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We consider quantum jump trajectories of Markovian open quantum systems subject to stochastic
in time resets of their state to an initial configuration. The reset events provide a partitioning of
quantum trajectories into consecutive time intervals, defining sequences of random variables from the
values of a trajectory observable within each of the intervals. For observables related to functions
of the quantum state, we show that the probability of certain orderings in the sequences obeys
a universal law. This law does not depend on the chosen observable and, in case of Poissonian
reset processes, not even on the details of the dynamics. When considering (discrete) observables
associated with the counting of quantum jumps, the probabilities in general lose their universal
character. Universality is only recovered in cases when the probability of observing equal outcomes
in a same sequence is vanishingly small, which we can achieve in a weak reset rate limit. Our results
extend previous findings on classical stochastic processes [N. R. Smith et al., EPL 142, 51002 (2023)]
to the quantum domain and to state-dependent reset processes, shedding light on relevant aspects

for the emergence of universal probability laws.

I. INTRODUCTION

The dynamics of quantum systems which are in contact
with their surroundings, usually an infinitely large ther-
mal bath, is characterized by dissipation and stochastic
effects [1, 2]. By assuming a weak system-bath coupling
and considering standard Markovian approximations, the
time evolution of the average state of these open quan-
tum systems is described by quantum master equations
[1-4]. The latter are implemented by Lindblad generators
[3, 4] and provide a complete description of the system
evolution, whenever the system-environment interaction
is not monitored [1]. On the other hand, when the inter-
action is monitored [5], for instance by means of a detec-
tor counting the quanta exchanged between the system
and the environment, quantum master equations provide
a description of the system evolution averaged over all
possible realizations of the system-environment interac-
tion. Due to the stochastic nature of the emission and
of the absorption of energy quanta [2, 5], single realiza-
tions of the dynamics can only be described by quantum
stochastic processes, generating quantum trajectories [6—
9]. For counting experiments, quantum jump trajectories
provide the appropriate unravelling of quantum master
equations [10-12] into single dynamical runs. In one such
trajectory, the state of the system undergoes a continuous
evolution, conditional on not having detected any event,
interrupted by abrupt changes, or jumps, of the system
state. The latter take place at random times and are
associated with the exchange of energy quanta [13-15].

In the last few years there has been growing interest in
exploring how both classical and quantum stochastic dy-
namics are affected by the presence of reset processes [16—
18]. These consist of random-in-time re-initializations of
the state of the system back to an initial configuration

or state. In the simplest scenario, the random times be-
tween reset events are distributed exponentially (Poisso-
nian reset process) and the reset rate does not depend
on the instantaneous state of the system [19]. Reset pro-
cesses have been extensively studied in classical systems,
where they have been shown to give rise to nonequilib-
rium stationary states [19-29] as well as to improve the
efficiency of search processes [30-36]. In quantum sys-
tems, reset processes have been studied focussing on the
spectral properties of the dynamical generator [37], on
the emergent stationary behavior [38-42], on their im-
pact on hitting times [43, 44] and on how they affect the
probability distribution of emission events [45] compared
to the classical case [46-50].

When an open quantum system is subject to N
stochastic resettings, its quantum trajectories can be di-
vided into N + 1 consecutive time-intervals [45], delim-
ited by the times at which the reset events occur. This
is sketched in Fig. 1. Given a function of the state, f(v),
such as a measure of coherence or entanglement, its time-
integral in each interval gives rise to a sequence of random
variables, { F;}N! see Fig. 1(a). Interestingly, for classi-
cal stochastic processes it was shown in Ref. [51] that the
presence of Poissonian resets gives rise to universal prob-
ability laws for the elements of the sequences { F;} to obey
certain relations. Consider the example of the probability
that Fy > Fj, Vi, i.e., the first element being the largest
in the sequence [51]. The universal character of the prob-
ability of such an occurrence is due to the fact that the
reset process renders the elements of the sequence statis-
tically independent and identically distributed. Conse-
quently, there is no preference on which element should
be the largest, and the probability is given by the inverse
of the number elements in the sequence, irrespective of
the chosen observable and of the details of the dynamics
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FIG. 1. Open quantum reset dynamics and trajectory
observables. (a) A quantum trajectory of an open quantum
system subject to stochastic resetting is naturally partitioned
into different time-windows, with extension 7; = [ti—1, %],
by the times ¢; in which reset events occur. The last time-
window is special since it does not end with a reset event.
Given a function of the state f(v), it is possible to con-
struct random variables within the different time-windows,
as F; = fttiil duf(vy). As we show, the probability of ob-
serving certain sequences for the observables F; are universal,
i.e., they do not depend on the open quantum dynamics and
not even on the chosen function f(v). (b) When considering
instead of a state function the number of jump events (or dy-
namical activity) observed within the different time-windows
A;, the probability of the same sequences are not universal
in general. This due to the discrete nature of the random
variable A;.

[51].

In this paper, we demonstrate that analogous universal
probability laws to those of Ref. [51] can hold for Marko-
vian open quantum systems but only when considering
certain trajectory observables. We consider generalized
reset processes with rates that can in general depend on
the instantaneous state of the system, making the re-
set times non-Poissonian. In this situation, we find that
for trajectory observables which are time-integrated func-
tions of the state, a universal character of the probability
of a given ordering of the sequence {F;} exists as long as
the last time-interval is disregarded, see Fig. 1(a): this is
a consequence of the non-Poissonian nature of the gener-
alized reset process and also applies to classical systems
with non-Poissonian reset clocks, as recently observed in
Ref. [52]. Moreover, there is an inevitable interplay be-
tween the generalized reset process and the intrinsic open
quantum dynamics of the system so that probabilities are
universal solely in the sense that they do not depend on

the chosen observable but can actually depend on the
specific dynamics considered.

