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Abstract  

Spatio-temporal image fusion methods have become a popular means to produce remotely sensed 

data sets that have both fine spatial and temporal resolution. Accurate prediction of reflectance change 

is difficult, especially when the change is caused by both phenological change and land cover class 

changes. Although several spatio-temporal fusion methods such as the Flexible Spatiotemporal DAta 

Fusion (FSDAF) directly derive land cover phenological change information (such as endmember 

change) at different dates, the direct derivation of land cover class change information is challenging. In 

this paper, an enhanced FSDAF that incorporates sub-pixel class fraction change information (SFSDAF) 

is proposed. By directly deriving the sub-pixel land cover class fraction change information the proposed 

method allows accurate prediction even for heterogeneous regions that undergo a land cover class change. 

In particular, SFSDAF directly derives fine spatial resolution endmember change and class fraction 

change at the date of the observed image pair and the date of prediction, which can help identify image 

reflectance change resulting from different sources. SFSDAF predicts a fine resolution image at the time 

of acquisition of coarse resolution images using only one prior coarse and fine resolution image pair, and 

accommodates variations in reflectance due to both natural fluctuations in class spectral response (e.g. 

due to phenology) and land cover class change. The method is illustrated using degraded and real images 

and compared against three established spatio-temporal methods. The results show that the SFSDAF 

produced the least blurred images and the most accurate predictions of fine resolution reflectance values, 

especially for regions of heterogeneous landscape and regions that undergo some land cover class change. 

Consequently, the SFSDAF has considerable potential in monitoring Earth surface dynamics.  
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1. Introduction  

Land cover change is an important environmental variable having, for example, impacts greater 

than climate change (Chapin et al. 2000; Foley et al. 2005; Vitousek et al. 1997). Remote sensing as a 

key land cover data source is often constrained by factors such as the spatial and temporal resolution of 

the available imagery. Detailed land cover monitoring requires imagery with both fine spatial and 

temporal resolution. Unfortunately, there is often a trade-off between these resolutions. For example, 

remotely sensed imagery such as that acquired by the Moderate Resolution Imaging Spectroradiometer 

(MODIS) offer the potential to study land cover at a daily frequency but only at a 250+m spatial 

resolution. Remotely sensed imagery such as that acquired by Landsat sensors can be acquired at a finer 

spatial resolution (typically ~30m) but with a 16 days temporal resolution. One way to address this 

problem includes the direct combination of multiple satellites. However, a large proportion of medium 

spatial resolution imagery is contaminated by cloud (Ju and Roy 2008), and differences in sensor 

properties (e.g. spectral wavebands) may impact upon reflectance values and complicate analyses.  

An alternative approach that makes use of available data sets is to fuse imagery that have a fine 

temporal but coarse spatial resolution with imagery that have a fine spatial but coarse temporal resolution 

based on spatio-temporal image fusion methods. Such approaches exploit the positive attributes of each 

data set to form the desired time series of fine resolution images. The aim of spatio-temporal image fusion 

is the generation of a fine spatial resolution (FR) image for the date represented by a coarse spatial 

resolution (CR) image, referred to here as the prediction date. This is achieved by integrating the spatial 

and temporal information in a pair of FR and CR images of the same region acquired at other dates (Zhu 

et al. 2018). A key challenge to the analysis is that the latent FR image to be predicted may differ from 

other FR images observed at other dates. These differences in image reflectance arise for two main 



reasons. Firstly, reflectance changes may be associated with plant phenology or growth as well as issues 

such as seasonal changes in solar elevation. As a result, the typical spectral response of a class represented 

by the class endmember statistics may vary in time. This type of change is typically relatively gradual. 

Secondly, the reflectance of a location may change over time because of an alteration of the land cover 

class. This reflectance change caused by land cover class change is often relatively abrupt. In many 

situations, the reflectance may change in time due to both endmember change and land cover class change.  

Addressing reflectance change effectively is a critical issue in spatio-temporal image fusion. Various 

algorithms have been proposed including the spatial and temporal adaptive reflectance fusion model 

(STARFM) (Gao et al. 2006) and its variants (Fu et al. 2013; Wang et al. 2017; Zhu et al. 2010), as well 

as the unmixing-based method (Zhukov et al. 1999) and its variants (Amoros-Lopez et al. 2013; Gevaert 

and Javier Garcia-Haro 2015; Wu et al. 2012; Zurita-Milla et al. 2008; Zurita-Milla et al. 2009). Although 

these fusion methods can accommodate endmember change and have been successfully applied in the 

fields such as forest phenology analysis (Gaertner et al. 2016; Schmidt et al. 2015; Walker et al. 2012; 

Zurita-Milla et al. 2009) and crop phenology analysis (Amoros-Lopez et al. 2013; Gao et al. 2017), the 

prediction of relatively abrupt reflectance changes caused by land cover class change is still challenging 

(Zhao et al. 2018; Zhu et al. 2018; Zhu et al. 2016). 

One way to allow accurate reflectance prediction when an abrupt reflectance change due to a land 

cover conversion has occurred is to use two pairs of FR and CR images, one acquired before and the 

other after the date of prediction (sometimes referred to as the two-pairs case). The two-pairs case fusion 

can be divided into change detection-based fusion and learning-based fusion. The change detection-based 

fusion methods derive FR land cover class change information using the input FR image pairs which are 

supposed to contain the land cover change information at the prediction date which lies between them 



and predict different reflectance changes separately (Amoros-Lopez et al. 2013; Hilker et al. 2009). In 

some situations, obtaining two FR images separated by a short period is difficult and the two-pairs case 

methods can become unsuitable if there is an abrupt land cover class change within the relevant 

timeframe. For instance, an area may be inundated by a flood on the prediction date but not be flooded 

in the two FR images used. In this situation, the two-pairs case methods that detect the FR land cover 

class change information by comparing the FR image pairs become unsuitable for use. Since the CR 

image at the prediction date may capture land cover change, it is used in comparison with the input CR 

images that pre- and post-date it to improve land cover change detection in the fusion (Huang and Zhang 

2014; Zhong and Zhou 2019). The learning-based fusion methods do not distinguish between changed 

and unchanged land covers, and predict abrupt and gradual reflectance changes in a unified framework. 

The learning-based fusion methods learn the complex relationship between the CR-FR original or 

difference image pairs to predict the unknown FR image based on algorithms such as dictionary learning 

(Huang and Song 2012; Wu et al. 2015) and deep learning (Liu et al. 2019b; Song et al. 2018). However, 

the aforementioned fusion methods require two FR and CR image pairs, which are acquired before and 

after the date of prediction, and thus are unsuitable for near-real-time prediction. In practice, timely 

updating of FR images with fine temporal but coarse spatial resolution images plays a key role in many 

applications including those focused on time-sensitive issues such as flooding and wild-fire monitoring. 

However, the two-pairs case methods require a FR image that post-dates the CR images at the prediction 

time as input. As a result, they are unsuitable for near-real-time updating of an image data series with a 

fine spatial and temporal resolution. This greatly impedes the realization of the full potential of satellite 

remote sensing to provide up-to-date land cover information and limits their value in studies of 

contemporary land cover change.   



Considering the limitations of two-pairs case methods, the one-pair case spatio-temporal fusion 

method is then often necessary to predict abrupt change. Similar to the two-pairs case fusion to predict 

abrupt change, the one-pair case fusion can also be divided into change detection-based fusion and 

learning-based fusion. For the change detection-based one-pair case fusion, since the FR image at the 

prediction time is unknown, the FR land cover change information at different times is detected by 

comparing the reflectance at the location of each FR pixel from the CR image at the prediction time and 

the FR image pre- or post-dates it (Chen et al. 2018; Wang and Huang 2017). The aforementioned one-

pair case fusion methods are at the pixel level, and Zhao et al. (2018) proposed a robust adaptive spatial 

and temporal image fusion model (RASTRM) which developed the fusion to feature level (i.e., land 

cover classes of interest) for abrupt change. RASTFM first detected reflectance change at a medium 

spatial resolution (coarser than the input FR image and finer than the input CR image) to derive land 

cover shape change (such as expansion of urban and shrinking of lake) and non-shape change (such as 

phenological change or crop rotation), and then predicted the reflectance changes in shape change and 

non-shape change regions separately. However, the change detection-based one-pair case fusion requires 

a threshold to detect land cover change which may lead to false detection.  

An alternative one-pair case fusion for abrupt change is the learning-based fusion method. Song and 

Huang (2013) proposed a dictionary-pair learning fusion for the one-pair case (DPL-One). Unlike the 

dictionary-pair learning fusion which requires two pairs of CR-FR image pairs to learn the dictionaries 

as with the previous study of Huang and Song (2012), DPL-One directly downscales the original CR 

image to FR scale based on sparse representation, and then fuses this image with the input FR data based 

on high-pass modulation. DPL-One predicts reflectance more accurately for a pixel undergoing land 

cover class change than STARFM, but this method may not accurately predict the object shape if the CR 



and FR images have a large difference in pixel size. DPL-One was further improved by using similar 

pixels to reduce the blurring effects (Chen et al. 2017).  

