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Atoms and ions confined with electric and optical fields form the basis of many current quantum
simulation and computing platforms. When excited to high-lying Rydberg states, long-ranged dipole
interactions emerge which strongly couple the electronic and vibrational degrees of freedom through
state-dependent forces. This vibronic coupling and the ensuing hybridization of internal and external
degrees of freedom manifest through clear signatures in the many-body spectrum. We illustrate this
by considering the case of two trapped Rydberg ions, for which the interaction between the relative
vibrations and Rydberg states realizes a quantum Rabi model. We proceed to demonstrate that the
aforementioned hybridization can be probed by radio frequency spectroscopy and discuss observable
spectral signatures at finite temperatures and for larger ion crystals.

Introduction.—Systems of trapped ions have led to a
number of breakthroughs in the fields of quantum many-
body and non-equilibrium physics [1–3]. They have been
used to study quantum phases of interacting spins [4–6],
quantum phase transitions in open quantum many-body
systems [7–9], quantum thermodynamics principles [10],
and molecular physics using Rydberg aggregates [11–13].
In conventional trapped ion quantum simulators, ions in
energetically low-lying electronic states are employed to
encode fictitious spin degrees of freedom (qubits) [14–18].
Interactions and high-fidelity conditional operations are
then mediated using a so-called phonon bus [19, 20], the
required spin-phonon or vibronic coupling being achieved
by state-dependent light shifts [21]. In a relatively recent
development (see, e.g., Refs. [22–27]), trapped ions have
been excited to energetically high-lying electronic states,
known as Rydberg states, that interact via electric dipole
forces. This mechanism allows for the implementation of
strong coherent interactions, which have been utilized to
generate submicrosecond entangling gate operations [28],
and to mediate effective spin interactions that do not rely
on the phonon bus. It also frees up the phonon degrees of
freedom, augmenting the trapped ion quantum simulator,
facilitating the study of a range of interesting many-body
phenomena in which trap vibrational modes are coupled
to interacting electronic states [29–33].

In this work, we investigate a scenario where we create
strong vibronic coupling in the electronic Rydberg state
manifold between a pair of trapped ions. This is achieved
by exciting Rydberg states under so-called facilitation or
anti-blockade conditions [34–41]. Within this regime, the
vibronic coupling between excited electronic states and
phonons modes is described by a variant of the quantum
Rabi model [42]. We show how the hybridized states can
be experimentally probed via radio frequency modulation
of the Rydberg state excitation laser, discuss the spectral
signatures of the vibronic coupling, and also study their

Figure 1. System. (a) Two ions confined within a harmonic
potential with trap frequency ν. When both ions are in their
electronic ground states, i.e., |↓↓⟩ = |↓⟩ ⊗ |↓⟩, the equilibrium
distance between the ions is R0. However, when both ions are
simultaneously excited to Rydberg states |↑↑⟩, electric dipole
interactions displace the ions from their equilibrium positions
by an amount proportional to κ/ν where κ parameterizes the
strength of vibronic (i.e., spin-phonon) coupling. (b) Relevant
energy levels for the system of trapped ions in the (stationary)
lab frame. The laser, with detuning ∆ and Rabi frequency Ω,
couples the state |↓↓⟩, via the singly-excited symmetric state
|S⟩ = [|↑↓⟩+ |↓↑⟩]/

√
2, to the doubly-excited (Rydberg) state

|↑↑⟩. We consider the regime where the laser detuning cancels
the interaction between the Rydberg ions at their equilibrium
separation R0 (i.e., ∆ = −V ). Electric dipolar forces between
the Rydberg ions couple the electronic and relative vibrational
motion. (c) External dynamics in the (rotating) dressed frame
of the laser. In the state |↓↓⟩, the ions experience a virtually
unperturbed confinement, however, in the states |S⟩ and |↑↑⟩,
they hybridize with the relative motional degrees of freedom.
The resulting coupled electronic potential surfaces are located
at an energy of approximately E ≈ −V .

dependence on the temperature and number of ions. Our
investigation highlights the potential in using systems of
trapped ions, or even atoms, excited to Rydberg states
to realize complex scenarios with coupled electronic and
vibrational motion that are of the utmost importance in,
e.g., biological processes [43], chemical reactions [44–46],
and molecular dynamics [47–49].
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Model.—We consider a chain of ions trapped within a
linear Paul trap. The internal degrees of freedom of each
ion are modelled by two levels, denoted |↓⟩ and |↑⟩, that,
respectively, represent an electronically low-lying ground
state and high-lying excited Rydberg state of an alkaline
earth metal ion [50]. These states are coupled by a laser
with Rabi frequency Ω and detuning ∆. The state |↑⟩ is
assumed to be a dressed Rydberg state that is generated
by coupling two suitably chosen states from the Rydberg
manifold via a microwave (MW) field (see Refs. [26–28]).
This dressing technique produces strong and controllable
electric dipole-dipole interactions amongst Rydberg ions
with a strength parameterized by V ∝ d2/R3

