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Abstract. We benchmark the discrete truncated Wigner approximation (DTWA)

and Neural quantum states (NQS) based on restricted Boltzmann-like machines with

the exact excitation and correlation dynamics in a chain of ten Rydberg atoms. The

initial state is where all atoms are in their electronic ground state. We characterize

the excitation dynamics using the maximum and time-averaged number of Rydberg

excitations. DTWA results are different from the exact dynamics for large Rydberg-

Rydberg interactions. In contrast, by increasing the number of hidden spins, the NQS

can be improved but still limited to short-time dynamics. Interestingly, irrespective of

interaction strengths, the time-averaged number of excitations obtained using NQS is

in excellent agreement with the exact results. Concerning the calculation of quantum

correlations, for instance, second-order bipartite and average two-site Rényi entropies,

NQS looks more promising. Finally, we discuss the existence of a power law scaling

for the initial growth of average two-site Rényi entropy.

‡ These authors contributed equally to this work.
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1. Introduction

In general, analyzing the dynamics of a quantum many-body system is a formidable task

because of the exponentially large Hilbert space. Further, strong quantum correlations

or entanglement growth makes quantum dynamics more intriguing. Developing

numerical approaches accurately capturing the quantum correlations, including their

dynamical growth, is an ongoing activity [1]. It led to the development of various

numerical techniques based on tensor network states and phase-space methods. The

former includes, for instance, density-matrix renormalization group (DMRG) (for both

ground states and dynamics) [2–7] in which the Hilbert space is truncated to states

with significant probabilities, leading to a polynomial growth in Hilbert space with

system size. DMRG is an excellent tool for studying one-dimensional systems with weak

entanglement. The phase-space methods are semi-classical and involve solving classical

equations of motion for the phase-space variables. Examples are the truncated Wigner

approximation (TWA) [8, 9] and its discrete version (DTWA) [10–12]. DTWA was

initially developed for spin-1/2 systems and later generalized to higher spin [13], higher

dimensional phase space [14], and dissipative systems [15]. DTWA is also employed to

study dynamical phase transitions in large spin systems [16]. The results from DTWA

have shown good agreement with experiments of Rydberg [17–20] and dipolar atoms [21–

23] where an XY spin-model describes the system. Generally, such a good agreement

is only sometimes guaranteed and is limited to a few initial cycles, depending on the

strength and range of inter-particle interactions [24].

At the same time, there is a growing interest in using machine learning methods

to study physics problems [25, 26]. Artificial neural networks are proposed to explore

quantum many-body systems in which the quantum states are represented by restricted-

Boltzmann-machine (RBM)-like network architecture but with complex weights, and

are called neural network quantum states [27–33]. Due to its design, neural network

quantum states (NQS) are naturally suited for spin-1/2 systems, which have shown

good agreement in predicting ground states. Whereas for dynamics, it is limited for

short periods [29–31].

On the other side, quantum simulators based on ultra-cold Rydberg atoms have

shown tremendous progress, extending to large system sizes beyond a regime where

classical computers can tackle [34–43]. Hence, it becomes necessary to test advanced

numerical approaches against the exact dynamics of atomic lattices with Rydberg

excitations. Rydberg atoms are known to exhibit prodigious long-range interactions

[44, 45] leading to the phenomenon of the Rydberg, or dipole blockade [46–48]. Blockade

and anti-blockade can lead to strong correlation effects, which can simulate non-trivial

phases in condensed-matter [35, 49–56] and find applications in quantum information

protocols [44, 57–62]. Typically, the Rydberg atomic setup has been modeled as a gas

of interacting two-level atoms, with either dipolar or van der Waals-type interactions

[64]. Further, making the atom-light couplings time-dependent provides fine-tuning in

quantum state preparation and expands the territory of problems that can be addressed
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[43, 63, 65–67].

In this work, we numerically analyze the excitation and correlation dynamics in a

small chain of ten atoms where each atom is initially in its ground state, coupled to

a Rydberg state by a light field. In particular, we explore the oscillatory behavior of

the number of excitations, the dependence of the maximum and the average number of

excitations on the interaction strengths, and finally, the dynamics of bipartite and mean

two-site second-order Rényi entropy. The maximum number of excitations is always

seen during the first oscillation cycle. The Rydberg blockade suppresses the excitation

fraction for significant interaction strengths, leading to a saturation in the average and

maximum number of excitations. For sufficiently small interaction strengths, collapse

and revival exist in the dynamics of the total number of excitations at longer times.