The aforementioned one-pair fusion methods could predict abrupt land surface change, but they do 

not derive land cover information such as the land cover class or fractions present in the image, and do 

not explore how land cover phenological change and land cover class change affect surface reflectance 

change. Zhu et al. (2016) developed a Flexible Spatiotemporal DAta Fusion (FSDAF) method. FSFAD 

first directly estimate endmember changes to account for the land cover phenological change in a 

temporal prediction step. Then FSDAF spatially interpolates the CR at the prediction date, which could 

contain land cover change information, to FR scale in a spatial prediction step. Finally, FSDAF combines 

the temporal prediction image which contains land cover phenological change information and spatial 

prediction image which contains land cover class change information for a final prediction. FSDAF 

improves the fusion of reflectance change caused by both endmember and land cover class change 

compared with STARFM and unmixing-based methods. However, the FSDAF temporal prediction 

assumes that the land cover is unchanged in the temporal prediction step. Liu et al. (Liu et al. 2019a) 

proposed an improved FSDAF (IFSDAF) which generated more spatially continuous Normalized 

Difference Vegetation Index (NDVI) images by considering the spatial autocorrelation of NDVI. The 

land cover class change information contained in the reflectance imagery is not directly derived and used 

in IFSDAF.  

Dealing with land cover class change effectively is the largest problem for the one-pair case spatio-

temporal image fusion. The problem in the accommodation for land cover class change within spatio-

temporal fusion methods is that the FR land cover information at the prediction time is, of course, 

unavailable. If accurate FR land cover information at the prediction date could be obtained, the FR land 



cover change trajectory could be utilized in the fusion methods. Fortunately, there has been recently great 

progress in the FR land cover information derivation from CR imagery, especially with the spatio-

temporal super-resolution land cover mapping (STSRLCM), which can predict fine spatial resolution 

land cover maps time series based on multiple CR images and one (Ling et al. 2011; Xu and Huang 2014) 

or a few (Li et al. 2017) FR land cover maps. Although STSRLCM has been successfully used in land 

cover change detection (Li et al. 2016) and mapping (Li et al. 2015; Wang et al. 2016), it assumes FR 

pixels are pure and produces thematic maps rather than reflectance images with continuous fields. The 

mixed pixel problem, in which a pixel may represent an area of multiple classes, also needs to be 

addressed at the FR scale to achieve the full potential of spatio-temporal image fusion especially for 

highly fragmented landscapes or because of issues of intra-class mixing (Keshava and Mustard 2002).  

In this paper, a new spatio-temporal fusion method that accommodates sub-pixel class fraction 

change is proposed to address the combined effect of both endmember change and land cover class 

change. The proposed method is based on FSDAF considering its extensibility and wide usage in the 

fusion of spectral reflectance (Alves et al. 2018; Chen et al. 2017; Sun et al. 2019), NDVI (Chen et al. 

2018; Liao et al. 2017; Liu et al. 2019a; Maselli et al. 2019), land surface temperature (Zhang et al. 2017), 

as well as land cover class fractions (Zhang et al. 2018). The proposed enhanced FSDAF that considered 

sub-pixel class fraction change information (SFSDAF) aims to extend FSDAF by not only directly 

deriving endmember change to represent phenological change, but also directly deriving sub-pixel land 

cover class fraction changes in the FR pixels to accommodate land cover class change and the presence 

of mixed pixels at the FR scale. Furthermore, SFSDAF is designed as a one-pair case spatio-temporal 

image fusion method, and thus has border applicability than two-pairs case fusion methods (e.g. it is 

appropriate for use in near-real-time applications). The proposed SFSDAF method is compared here with 



a set of contemporary state-of-the-art spatio-temporal image fusion methods, STARFM, the unmixing-

based data fusion (UBDF) (Zurita-Milla et al. 2008), and FSDAF, and the accuracy is assessed using 

degraded as well as real satellite sensor images to aid understanding of the method and also allow a 

rigorous assessment of its performance. 

2. Methods 

SFSDAF aims to estimate the FR image at the prediction date tp using a FR image at date t0, a CR 

image at t0 and a CR image at tp as input. The method has four steps that are highlighted in blue in Fig. 

1. The first step is the estimation of the FR endmembers and class fractions at t0. The second step is the 

estimation of the FR endmembers and class fractions at tp. The third step is the temporal prediction of 

the FR image at tp considering both endmember change and sub-pixel land cover class fraction change 

information from t0 to tp. The final step is the refinement of the temporal prediction image by using a 

spatial interpolation approach to predict the final FR prediction image at tp. A flowchart of the proposed 

method is provided in Fig. 1 and the key details are introduced in the following sections. The variables 

are defined on first use but also a summary of the notation is provided in appendix A. 



 

Fig. 1. Flowchart of the proposed SFSDAF. ‘CR’ stands for coarse spatial resolution, and ‘FR’ stands for fine spatial resolution.  

2.1 Estimation of the FR endmembers and class fractions at t0 

2.1.1 Clustering and the estimation of FR endmembers at t0 

First, the FR image at t0 is clustered into a FR land cover map using an unsupervised clustering 

algorithm such as k-means or ISODATA. Only the number of classes in the image needs to be defined, 



and this may be informed by priori knowledge of the site or the observed heterogeneity. After producing 

the land cover map, the reflectance of each endmember is the average of the FR pixels from the FR image 

at t0 according to the class type in the clustered map.  

2.1.2 Estimation of FR class fraction images at t0 

The land cover map produced by the unsupervised classification is a hard classification map in 

which each FR pixel can belong to only one land cover class. In SFSDAF, with the aforementioned 

estimated endmembers at t0, a soft classification is applied to FR image at t0 to produce the FR land cover 

fraction images at t0 to indicate sub-pixel scale land cover information (Alpaydin 1998). Assume the FR 

image at t0 contains B spectral bands and is clustered with l land cover classes. 
0( , , )FRE c b t  is the bth 

spectrum (b =1,…, B) in the cth endmember (c =1,…, l) in the FR image at t0. The FR class fraction or 

abundance is calculated as: 
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where 0( , , )ij ijx y tv  is the reflectance vector for FR pixel ( , )ij ijx y  at t0, and 0( , )c t  is the cth cluster 

centroid at t0.  

With the FR land cover fraction images at t0, the CR class fraction 0( , , , )CR
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by spatially degrading the FR class fractions of the cth class within the CR pixel ( , )i ix y : 
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where m is the number of FR pixels within one CR pixel.  

2.2 Estimation of the FR endmembers and class fractions at tp 

The FR class fractions and endmembers at tp are estimated in this step. Since the FR land cover class 

fractions at t0 are estimated in the aforementioned step, if the FR land cover fraction changes from t0 to 



tp can be estimated, the FR land cover class fractions at tp can be calculated by combining FR land cover 

class fractions at t0 with land cover fraction changes from t0 to tp. Similarly, if the FR endmember changes 

from t0 to tp can be estimated, the FR endmembers at tp can be calculated by combining FR endmembers 

at t0 with endmember changes from t0 to tp. The main steps in estimating the FR class fraction changes 

and endmember changes from t0 to tp are explained in the below. 

2.2.1 Estimation of the FR class fraction change from t0 to tp 

The CR class fractions at tp are estimated and then compared with the CR class fractions at t0 to 

produce the CR class fraction change images from t0 to tp. The CR class fraction change images are then 

downscaled to the FR class fraction change fractions from t0 to tp. 

The CR land cover class fractions at tp are generated first. Before generating the land cover class 

fractions, the CR endmembers are first estimated based on an inversion method of linear mixture 

equations as with the previous study (Li et al. 2016). First, n (n>l) CR pixels are selected according to 

the criteria used in (Zhu et al. 2016) to avoid the collinearity problem and reduce the impact of land cover 

change. Then, assuming the CR pixel value is a linear combination of the reflectance of all endmembers 

resident within it, the CR endmembers at tp are estimated using the least square error (LSE) method:  
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where p( , , , )CR

i iR x y t b  is the bth band reflectance value in the CR pixel ( , )i ix y
 

at tp, p( , , )CRE c b t  is 

bth spectrum in the cth endmember in the CR images at tp. The cth class fraction in the CR pixel ( , )i ix y
 

at tp , i.e. p( , , , )CR

i iA x y t c ,
 
is unknown at present, and can be substituted with 0( , , , )CR

i iA x y t c  in Eq. 

(3). Once the endmembers in the CR image at tp are obtained, the land cover class fractions in the CR 



image at tp are obtained based on the fully constrained linear mixing model with ‘non-negative’ and ‘sum-

to-one’ constraints for the generated class fractions (Li et al. 2016).  