0 with d the
electric transition dipole moment between the microwave
coupled Rydberg states and R0 the equilibrium distance
between the ions [51]. The interaction amongst Rydberg
states also gives rise to mechanical forces that, as shown
in Fig. 1a, induce state-dependent displacements [31, 52].
Note that mechanical effects are also present when single
trapped ions are excited into Rydberg states [25, 53]. For
simplicity, we will not account for these here as they can
be eliminated through precise control of the polarizability
of the MW dressed Rydberg states [54].

To illustrate our ideas, we initially consider a system
that consists of two ions, as depicted in Fig. 1a, and later
generalize to many ions. For brevity, we only outline the
derivation of the spin-phonon coupled Hamiltonian here,
and reserve further relevant details to the Supplemental
Material (SM) [51]. The model Hamiltonian for a system
of trapped Rydberg ions is given by (n.b., ℏ = 1),

H =

2∑
i=1

hi + V12n1n2 +ω2a
†
2a2, hi = ∆ni +Ωσx

i , (1)

where ni = |↑⟩⟨↑|i is the projector onto the Rydberg state
of ion i and σx

i = |↑⟩⟨↓|i + |↓⟩⟨↑|i the associated spin-flip
operator. The first two terms describe the effective spin
dynamics modelling the ions’ internal electronic degrees
of freedom, the former the interactions of the ions with
the electric field, and the latter the interactions between
the ions in the Rydberg states via the distance-dependent
potential V12 = V (R12) with R12 the interionic distance.
The final term governs the external vibrational degrees of
freedom, which are modelled by a single phonon mode of
frequency ω2 with creation and annihilation operators a†2
and a2. In order to obtain a leading order coupling term,
we linearly expand the dipole-dipole interaction potential
V (R12) about the equilibrium separation R0 between the
ions [33–35, 55]. Expressing the displacements of the ions
about their equilibrium positions in terms of the phonon
mode operators we get V12 ≈ V +

∑2
p=1 κp[a

†
p + ap] with

the spin-phonon coupling strength given by,

κp = −3V

R0

Γp√
2Mωp

, V =
1

4πϵ0

d2

R3
0

. (2)

Here, M is the ion mass and Γp the coupling coefficient
associated to the phonon mode p with frequency ωp. For

two ions, state-dependent forces only couple the relative
vibrational motion with the electronic dynamics. In terms
of the ion trap frequency ν (see Fig. 1a), the frequency of
the relative mode is ω2 =

√
3ν and the coupling strength

κ2 < 0 since Γ2 =
√
2. In contrast, for the center of mass

mode we have ω1 = ν, yet κ1 = 0 as Γ1 = 0. Accordingly,
the Hamiltonian reads (see Eq. (S61) in the SM [51]),

H =

2∑
i=1

hi + V n1n2 + ω2a
†
2a2 + κ2[a

†
2 + a2]n1n2. (3)

The strength of the spin-phonon coupling κp scales as
κp ∼ M5/6ν13/6, therefore, the heavier the ion and larger
the trap frequency, the stronger the coupling between the
electronic and vibrational motion [51]. For two ions, this
is why we consider barium 138Ba+ ions of isotopic mass
M = 137.9 u as opposed to strontium 88Sr+ (M = 87.9 u)
or calcium 40Ca+ (M = 40.0 u) ions which are currently
used in trapped Rydberg ion experiments [26]. Here, the
electronically low-lying ground state |↓⟩ is the metastable
state |5D5/2⟩, whilst the highly-excited dressed Rydberg
state |↑⟩ is a superposition |↑⟩ = [|nP1/2⟩ − |nS1/2⟩]/

√
2.

These two states are coupled by a two-photon excitation
scheme via the intermediate state |7P3/2⟩ [26, 28]. Using
Rydberg states with a principal quantum number n = 60
and linear Paul trap with frequency ν = 2π× 6MHz, we
obtain an equilibrium ion separation R0 = 1.12 µm which
returns an interaction strength V = 28ω2 and a coupling
strength κ2 = −0.20ω2 (see Fig. 2b). We note that these
values are somewhat extreme, yet feasible [26]. Later, we
will show that these can be relaxed significantly to more
typical values when considering larger ion crystals.

