score exceeds the risk threshold will initiate KRT within a 16 

particular timeframe, then to what extent do we correctly differentiate between the two 17 

groups? The answer to this question can be captured in four relevant probabilities: 18 

• Sensitivity: The probability that a patient will score above the risk threshold given 19 

that the patient will initiate KRT. 20 

• Specificity: The probability that a patient will score below the risk threshold given 21 

that the patient will not initiate KRT. 22 

• PPV: The probability that a patient will initiate KRT given that the patient scores 23 

above the risk threshold. 24 

• NPV: The probability that a patient will not initiate KRT given that the patient scores 25 

below the risk threshold. 26 

Note that sensitivity and specificity are not clinically useful probabilities because they are 27 

conditioned on what one is trying to assess (initiation of KRT) rather than on what one 28 

observes (the risk score). The ROC curve, by definition, is sensitivity and specificity as a 29 

function of the risk threshold, and consequently cannot be used alone to argue for or against 30 

clinical application. In contrast, PPV and NPV are clinically useful probabilities, because they 31 
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are conditioned on what one observes (the risk score). Furthermore, by Bayes‘ theorem, PPV 1 

and NPV are functions of sensitivity, specificity, and prevalence. More precisely we have 2 

𝑃𝑃𝑉 =  
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦×𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦×𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒+(1−𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)×(1−𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)
 , 3 

and 4 

𝑁𝑃𝑉 =  
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦×(1−𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦×(1−𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)+(1−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)×𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒
 . 5 

PPV decreases with decreased prevalence, meaning that for fixed sensitivity and specificity, 6 

lower prevalence implies lower PPV. In an average population of stage 3-5 CKD patients, the 7 

number of patients who initiate KRT within two to five years is low. Therefore, high AUROC 8 

does not imply high PPV. Note that average PPV can be artificially increased by considering a 9 

higher prevalence population (PPV tends to prevalence as the discrimination threshold tends 10 

to -∞). For example, considering only patients with eGFR < 20 mL/min/1.73m2, average PPV 11 

increased to 0.60 and 0.66 for 2- and 5-year discrimination respectively. All evaluation 12 

metrics for this subgroup can be found in the online supplementary data. 13 

 14 

Harrell’s C-index estimates the probability that given two CKD patients, the one with the 15 

higher KFRE score will initiate KRT first. It is obtained by forming comparable participant 16 

pairs and computing the proportion of pairs that the KFRE sorts correctly. The word 17 

“comparable” is important and severely limits the usefulness of Harrell’s C-index as a 18 

performance measure of the KFRE. Two participants are comparable if it can be determined 19 

which participant initiated KRT first. In the NURTuRE cohort, and indeed in most CKD 20 

cohorts, most participants did not initiate KRT during the observation period. This means 21 

that most of the contribution to Harrell’s C-index comes from comparing participants that 22 

initiated KRT within the observation period to participants that did not. In other words, a 23 

high-risk group is being compared to a low-risk group, which causes Harrell’s C-index to 24 

overestimate the target probability. A more informative statistic is obtained by computing 25 

Harrell’s C-index on the subset of participants that initiated KRT within the study observation 26 

period – our uncensored C-index, which produced a much lower value. 27 

 28 

Systematic reviews[7, 8] have correctly pointed out the need for more comprehensive 29 

reporting of prediction model performance. We repeat and emphasize this concern. For 30 

clinical application, it is essential to be able to clearly quantify confidence in a particular risk 31 

prediction in the form of PPV and NPV in various subpopulations. This aspect is absent from 32 

several other risk models explored in the literature[9-15]. 33 

 34 

We conclude that the KFRE is an important tool for epidemiological use. The excellent NPV 35 

should reassure clinicians that a patient with low KFRE risk score does not require referral to 36 

a nephrologist. On the other hand, we have identified that the KFRE gives a risk estimate 37 

with a low PPV. A high predicted risk should therefore be interpreted with some caution and 38 

placed in a wider clinical context to guide patient management and follow-up. 39 
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It should be noted that commencement of KRT is not a precise outcome; patients with ESKD 1 

may choose a conservative course, whereas those who opt for KRT commence this at 2 

variable GFR. Unfortunately, a high proportion of patients with advanced CKD die prior to 3 

KRT initiation. These aspects are not well captured by the KFRE and likely contribute to the 4 

low PPV. Our analysis suggests that linear risk scores based on age, sex, eGFR, and UACR 5 

cannot predict the risk of initiating KRT with high PPV in populations with relatively low 6 

overall event rate and that alternative approaches to risk prediction should be explored to 7 

achieve a higher PPV. 8 

 9 

Online supplementary data (optional, unrestricted, a single PDF file with a title page 10 

providing the title and a page index) 11 
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