The CR class fraction change images from t0 to tp are then calculated. Assume ( , , ) CR

i iA x y c  is 

the cth class fraction change at CR pixel ( , )i ix y , which is produced as: 

 p 0( , , )= ( , , , ) ( , , , ) CR CR CR

i i i i i iA x y c A x y t c A x y t c .                 (4) 

The estimated CR class fraction changes from t0 to tp are downscaled to FR scale using spatial 

interpolation methods, such as bicubic interpolation (Keys 1981) and thin plate spline (TPS) interpolation 

(Dubrule 1984). The bicubic and TPS spatial interpolations are based on spatial correlation assumption, 

and would predict smooth FR class fraction change images. Therefore, a similar pixels-based approach 

is used to refine the FR class fraction change images from spatial interpolation. It is assumed that similar 

pixels would have similar land cover fraction changes from t0 to tp in SFSDAF. The similar pixels, which 

have similar spectral reflectance in the FR image at t0, are selected through a moving window using the 

same method in STARFM (Gao et al. 2006). The difference in reflectance between kth FR pixel in the 

moving window and the target FR pixel is used in the selection of similar neighbor FR pixels. Only a 

selected number of FR pixels which have the smallest spectral difference to the target FR pixel in the FR 

pixel at t0 are involved, and the weight of the kth similar pixel, i.e. kw , is calculated based on the relative 

spatial distance between the kth FR similar pixel and the target FR pixel ( , )ij ijx y  as is defined in Gao et 

al. (2006).  

With the weights of each similar FR pixel, the refined FR class fraction change for a target FR pixel 

( , )ij ijx y  for the cth class, i.e., ( , , ) FR

SI Refine ij ijA x y c , is calculated as: 
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where ( , , ) FR

SI k kA x y c  is the downscaled cth class fraction change at the kth similar pixel from spatial 



interpolation, and N is the number of similar pixels..  

2.2.2 Estimation of the FR class fractions at tp 

The FR class fraction images at tp are then combined by adding the FR class fraction images at t0 

and the FR class fraction change images from t0 to tp. For a FR pixel ( , )ij ijx y , the combined FR class 

fraction for the cth class at tp is calculated as: 
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where p( , , , )FR

ij ijA x y t c  is the final FR cth class fraction for FR pixel ( , )ij ijx y  at tp. A flowchart for 

estimating the FR class fraction images at tp in SFSDAF is in Fig. 2. 



  

Fig.2. Flowchart of the estimation of FR land cover fraction images at tp in SFSDAF.  

2.2.3 Estimation of the FR endmember change from t0 to tp 

The FR endmember change is estimated based on an inversion method of linear mixture equations 

which is used in FSDAF. Assume ( , ) FRE c b  is the change in the bth spectrum in the cth endmember in 

the FR images from t0 to tp. Assume the change in the spectrum in the endmember are invariant in the 

CR and FR images (Gao et al. 2006; Zhu et al. 2016). The CR pixel reflectance change can be calculated 

as a linear combination of endmember reflectance change weighted by the fraction of each class within 

the CR pixel: 
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where
 

( , , ) CR

i iR x y b  is the reflectance change in the bth band in the CR pixel ( , )i ix y
 

from t0 to tp: 
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i iR x y t b  are the bth band reflectance values in the CR pixel ( , )i ix y  at t0 

and tp, respectively. Eq. (8) can be formulated as Eq. (10), which is valid when the land cover composition 

is unchanged in the CR pixels
 
from t0 to tp. n (n>l) CR pixels are selected to constitute the equation set 

as with the previous study of Zhu et al. (2016), and ( , ) FRE c b
 

is estimated using the LSE method to 

solve the inversion of Eq. (10). 
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2.2.4 Estimation of the FR endmembers at tp 

The endmembers in the FR image at tp are calculated according to the endmembers in the FR image 

at t0 and the endmember change in the FR images from t0 to tp: 

p 0( , , ) ( , , ) ( , )  FR FR FRE c b t E c b t E c b                          (11) 

where p( , , )FRE c b t  is the bth spectrum in the cth endmember in the FR images at tp.  

2.3 Temporal prediction of the FR image at tp 

With the estimated temporal land cover class fraction changes and temporal endmember changes 

from t0 to tp, the temporal prediction for FR pixel ( , )ij ijx y  in the bth band at tp (i.e., p( , , , )FR

TP ij ijR x y t b ) 

is calculated as: 
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where 0( , , , )FR

ij ijR x y t b   is the FR pixel reflectance in the bth band at t0. 

p p
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( , , , ) ( , , )



l

FR FR

ij ij

c

A x y t c E c b t  represents the reflectance of a FR pixel ( , )ij ijx y  given the FR land 

cover fractions and endmembers in the bth band of FR image at tp, and 
0 0
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( , , , ) ( , , )
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l

FR FR

ij ij

c

A x y t c E c b t  

represents the reflectance of FR pixel ( , )ij ijx y  given the FR land cover fractions and endmembers in 

the bth band of FR image at t0. The term 
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l l

FR FR FR FR
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A x y t c E c b t A x y t c E c b t  in Eq. (12) accounts for combined 

effect from land cover fraction change and endmember change in the land surface reflectance change.  

Note that although 
p p

1

ˆ ( , , , ) ( , , )



l

FR FR

ij ij

c

A x y t c E c b t   can represent the FR reflectance 

information at tp, it uses endmember information which represents the average spectral reflectance 

for a class instead of the reflectance of one FR pixel, and is insufficient to represent the spatial 

heterogeneity and intra-class variability in reflectance values at the FR scale. Thus, the FR reflectance 

image at t0, which contains FR spatial heterogeneity in reflectance, is used in temporal predicting the 

FR image at tp in Eq. (12).  

2.4 Prediction of the final FR image at tp 

In addition to the land cover class fraction information contained in the CR image at tp, the 

reflectance values in this CR image can also provide land cover change information if the change is 

apparent at the CR scale (Liu et al. 2019a; Zhu et al. 2016). To address this issue, like FSDAF, the CR 

image at tp is spatially interpolated to the FR scale using TPS or bicubic interpolation to produce a spatial 

prediction image at tp (Zhu et al. 2016). In SFSDAF, the temporal prediction and spatial prediction refer 

to the steps of producing the FR reflectance images at tp. Although the spatial interpolation is also used 

on the CR class fraction change images, the purpose is the generation of land cover class fraction change 

images from t0 to tp instead of FR reference images at tp, and we do not call this process a spatial 



prediction. Like FSDAF, the spatial prediction in SFSDAF only downscales the CR reflectance image at 

tp, and the land cover class information contained is not used.  

The spatial prediction image and temporal prediction image are combined to produce the final FR 

image at tp. The combination of spatial prediction and temporal prediction as with the previous study in 

FSDAF (Zhu et al. 2016) is directly used in SFSDAF. In particular, the combination method considers 

the spatial distribution of FR pixel reflectance residual between the predicted and true reflectance values 

and assumes that the error distribution is related to the landscape heterogeneity. The details of calculating 

a FR pixel residual term  , ,FR

ij ijr x y b , which measures the difference between the prediction and true 

reflectance values of FR pixel  ,ij ijx y  in the bth band, can be referred in Eqs (14)-(19) in Zhu et al. 

(2016). 

With the estimated FR pixel residual  , ,ij ijr x y b , the total reflectance change of a FR pixel (i.e.,
 

 , , FR

ij ijR x y b ), in the bth band for FR pixel ( , )ij ijx y , can be calculated by adding the temporal change 

of this FR pixel as: 
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(13) 

Like FSDAF, similar pixels are used in the combine the total FR reflectance change and the FR 

reflectance image at t0 to avoid predicting ‘blocky’ output (Zhu et al. 2016). The final prediction for FR 

pixel ( , )ij ijx y  in the bth band at tp (i.e.,
 

 p, , ,FR

ij ijR x y t b ), is the sum of the observation at t0 and the 

final estimate of total reflectance change as: 

     p 0

1
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N

FR FR FR
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k

R x y t b R x y t b w R x y b

          

 (14)  

3. Experiments  

The potential of SFSDAF and a set of comparison methods were evaluated using degraded and real 



remotely sensed images. The first experiment was based on Landsat and real MODIS imagery for a 

heterogeneous landscape. The second experiment was based on Landsat and real MODIS imagery for a 

region that undergoes some land cover change. The FR images are the Landsat surface reflectance images 

downloaded from Google Earth Engine. The CR images are real MODIS images of MCD43A4 surface 

reflectance products, which are a daily product adjusted using a bidirectional reflectance distribution 

function (BRDF) downloaded from the USGS. Details of the experiments based on degraded images can 

be found in Sections S1 and S2 in the Supplementary data. In all experiments, six spectral bands were 

used: Red (R), Green (G), Blue (B), Near Infrared (NIR) and two Short Wavelength Infrared bands 

(SWIR-1 and SWIR-2).  

3.1 Experiment 1—Landsat and real MODIS imagery for a heterogeneous landscape 

Two Landsat 5 TM images acquired on August 31, 2007 (Fig. 3(c)) and March 10, 2008 (Fig. 3(d)) 

near Canberra, Australia (147°52'22"E, 34°4'21"S) were used. Two MODIS surface reflectance product 

MCD43A4 images acquired at the same date to the Landsat images were used, and were re-projected 

from sinusoidal projection to UTM project with a spatial resolution of 480 m. The scale factor between 

the MODIS and Landsat images was 16. The data covers an area of 29 km × 29 km (960 × 960 Landsat 

image pixels). This area is mainly composed of farmland and has a high degree of spatial heterogeneity. 