Interestingly, a power law scaling for the initial growth of the mean two-site second-

order Rényi entropy exists, with the scaling exponent depending enormously on the

interaction strengths.

Our work compares the exact results with those obtained via DTWA and neural

network quantum states. Since the number of Rydberg qubits in experiments has

increased tremendously over the last couple of years, testing various numerical methods

against the exact results of small systems is necessary. The latter may help identify

ways to improve the existing techniques or even lead to the development of entirely new

approaches, eventually for studying strongly correlated systems.

In DTWA, we show results with and without incorporating the second-order

correlations from the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy,

termed first and second-order DTWA, respectively. DTWA and network quantum

states accurately capture the excitation dynamics over significant periods for small

interaction strengths. However, the revival of the excitation population is not seen

in both methods. As interaction strengths increase, the agreement with the exact

results from both methods starts to deviate at longer times. However, the network

quantum state is more reliable, especially when computing the average and maximum

number of excitations. The initial power-law growth in the mean two-site second-order

Rényi entropy is accurately predicted by NQS, even for larger interactions. The second-

order DTWA exhibits numerical instabilities for considerable interaction strengths, also

reported in the study of quantum spin models [24].

The paper is structured as follows. In section 2, we introduce the physical setup

and the governing Hamiltonian. In sections 3 and 4, the details of the DTWA and

NQS techniques are provided. The excitation and correlation dynamics are shown in

sections 5 and 6, respectively. Finally, we provide conclusions and outlook in section 7.

2. Setup and Model

We consider a chain of atoms with lattice spacing d as shown in Figure 1. The electronic

ground state |g⟩ of each atom is coupled to a Rydberg state |e⟩ with a detuning ∆ and

a Rabi frequency Ω. In the frozen gas limit, the system is described by the Hamiltonian
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Figure 1. The schematic diagram of the setup consists of an array of atoms with a

spacing of d. For each atom, the ground state |g⟩ is coupled to a Rydberg state |e⟩
with a light field with a detuning ∆ and Rabi frequency Ω.

(ℏ = 1):

Ĥ(t) = −∆
N∑
i=1

σ̂i
ee +

Ω

2

N∑
i=1

σ̂i
x +

∑
i<j

Vijσ̂
i
eeσ̂

j
ee, (1)

where σ̂ab = |a⟩⟨b| with a, b ∈ {e, g} includes both transition and projection operators,

and σ̂x = σ̂eg + σ̂ge. We assume the Rydberg excited atoms interact via van der

Waals potential Vij = C6/r
6
ij [45], where C6 is the interaction coefficient, and rij is

the separation between ith and jth Rydberg excitations. The exact dynamics of the

system is analyzed by solving the Schrödinger equation: i∂ψ(t)/∂t = Ĥ(t)ψ(t).

Introducing σ̂i
ee = (I + σ̂i

z)/2 where I is the identity matrix, we rewrite the

Hamiltonian as, Ĥ =
∑

i Ĥi +
∑

i<j Ĥij, where Ĥi = −∆eff
i σ̂

i
z +Ωσ̂i

x/2 consists of single

particle terms with an effective detuning ∆eff
i = ∆ −∑j ̸=i Vij/2, and Ĥij = Vijσ̂

i
zσ̂

j
z/4

contains the two-body interactions. Henceforth, we take ∆ = 0. The model is then

a quantum Ising model with an additional longitudinal field and long-range Ising

interactions. The latter makes this model different from previous studies on quantum

Ising model using DTWA and neural quantum state. We characterize the dynamics

via experimentally relevant quantities such as the instantaneous number of excitations

Ne(t) =
∑

i⟨ψ(t)|σ̂i
ee|ψ(t)⟩, the maximum Nmax

e and the average number of excitations

Navg
e = (1/T )

∫ T

0
Ne(t) over a period of time T . Later in section 6, we analyze bipartite

and mean two-site second-order Rényi entropy of the corresponding dynamics.
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3. Discrete truncated Wigner approximation: Equations of motion