We also consider a class of (discrete) observables, con-
structed from the number of jump events occurred in the
different time-intervals, as sketched in Fig. 1(b). In this
case, we do not find any universal behavior for the above-
mentioned probabilities. Instead, they become depen-
dent on the observable and on the details of the dynamics,
for both Poissonian and non-Poissonian reset processes.
This breakdown of universality is due to the fact that
when observables assume a discrete set of values there is
in general a non-zero probability that two outcomes in
the sequence are strictly equal (see also Ref. [52]). This
makes the probability of different orderings dependent
on the details of the probability distribution of the ran-
dom variable within a single time-interval. As we show,
in this case universal laws can be recovered by consider-
ing a weak reset-rate limit. Here, the number of jumps
still assumes a discrete set of values but the probability
for two outcomes in the sequence being equal is vanish-
ingly small in the length of the time-intervals, which get
longer and longer the weaker the reset rate. Our find-
ings can be immediately generalized to include classical
continuous-time Markov chain dynamics in the presence
of stochastic resetting, since such dynamics can also be
encoded within a Lindblad formalism.

The rest of the paper is organized as follows. Section
IT describes the standard formalism of Markovian open
quantum dynamics and stochastic trajectories, while
Sec. III describes the class of generalized stochastic re-
setting problems we study. Section IV considers the exis-
tence of universal probability laws for trajectory observ-
ables which are functions of the state. Section V consid-
ers the corresponding problem for quantum jump observ-
ables. Section VI rationalizes our findings by studying
a simple model that captures the essential physics. In
Sec. VII we provide a discussion and the conclusions.

II. MARKOVIAN OPEN QUANTUM
DYNAMICS AND QUANTUM TRAJECTORIES

A. Markovian Lindblad dynamics

Any (finite-dimensional) quantum system can be as-
sociated with a separable Hilbert space H, having suit-
able dimension d. This space contains all possible
pure states of the system. It is spanned by the or-
thonormal basis vectors {|m)}% _;, obeying the condi-
tions (m|n) = Omn. Statistical mixtures of pure states
can be encoded through mixed-state density matrices,
p = >_; p(¥;) [¢i) (1], for some well-defined probability
p(1;) over pure states.

A description of quantum systems in terms of density
matrices is convenient whenever considering open quan-
tum time evolutions. In the simplest case of Markovian
open quantum dynamics, the evolution of the density
matrix is implemented by a quantum master equation



pt = L[p¢] [1], with Lindblad generator [3, 4]

Llp] = HerZ’ya(apJT{p,JTJ }>

The operator H = H' represents the Hamiltonian of the
system, while the operators J, are the so-called jump
operators, each of the D different ones associated with
the rate 7,. The latter operators encode how the dy-
namics of the system is affected by the presence of an
external environment. For instance, in quantum optics,
jump operators are connected with the emission (absorp-
tion) of photons into (from) the environment and de-
scribe how the quantum state changes when these events
occur. Since it implements a valid physical dynamics, the
Lindblad generator is such that e’* preserves the trace of
the density matrix, Tr(e’*[p]) = Tr(p) = 1, which is nec-
essary for having a probabilistic interpretation of p. For
later convenience, we decompose the Lindblad generator
in terms of the super-operators

Talpl = VadapTl,  Loolp) = —iHegp+ipHlg, (2)

where
)
Hg=H— 5 ZVQJ(LJav (3>

and L = Lo + >, Jo- The dynamics governed by the
generator £, Eq. (1), is nonunitary and deterministic. It
can be interpreted as the dynamics describing the state
of the system averaged over all possible realizations of
the interaction between the system and the environment,
which may for instance be monitored in experiments [5].
Single dynamical realizations, or quantum trajectories,
of the open system are instead captured by quantum
stochastic processes [6-12]. In the following, we consider
the situation in which the average dynamics in Eq. (1) is
unravelled into quantum jump trajectories [8-12].

B. Quantum jump trajectories and their
probabilities

Modern experiments with quantum systems allow for
the monitoring of the system-environment interaction
through the detection of the quanta exchanged between
them, such as, for instance, the photons emitted or ab-
sorbed by the system. Since such continuous monitoring
is in fact a proper measurement process on the compos-
ite system [2, 5], the dynamics in single (experimental)
realizations is stochastic and, in the case of the counting
processes of interest in this work, it can be described by
means of so-called quantum jump trajectories [10-12].

In a single realization of the quantum jump process
described, on average, by the dynamics in Eq. (1), the
quantum state of the system evolves according to the

(nonlinear) quantum stochastic equation [6, §]

Tr (ed£o[1,])
+Z( l/t>dn?.

Here, the state v; is the state of the system at time ¢,
while dv; := 1444t — 14 represents its increment in the
infinitesimal time step dt. The quantities dn{* are the
proper random variables, which can assume either the
value 0 or the value 1. The probability for each of the
noises to be 1, when the system is at time ¢ in state
v = v, is given by

joz Vt (4)

\704 Vt

P(dng = 1|1y = v) = Tr (Ju[v]) dt. (5)
Since this probability is of the order of the time increment
dt, effectively at most only one noise dn can be differ-
ent from zero at each time t. When one noise is equal to
one, let us say dnf = 1, the updated state is obtained
via the map J5 implementing an abrupt change of the
state of the system. From the viewpoint of an experiment
this situation corresponds to the detection of an event
associated with the jump operator J5z. When, instead,
dny = 0, Va, the state evolves continuously through the
“no-jump” dynamical map ed*“e. This corresponds to
the detector signalling absence of emission or of absorp-
tion events at time ¢. The stochastic process in Eq. (4) is
related to the Lindblad generator in Eq. (1). The latter
provides the evolution of the average state of the stochas-
tic process, 7, = E[1;], where E denotes expectation over
the noises dn¢, as vy = L[]