The image pair on August 31, 2007 (Fig. 3(a) and (c)) and the MODIS image on March 10, 2008 (Fig. 

3(b)) were used to produce a prediction of the Landsat image on March 10, 2008. The actual Landsat 

image for March 10, 2008 (Fig. 3(d)) was used for validation. 

http://dx.doi.org/10.%204225/08/5111AC0BF1229


 

Fig. 3. Test data for Landsat and real MODIS imagery for a heterogeneous landscape. (a) MODIS MCD43A4 image acquired on 

August 31, 2007, (b) MODIS MCD43A4 image acquired on March 10, 2008, (c) Landsat image acquired on August 31, 2007, and 

(b) Landsat image acquired on March 10, 2008. 

3.2 Experiment 2—Landsat and real MODIS imagery for a region that undergoes some land cover 

change  

Two Landsat 5 TM images acquired on November 26, 2004 (Fig. 4(b)) and December 12, 2004 (Fig. 

4(d)) in Gwydir, Australia (149°16'45"E, 29°5'12"S) were used (Emelyanova et al. 2013). Two MODIS 

surface reflectance product MCD43A4 images acquired on the same date as the Landsat images were 



used, and were re-projected from sinusoidal projection to UTM project with a spatial resolution of 480 

m. The scale factor between the MODIS and Landsat images was 16. The data covers an area of 48 km 

× 48 km (1600 × 1600 Landsat image pixels). A large flood occurred in the study area and is evident in 

the image on December 12, 2004 (Fig. 4(d)). The flood resulted in a (temporary) land cover conversion 

to water for certain pixels. The images pair on November 26, 2004 (Fig. 4(a) and (c)) and the MODIS 

image on December 12, 2004 (Fig. 4(b)) were used to generate a Landsat image on December 12, 2004. 

The actual Landsat image for December 12, 2004 (Fig. 4(d)) was used for validation.  

 

Fig. 4. Test data for Landsat and real MODIS imagery for a region that undergoes some land cover change. (a) MODIS MCD43A4 



image acquired on November 26, 2004, (b) MODIS MCD43A4 image acquired on December 12, 2004, (c) Landsat image acquired 

on November 26, 2004, and (b) Landsat image acquired on December 12, 2004. 

3.3 Comparison and accuracy assessment 

The outputs obtained from SFSDAF were compared visually and quantitatively with those from 

three popular methods: STARFM (Gao et al. 2006), UBDF (Zurita-Milla et al. 2008) and FSDAF (Zhu 

et al. 2016). These comparator methods are all one-pair case spatio-temporal image fusion methods. For 

STARFM, FSDAF, and SFSDAF, the number of classes was set to 4, the number of similar pixels was 

set to 20, and the size of the moving window was set to 16 (Gao et al. 2006; Zhu et al. 2016). The 

accuracy of image prediction was assessed by comparison to the relevant reference image and expressed 

using the root mean square error (RMSE), average absolute difference (AAD), correlation coefficient 

(CC), and structure similarity (SSIM). The closer the value of RMSE or AAD to 0 and the closer value 

of CC or SSIM to 1 the more similar the predicted image is to the true image.   

4. Results 

4.1 Experiment 1—Landsat and real MODIS imagery for a heterogeneous landscape  

 

Fig. 5. Images predicted by the different methods. (a) UBDF, (b) STARFM, (c) FSDAF, and (d) SFSDAF.  



 

Fig. 6. Zoomed images (96 × 96 Landsat image pixels) of sub-areas A and B shown in Fig. 5. (a) Prior image acquired on November 

24, 2001 in sub-area A, (b) reference image acquired on February 12, 2002 in sub-area A, (c) UBDF predicted image in sub-area 

A, (d) STARFM predicted image in sub-area A, (e) FSDAF predicted image in sub-area A, (f) SFSDAF predicted image in sub-

area A, (g) prior image acquired on November 24, 2001 in sub-area B, (h) reference image acquired on February 12, 2002 in sub-

area B, (i) UBDF predicted image in sub-area B, (j) STARFM predicted image in sub-area B, (k) FSDAF predicted image in sub-

area B, and (l) SFSDAF predicted image in sub-area B. 

Table 1 

Accuracies of the different methods for Landsat and real MODIS imagery for a heterogeneous landscape in experiment 3. Bold 

data indicate the most accurate method. 

The predicted images obtained from the different methods are shown in Fig. 5 and for the sub-areas 

of A and B in Fig. 6. The predicted image from SFSDAF was visually the most accurate. The predicted 

Spectral  

band 

RMSE  AAD  CC  SSIM 

UBDF STARFM FSDAF SFSDAF  UBDF STARFM FSDAF SFSDAF  UBDF STARFM FSDAF SFSDAF  UBDF STARFM FSDAF SFSDAF 

B 0.0182  0.0111  0.0116  0.0106   0.0147  0.0086  0.0090  0.0082   0.4829  0.6831  0.6864  0.7311   0.4652  0.6753  0.6860  0.7277  

G 0.0239  0.0180  0.0171  0.0165   0.0191  0.0143  0.0135  0.0131   0.5346  0.7317  0.7521  0.7702   0.5162  0.7134  0.7425  0.7586  

R 0.0288  0.0238  0.0231  0.0216   0.0222  0.0181  0.0177  0.0166   0.5721  0.7096  0.7375  0.7675   0.5634  0.7003  0.7346  0.7622  

NIR 0.0415  0.0399  0.0382  0.0336   0.0326  0.0302  0.0292  0.0254   0.5103  0.5999  0.6391  0.6888   0.5048  0.5819  0.6202  0.6792  

SWIR-1 0.0523  0.0486  0.0447  0.0430   0.0401  0.0377  0.0346  0.0333   0.5956  0.6723  0.7267  0.7459   0.5671  0.6661  0.7196  0.7373  

SWIR-2 0.0706  0.0615  0.0581  0.0562   0.0562  0.0474  0.0460  0.0444   0.5390  0.6010  0.6711  0.6992   0.5243  0.5961  0.6674  0.6943  



image obtained from UBDF contained patches that had homogeneous spectral values as highlighted for 

the area in the yellow circle in Fig. 6(c). The river appeared blurred in the predicted image obtained from 

UBDF in Fig. 6(i). This is because UBDF predicted a FR pixel reflectance image using the spectra of 

several neighbor CR pixels around it. When UBDF predicted the FR pixel reflectance of the river, only 

few pixels of the associated class were involved in the unmixing approach, and this resulted in an 

inaccurate estimation of that class. STARFM predicted reflectance values that were dissimilar to the 

reference when the regions were spatially heterogeneous, an example is highlighted in the yellow circles 

in Fig. 6(d) and (j). The FSDAF predicted image contained small patches of dissimilar spectral values 

for regions that were relatively homogeneous in the reference image, see for example the areas 

highlighted in Fig. 6(e) and (k). In contrast, the prediction image from SFSDAF was most similar to the 

reference image, and did not include the patches produced by FSDAF (Fig. 6(f) and (l)). Quantitative 

measures demonstrate that the proposed SFSDAF predicted the lowest RMSE and AAD and the highest 

CC and SSIM among all of the assessed methods (Table 1). 

4.2 Experiment 2—Landsat and real MODIS imagery for a region that undergoes some land cover 

 

Fig. 7. Images predicted by the different methods. (a) UBDF, (b) STARFM, (c) FSDAF, and (d) SFSDAF.  

 



 

Fig. 8. Zoomed images (160 × 160 Landsat image pixels) of the sub-areas shown in Fig. 7. (a) Prior MODIS image acquired on 

November 26, 2004, (b) prior Landsat image acquired on November 26, 2004, (c) MODIS image acquired on December 12, 2004, 

(d) Landsat image acquired on December 12, 2004 as the reference image, (e) UBDF predicted image, (f) STARFM predicted 

image, (g) FSDAF predicted image, (h) SFSDAF predicted image.  

Table 2 

Accuracies of the different methods for Landsat and real MODIS imagery for a region that undergoes some land cover change in 

experiment 4. Bold data indicate the most accurate method. 