Here, we briefly outline the method of DTWA. Each atom forms a two-level system

(equivalently a qubit or a spin-1/2 particle) composed of the ground state |g⟩ and

Rydberg state |e⟩. The finite and discrete Hilbert space is mapped onto a discrete

quantum phase-space via the Wigner-Weyl transform. A single qubit discrete phase-

space is defined as a real-valued finite field spanned by four-phase points, denoted by

α ≡ (m,n) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} [10, 68, 69]. For each α, one can associate

a phase-point operator Âα = (I + rα · σ̂)/2, where I is the identity operator and

σ̂ = (σ̂x, σ̂y, σ̂z) are the Pauli matrices. The three-vectors {rα} do not have a

unique choice, and the best suitable sampling scheme for a given Hamiltonian can be

appropriately selected [12]. For the initial state we take, the best results are obtained

using r(1,0) = (1, 0,−1), r(1,1) = (−1, 0,−1), r′(1,0) = (0, 1,−1) and r′(1,1) = (0,−1,−1),

which is kept throughout.

Any observable Ô from the Hilbert space is mapped into a Weyl symbol OW
α =

Tr(ÔÂα)/2 in the discrete phase-space. The density operator ρ̂ is written as ρ̂ =∑
αwαÂα, where the weights wα = Tr(ρ̂Âα)/2 form a quasi-probability distribution

similar to the original Wigner function and is the Weyl symbol of the density matrix.

wα can also take negative values. For a system of N two-level atoms, we have a discrete

phase-space of 4N points denoted simply by α⃗ = {α1, α2, ..., αN}. Let the initial density
matrix be,

ρ̂0 =
∑
α⃗

Wα⃗ Âα1 ⊗ Âα2 ⊗ ...⊗ ÂαN
, (2)

which corresponds to a product state with Wα⃗ = wα1wα2 ...wαN
and

∑
α⃗ =

∑
α1,α2,...

.

The density matrix at time t is defined as

ρ̂(t) =
∑
α⃗

Wα⃗ Âα⃗
1...N(t), (3)

with

Âα⃗
1...N(t) = Û(t)Âα1 ⊗ Âα2 ⊗ .....⊗ ÂαN

Û †(t) (4)

where Û(t) = exp(−iĤt) is the unitary time evolution operator. Here, we do not

consider all the trajectories but do a monte carlo sampling of Ns number of trajectories,

and hence the density matrix is defined as,

ρ̂(t) =
∑
α

1

Ns

Âα⃗
1...N(t). (5)

The operator Âα⃗
1...N(t) satisfies the Liouville-von Neumann equation [12]:

i
∂

∂t
Âα⃗

1...N =
[
Ĥ, Âα⃗

1...N

]
(6)

We can treat the operator Âα⃗
1...N as a quasi-density-matrix since its trace is equal to one,

but need not be a positive definite. The reduced Â operators are obtained by tracing

out remaining parts of the system as,

Âα⃗
i = Tr

�i
Âα⃗

1...N , Âα⃗
ij = Tr

�i�j
Âα⃗

1...N (7)
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where Tr
�i
denotes a partical trace over all the indices except i and similarly for Tr

�i�j
with

i ̸= j. For reduced density operators, using the Liouville-von Neumann equation, one

can write down the hierarchy of equations of motions, so-called the BBGKY hierarchy.

Following the same prescription, a similar hierarchy of equations of motions for the

reduced Â operators is obtained, by introducing the cluster expansion [12],

Âij = ÂiÂj + Ĉij (8)

Âijk = ÂiÂjÂk + ÂiĈjk + Âj Ĉik + ....+ Ĉijk (9)

Âijkl = ÂiÂjÂkÂl + ÂiÂj Ĉkl + ...+ Ĉij Ĉkl + ...+ ĈijkÂl + ....+ Ĉijkl, (10)
where Â1, Â2, ..., ÂN are the uncorrelated parts of Â1...N , and Ĉij, Ĉijk... operators

incorporate the correlations between the particles arising from the inter-particle

interactions. Note that, we have removed the superscript α⃗ in Âj for simplicity.