A quantum jump trajectory thus consists of the whole
history of the system state {vy}ucjos, from the ini-
tial time to the final one. It is completely specified
by the initial state together with the times and the
types of the occurred jumps. We denote quantum tra-
jectories with the symbol w%’% {Vutuep,g-  Here,
vy denotes the initial state of the system, the vector
£ = (0,Va,,Vay, - - - Var,, » t) specifies the initial and the fi-
nal time as well as the times v,, in which the jumps took
place, while & = (a1, o, . . . oy, ) indicates the type of the
m occurred jumps. The state of the system at the final
time t can be recovered by reconstructing the history of
the evolution by combining the maps which sequentially
acted on the initial state. In this regard, we can define
the unnormalized state vy . = Ag, z0], where

Aggl] =t vom= 0.7, o

(6)

oo Tay © e(Vaz—Va1)Loo g T, 0 €V01E[]
is associated with a trajectory in which jump «; occurred
at time v,,, jump a9 at time v,,, and so on up to a last
jump ay,, at time v,,,, . Importantly, the final state of such

{&/Tr ( t,a)

trajectory is the normalized state Vig =



and the probability (density function) of such a trajec-
tory is given by

P (w%"g) =Tr (l/%‘&) =Tr (A{&[Vo]) . (7)

C. Observables of quantum trajectories

An observable of a quantum trajectory is any possi-
ble function of the whole history of the state w . While

these functions can be in principle very general the focus
is usually on two important classes of additive (or time-
integrated) observables [53-58]. The first class is the one
consisting of time-integrated functions of the state. Con-
sidering any linear or nonlinear function f(v), the latter
are defined as

P (w,) = /0 " du (). (8)

Through the probability of trajectories introduced in
Eq. (7), it is possible to write the probability density
function of observing a value F' = F up to a time ¢ as

Sofr (o) -#]p(n) . o

vi,&
Here, the sum is over all trajectories and thus includes
any possible number of jumps, an integral over all possi-
ble jump times and sums over all possible jump types.
The normalization of this probability function follows
from

/HFPFH }:P( )

vi,a

P(F =F|t) =

Tr (ef]) = 1. (10)

The last equality stems from the trace-preservation of
L while the second to last equality encodes the fact that
the ensemble of trajectories provides an unravelling of the
Lindblad dynamics. Mathematically, this can be seen by
expanding the propagator e** in Dyson series, by consid-
ering the map Y J. as an “interaction”. To conclude
this section, we note that the formalism introduced here
is valid for both pure and mixed initial states vy. For the
sake of clarity, however, in the following we assume an
initial pure state, i.e., o = |to)(¥o]-

III. OPEN QUANTUM DYNAMICS SUBJECT
TO STATE-DEPENDENT RESETS

We now consider the case in which the dynamics im-
plemented by the Lindblad generator £ is interspersed
with reset events. The basic idea is that the open quan-
tum stochastic process runs up to a random time 7, af-
ter which the state of the system is projected back into
the initial state vy. After that, the stochastic dynamics
starts over again. In the simplest case of a Poissonian

reset process, the reset rate does not depend on the in-
stantaneous state of the system and the time interval 7
between reset events is distributed exponentially. That
is, the probability density function for the reset times is

p(T) =Te 7 ) (11)

with I' being the reset rate. The addition of such a re-
set process on top of the Lindblad dynamics leads to a
new open quantum dynamics described by the Lindblad
generator [19, 37|

Llp] = L[p] + T (vo = p) - (12)

In what follows, we shall consider the more general case in
which the reset rate depends on the instantaneous state
of the quantum system.

A. Generalized reset process

In order to implement a (Markovian) reset process with
rate depending on the specific basis state |m), we intro-
duce the map

d
=Y Lo o) ml pm)(ul . (13)

m=1

as well as the associated “no-reset” map

1 d

The map in Eq. (13) allows for a clear identification of the
jump operators, |t)g)(m|, implementing the reset process.
The rates I',,, take into account that the rate of resetting
the state to vy depends on the configuration |m). Due to
the presence of different reset rates, the sum appearing
inside the anti-commutator in the no-reset term R is not
proportional to the identity, so that the distribution of
the reset times is in general not Poissonian. The open
quantum dynamics of the system subject to our gener-
alized reset process, encoded in the maps W and R, is
described by a Lindblad quantum master equation with
generator

Llp] = LIp] + Wp] = R[p] . (15)

When I',,, =T for all m = 1,2,...d, the above equation
reduces to the Poisson reset case, Eq. (12).

B. Quantum trajectories with reset events

In this section, we will study the structure of quan-
tum trajectories in the presence of the reset process, i.e.,
of trajectories resulting from the Lindblad generator of
Eq. (15). Recalling the interpretation of Eq. (4), the



quantum stochastic process considered is such that, if
no jumps and no reset events occur at a given time, the
system evolves according to the generator

Loo[p] = Loo[p] = Rp]. (16)

If instead an emission occurs, then the state changes
through the application of the corresponding jump op-
erator, as it was discussed in the context of Eq. (4). On
the other hand, when a reset event takes place, the state
of the system is brought back to vy.

Within a time-window between two reset events, each
trajectory can still be characterized by an overall con-
tinuous dynamics, however now generated by L, inter-
spersed at random times by stochastic jump events. As
before, we can introduce the map

A; al :e(‘rivam)éoo o ja o...
&l o ~ )
. ‘7042 © e(vazival)ﬁx © jal o glarfe H )

and define the unnormalized state 72 ; whose trace yields
the probability of observing the trajectory wX’. between

two reset events (note indeed that no jump operator as-
sociated with the reset appears in the above equation).
From these probabilities, we can also compute the prob-
ability of observing a given outcome for the observable
F within two reset events, along the lines that lead to

Eq. (9).