Figs. 7 and 8 present results for the entire study area and selected sub-area respectively. A flood 

Spectral  

band 

RMSE  AAD  CC  SSIM 

UBDF STARFM FSDAF SFSDAF  UBDF STARFM FSDAF SFSDAF  UBDF STARFM FSDAF SFSDAF  UBDF STARFM FSDAF SFSDAF 

B 0.0202  0.0177  0.0173  0.0170   0.0144  0.0126  0.0124  0.0120   0.4553  0.6193  0.6253  0.6393   0.4305  0.6090  0.6052  0.6215  

G 0.0301  0.0261  0.0255  0.0248   0.0231  0.0191  0.0186  0.0177   0.4572  0.6110  0.6147  0.6390   0.4268  0.5977  0.5903  0.6143  

R 0.0367  0.0318  0.0318  0.0306   0.0280  0.0222  0.0223  0.0207   0.4729  0.6233  0.6135  0.6463   0.4472  0.6130  0.5901  0.6231  

NIR 0.0637  0.0387  0.0412  0.0376   0.0496  0.0295  0.0320  0.0290   0.6204  0.8094  0.7808  0.8170   0.6085  0.8090  0.7805  0.8168  

SWIR-1 0.0947  0.0635  0.0618  0.0584   0.0769  0.0493  0.0480  0.0450   0.4626  0.6851  0.6631  0.7036   0.4189  0.6830  0.6467  0.6881  

SWIR-2 0.0659  0.0466  0.0436  0.0410   0.0531  0.0363  0.0329  0.0308   0.4523  0.6862  0.6676  0.7132   0.4121  0.6853  0.6520  0.7002  



resulted in a temporary land cover change for part of the region including the sub-area from November 

26, 2004 to December 12, 2004. This flood is, for example, evident by comparing the Landsat images in 

Fig. 8(b) and (d). The MODIS image acquired on December 12, 2004 recorded the flood, and the spatio-

temporal image fusion methods were used to predict the FR image for the flooded landscape (Fig. 8(e)-

(h)). The predicted image from UBDF that was dissimilar to the reference image, with the flood not 

represented well. This is because UBDF assumed land cover was unchanged and was not suitable for the 

prediction of reflectance change caused by such an abrupt land cover change. The flood was apparent in 

the image predicted by STARFM, FSDAF and SFSDAF images (Fig. 8(f)-(h)). The sub-area is not in a 

complex heterogeneous landscape, and STARFM, which is suitable in imagery fusion in homogeneous 

regions, captured well the reflectance change caused by the flood. FSDAF predicted the flood with sharp 

reflectance changes between the neighboring FR pixels that were dissimilar to the reference image, see 

for examples that are highlighted in the yellow circle in Fig. 8(g). STARFM contained large errors that 

are highlighted in the yellow circle in Fig. 8(f), while the SFSDAF prediction was the most similar to the 

reference image.  

The quantitative measures in Table 2 show that UBDF predicted the highest RMSE and AAD and 

lowest CC and SSIM. This is because UBDF is based on the assumption that land cover is unchanged, 

and hence is not suitable when land cover change occurs. STARFM, FSDAF, and SFSDAF could capture 

some land cover change information and generated high accuracy. FSDAF usually generated lower 

RMSE and AAD values than STARFM, but STARFM generated higher CC and SSIM than FSDAF in 

the NIR and SWIR bands. This is explained by the fact that the study area was not spatially heterogeneous 

and STARFM could predict reflectance values more satisfactorily. SFSDAF generated the lowest RMSE 

and AAD values and the highest CC and SSIM values among all methods, indicating the advantage of 



the proposed method. 

5. Discussion 

The comparison of the different methods to account for land cover class change information was 

stressed in this section. In particular, since the difference between FSDAF and SFSDAF is in the temporal 

prediction step, a theoretical comparison between the temporal prediction steps used in FSDAF and 

SFSDAF was conducted, and the experimental results between the predicted images from FSDAF and 

SFSDAF temporal prediction steps were revisited. The influence of the number of classes on SFSDAF 

and further improvements for the proposed method were discussed in this section.  

5.1 Comparison of the different methods to account for land cover class change information 

The established spatio-temporal fusion methods could accurately predict gradual reflectance 

changes caused by endmember change. However, in order to accurately predict the reflectance change 

of FR pixels caused by land cover class change (particularly that which is abrupt), FR land cover class 

change information is necessary. In the established spatio-temporal image fusion methods, the reason 

that the two-pairs case methods can often produce a more accurate result than the one-pair case methods 

is that they can better capture the land cover class change information by comparing the FR images that 

were acquired before and after the prediction date. For existing one-pair case methods, the FR land cover 

class change information is usually unavailable. As the impact of land cover class change on the FR pixel 

reflectance change is generally different from that caused by endmember change, the confusion of 

reflectance change caused by the different sources may lead to blurry outputs for the pixels associated 

with changed land cover predicted by the existing one-pair case methods. Land cover class information 

is used in the unmixing-based methods, but these methods, such as UBDF, assume the land cover class 



is unchanged. FSDAF spatially interpolated the CR image at tp to FR scale to include land cover class 

change information, but the information about how land covers are changed from t0 to tp is still not 

directly derived. In contrast to existing one-pair case methods, the proposed SFSDAF method 

accommodates for the fact that the FR reflectance change caused by endmember and land cover class 

change have different characteristics, and models land cover class and endmember changes separately. 

As a result, the SFSDAF increased the prediction accuracy, especially for pixels representing sites that 

experienced both land cover class and endmember changes.  

5.2 Theoretical comparison between FSDAF and SFSDAF in temporal prediction 

The FSDAF derives endmember change in the temporal prediction step, whereas SFSDAF directly 

derives endmember change and land cover class fraction change simultaneously in its temporal 

prediction step in Eq. (12). In SFSDAF, if the FR pixels are simply assumed to be pure pixels, Eq. (12) 

can be rewritten as: 

 p 0 p 0( , , , ) ( , , , ) ( , , ) ( , , )   FR FR FR FR

TP ij ij i j ijR x y t b R x y t b E b t E b t
         

 (15) 

where α and β (α=1, …, l, β=1, …, l) are the single class for the fine pixel ( , )ij ijx y   at t0 and tp, 

respectively. Furthermore, if it is assumed that the land cover class is unchanged from t0 to tp (α=β=c) in 

Eq. (15), then  

p 0( , , ) ( , , ) ( , )  FR FR FRE c b t E c b t E c b .                        (16) 

Eq. (16) can be rewritten as: 

 p 0( , , , ) ( , , , ) ( , ) FR FR FR

TP ij ij i j ijR x y t b R x y t b E c b
                    

(17) 

Eq. (17) is the same algorithm used in the temporal prediction of the FR image at tp in FSDAF. Therefore, 

the FSDAF temporal prediction can thus be viewed as a special case of the SFSDAF temporal prediction 

if the fine pixels are pure and have an unchanged land cover class. 



5.3 Experimental comparison between FSDAF and SFSDAF in temporal prediction 

In order to explicitly compare the FSDAF and SFSDAF to show if including land cover fraction 

change could improve the temporal prediction result, the second experiment reported, which is in a 

flooded region for land cover change prediction, was revisited.  

 

Fig. 9. Comparison of temporal prediction image from FSDAF and SFSDAF in the Landsat and real MODIS image experiment in 

the flood area in Gwydir, Australia. (a) and (b) are MNDWI derived from the MODIS and Landsat images on November 26, 2004, 

and (c) and (d) are MNDWI derived from the MODIS and Landsat images on December 12, 2004. (e)-(h) are the binary FR land 

cover maps for the four land cover classes on November 26 in FSDAF, 2004; yellow means pixels that belong to that class, and 



blue means the pixel belongs to one of the other classes. (i)-(l) are the FR class fraction images for the four land cover classes on 

November 26, 2004 in SFSDAF. (m)-(p) are the CR class fraction images for the four land cover classes on December 12, 2004 in 

SFSDAF. (q)-(t) are the FR class fraction images for the four land cover classes on December 12, 2004 in SFSDAF. 

The comparison of FSDAF and SFSDAF temporal prediction in a landscape that includes some land 

cover change was assessed using the Landsat and real MODIS imagery used in the experiment focused 

on the flood in Gwydir, Australia. For this study area, the flood made an obvious (temporary) land cover 

change. The modified normalized difference water index (MNDWI) was used to provide the water 

information at different dates (Xu 2006). Only a small proportion of the study area was covered with 

water in the image on November 26, 2004 (Fig. 9(b)). On December 12, 2004 the study area had 

experienced a flood that influenced a large proportion of pixels (Fig. 9(d)). In FSDAF, the unsupervised 

k-means algorithm was applied on the FR Landsat image on November 26, 2004 and used to cluster the 

FR image into four classes (Fig. 9(e)-(h)). By comparison with the MNDWI image on November 26, 

2004 (Fig. 9(b)) the 4th cluster in Fig. 9(h) could indicate the water class. FSDAF assumed land cover 

was unchanged in the temporal prediction and used a classification map, which is separated into four 

binary land cover maps in Fig. 9(e)-(h), in temporal predicting the FR image at tp. Obviously, these binary 

categorical maps only represent information on November 26, 2004, but could not reflect the flood that 

is evident on December 12, 2004. In contrast, the unmixed CR class fraction image for the 4th class (Fig. 

9(p)) and the downscaled FR fraction image for the 4th class (Fig. 9(p)) predicted by SFSDAF could 

represent the flood on December 12, 2004. With the predicted sub-pixel scale land cover fraction change 

information, SFSDAF could accommodate the combined effect from both endmember change and land 

cover class fraction change in relation to the total land surface change. The comparison of FSDAF and 

SFSDAF temporal prediction images in a heterogeneous region is referred to Section S3 in the 



Supplementary data, and visual comparison shows that the SFSDAF temporal prediction image as more 

similar to the reference image.   

Quantitative measures of the FR temporal prediction images at tp from FSDAF and SFSDAF in the 

experiments using real MODIS imagery are shown in Figs. S8-S9 in the Supplementary data. In all the 

experiments, the SFSDAF temporal prediction decreased the RSME and AAD values, and increased the 

CC and SSIM values compared with the FSDAF temporal prediction, and the scatter plots shown in Fig. 