Truncating beyond two-particle correlations, one obtains the first two equations of the

BBGKY hierarchy as:

i
∂

∂t
Âi = [Ĥi, Âi] +

∑
k ̸=i

Tr[Ĥik, Ĉik + ÂiÂk] (11)

i
∂

∂t
Ĉij = [Ĥi + Ĥj + ĤH

i�j
+ ĤH

j�i
, Ĉij] + [Ĥij, Ĉij + ÂiÂj] +∑

k ̸=i,j

(
Trk[Ĥik, ÂiĈjk] + Trk[Ĥjk, Âj Ĉjk]

)
−

ÂiTri[Ĥij, Ĉij + ÂiÂj]− ÂjTrj[Ĥij, Ĉij + ÂiÂj] (12)

where ĤH
i�j
is a Hartree operator or Mean-field operator given by:

ĤH
i�j
=
∑
k ̸=i,j

Trk(ĤikÂk). (13)

At this point, one expands A and C operators in the basis of Pauli spin matrices,

Âi =
1

2
(I + âi · σ̂) (14)

Ĉij =
1

4

∑
µ,ν∈{x,y,z}

cµνij σ̂
i
µσ̂

j
ν , (15)

for i ̸= j. Finally, one obtains the equation of motion for aµi as,

1

2
ȧµi =

∑
γ

[
Ω

2
aγi ε

µxγ − ∆eff
i

2
aγi ε

µzγ + (Gz
i a

γ
i +Gzγ

i ) εµzγ
]
, (16)

and that of the two-body correlations are

1

2
ċµνij = T1 + T2 + T3 + T4 + T5 (17)

with

T1 =
∑
β

Vij
4

(
aβi δνz − aβj δµz

)
εµνβ, (18)
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T2 =
∑
δ

cδνij

[
Ω

2
εxδµ +

(
Gz

i�j
− ∆eff

i

2

)
εzδµ

]
, (19)

T3 =
∑
γ

cµγij

[
Ω

2
εxγν +

(
Gz

j�i
− ∆eff

j

2

)
εzγν

]
, (20)

T4 =
∑
γ

[
Gνz

ij a
γ
i ε

zγµ +Gµz
ji a

γ
j ε

zγν
]
, (21)

T5 = −
∑
γ

Vij
4

[
aµi
(
czγij + azi a

γ
j

)
εzγν + aνj

(
cγzij + aγi a

z
j

)
εzγµ

]
, (22)

where ε is the Levi-Civita symbol, Gz
i =

∑
k ̸=i Vika

z
k/4, G

zγ
i =

∑
k ̸=i Vikc

zγ
ki /4, G

z
i�j

=∑
k ̸=i,j Vika

z
k/4, and Gνz

ij =
∑

k ̸=i,j Vikc
νz
jk/4. As we found, not all Tj terms may

become relevant in the dynamics. Further, the terms proportional to the cube of aγj in

equation (22) and T4 lead to numerical instabilities even for small interaction strengths

and are omitted.

Equations (16) and (17) describe the dynamics of a Rydberg atomic chain in DTWA

incorporating the two-body correlations using the BBGKY heirarchy. Neglecting cµνij ,

we get the results at the mean-field level (except the fluctuations in the initial state

from the sampling) or so-called the first-order DTWA. In second-order DTWA, the

correlations cµνij are incorporated in the dynamics. Equations (16) and (17) are solved

using Runge-Kutta method. Once aµi are obtained, the expectation value of any single

particle operator can be calculated as,

⟨σ̂i
µ⟩(t) = Tr

(
σ̂i
µρ̂(t)

)
=
∑
α

WαTr
(
σ̂i
µÂα⃗

1....N(t)
)
=
∑
α

Wαa
µ
i (t). (23)

The excitation number Ne(t) is obtained by computing ⟨σi
z⟩(t) or equivalently azi (t). The

summation over α in equation (23) is over all classical trajectories. Since, the number of

such trajectories grow exponentially with system size, we use a Monte Carlo sampling

with Wα as the probability distribution. For N = 10, there are 410 possible trajectories

and we use Ns = 20000 trajectories for which the dynamics is already converged.

4. Neural network quantum states

This section briefly describes the NQS based on the RBM-like architecture, schematically

shown in figure 2 [28–30, 32, 33]. The physical spins (neurons) si ∈ {1,−1} in

the primary layer are complemented by an auxiliary layer of Ising spins (neurons)

hj ∈ {1,−1}. Each node in the primary layer is connected to every node in the auxiliary

layer. There are no connections between nodes within a given layer. The connection

between si and hj has a complex weightWij which is (ij)th element of the weight matrix

W and bj are the bias weights for the hidden units with i = 1, ..., N and j = 1, ...,M .