Spectrum.—In the following, we consider the situation
in which the dynamics is subject to the facilitation (anti-
blockade) constraint where the laser detuning ∆ cancels
the interaction energy V (i.e., ∆+ V = 0), as illustrated
in Fig. 1b. In this regime, the spin-phonon coupling is
particularly prominent and a simplified analytical model
can be developed. Due to the level symmetry, the laser
only couples the unexcited state |↓↓⟩, the singly-excited
symmetric state |S⟩ = [|↑↓⟩+ |↓↑⟩]/

√
2, and the doubly-

excited Rydberg state |↑↑⟩ (see Fig. 1b), with the singly-
excited antisymmetric state |A⟩ = [|↓↑⟩ − |↑↓⟩]/

√
2 de-

coupled from the aforementioned dynamics. Taking into
account that the interaction energy V ≫ Ω, we note that
the state |↓↓⟩ only acquires a weak light shift and so can
similarly be neglected. On the other hand, the states |S⟩
and |↑↑⟩ are resonantly coupled to the laser field with the
electronic state |↑↑⟩ also coupled to the vibrational mode.
The approximate Hamiltonian is then (see SM [51]),

H =

[
−V

√
2Ω√

2Ω −V

]
+ ω2a

†
2a2 + κ2

[
1 0
0 0

]
[a†2 + a2], (4)

where the energy of the hybridized states is with respect
to the state |↓↓⟩, as pictured in Fig. 1c.
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Figure 2. Spectrum and radio frequency spectroscopy.
(a) Energy spectrum of the two-ion Hamiltonian in Eq. (3) for
V = −∆ = 28ω2 with κ2 = −0.20ω2 as a function of the Rabi
frequency Ω. The color of the line encodes the average number
of Rydberg excitations nRyd = ⟨n1 + n2⟩ of the approximate
eigenstate. The blue line represents the initial state |↓↓⟩⊗ |0⟩
which is adiabatically connected to the electronic state |↓↓⟩ in
the limit κ2 → 0 since, for all Ω considered, it contains only a
tiny admixture of the Rydberg states |↑⟩. Transitions between
states are driven by applying a radio frequency (rf) field with
frequency ωrf . This facilitates the probing of the coupling that
occurs in the vicinity of the resonance at Ω = Ωres = ω2/2

√
2,

marked by the purple circle. Note that the states in the lower
branches denote eigenstates in the limit κ2 → 0 (see the main
text for details). (b) Spectroscopy of the hybridized electronic
and vibrational states. The system is initially prepared in the
state |↓↓⟩⊗|0⟩ for fixed Ω. Irradiating the ions with an rf field
of frequency ωrf with strength Ωrf = 0.1ω2 (cf. Eq. (7)) and
integrating the average number of Rydberg excitations over a
period ω2τ = 30 yields the signal shown. In the upper panel,
where κ2 = −0.20ω2, the hybridization clearly manifests as an
avoided crossing. This is in contrast to the lower panel, where
κ2 = 0, and the electronic and vibrational motion decouple.

In Fig. 2a, we show the full vibronic coupled spectrum
for V = 28ω2 and κ2 = −0.20ω2 as a function of the laser
Rabi frequency Ω. In the region with energy E ≈ −V , we
indeed observe an avoided crossing, indicated by a circle,
which is a manifestation of the strong coupling between
the internal electronic and external vibrational degrees of
freedom. In order to study this coupling, we remark that
the interaction strength V ≫ κ2 which allows us to treat
the spin-phonon coupling as a perturbation. Introducing
the following electronic eigenstates |±⟩ = [|↑↑⟩± |S⟩]/

√
2

of the unperturbed Hamiltonian (i.e., for κ2 = 0), we can
then rewrite the approximate model Hamiltonian as,

H =

[
E+ 0
0 E−

]
+ ω2a

†
2a2 +

κ2

2

[
1 1
1 1

]
[a†2 + a2], (5)

with E± = −V ±
√
2Ω the electronic energy eigenvalues.