C. Probability of trajectory observables in the
presence of resets

We now proceed with characterizing the open quan-
tum reset dynamics. Within a single trajectory one can
observe different reset events, which partition the trajec-
tory into several time-intervals, each one associated with
a different value of the observable F. In particular, we
denote by Fj the observable in the time-interval delim-
ited by the initial time and the time of the first reset
event. Fy is then the value of the observable in the time-
interval delimited by the time of the first reset event and
that of the second one and so on [cf. Fig. 1(a)]. The last
time-interval is special, since it does not terminate with
a reset event but rather with the final observation time
of the quantum trajectory. For this reason, if the tra-
jectory is characterized by N reset events, there will be
N + 1 time-intervals and thus N 4 1 random variables
Fi, F, ... Fny1, as illustrated in Fig. 1(a).

The probability density function of observing N reset
events, specifically occurring at the times {t;},, and
the outcome {F;}Y1! for the random variables up to a
final time t is given by (we set 7, = t, —tp_1, with tg = 0)

N+1
P({Fi}.{t:}, N[t) =6 (t - Z Ti) X
x Tr (]\FN“[VO])

TN+1

(18)
Tr (W o 1121 [VO]) .

i=1

In the above equation, we have introduced the map

AF[w] o= D" 6(F(wy) = F)Azglw]. (19

v7,d

This map encodes the sum over all possible trajectories,
which start from vy and are free of reset events up to
time 7 and for which the chosen observable assumes the
value F. The factorization of the probability in Eq. (18)
is a consequence of the fact that the reset map W always
reinitializes the system in 1y, making time-intervals be-
tween different reset events independent. Furthermore,
using the maps AL makes it possible to write the prob-
ability of observing the value F, in a trajectory free of
reset events and starting from vg, as Tr(AL[1g]). If the
same trajectory terminates with a reset event, the prob-
ability of observing F is given by Tr(W o AL [v)).

By integrating the probability in Eq. (18) over all pos-
sible times in which the reset events can occur, we find
the probability of observing N reset events associated
with the sequence {F;} for the random variables in the
different time-intervals as

t tn t2
P({Fi},Nlt) :/ dtN/ dtN,1'~'/ dt1><
0 0 0
~ N ~
x Tr (Afjg’jll [VO]) HTr (W o AE: [1/0]> .
i=1
(20)

In what follows, we exploit the product structure and
the similarity between all the factors in the integrand
to derive general results on the probability of observing
certain relations for the elements of the sequence {F;}.

IV. UNIVERSAL PROBABILITY LAWS

Starting from the general form for the probability of
{F;}, Eq. (20), we now ask simple questions on the prob-
ability of observing certain relations between the entries
of the sequence {F;}. As we shall show, there exist prob-
abilities which are completely independent from the spe-
cific structure of the observable f(v) and even, in certain
cases, from the underlying dynamics, for example on the
structure of the jump operators or the Hamiltonian. To
make this more concrete already at this point, we antici-
pate here that the goal is to give an answer to questions
like: “What is the probability for the value Fj to be
larger than any other F;?” To this end, we will exploit
the ideas put forward in Ref. [51] for classical stochastic
processes.

A. TUncorrelated structure in Laplace space

The starting point [51] to answer questions like the one
above consists in performing a Laplace transform of the



probability in Eq. (20), from the time-domain variable ¢
to the Laplace domain variable s. This reads [59]

PUFLNls) = [ dte PUELND.  (2)
0
By exploiting the convolution structure of the probability

P({F;}, N|t), we can write

N
P({F;},N|s) = Q(s)T(Fn+1,9)a" (s) [ [ 7(Fiy5), (22)

=1

where we defined the “normalized” Laplace transforms

II(F,s) = Q}S) /000 dte *'Tr ([\f[uo]) ) (23)
as well as
w(F,s) = ﬁ /OOO dte *'Tr (W o Af[l/o]) . (29)

The corresponding normalizations are found by integrat-
ing the “bare” Laplace transforms over all possible out-
comes of F'. That is,

q(s) : = /dF /OOO dt e=*tTx (W o AF [uo])

o (25)
= / dte *'Tr (W 0t £R) [1/0}) ,
0
and that
Qfs) : = / dF / dt e **Ty (]xf[yo])
o 0 (26)
2/ dte *'Tr (et([:*R)[VOD .
0
In both equations, we have exploited that
[ AP 3D 8P i) = F)Agalin] = Y Rl
Vi,& VE,& (27)
= t£—R) [v0]

Similarly to the discussion related to Eq. (10), the last
equality in the above equation comes from the fact that
the sum over all trajectories, free of reset processes, can
be seen as a Dyson series expansion applied to the map
e"£=R) and considering the map Y, Ja[] as an “inter-
action” term.

Interpreting P({F;}, N|s) as a probability [59], we see
from Eq. (22) that it has a product form which is further-
more symmetric under any exchange of the outcomes F;
that do not involve the last term Fpy,1. As discussed,
this last value is indeed special since the time-window
it refers to, unlike the others, does not end with a reset
event. Only when considering a Poissonian reset pro-
cess, i.e., I';;, = T for all m, the probability II(F,s) is
proportional to 7(F, s) which essentially ensures a fully

permutation-symmetric character to P({F;}, N|s), as in
the situations studied in Ref. [51]. Therefore, for a gen-
eralized reset process, we integrate out the last random
variable Fiy41. In such a case, we will only ask questions
regarding the relative magnitude of the first N random
variables [52]. Integrating out the last variable, we find

N

P'({F},N|s) = Q(s)g" (s) [ [ m(Fy,8) . (28)

i=1

This expression shows that the different F; are indepen-
dent and identically distributed random variables.