We define M = γN . Now, the neural many-body quantum state (unnormalized) is
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s1

s2

s3

sN

h1

h2

h3

h4

hM

Hidden layer

Visible layer

Figure 2. The schematic diagram of the neural network quantum states, which is

identical to RBM-like architecture. Each physical spin si in the visible layer is coupled

to every spin hi in the hidden or auxiliary layer.

defined as |Ψ⟩ =∑S Ψ(S,x) |S⟩ with variational ansatz

log(Ψ(S,x)) =
M∑
j=1

log

[
cosh(bj +

N∑
i=1

Wijsi)

]
(24)

provies us the amplitude of a spin configuration, S = (s1, ..., sN), where x = {bj,Wij}
are the network parameters. The initial value of x is taken such that the manybody state

is where each atom is in the ground state. To capture the dynamics, NQS are optimized

such that the distance between the time-evolved wave functions e−iĤ∆t |Ψ(S,x)⟩ and

|Ψ(S,x+ ẋdt)⟩ given by the Fubini study metric,

D(|ψ⟩ , |ϕ⟩)2 = arccos

(√
⟨ψ|ϕ⟩⟨ϕ|ψ⟩
⟨ψ|ψ⟩⟨ϕ|ϕ⟩

)2

(25)

is minimized for each time step ∆t. The above time-dependent variational principle

Page 8 of 20AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-126699.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



9

transforms the time-dependent Schrödinger equation into a set of non-linear symplectic

differential equations for the variational parameters [70],

ẋ(t) = −iA−1F, (26)

where A is a covariance matrix and F is the generalized force. The elements of the

matrix A and the vector F are

Akk′ = ⟨O∗
kOk′⟩ − ⟨O∗

k⟩⟨Ok′⟩ (27)

Fk = ⟨O∗
kEloc⟩ − ⟨O∗

k⟩⟨Eloc⟩, (28)

where ⟨...⟩ is taken over Ψ(S), and O∗
k′(S) and Ok(S) are variational derivatives given

by

Ok(S) =
1

Ψ(S)

∂Ψ(S)

∂xk
(29)

with Eloc being called the local energy, defined as

ES
loc(x) =

⟨S|Ĥ|Ψ⟩
⟨S|Ψ⟩ . (30)

The equation (26) is then solved using the adaptive Heun scheme.

5. Excitation Dynamics

In the following, we compare the Rydberg excitation dynamics obtained from DTWA

and NQS to the exact results for N = 10. A ten-atom chain with rydberg admixed

softcore interactions is experimentally studied in Ref. [54]. The initial state is where

all atoms are in their ground state. Figure 3 shows the dynamics of the total number

of excitations Ne(t) for different values of C̃6 = C6/d
6. Initially, Ne = 0, and as time

evolves, Ne increases and eventually oscillates in time. The oscillation amplitude is larger

in the first cycle and damps over the subsequent cycles. For small C̃6 [see figure 3(a)],

both NQS and second-order DTWA show an excellent agreement with exact results for

sufficiently long periods. γ = 2 is sufficient to capture the dynamics as depicted in

figure 3(a). The first-order DTWA deviates from the exact dynamics at longer times,

indicating the importance of two-body correlations even at low C̃6.

As C̃6 increases, the agreement with exact dynamics is lesser for both NQS and

DTWA, especially at longer times, but qualitative features are captured. For instance,

the damping of oscillation amplitude of Ne(t) is observed in both methods. The larger

the C̃6, the earlier the deviation from exact results occurs for both techniques. Better

NQS results can be obtained by taking a larger γ, but increasing γ will increase

computational time. The effect of γ on the dynamics is shown in Appendix A.