S10 in the Supplementary data show that the SFSDAF temporal prediction points were closer to the 1:1 

line than those in the FSDAF temporal prediction image. Figs. S8-S9 in the Supplementary data also 

show that the SFSDAF final predictions, which were combinations of both spatial and temporal 

prediction images, were more accurate than SFSDAF temporal predictions. The SFSDAF spatial 

prediction can directly capture abrupt reflectance change from the CR reflectance image at tp when the 

change is detectable in the CR pixel scale, but the spatial prediction usually generates smooth result in 

which the spatial details are lost (Liu et al. 2019a; Zhu et al. 2016). The SFSDAF temporal prediction 

captures abrupt reflectance change based on the information of endmember change and land cover class 

fraction change, but the CR reflectance changes from t0 to tp were not directly used. Combining the spatial 

and temporal predictions could take advantage of both steps to make the final prediction more accurate 

for FSDAF and SFSDAF.  

5.4 Computation times comparison 

Since SFSDAF is based on FSDAF, the computation times of the two methods were compared. 

FSDAF and SFSDAF were performed based on a computer having Intel(R) Xeon(R) Silver 4116 

processor (2.10GHz) and 32 GB RAM. FSDAF was programmed based on IDL, while SFSDAF was 

programmed based on Matlab. The number of clusters was set to four in FSDAF and SFSDAF in all 



experiments. FSDAF divided the entire image into different blocks or sub-regions in predicting the 

reflectance image. The FSDAF default block size was set to 30, and each block contained 30 × 30 CR 

pixels. The first experiment contained 60 × 60 pixels in the CR image, which was divided into 4 blocks. 

The second experiment contained 100 × 100 pixels in the CR image, which was divided into 16 blocks. 

The FSDAF spatial interpolation method applied to the CR image at tp was TPS. The SFSDAF for 

comparison did not divide the image into blocks, and the spatial interpolation method applied to the CR 

class fraction images and CR reflectance image at tp was the bicubic interpolation.  

Table 3 

The computations time of FSDAF and SFSDAF in the two experiments using real MODIS images. 

 Experiment 1 Experiment 2 

FSDAF 320s 989s 

SFSDAF 378s 1007s 

The computation times of SFSDAF are longer than those of FSDAF. In particular, SFSDAF used 

about 50s more than FSDAF in the first experiment, and about 20s more than FSDAF in the second 

experiment. The FSDAF computation time is nearly proportional to the number of blocks divided, while 

the SFSDAF computation time is nearly proportional to the number of CR pixels contained in the image. 

The SFSDAF running times are longer because SFSDAF introduced additional processes compared with 

FSDAF. The three main processes introduced by SFSDAF are: step (1) generating FR fraction images at 

t0 based on a clustering map and endmembers, step (2) unmixing the CR image at tp to class fraction 

images, and step (3) downscaling the CR class fraction images to FR scale. Take the first experiment for 

example, the running time is about 20s in step (1), about 33s in step (2) and about 52s in step (3). These 

three steps take account for about 28% in the SFSDAF total computation time.  

5.5 Influence of the number of classes on SFSDAF 



The inputs to SFSDAF include the number of classes, the similar neighbor FR pixel number and the 

moving window size. The selections of the optimal value of similar pixel number and the moving window 

size are the same as FSDAF. The optimal number of classes was between four and six in this study. 

SFSDAF involves a linear spectral unmixing approach in estimating the land cover fractions at the dates 

of the prior image pair and prediction, which usually requires that the number of classes be less than the 

number of spectral bands. When fusion MODIS and Landsat imagery, which have six similar spectral 

bands (R, G, B, NIR, SWIR-1, and SWIR-2), the optimal endmember number should be no more than 

the number of spectral bands in the imagery to get reliable results in SFSDAF. In addition, SFSDAF can 

be employed to predict not only reflectance images but also products (e.g. NDVI and NDWI) which are 

linearly additive in space. Different to STARFM and FSDAF which can be directly applied to predict a 

vegetation index based on CR and FR indices, SFSDAF cannot be directly used to predict a vegetation 

index. This is because the vegetation index image has only one band, while the linear mixture model 

used in SFSDAF requires the number of bands should be no less than the number of classes. In this case, 

SFSDAF can first be used to predict reflectance images and then the obtained vegetation index products 

can be generated from the resulting reflectance images.  

Increasing the number of classes in SFSDAF does not always increase the accuracy but increases 

the computation time. Setting the optimal number of classes from four to six is competent even applying 

SFSDAF to a complex area with a spatially heterogeneous landscape. While the number of classes is set 

for the entire image, it is possible for the endmembers to be derived globally or locally. In the global 

approach, the endmembers are estimated based on typical pixels selected from the entire image. In the 

local approach, the study area can be divided into sub-regions, and the endmember for each class is 

derived in each sub-region to account for intra-class variability in endmembers.  



5.6 Further improvement of SFSDAF 

The proposed SFSDAF introduces sub-pixel class fraction information into spatio-temporal image 

fusion, and showed superior predictions relative to existing state-of-art methods. The main improvement 

of SFSDAF is in the temporal prediction step. SFSDFA extended FSDAF by directly deriving land cover 

class fraction change in this step. In SFSDAF, the CR image at tp is first unmixed to CR class fraction 

images, which are compared with the CR class fraction images at t0 in calculating the CR class fraction 

change image. The CR class fraction change image is then downscaled to represent the FR scale land 

cover class fraction change. It needs to be emphasized that the unmixing and downscaling processes are 

open problems which could be explored further. First, the unmixing of the CR image at tp is based on the 

linear mixture model, and other methods such as the nonlinear mixture model could also be used. Second, 

the SFSDAF considers the one-pair case, and could be extended to the two-pairs case, and several 

fraction change downscaling methods could be used. For instance, Zhang et al. (2018) proposed a class 

fraction imagery fusion method using two-pairs of FR class fraction images that pre- and post-date the 

CR class fraction images to estimate the FR class fraction images. FR class fraction change images are 

derived based on kernel ridge regression, and then a temporal-weighted fusion model is applied to predict 

the FR class fraction images at the prediction date. This method could also be applied in SFSDAF when 

two-pair images are available. 

Although SFSDAF could predict abrupt reflectance change to a certain extent, the predicted image 

may have blurring effects where the reflectance change is abrupt. An example is shown in Fig. 8(h) in 

the flooded area in the second experiment. The prediction of FR abrupt reflectance change in SFSDAF 

is mainly attributed to the downscaling of the CR class fraction change images in the temporal prediction 

step and the downscaling of the CR reflectance image at tp in the spatial prediction step. Both steps use 



bicubic or TPS interpolation, which is based on spatial dependence, for high computation efficiency. The 

downscaled class fraction change images and reflectance image are smoothed, which may result in 

blurring effects in the abrupt change area in the final prediction image. Powerful downscaling methods, 

such as single image super-resolution and learning-based methods especially the convolutional neural 

network-based deep learning method, could be a promising solution to maintain the spatial details for 

abrupt change (Belgiu and Stein 2019; Liu et al. 2019b; Song et al. 2018). 

The SFSDAF used the same spatial prediction process as FSDAF, and the combination of temporal 

prediction and spatial prediction could be explored further. The FSDAF combination is based on the 

assumption that errors between real and predicted imagery depend mainly on the landscape homogeneity. 

This is modified by IFSDAF which considered the spatial autocorrelation in NDVI and used constrained 

linear squares in the combination of temporal prediction and spatial prediction of NDVI imagery (Liu et 

al. 2019a). Other temporal prediction and spatial prediction combination methods could be developed in 

the future.  

The proposed SFSDAF is not only suitable to fuse MODIS and Landsat imagery, but also 

appropriate in fusing other CR and FR imagery which have similar spectral bands. For instance, SFSDAF 

can generate nearly daily Sentinel-2 imagery by fusing the blue, green, red and NIR bands from Sentinel-

2 and Sentinel-3 imagery (Mileva et al. 2018; Wang and Atkinson 2018). A comprehensive study of using 

SFSDAF to fuse imagery from various sensors will be further developed.  

6. Conclusions  

Spatio-temporal fusion of remotely sensed imagery that accommodates reflectance change caused 

by both endmember and land cover class changes is a challenge for present methods. Most existing fusion 

methods accommodate endmember change, but are unable to directly derive and use land cover class 



change information. In this paper, a novel SFSDAF that accommodates both endmember and land cover 

class fraction change was proposed. SFSDAF is built on FSDAF which has been widely used for its 

simplicity and flexibility. FSDAF combines a temporal prediction which considers endmember changes 

at different dates and a spatial prediction which interpolates the CR image at the prediction time to FR 

scale in comparison with the temporal prediction image to represent land cover change. FSDAF assumes 

the land cover class is unchanged and only uses the endmember change information in the temporal 

prediction, while SFSDAF improved FSDAF by addressing the combined effect from both endmember 

change and class fraction change. Using only a single prior CR and FR image pair and the CR image at 

the prediction date, SFSDAF predicts sub-pixel scale land cover class fractions for the FR pixels at the 

prediction date and uses the FR land cover class fraction change between the dates of prior image pair 

and prediction. With the derived FR land cover class fraction change information, SFSDAF allows 

accurate prediction even for regions that undergo an abrupt land cover change. SFSDAF is perhaps the 

first one-pair case spatio-temporal image fusion method that predicts image reflectance change by 

directly exploring FR land cover class change information, and therefore opens a new view for spatio-

temporal remotely sensed image fusion. This greatly helps the realization of the full potential of satellite 

remote sensing in land cover change studies, especially those focused on contemporary change and/or 

requiring near-real-time analysis.  