B. Probability of the maximum

In the following we focus on a specific question con-
cerning the sequence {F;}: what is the probability for
the first random variable F} to be the largest in the se-
quence? As shown in Ref. [51], the ideas that allow to
answer this question extend to generic relations which
solely probe the relative magnitude of the entries of the
sequence.

1. Poissonian reset process

We start with the case of Poissonian resets, already
discussed for classical processes in Ref. [51]. The proba-
bility, P1(t) = > 5 Prob(Fy > F,i € [2, N + 1]|t), for F}
to be the largest value in the sequence {F;}, irrespective
of the number of reset events, is given by

N+1

[e%s) N
Pl(t):NZo/ [[ dFi/jl:[ldtjx

N+1
x P{E},{t;}. NIt) ] 0(F1 - F).

k=2

(29)

The step function 8(F; — F}), which we define here as
O(x) =1 for x > 0 and O(x) = 0 otherwise, implements
the constraint that all I}, are smaller than F;. We now
calculate the Laplace transform of the above probability

P1 (S) = /OO dt eistpl (t) 5 (30)

0
and we find

oo N+1 N+1
P =Y [ ] arp(e).ne [] o - R,
N=0 =1 k=2

(31)
For Poissonian resets, we have that ¢(s) = I'Q(s) while
7(F,s) = II(F,s) so that the probability P({F;}, N|s)
[59] is completely invariant under any permutation of the
F;. As such, the probability that F} is larger than the
other random variables is equal to the probability that



any other F; being larger than the others. This suggests
that the constraint can be actually removed and substi-
tuted by a factor (N +1)~!. By doing this and by using

Eq. (22) for the probability P({F;}, N|s) [59], one finds
=, gNti(s

2

Z N + 1 ’ (32)

N:

which, considering that for a Poisson reset process q(s) =
I'/(T' + s) and recalling the series expansion of the loga-
rithm, leads to

s+I‘
T

Py(s) = *1 og (33)
as derived in Ref. [51]. Moving back to the time-domain
by applying the inverse Laplace transform to P (s) one
obtains Py (t) = (1 —e~'*)/(T't). The universal character
of this probability is confirmed in Fig. 2(a-b), considering
two different quantum systems [see details in Sec. IV C]
for which we study two different parameter regimes for
each system and different observables. We stress again
that a universal probability emerges due to the fact that
the presence of the reset makes the different entries of
the sequence F; independent random variables so that
there is no preferred relation between them. Moreover,
and as a consequence, this universal result would remain
unchanged also when considering the probability of any
other element in the sequence F; to be the largest one. In
the Poissonian case, since 7(F, s) and II(F, s) are essen-
tially equivalent, this is also true if one considers Fin 1
as done in Ref. [51]. For a generic reset process, the last
entry instead behaves differently from the others [52], as
we shall see in the following.

2. Generalized reset process

For a generalized reset process, one has that 7(F,s) is
not equal nor proportional to II(F, s). Recalling Eq. (22),
this means that the probability P({F;}, N|s) [59] is only
invariant when considering permutations of the first N
entries of the sequence {F;};. We thus only consider re-
lations involving the first IV random variables F;. This
means that we can integrate out Fyy; and work with
the probability P'({F;}, N|s) defined in Eq. (28), as also
done in Ref. [52] in a classical setup.

The probability, Pj(t) YNy Prob(4; > A0 €
[2, N]|t), for F; to be the largest value among the first N
entries of the sequence {F;}, irrespective of the number
of reset events, is given in Laplace domain by the relation

Z/HdFP’ (R, M) TL00F: — Fo).

k=2
(34)

Analogously to the previous discussion, the constraint
can be substituted by the factor 1/N and we can use

(b) Two-qubit system
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FIG. 2. Open quantum dynamics with Poissonian re-
sets. (a) Probability P; for the one-qubit system. The func-
tions of the state, f1,2/3(v) (see Sec. IV C) are a measure of
coherence in the qubit (f1), the average qubit excitation (f2),
and a combination of the two (f3 = f1 + f2). We run 50000
trajectories for two different parameter regimes, 2 =~ =T,
72 =2I' and Q = 2T", 74 =T, 72 = I'/2, with I" being the
Poissonian reset rate, I'1 = I'; = I'. (b) Probability P; for
the two-qubit system. The functions fy/5/6(v) (see Sec. IV C)
are the bipartite entanglement entropy of the system (f1), the
average number of excited qubits (f5), and a combination of
the two (f6 = fa — f5). We run 50000 trajectories for two
different parameter regimes, Q2 =y = v = 1", V = 2T", and
Q=T,V=T/2,v =72/2=T, with I being the Poissonian
reset rate, I'; = I, for ¢ = 1,2,3,4. In both panels, numeri-
cal simulations are compared with the prediction shown after
Eq. (33), first derived in Ref. [51].

Eq. (28) for the probability P'({F;}, N|s). Integrating
over the random variables and exploiting again the series
expansion of the logarithm we then find

N

1+§:q]\(78)

N=1

Pi(s) =

] = Q(s)—Q(s) log[1—q(s)]..

(35)
We note that this probability also includes the case in
which there are no reset events and the case in which
there is only one reset event. Moreover, we note that the
above probability does not depend on the specific struc-
ture of the chosen function f(v). However, it generically
depends on the precise structure of the open quantum dy-
namics. This can be understood by inspecting the defini-
tion of the functions Q(s) and ¢(s), which are determined
by the interplay between the generator L, the no-reset
dynamics R and the reset map V. The dependence on
L disappears in the case of Poissonian reset processes for
which R is proportional to the identity map while W es-
sentially acts as the trace operation. Importantly, this
means that in the situation of non-Poissonian resets the
probability is universal solely in the sense that it does
not depend on the considered observable but it is instead
sensitive to the open quantum dynamics of the problem.
This observation is supported by numerical results shown
in Fig. 3(a-b).