As we have noticed, at larger C̃6 [figure 3(c)], second-order DTWA shows more

deviation than first-order. It also suffers from numerical instability and is found to

depend on the interaction strength but not on the system size. We anticipate that the

higher-order BBGKY terms are required to counter the instability for large interaction

strengths (C̃6). The latter are tedious to obtain, and numerical stability is generally
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e

(a)
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2
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(b)
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t
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N
e

(c)

NQS = 2
NQS = 12
1st order DTWA 
2nd order DTWA
Exact

Figure 3. The dynamics of the total number of excitations (Ne) in an atomic chain

of N = 10 for different C̃6. We compare the exact results (dashed line) with first and

second-order DTWA and NQS (solid lines). (a) is for C̃6 = 0.2Ω, (b) for C̃6 = Ω

and (c) is for C̃6 = 3Ω. For C̃6 = 0.2Ω, both NQS and second-order DTWA are in

excellent agreement with exact results, and as C̃6 increases, they deviate at longer

times. NQS is found to be more reliable at large C̃6. Taking a larger γ improved

the NQS results for extended periods compared to smaller γ. In (c) for C̃6 = 3Ω,

second-order DTWA experiences numerical instability at Ωt ≈ 13, and the larger the

C̃6 earlier the instability.
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Figure 4. (a) The maximum (Nmax
e ) and (b) average (Navg

e ) number of excitations

as a function of C̃6 in a 10 atom chain. We compare the exact results with that of

DTWA and NQS. For Navg
e , we take an average over a period of ΩT = 100 for exact

results, whereas for DTWA first order and NQS, we took ΩT = 20 and DTWA second

order, we took ΩT = 10. The numerical instability in the secon-order DTWA limits

the averaging period to smaller values.

not guaranteed. We also note that for larger C̃6, oscillation amplitude shows a faster

decay in DTWA results. We observe that NQS is more reliable if short-time dynamics

is desired.

In figure 4, we show the dependence of maximum (Nmax
e ), which is the amplitude

of the first peak and average (Navg
e ) of Ne on the interaction strength C̃6. Both Nmax

e

and Navg
e decrease with an increase in C̃6 due to the blockade effect. For C̃6 ≪ Ω,

we have Nmax
e ∼ N and Navg

e ∼ N/2 and in a fully blockaded chain (limit C̃6 → ∞)

Nmax
e ∼ 1 and Navg

e ∼ 1/2. For C̃6 > 2Ω, in the exact results, Nmax
e ∼ 5 and Navg

e ∼ 3

saturate due to the nearest neighbor blockade, but the next nearest neighbor blockade

requires an interaction strength of C̃6 ∼ 64Ω. Therefore, as a function of C̃6, different

plateaus for Nmax
e and Navg

e would emerge, indicating the blockades of atoms at larger

separations. Interestingly, as we showed in figure 4, Nmax
e and Navg

e are accurately

captured by NQS with γ = 2, even at larger C̃6. Thus, regarding the average and peak

value of the number of Rydberg excitations, a large γ is not required, and NQS can be

applied for even large interactions.

For sufficiently small values of C̃6 and at longer times, there exists collapse and

revival of Ne(t) about its average value [71], as shown in figure 5. A similar feature also

arises in the population dynamics of a two-level atom coupled to a single-mode quantized

light field in an optical cavity, described by the Jaynes-Cummings model (JCM). The

collapse and revival in JCM are associated with the statistical and discrete nature of

the photon field [72, 73]. In the Rydberg chain, the collapse and revival in Ne(t) can

be attributed to the discrete nature (periodic lattice) of the system and interactions.

DTWA and NQS capture the collapse of Ne(t) to its average value, but the revival is not

seen even after sufficiently long times [see figure 5]. We also verified (but not shown)

that increasing γ does not change the results shown in figure 5 for C̃6 = 0.2.
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Figure 5. The long-time dynamics of Ne(t) for N = 10 and C̃6 = 0.2Ω. We compare

the exact results with that of first-order DTWA and NQS. Although both methods

capture the collapse, the revival is absent. We also verified (but not shown) that

increasing γ does not affect the results for C̃6 = 0.2Ω, as it is small.