This Hamiltonian is a variant of the quantum Rabi model
with spin-phonon coupling constant κ2 [42]. For κ2 = 0,
the spin-phonon dynamics decouple and the Hamiltonian
becomes diagonal. The corresponding energy eigenvalues

Figure 3. Spectroscopy at finite temperature. Radio fre-
quency spectra for the initially prepared state |↓↓⟩⟨↓↓|⊗ρT at
different temperatures T . Initial states with high vibrational
mode quantum numbers n couple to more symmetric parts of
the spectrum. As such, the higher the temperature, the more
symmetric the signal becomes about ωrf = V . The data plot-
ted is generated using the parameters given in Fig. 2 with the
coupling strength κ2 = −0.20ω2 (see Fig. 2b for details). Note
that for κ2 = 0, all these plots would be indistinguishable from
the bottom panel of Fig. 2b.

are E±,N = E± +Nω2, whilst the associated eigenstates
are |±, N⟩ = |±⟩⊗ |N⟩, where |N⟩ is an eigenstate of the
number operator with eigenvalue N . A resonance occurs
when any pair of these energies becomes degenerate, e.g.,
the resonance shown in Fig. 2a is due to states |+, 0⟩ and
|−, 1⟩, which become degenerate at Ω = Ωres ≈ ω2/2

√
2.

Notice that this is only an estimate for the value of the
resonance frequency Ωres, since we are neglecting second
order light shifts. In general, resonances occur whenever
the Rabi frequency Ω = Ωres ≈ Nω2/2

√
2 with N ∈ N. If

we calculate the approximate eigenstates at the resonance
between the states |+, 0⟩ and |−, 1⟩ highlighted in Fig. 2a,
we find that [51],

|Eres
± ⟩ = 1

2

[
|↑↑⟩ ⊗ [|1⟩ ± |0⟩]− |S⟩ ⊗ [|1⟩ ∓ |0⟩]

]
, (6)

which evidently shows hybridization of the electronic and
vibrational degrees of freedom. The resonant energy level
splitting is given by the coupling strength κ2.

Spectroscopy.—In order to probe the energy spectrum
shown in Fig. 2a in an experiment, we propose to perform
radio frequency (rf) spectroscopy. To implement this, we
replace the Rabi frequency in Eq. (3) according to,

Ω → Ω(t) = Ω + Ωrf cos(ωrft), (7)

where ωrf and Ωrf are the radio frequency and amplitude
modulation of the field. The spectroscopic protocol is as
follows. To start, we prepare the system in the unexcited
state |↓↓⟩⊗|0⟩, i.e., the state within which both the spins
and the phonon are, respectively, in their electronic and
vibrational ground states. Next, we switch on the laser to
set the desired value for the time-independent part of the
Rabi frequency (i.e., Ω ̸= 0 and Ωrf = 0). Assuming that
this proceeds adiabatically, this amounts to moving along
the blue line in Fig. 2a. Note, however, that in practice,
a sudden turning on of the laser should also suffice, since
for all considered values of the Rabi frequency the state
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colored in blue corresponds to the initial state |↓↓⟩⊗ |0⟩,
up to corrections of order [Ω/V ]2. Now the rf modulation
is switched on (i.e., Ωrf ̸= 0) and, if the radio frequency
ωrf is set to the energy splitting between two hybridized
levels, illustrated by the red arrow in Fig. 2a, a transition
occurs. Given that the initial state contains no Rydberg
excitations, monitoring the number of ions that are in
Rydberg states provides a direct spectroscopic signature
of whether a transition has taken place, as demonstrated
in Fig. 2b, where we plot the time-integrated number of
Rydberg excitations I =

∫ τ

0
dt ⟨n1 + n2⟩(t) as a function

of ωrf and Ω(t) over the time interval ω2τ = 30.
Transitions can only occur if the Hamiltonian possesses

a non-vanishing matrix element between initial and final
states. For the chosen initial state |↓↓⟩ ⊗ |0⟩, this is only
the case if the final state contains some admixture of the
state |S⟩⊗|0⟩. Hence, in the limit κ2 = 0, only the states
|±, 0⟩ can be excited, as demonstrated in the lower panel
of Fig. 2b. However, with increased vibronic coupling the
electronic and vibrational motion hybridize such that, in
the vicinity of the resonance denoted in Fig. 2a, the state
is approximated by that in Eq. (6). Given that this state
exhibits overlap with the state |S⟩⊗|0⟩, it can be excited
from the initial state and, from inspection of Fig. 2b, one
clearly observes the associated avoided crossing.

At finite temperature, the initial phonon state is a ther-
mal state, ρT =

∑∞
N=0 e

−Nω2/T/[1−e−ω2/T ]|N⟩⟨N |. The
occupation of these higher vibrational states opens novel
transition channels. Indeed, in contrast to the case where
T = 0, these aforementioned transitions do not probe the
lower edge of the spectrum, delimited by the state |−, 0⟩
(see Fig. 2b), whose energy decreases linearly with Ω.
Rather, they lead to states being symmetrically repelled
by other states of higher and lower energy. For example,
the initial state in Fig. 2a couples to states with asymp-
totes |+, 0⟩ and |−, 2⟩. This coupling to more symmetric
parts of the spectrum manifests in a spectroscopic signal,
as pictured in Fig. 3. For sufficiently low T , the signal is
similar to that in the upper panel in Fig. 2b. However, as
the temperature increases the signal becomes symmetric
about ωrf = V . Note that without spin-phonon coupling,
the spectrum would be identical to that in the lower panel
of Fig. 2b for all T . Hence, small, but finite temperatures
increase the spectral signature of the vibronic coupling.