The probability Pj(¢) can in principle be calculated
by applying the inverse Laplace transform to Pj(s), even
though exact analytical expression may be difficult to get.
Numerical results for Pj(t), obtained by simulating quan-
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FIG. 3. Open quantum dynamics with non-Poissonian
resets. (a) Probability P; for the one-qubit system. The
functions fi/2/5(v) are as in Fig. 2. We run 50000 trajecto-
ries for two different parameter regimes, 2 =~ =1I', o = 2T
(bottom markers), and Q@ =I'/10, y1 = 72/2 =T (top mark-
ers), both with reset rates I'ty = I'2/2 = I". (b) Probability
Py for the two-qubit system. The functions fi/5,6(v) are as
in Fig. 2. We run 50000 trajectories for two different pa-
rameter regimes, Q = V/2 =T v = 72 = I' (top markers),
and Q = 2I' V = T'/4, 1 = 2 = I' (bottom markers).
The state-dependent reset rates are, in both cases, I'1 = T,
I'y =T's = 2I', 'y = 4I'. In both panels, as a reference, we
provide the prediction in Eq. (36) for a Poissonian reset with
rate I

tum trajectories for two exemplaric stochastic processes,
are shown in Fig. 3(a-b). In the case of Poissonian resets,
the probability Pj(t) can also be computed analytically
[52]

I't xT
P{(t) =e 1" (1 —vem — InT't +/ dx6> ,  (36)
x

—0o0

where ygm & 0.5772 is the Euler—Mascheroni constant.

C. Numerical benchmarks

To verify numerically our findings, we consider two
simple open quantum systems, which we will introduce
in the following.

1. One-qubit system

The first is a single qubit, for which we chose the ba-
sis states |1),|J) and which evolves under the Hamilto-
nian H = Qo,, with o, = [T)({}| + |{)(1]- Dissipation
is governed by the two jump operators J; = [|){1| and
Jo = |1)(}|, which are associated with rates v; and 7,
respectively. The reset map [cf. Eq. (13)] is instead

Wipl =Ty [D(Hp D + T2 [D{T e D (37)

The latter accounts for a process that resets the system
to state ||) with rate I'; if the system is in ||) and with
rate Iy if the system is in |1). This also defines the map
R. For this system, we consider observables of quantum

trajectories obtained by considering the following func-
tions, see definition in Eq. (8),

Hw)=[HvID f2(v) = (Alv D), (38)

as well as f3 = f1 + fo. The function f; quantifies quan-
tum superposition between states |1) and ||}, the func-
tion fo encodes the probability of finding the system in
[1), while f3 is an arbitrarily chosen combination of the
two.

2. Two-qubit system

The second example system that we consider is a two-
qubit quantum system with the Ising-model Hamiltonian

H=0cV +6@)+vele? (39)

where the superscript on the operators indicates the
qubit the latter are referring to. As for the other system,
op = [T + 1) (1] while oo = [1)(1] — [1){H. As jump
operators, we consider the ladder operator o_ = [])(1
for each particle, i.e.,

J1:0'(_1), JQZU(_2)’ (40)

associated with the rates +; and 79, respectively. For
such a system, the reset process is constructed such that
the four possible basis states are associated with different
reset rates as follows

H/\l/> A Fl ) |T*l/> A FQ )
) eTs, [ el

In this case, we chose the state ||]) as the reset state.

As a first observable for this second system, we con-
sider a measure of the entanglement content of the sin-
gle dynamical realizations of the stochastic process. En-
tanglement in quantum trajectories is receiving much
attention nowadays due to the recent interest in its
dynamics in many-body systems, in the emergence of
measurement-induced phase transitions, and in the study
of the complexity of the numerical simulation of open
quantum systems (see for example Refs. [60-69]). Since
we consider an initial pure state, we can quantify entan-
glement for our two-qubit system via the von Neumann
entanglement entropy, which we calculate through the
reduced state p;(v) = Try (v) as

fa(v) = =Tr1 [p1(v) Inpr (v)] . (42)

Here, Tr; denotes the trace over the ith qubit. As a
further observable, we calculate the number of qubits in
state |1) as

(41)

fs(v) = Tr |v(n™ +n@)| | (43)

where we defined n = [1) (1], which is related to the global
magnetization of the considered open quantum Ising
model. As a last function, we arbitrarily consider the dif-
ference between the previous two, fs(v) = fa(v) — f5(v).



V. EMERGENT UNIVERSAL PROBABILITIES
FOR JUMP-RELATED OBSERVABLES

In this Section, we consider trajectory observables
which do not directly depend on the state of the system,
but which are rather defined through the total counts
of the jump events that occur during the open system
dynamics.

Let us assume that the dynamics in Eq. (4) is observed
for a total time ¢. During this time-interval, the system
will undergo jumps associated with the operator J,, a
total of K, times where

t
Ko = / dn . (44)
0

Clearly, the quantities K, for « = 1,2,... D, where D
is the total number of jump operators [cf. Eq. (1)], are
stochastic due to the random nature of the noises dnf'.
Introducing the vector K = (K1, K»,...Kp), it is natu-
ral to ask what is the probability of observing a trajectory
with exactly K = K. To construct this probability, it is
convenient to first note that the probability P(K = 0[t),
for all K, to be zero up to time ¢, is given by

P(K =0[t) = Tr (®f=[wp]) , with ®]=C[] := e'“=[].