6. Correlation dynamics

6.1. Bipartite Rényi entropy

The quantum correlations in a many-body system are of significant importance, and

here, we characterize them using the second-order Rényi entropy. The second-order

Rényi entropy is defined as,

S
(2)
A (t) = − 1

NA

log(Tr[(ρ̂A(t)
2)]), (31)

where NA is the number of atoms in the subsystem A and the reduced density matrix

for the subsystem A is

ρ̂A(t) =
∑
α

1

Ns

Âα⃗A
1...NA

(t), (32)

where α⃗A = {α1, α2, ..., αNA
}. In first-order DTWA, Âα1...αNA

1...NA
=
∏

i∈A Âi and the Rényi

entropy takes the simple form [24],

S
(2)
A (t) = − 1

NA

log

[∑
α,α′

1

N2
s

∏
i∈A

1

2

(
I +

∑
µ

aµi (t)a
′µ
i (t)

)]
, (33)

where ai(0) = rαi
and a′i(0) = rα′

i
are the initial conditions, which are evolved

independently. In the second-order DTWA, additional correlation-dependent terms

appear in equation (33). The computation of S
(2)
A (t) in equation (33) involves a phase-

space average weighted with two initial Wigner functions. In the case of NQS, the

reduced density matrix can be directly obtained using the QuTiP, and then, we compute

S
(2)
A (t) using equation (31). We also calculate the mean two-site entropy,

S̄(2)(t) =
1

N − 1

∑
⟨ij⟩

S
(2)
ij (t) (34)
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Figure 6. The dynamics of bipartite Rényi entanglement entropy for different (a)

C̃6 = 0.2 and (b) C̃6 = 1. We compare the exact results with that of DTWA and NQS.

For C̃6 = 0.2, γ = 2 is sufficient enough to capture the results, whereas for C̃6 = Ω,

γ = 12 gives a better agreement with the exact results.

Here, S
(2)
ij is the 2nd order Rényi entanglement entropy for the subsystem containing

two neighboring sites. Previously, it has been employed to study many-body localization

and thermalization in a one-dimensional Heisenberg model [74].

The dynamics of bipartite S
(2)
A (t) for N = 10 or NA = 5 is shown in figure 6. At

t = 0, we have S
(2)
A (t) = 0 since the initial state is a product state where each atom is

in |g⟩. As time progresses, correlations build in the system, and S
(2)
A (t) grows. Larger

the C̃6, faster the growth of the correlations. Even though first-order DTWA captured

the population dynamics accurately for small C̃6 [see figure 3(a)], it overestimates the

bipartite Rényi entropy [see figure 6(a)]. The results from second-order DTWA shows

a better agreement compared to that of first order DTWA. In contrast, NQS captures

the correlation dynamics accurately for small interactions even with γ = 2. When the
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Figure 7. The dynamics of the mean two-site entropy for (a) C̃6 = 0.2 and (b) C̃6 = 1.

We compare the exact results with that of DTWA and NQS. For C̃6 = 0.2, γ = 2 is

sufficient enough to capture the results, whereas for C̃6 = Ω, γ = 12 gives a better

agreement with the exact results.

RRI is increased, to C̃6 = Ω, γ = 2 is not sufficient to determine the dynamics of the

correlations accurately. Using γ = 12, the dynamics accurately obtained upto a duration

of Ωt ≈ 10.

Interestingly, the dynamics of mean two-site entropy [see figure 7] obtained from

all methods show better agreement with each other even for C̃6 = Ω. We anticipate

that taking an additional average over all nearest neighbor sites smoothens out the

fluctuations and makes the DTWA results closer to the exact ones. In general, we

observed two stages in the correlation growth: faster power-law growth in the initial

stage and slower growth at longer times, as shown in figure 7(b). For the initial growth,

we see that the mean two-site entropy behaves as S̄(2)(t) ≈ b(Ωt)σ [see figure 8(a)],

Page 14 of 20AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-126699.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



15

(a) (b)

Figure 8. (a) The initial power-law growth of mean two-site Rényi entropy in a 10

atom chain for C̃6 = Ω. The results from DTWA and NQS are in good agreement with

the exact results. (b) The exponent σ as a function of C̃6/Ω for N = 10. The NQS

results are in an excellent agreement with that of exact results. Since we look at the

initial correlation growth, the long-range interactions do not play any role and nearest

neighbor model gives identical behavior.

where b and σ are interaction dependent parameters. For C̃6 = Ω, we obtain b = 0.012

and σ = 4.609, and DTWA and NQS accurately capture them. We verified that the

coefficient b and exponent σ do not show any dependence on the system size up to

N = 18 (exact results) and decrease with an increase in C̃6 before they saturates to a

value of b ∼ 0.1 (not shown) and σ ∼ 3 [see figure 8(b)]. We anticipate that when the

nearest neighbor Rydberg blockade pitches in (C̃6 ≈ 64Ω), σ will again decrease and

eventually saturate, leading to a staircase-like structure. Since long-range interactions

do not play a significant role in the initial correlation growth, truncating the RRIs to

the nearest neighbor also leads to the same results as shown in figure 8.