SFSDAF was compared with UBDF, STARFM, and FSDAF for heterogeneous landscapes and for 

landscapes that experienced land cover change. Results show that the SFSDAF predicted images were 

the most similar to the reference image in all of the experiments reported. UBDF predicted images with 

patches of homogeneous reflectance values, and STARFM predictions were poor in heterogeneous 

regions. In the fusion of imagery with the phenological change, FSDAF predicted the overly sharp change 



in reflectance values for the neighboring FR pixels that were dissimilar to the reference in shape and 

spectral values, while SFSDAF successfully captured the reflectance changes and maintained the shape 

of land cover patches. In the fusion of imagery for sites that experienced land cover change, SFSDAF 

predicted FR scale class fractions that represented the change (e.g. flood) well unlike FSDAF. In all 

experiments, the SFSDAF predicted images were the most accurate, having the lowest RMSE and AAD 

values and the highest CC and SSIM values. SFSDAF improved the popular FSDAF framework and 

could be used in various applications because of its flexibility. The SFSDAF Matlab package is available 

from https://www.researchgate.net/profile/Xiao_Li52. 
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Appendix A 

Notations 



i:  the index of CR pixel  

j:  the index of FR pixel 

l:  the number of classes 

( , )i ix y :  ith CR pixel 

( , )ij ijx y :  jth FR pixel in the ith CR pixel 

0( , , , )CR

i iR x y t b  and p( , , , )CR

i iR x y t b :  the bth band reflectance values at CR pixel ( , )i ix y  at t0 and 

tp 

0( , , , )FR

ij ijR x y t b  and p( , , , )FR

ij ijR x y t b :  the bth band reflectance values at FR pixel ( , )ij ijx y  at t0 

and tp 

( , , ) CR

i iR x y b :  the change between 
0( , , , )CR

i iR x y t b  and p( , , , )CR

i iR x y t b   

0( , , , )CR

i iA x y t c
 

and p( , , , )CR

i iA x y t c :  the cth class fractions at CR pixel ( , )i ix y
 

at t0 and tp 

p( , , , )FR

ij ijA x y t c  and p( , , , )FR

ij ijA x y t c :  the cth class fractions a at FR pixel ( , )ij ijx y  at t0 and tp 

( , , ) CR

i iA x y c :  the cth class fraction change at CR pixel ( , )i ix y  from t0 to tp 

( , , ) FR

SI k kA x y c :  the cth class fraction change at the kth FR pixel from spatial interpolation 

( , , ) FR

SI Refine ij ijA x y c :  the refined FR class fraction change for the cth class at FR pixel ( , )ij ijx y   



p( , , )CRE c b t :  the bth spectrum in the cth endmember in the CR image at tp 

0( , , )FRE c b t  and p( , , )FRE c b t : the bth spectrums in the cth endmember in the FR image at t0 and tp 

( , ) FRE c b :  the change between 
0( , , )FRE c b t  and p( , , )FRE c b t   
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Supplementary Data: 

SFSDAF: an enhanced FSDAF that incorporates sub-pixel class 

fraction change information for spatio-temporal image fusion 

 

 

Section S1. Experiment based on Landsat and MODIS-like imagery for a heterogeneous 

Data description 

Two Landsat 7 TM images acquired on November 24, 2001 (Fig. S1(c)) and February 12, 2002 (Fig. 

S1(d)) for Coleambally, southern New South Wales, Australia (145°56'40"E, 34°52'26"S) were used. The 

data covers an area of 29 km × 29 km (960 × 960 Landsat image pixels) for a heterogeneous agricultural 

region. The Landsat images were spatially degraded to the MODIS-like images (Fig. S1(a) and (b)). The 

scale factor between the MODIS-like and Landsat images was 16. The image pair on November 24, 2001 

(Fig. S1(a) and (c)) and the MODIS-like image on February 12, 2002 (Fig. S1(b)) were used to produce 

a prediction of the Landsat image on February 12, 2002. The actual Landsat image for February 12, 2002 

(Fig. S1(d)) was used for validation. 



 

Fig. S1. Test data for Landsat and MODIS-like imagery for a heterogeneous landscape. This region is an irrigation area for rice. 

The region undergoes an apparent phenological change during the summer growing season for rice, and the false color composite 

images (RGB: bands 432) are different in reflectance values at different dates in Fig. S1. (a) MODIS-like image acquired on 

November 24, 2001, (b) MODIS-like image acquired on February 12, 2002, (c) Landsat image acquired on November 24, 2001, 

and (b) Landsat image acquired on February 12, 2002. 

 

  



Results 

 

Fig. S2. Images predicted by the different methods. (a) UBDF, (b) STARFM, (c) FSDAF, and (d) SFSDAF.  

 

Fig. S3. Zoomed images (80 × 80 Landsat image pixels) of sub-areas A and B shown in Fig. S2 (a) Prior image acquired on 

November 24, 2001 in sub-area A, (b) reference image acquired on February 12, 2002 in sub-area A, (c) UBDF predicted image 

in sub-area A, (d) STARFM predicted image in sub-area A, (e) FSDAF predicted image in sub-area A, (f) SFSDAF predicted 

image in sub-area A, (g) prior image acquired on November 24, 2001 in sub-area B, (h) reference image acquired on February 12, 

2002 in sub-area B, (i) UBDF predicted image in sub-area B, (j) STARFM predicted image in sub-area B, (k) FSDAF predicted 

image in sub-area B, and (l) SFSDAF predicted image in sub-area B. 

The predicted image from SFSDAF was more similar to the reference image than those generated 

by the other methods (Fig. S2). The differences between the outputs generated by the four methods are 

particularly evident in the sub-area areas shown in Fig. S3. The image predicted by UBDF contained 

some clear errors. For example, the homogeneous region in yellow in Fig. S3(c) was shown as a mosaic 

of discrete patches. This is because UBDF assigned the reflectance of endmembers to the corresponding 

FR pixels; the FR pixels that clustered to different classes may have a large difference in spectral values 



if the assigned endmembers have a large spectral difference. Additionally, the predicted reflectance was 

inappropriately homogeneous for large regions, see for examples that are highlighted with a yellow circle 

in Fig. S3(i) because the FR pixels of the same class were assigned the same reflectance values within a 

moving window. The predicted image generated by STARFM contained more spatial detail than that 

from UBDF, but dissimilar reflectance was predicted in boundary areas, an example is highlighted in a 

yellow circle in Fig. S3(d) and (j). This situation arose because STARFM is more suitable for 

homogeneous areas (Gao et al. 2006). FSDAF generated a predicted image that was more similar to the 

reference image at the boundaries than that from STARFM, but it predicted overly sharp changes in 

reflectance values for neighboring FR pixels that lead to discontinuities in homogeneous region, example 

highlighted in yellow in Fig. S3(e) and (k). In contrast, SFSDAF in Fig. S3(f) and (l) contained more 

spatial detail than UBDF, and successfully captured the reflectance changes and maintained the shape of 

patches better than STARFM and FSDAF. 

Table S1 

Accuracies of the different methods for Landsat and MODIS-like imagery for a heterogeneous landscape in section S1. Bold data 

indicate the most accurate method.  

Quantitative indices to indicate the quality of the predictions arising from the four methods are 

provided in Table S1. For all 6 bands, the image predicted by SFSDAF had the lowest RMSE and AAD 

and highest CC and SSIM values, showing that SFSDAF was the most accurate method assessed. The 

difference between SFSDAF and FSDAF was most apparent in the NIR and the two SWIR bands. For 

instance, compared with FSDAF in the NIR band, SFSDAF decreased RMSE by 0.0103 and AAD by 

0.0053, and increased CC by 0.0628 and SSIM by 0.0597.   