(45)
The above result is obtained by considering that the
probability for not jumping over a single time-step is ap-
proximately Tr (ed"LW[l/u]), and that we have to take
products of these quantities recalling the no-jump evolu-
tion in Eq. (4). We can now recursively define the maps

D t
K] = Z/O du®?)_, o J, 0 ®E=ca ] (46)
a=1

where we have chosen the basis vector e,, to be the vector
of elements equal to zero apart from the ath element,
which is set to one. With these maps one obtains the

desired probability as P(K = K|t) = Tr (@5[1/0]) The

idea behind this is that one can obtain an outcome K at
time ¢ by having K = K —e,,, for some «, up to a time u <
t, followed by a jump of type o and a no-jump evolution
from u to t. This sequence of events corresponds to the
composition of the maps inside the integral on the right
hand side of of Eq. (46). Considering these occurrences
for any a and for any 0 < u < ¢ thus gives the probability

P(K = K|t) = Tr (¢§[y0]).
From the latter probabilities P(K|t), we can construct

the probability of observing an outcome A for any possi-
ble function A of the (activity) vector K, as

P(A=Ajt) =) b4 40 PKlD), (47)
VK

where we have assumed that A = g(K). Possible observ-
ables A are for instance the total activity A = Y K,

(a) Poissonian reset (b) Non-Poissonian reset
1 Qb. 1 9.,
&, o K 1 © le, o K;
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FIG. 4. One-qubit system: quantum-jump observ-

ables. (a) Probability P; for the one-qubit system. Sym-
bols refer to different functions of the quantum-jump activ-
ities. We run 50000 trajectories for two different parameter
regimes, @ = v1 = y2/2 =T and Q = 7 /2 = /2 =T,
where T' is the Poissonian reset rate. (b) Probability P| for
the one-qubit system. Symbols refer to the different functions
of the quantum-jump activities. We run 50000 trajectories
for two different parameter regimes, Q@ = v = 72/2 =T" and
Q =71/2 =72/2 =T, with reset rates 't =T" and I'y = 2I".
In both panels, as a reference, we provide the prediction in
Eq. (36) for a Poissonian reset with rate I".

or the imbalance between two different total counts A =
K, — Kg.

As also illustrated in Fig. 1(b), in the presence of the
reset process the quantum trajectory is partitioned in dif-
ferent time-intervals separated by reset events. In each
time-interval ¢, one has a value A; for the chosen ob-
servable [cf. Fig. 1(b)]. Following the steps leading to
Eq. (20), we can write the probability of observing N re-
set events and a sequence {A4;} = {41, Aa,... An41} for
the observable A as

t tN ta
P({Al},N“):/ dtN/ dtN_1~'~/ dt1><
0 0 0
N

x Tr (ﬂfNﬁT [Vo]) H Tr (Wo v [v]) .

i=1
(48)
Here, we defined the maps
71 =) daeu0 P8, (49)
VK

where ®X are the analogous of the map ® introduced
in Eq. (45) but with @? = e'f~ which accounts also for
the presence of the no-reset dynamics.

We now ask what is the probability Pj(t) =
> n Prob(A4; > A;,i € [2,N]|t), for A; to be the largest
between the first N entries of the sequence {4;}, irre-
spective of the number of reset events. In the Laplace
domain, this probability is given by

[e%s) N N
P = > [ TTa4P (). N9 T 00 - 40),
N=0 =1 k=2 (50)
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FIG. 5. Emergent universality for quantum-jump ob-
servables in the weak reset-rate limit. (a) Probability P}
for the one-qubit system. Symbols refer to different functions
of the quantum-jump activities. We run 5000 trajectories, for
which fluctuations are evident, for a parameter regime with
Q = 791 = 72/2 = 100T", where T" is the (weak) Poissonian
reset rate. (b) Same as in (a) but for a non-Poissonian reset
process specified by the rates I'y = 2I'; = ©/100. In both
panels, as a reference, we provide the prediction in Eq. (36)
for a Poissonian reset with rate I'.

where  we  have defined  P/({4;}, N|s) =
JdAn11P({A;},N|s). Inspecting the above struc-
ture, one would be tempted to say that, also in this
case, due to permutation invariance, the constraint
implemented by the step functions can be substituted
by a factor 1/N. This would then imply that, i) for a
Poissonian reset process this probability does not depend
on the chosen observable nor on the specific details of
the dynamics [51] and that ii) for a non-Poissonian reset
process the probability is independent on the chosen
observable. However, by looking at Fig. 4(a-b), we see
that this is actually not correct. For both the Poissonian
and the non-Poissonian case, the probability is not
universal and depends on the details of the dynamics as
well as on the chosen observable.

The reason for this difference is the following (see also
discussion in the next Section). The observable A is a
discrete observable so that there is also a nonzero proba-
bility for observing the same outcome for different entries
of the sequence {A4;}, which is generically not possible
for the trajectory observables defined in Eq. (8). This
means that, in a random sequence, it can also happen
that A; = A;, for some i. As it will become evident
through the example discussed in Section VI, this fact
makes the the probability of Eq. (50) dependent on the
considered observable. Essentially, this is due to the fact
that the probability of finding two, or more, equal out-
comes in a sequence depends on the probability distribu-
tion of the observable in a single time-interval.

For a discrete random variable a nonzero probability
of having two equal outcomes in the sequence can only
be avoided if each outcome of the random variable occurs
with a vanishingly small probability (see also discussion
in Section VI). The way to achieve this in our setting is
by making the time-intervals in between reset events ex-
tremely long. In this way, even though jump events can
still only assume discrete values, the number of possible
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outcomes increases. Indeed, since jump observables obey
a law of large numbers with time being the large param-
eter, for long time-intervals 7 the value of all K,’s will
become extensive in 7 as well as their variance, due to
central limit theorems. In essence, the rates K, /7 tend
to become continuous variables, which means that the
probability of observing a specific value of K, becomes
small. Long time-intervals between reset events can be
achieved by choosing vanishingly small reset rates. In
Fig. 5(a-b), we show indeed that in these cases, universal
probability laws are recovered both for Poissonian and
non-Poissonian processes (we only present results for the
single-qubit system).