7. Conclusions and Outlook

As the demand for numerical methods to capture the dynamics of quantum many-body

systems is high, we benchmark DTWA and NQS based on RBM-like architecture using

the exact results for the excitation and second-order Rényi entropy dynamics in a chain

of ten two-level Rydberg atoms. In DTWA, we go beyond the mean-field approximation

and include the two-body correlations via BBGKY hierarchy, which is tedious. DTWA

and NQS results agree with the exact results for weak Rydberg-Rydberg interactions

for relatively more extended periods. NQS results generally improve by taking many

hidden spins, but it increases computational time. The failure of the DTWA second-

order method at longer periods and strong interactions indicates that multi-particle

correlations are crucial for predicting the dynamics accurately. Although the population

dynamics at longer times showed deviations for large interaction strengths, the average

number of excitations calculated using NQS shows excellent agreement with the exact
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results, even using a relatively small number of hidden spins or neurons. While analyzing

the second-order Rényi entropy, we established a power law behavior in its initial growth,

with an exponent depending significantly on the interactions and independent of the

system size. Considering the short time scales involved in the experiments and the

initial product states, we conclude that NQS would help analyze the dynamics in a

chain of interacting Rydberg atoms.

We would like to see how these methods can be modified so that large interactions

can be considered. Further, we would like to understand the instabilities in DTWA-

BBGKY formalism. The same analysis can be extended to multi-dimensional setups,

where the first-order DTWA, being a mean field, would work better and also to consider

time-dependent Hamiltonians [43, 63, 65–67]. In particular, to analyze the formation of

many-body states under quantum quenching, for instance, the dynamical crystallization

[75]. Also, the spontaneous emission from the Rydberg state will be incorporated to

study the dissipative dynamics.
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Appendix A. Effect of γ on the Excitation dynamics

In figure A1, we show the excitation dynamics obtained via NQS in a ten-atom chain

for different numbers of hidden neurons, i.e., by varying γ and C̃6 = Ω. Though the

results have been improved with an increase in γ, the deviation at longer times persists.

Considering the experimental studies involve shorter periods, NQS will be helpful, and

relatively long-time dynamics can be captured with weaker interactions.
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Figure A1. The NQS dynamics of the total number of excitations (Ne) in an atomic

chain of N = 10 for C̃6 = Ω and different number of hidden neurons (γ).
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[67] Varghese D, Wüster S, Li W, and Nath R 2023 Phys. Rev. A 107 043311

[68] Wootters W K 1987 Ann. Phys. 176 1

[69] Wootters W K 2003 arXiv:quant-ph/0306135

[70] Schmitt M and Heyl M 2020 Phys. Rev. Lett. 125 100503

[71] Wu G, Kurz M, Liebchen B, and Schmelcher P 2015 Phys. Lett. A 379 143

[72] Eberly J H, Narozhny N B, and Sanchez-Mondragon J J 1980 Phys. Rev. Lett. 44

1323

[73] Rempe G, Herbert W, and Klein N 1987 Phys. Rev. Lett. 58 353

[74] Acevedo O L, Safavi-Naini A, Schachenmayer J, Wall M L, Nandkishore R, and

Rey A M 2017 Phys. Rev. A 96 033604

[75] Pohl T, Demler E, Lukin M D 2010 Phys. Rev. Lett. 104 043002

[76] Weinberg P and Buko M 2017 SciPost Phys. 2 003

[77] Weinberg P and Buko M 2019 SciPost Phys. 7 020

[78] Johansson J R, Nation P D, and Nori F 2012 Computer Physics Communications

183 1760

[79] Johansson J R, Nation P D, and Nori F 2013 Computer Physics Communications

184 1234

[80] Schmitt M and Reh M 2022 SciPost Phys. Codebases 2-r0.1

[81] Schmitt M and Reh M 2022 SciPost Phys. Codebases 2

Page 20 of 20AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-126699.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