Ion crystals.—We now generalize our considerations to
a chain of N ions confined within a linear Paul trap [27].
For simplicity, we assume that only the centermost pair
of ions are irradiated with the laser such that the internal
electronic degrees of freedom of the unexcited ions decou-
ple from the many-body spin-phonon coupled dynamics.
This leads to the following Hamiltonian [51],

H =

2∑
i=1

hi + V n1n2 +

N∑
p=1

[ωpa
†
pap + κp[a

†
p + ap]n1n2],

(8)
with the former two terms corresponding to the electronic

Figure 4. Larger ion crystals. Energy and radio frequency
spectrum of a chain of trapped Rydberg ions. As the number
of ions in the crystal N increases, the equilibrium separation
between the two centermost ions R0 decreases [56]. Here, we
consider a chain of N = 8 strontium 88Sr+ ions confined in a
trap with frequency ν = 2π×2MHz. In the electronic ground
state |↓ · · · ↓⟩, the equilibrium separation between the central
ions R0 = 1.37µm. When the centermost ions are excited to
the Rydberg states |↑⟩, they interact with strength V = 43ν.
In contrast to the case of two ions (cf. Fig. 2), the two spins
couple to four phonons of frequency ω2 = 1.73ν, ω4 = 3.06ν,
ω6 = 4.29ν, ω8 = 5.44ν with coupling strength κ2 = −0.06ν,
κ4 = −0.10ν, κ6 = −0.15ν, κ8 = −0.27ν. Note, in particular,
the coupling to the latter mode which manifests as an avoided
crossing that can be probed via radio frequency spectroscopy
(cf. Fig. 2b), as demonstrated in the outset.

motion defined as in Eq. (3) and where for simplicity the
centermost pair of ions are labelled by i = 1, 2. The latter
terms then respectively describe the external and coupled
motion, with ωp the frequency of the phonon mode p and
κp the associated strength of the coupling to the internal
dynamics. Note, for even numbers of ions N , the coupling
coefficients Γp and, consequently, the coupling strengths
κp [see Eq. (2)] for modes with odd p vanish. Hence, the
corresponding modes decouple and can be neglected.

Larger ion crystals give rise to increased spin-phonon
coupling strengths since ions in the trap center get closer
and their interaction features stronger forces (see Fig. 4).
To demonstrate this we consider an ion crystal of N = 8
strontium 88Sr+ ions of mass M = 87.9 u with parameter
values that are significantly relaxed compared to the case
of N = 2 barium 138Ba+ ions considered initially. Here,
the state |↓⟩ = |4D5/2⟩ is a metastable state, whilst the
state |↑⟩ = [|nP1/2⟩−|nS1/2⟩]/

√
2 is a (dressed) Rydberg

state with principal quantum number n = 50. With trap
frequency ν = 2π× 2MHz, the equilibrium separation of
the centermost ions R0 = 1.37 µm and the corresponding
interaction strength V = 43ν. In contrast to the two ion
case (see Fig. 1a), the spins now couple to four phonons,
with frequencies and coupling strengths that are listed in
Fig. 4. Here, the coupling to the p = 8 mode manifests in
Fig. 4 as a clearly observable avoided crossing. Note that
all parameters used are tabulated in the SM [51].

Summary and outlook.—In this work, we demonstrate
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that strong state-dependent forces in Rydberg ions allow
for the engineering and exploring of vibronic interactions
in trapped ion quantum simulators. Spectral signatures
of coupling between the electronic and vibrational motion
are directly visible in the spectroscopy of Rydberg states
with radio frequency modulated laser. Whilst we focused
on analytically and numerically tractable situations, the
exponential growth of the number of degrees of freedom
rapidly allows one to reach many-body scenarios that are
intractable on classical computers. Spatially resolved and
quantitative Rydberg state spectroscopy in the precisely
controllable environment of such augmented trapped ion
quantum simulation platforms can be used to benchmark
and advance numerical approximations schemes, e.g., by
facilitating an understanding of which quantum correla-
tions are most important to capture the observed spectral
signatures as the number of degrees of freedom grows.
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