VI. A MINIMAL MODEL

In this last Section, we rationalize the findings of this
paper, constructing the simplest possible model which
still displays the essential features of our observations.
As mentioned in the Introduction, the presence of the re-
set process makes the different random variables, which
we have considered, statistically independent. In order to
better appreciate the role of the probability distribution
of the random variables themselves, we consider here the
case of two identically distributed and statistically inde-
pendent random variables. This amount to consider a
sequence with only two elements. We call these variables
x1 and xo and we are concerned with characterizing the
probability P(xy > x2) of observing that x; > x».

A. Continuous random variables

We begin by considering the case of variables assum-
ing values from a continuous set. We assume such set
to be the set of real numbers and characterize these ran-
dom variables through their probability density function
p(x). The probability that 1 > za (i.e., that z; is the
largest value in the simple sequence considered) can thus
be written as

P(xy > x9) = /Oo dzip(xy) /901 dzop(zs) . (51)

—0o0 — 00
The integral over the probability density function

gives the cumulative probability function C(z) =
J* . dws p(x2) so that we have

o0

P(z1 > x2) = / dzp(z1)C(21) (52)

— 00

Recognizing that pu(x) = dC(z)/dz and changing vari-
ables in the integration we have

1
P(.T1>.’172):/ dCC:% (53)
0

This result reflects the intuitive observation that there is
no reason to expect a different probability for z; > x5 or



r9 > x1 given that the two random variables are statisti-
cally independent. This is essentially what allows one to
substitute to the constraints in Eq. (31) and Eq. (34) the
inverse of the number of possible outcomes (here given

by 1/2).

B. Discrete random variable

We now consider the case in which the two variables
can assume the values £k = 0,1,2,... M with probability
P(xz = k) = pg. The probability that 21 > z2 can now
be written as

P(CEl >.’E2) =

Z PrPr - (54)

Vi, k' k> k!

Clearly, also in this case there is no reason why one should
expect P(x1 > x2) # P(x2 < 1), so that in fact we can
write

P(xl > 562) +P(1‘1 < 132)
2

1
— § 2
k=0

The second equality comes from the fact that the proba-
bility that x1 > xo or xs > x7 is equal to one minus the
probability that the two outcomes are equal. This shows
that in this case, P(x1 > x3) is not given by the “uni-
versal” value 1/2, but actually depends on the details
of the random variable and its probability distribution.
Note that this non-universal character would not change
if one considers P(x; > x3) instead. In this case, Eq. (55)
changes so that the sum in the parenthesis is preceded by
a plus sign. This makes the probability P(x; > x2) # 1/2
making the case P(x; > x2) also non-universal.

P(Jil > $2) =
(55)

C. Emergent universal probability

We now proceed with the previous example and show
how the “universal” value 1/2 can emerge in a given limit.
Let us now assume that xq, x5 are the total number of
successes in a Bernoulli process made by M repetition of
a binary event. This means that

m= ()=, (56)

where p is the probability of success for the single binary
event. For any finite M, we have that the probability
of finding two equal values for x; and xs remains finite.
However, when letting M — oo all the single probabilities
i become vanishingly small and such that ZQ/I:O pi — 0,
for M — oo. In this regime, one can therefore asymptot-
ically recover the universal behavior P(z; > x2) — 1/2.

This simple example may seem unrelated to the quan-
tum processes discussed above. However, in a simplified
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picture, one could think of p as being the probability of
observing an emission event [cf. Eq. (5)], during the in-
finitesimal time-step du. The number of repetition M
can be associated with the number of (discrete) updates
7/du, so that the larger M, the larger the resulting time-
interval 7. Here, thus, the large M limit encodes the
weak reset-rate limit discussed above. Essentially, one
difference compared to the quantum process is that we
only considered here a binary event which would corre-
sponds to a single jump operator. Another one is that,
in the quantum process, the probability p generically de-
pends on time, i.e., on the specific repetition performed
and on the whole history of the previous outcomes.

VII. DISCUSSION

We have investigated the emergence of universal prob-
ability laws in quantum stochastic processes undergoing
reset events. Following the ideas first put forward in
Ref. [51] for classical reset processes, we have demon-
strated that the probability of observing a given relation
between the entries of a sequence of random variables, de-
fined by the presence of reset events and depending on the
quantum process, is universal if the considered variable
assumes values in a continuous set [52]. In particular, for
Poissonian reset this probability does not depend either
on the dynamics or on the specific form of the chosen
observable. For non-Poissonian resets, the probability
depends instead on the details of the open quantum dy-
namics under consideration. When the random variables
assume discrete values, the probability loses its universal
character. This is essentially due to the fact that there
is a nonzero probability of observing two, or more, equal
outcomes in the sequence. Emergent universal probabil-
ities still emerge, in these cases, when considering weak
reset rates.

Our findings generalize to classical Markov processes,
which can also be formulated within the Lindblad formal-
ism as a special case. In the present work, we illustrated
our ideas using a specific probability, namely that of the
first element of a sequence of trajectory observables being
larger than all the others. However, our results general-
ize to the probability of other events involving possible
orderings between the elements of the random sequence
identified by the reset events as in Ref. [51]. To under-
stand this, one just needs to recognize that, as explained
above, the key ingredient for the emergence of a universal
probability is that the reset process renders the variables
in the sequence {F;} independent and, at least for the
first N entries, identically distributed.
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