Spectral  

band 

RMSE  AAD  CC  SSIM 

UBDF STARFM FSDAF SFSDAF  UBDF STARFM FSDAF SFSDAF  UBDF STARFM FSDAF SFSDAF  UBDF STARFM FSDAF SFSDAF 

B 0.0153  0.0112  0.0101  0.0095   0.0111  0.0082  0.0075  0.0070   0.7653  0.8709  0.8962  0.9072   0.7651  0.8527  0.8954  0.9043  

G 0.0212  0.0149  0.0135  0.0129   0.0154  0.0107  0.0098  0.0094   0.7492  0.8723  0.8974  0.9050   0.7490  0.8563  0.8964  0.9015  

R 0.0322  0.0214  0.0196  0.0190   0.0230  0.0152  0.0142  0.0138   0.7860  0.9028  0.9196  0.9239   0.7860  0.8967  0.9189  0.9222  

NIR 0.0655  0.0701  0.0525  0.0422   0.0462  0.0479  0.0344  0.0291   0.6512  0.5020  0.7830  0.8458   0.6512  0.4689  0.7827  0.8424  

SWIR-1 0.0550  0.0413  0.0361  0.0336   0.0393  0.0298  0.0262  0.0241   0.8060  0.8978  0.9143  0.9252   0.8060  0.8967  0.9137  0.9230  

SWIR-2 0.0510  0.0363  0.0343  0.0314   0.0359  0.0251  0.0247  0.0224   0.8055  0.8991  0.9097  0.9235   0.8055  0.8984  0.9093  0.9213  



Section S2. Experiment based on Landsat and MODIS-like imagery for a heterogeneous region 

that undergoes some land cover change 

Data description  

Two Landsat 5 TM images acquired on October 18, 2009 (Fig. S4(c)) and April 28, 2010 (Fig. 

S4(d)) for Louisiana, USA (92°45'7"W, 30°23'29"N) were used. The data covers an area of 29 km × 29 

km (960 × 960 Landsat image pixels). This area contains a heterogeneous landscape of farmland, and 

experienced land cover changes in transitions between crop and bare-land due to farming. The Landsat 

images were spatially degraded to the MODIS-like images (Fig. S4(a), (b)). The scale factor between the 

MODIS-like and Landsat images was 16. The image pair on October 18, 2009 (Fig. S4 (a) and (c)) and 

the MODIS-like image on April 28, 2010 (Fig. S4(b)) were used to produce a prediction of the Landsat 

image on April 28, 2010. The actual Landsat image for April 28, 2010 (Fig. S4(d)) was used for 

validation. 



 

Fig. S4. Test data for Landsat and MODIS-like imagery for a heterogeneous region that undergoes some land cover change. (a) 

MODIS-like image acquired on October 18, 2009, (b) MODIS-like image acquired on April 28, 2010, (c) Landsat image acquired 

on October 18, 2009, and (b) Landsat image acquired on April 28, 2010. 

  



Results 

 

Fig. S5. Images predicted by the different methods. (a) UBDF, (b) STARFM, (c) FSDAF, and (d) SFSDAF.  

 

 

Fig. S6. Zoomed images (96 × 96 Landsat image pixels) of sub-areas A and B shown in Fig. S5. (a) Prior image acquired on 

November 24, 2001 in sub-area A, (b) reference image acquired on February 12, 2002 in sub-area A, (c) UBDF predicted image 

in sub-area A, (d) STARFM predicted image in sub-area A, (e) FSDAF predicted image in sub-area A, (f) SFSDAF predicted 

image in sub-area A, (g) prior image acquired on November 24, 2001 in sub-area B, (h) reference image acquired on February 12, 

2002 in sub-area B, (i) UBDF predicted image in sub-area B, (j) STARFM predicted image in sub-area B, (k) FSDAF predicted 

image in sub-area B, and (l) SFSDAF predicted image in sub-area B. 

  



Table S2 

Accuracies of the different methods for Landsat and MODIS-like imagery for a heterogeneous region that undergoes some land 

cover change in section S2. Bold data indicate the most accurate method. 

The predicted images from different methods are in Fig. S5 and the sub-areas of A and B are in Fig. 

S6. Again, the images predicted by SFSDAF was the most accurate obtained. The image predicted by 

UBDF contained patches with homogeneous reflectance, highlighted in the yellow circle in Fig. S6(c). 

STARFM failed to predict the reflectance change for small patches such as that highlighted in Fig. S6(d) 

and (j) because STARFM is most suitable for homogeneous regions and the sub-areas shown have 

relatively high spatial heterogeneity. The predicted image from FSDAF better represented reflectance 

change for these small patches than STARFM, but it contained patches with spectral values and shapes 

that were different to the reference, such as the example highlighted in the yellow circles in Fig. S6(e) 

and (k). In contrast, the prediction from SFSDAF improved on that from FSDAF by excluding patches 

of abnormal spectral values and generating an image that was more similar to the reference image in Fig. 

S6(f) and (l). The quantitative measures in Table S2 show that UBDF usually generated lower RMSE 

and AAD than STARFM, and STARFM usually generated higher CC and SSIM than UBDF. In contrast, 

FSDAF decreased RMSE and AAD and increased CC and SSIM compared with UBDF and STARFM. 

Among all methods, however, SFSDAF generated the most accurate prediction with the lowest RMSE 

and AAD and highest CC and SSIM values. 

Spectral  

band 

RMSE  AAD  CC  SSIM 

UBDF STARFM FSDAF SFSDAF  UBDF STARFM FSDAF SFSDAF  UBDF STARFM FSDAF SFSDAF  UBDF STARFM FSDAF SFSDAF 

B 0.0120  0.0132  0.0110  0.0095   0.0079  0.0081  0.0072  0.0060   0.5200  0.6166  0.6682  0.7276   0.5136  0.6031  0.6675  0.7267  

G 0.0168  0.0180  0.0140  0.0120   0.0115  0.0115  0.0099  0.0084   0.5732  0.6650  0.7305  0.7886   0.5692  0.6513  0.7304  0.7844  

R 0.0228  0.0245  0.0193  0.0161   0.0156  0.0157  0.0135  0.0112   0.5544  0.6634  0.7081  0.7806   0.5506  0.6455  0.7080  0.7750  

NIR 0.0538  0.0446  0.0385  0.0350   0.0407  0.0327  0.0290  0.0260   0.4416  0.6408  0.7125  0.7573   0.4394  0.6405  0.7072  0.7450  

SWIR-1 0.0540  0.0656  0.0437  0.0382   0.0395  0.0418  0.0298  0.0256   0.5156  0.5827  0.6854  0.7523   0.5132  0.5535  0.6824  0.7419  

SWIR-2 0.0377  0.0539  0.0336  0.0255   0.0267  0.0343  0.0240  0.0181   0.4983  0.5264  0.6241  0.7659   0.4947  0.4759  0.6233  0.7440  



Section S3. Temporal prediction comparison in a heterogeneous landscape 

 

Fig. S7. Comparison of temporal prediction images from FSDAF and SFSDAF in the Landsat and MODIS image experiment in 

Coleambally, Australia in section S1. The number of classes in FSDAF and SFSDAF was set to 4. (a)-(d) FR class fraction images 

from SFSDAF at tp for the 4 classes, (e) FR reflectance image at t0, (f) FR classification map from FSDAF based on FR image at 

t0, (g) FR reflectance image at tp, (h) FSDAF temporal prediction image, (i) SFSDAF temporal prediction image.  

The comparison of FSDAF and SFSDAF temporal prediction for a heterogeneous region in section 

S1 in Supplementary data was assessed using the Landsat and MODIS-like experiment in Coleambally, 

Australia. The number of classes was set to four in FSDAF and SFSDAF by the k-means method. In the 

temporal prediction in FSDAF, the change of endmembers was directly added to the prior FR image at 

t0 based on the class type in Fig. S7(f). As a result, FR pixels with the same class were added with the 

same change of endmembers, and FR pixels with the different classes would be added with a different 

change of endmembers. In Fig. S7(f), the neighboring FR pixels highlighted in a black circle were 

clustered to “class1” in red and “class3” in green. Since they have different class types, FSDAF would 



assign different changes of endmembers. As a result, the FSDAF predicted reflectance was obviously 

different for pixels of different classes highlighted in a black circle in Fig. S7(h). In contrast to FSDAF, 

SFSDAF did not use the FR classification, but adopted the FR class fraction images which are spatially 

continuous in temporal prediction in Fig. S7(a)-(d). SFSDAF multiplied the endmembers with class 

fractions at t0 and tp to account for the total surface reflectance change in temporal prediction in Eq. (18). 

As a result, the SFSDAF temporal prediction image in Fig. S7(i) captured the reflectance change and 

were more similar to the reference image than FSDAF highlighted in the black circle in Fig. S7(h). Since 

this highlighted region had undergone an obvious phenological change, the proposed SFSDAF could 

improve FSDAF in phenological change prediction in heterogeneous regions. In particular, FSDAF 

temporal prediction would predict sharp change in reflectance values for neighboring FR pixels if the FR 

pixels are classified to different classes, whereas the SFSDAF temporal prediction is based on sub-pixel 

class fraction images and hence does not produce inappropriate land cover patches.  

 



 

Fig. S8 The accuracies of FSDAF temporal prediction, FSDAF final prediction, SFSDAF temporal prediction and SFSDAF final prediction in Experiment 1. 



 

Fig. S9 The accuracies of FSDAF temporal prediction, FSDAF final prediction, SFSDAF temporal prediction and SFSDAF final prediction in Experiment 2. 

 



57 
 

 1 

Fig. S10. The scatter plots of temporal prediction images from FSDAF (in the first row) and SFSDAF (in the second row) in the 2 

two experiments based on real MODIS images. The Landsat NIR and SWIR-1 bands are selected because they are sensitive to 3 

canopy cover and the moisture of soil and vegetation.  4 
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