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Abstract: Changes in climate shift the geographic locations that are suitable for malaria 15 

transmission owing to thermal constraints on vector Anopheles mosquitos and Plasmodium spp. 

malaria parasites and the availability of surface water for vector breeding. Previous Africa-wide 

assessments have tended to solely represent surface water using precipitation, ignoring many 

important hydrological processes. Here, we apply a validated and weighted ensemble of global 

hydrological and climate models to estimate present and future areas of hydro-climatic suitability 20 

for malaria transmission. With explicit surface water representation, we predict a net decrease in 
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areas suitable for malaria transmission from 2025 onwards, greater sensitivity to future 

greenhouse gas emissions and different, more complex malaria transmission patterns. Notably, 

areas of malaria transmission that are projected to change are smaller than estimated by 

precipitation-based estimates, but associate with greater change in transmission season lengths. 

 5 

One-Sentence Summary: Hydrological models project that areas of malaria risk will decrease 

as climate change proceeds with more focused and intense transmission changes. 
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Main Text: 

Malaria is a climate-sensitive vector-borne disease that caused 619,000 deaths among 247 

million cases in 2021 (1). This burden is acutely focused on Africa, where 95% of global cases 

are reported (1). Reductions in cases in Africa have slowed or even reversed in recent years, 

attributed in part to a stall in investments in global responses to malaria control. To build 5 

resilient health systems we must understand present-day malaria transmission and potential 

future areas of malaria risk (2). Malaria transmission is a function of many complex and 

interacting parameters (3), including strong environmental controls. Given these interactions and 

in the face of rapidly changing climate in Africa, it is important not only to model the impact of 

these controls on changing malaria transmission hazard per se, but also to improve the climate-10 

process representation. Doing so will facilitate future integration with estimated changes in other 

key sectors (e.g., agriculture), to identify intersecting impacts and potential trade-offs (4-6). 

Ambient air temperature influences sporogonic and gonotrophic development rates, 

biting rates and vector longevity (7). Persistent surface water is required for vector breeding sites 

that remains at an appropriate temperature for larval development (8-10). Thermal response 15 

models for malaria are relatively well understood (11) and readily implemented within studies 

examining future climate-driven shifts in disease transmission suitability (12). By contrast, the 

controls on surface water availability for vector breeding are either ignored or poorly represented 

within climate-driven geospatial models of transmission suitability. 

Assessments at regional or village scales typically represent detailed hydrological 20 

processes (8, 13) and they are increasingly incorporated into malaria transmission models (14, 

15). However, continental and global scale analyses lack detailed parameterisation of 

hydrological processes and conventionally apply a rainfall threshold as a proxy for water body 
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availability (typically 60–80 mm month-1, although a wide range is observed) (9, 16-19). Such a 

simple threshold bypasses many important hydrological processes. Rainfall is not a good 

indicator of standing water availability (12) and the resulting estimates for malaria occurrence 

are sensitive to the specific choice of precipitation threshold (20). Initial findings suggest that 

process-based representations of breeding habitat availability results in a more complex pattern 5 

of areas estimated to be suitable for malaria transmission across Africa, as infiltration, 

evaporation, runoff and river discharge are directly represented (20). 

Here, we address the challenge of incorporating robust estimates of vector breeding site 

availability into continental-scale estimates of areas of suitability for malaria transmission. The 

application of a single hydrological model presented in our earlier work (20) is problematic, as 10 

diverse different hydrological models are available (21), each reflecting the perceptual models 

and focuses of their creators (22), which means the outputs (e.g., surface water) of one model can 

be quite different from another (23) and performance (i.e., simulation compared to observation) 

can vary considerably (24). Recognising these limitations, we present a multi-model multi-

scenario ensemble of global hydrological and global climate models (25), weighted based on 15 

model performance, to estimate present and future distribution of malaria suitable areas across 

Africa. We examine the sensitivity of malaria distribution estimates to different hydrological 

models and evaluate multiple hydrologically informed metrics to represent breeding site 

availability. Critically, inclusion of hydrological modelling identifies future shifts in the 

distribution of malaria suitable areas to a precipitation-based estimate. Finally, we quantify the 20 

human populations impacted by changing lengths of malaria transmission season as future 

climate changes alter hydro-climatic suitability for malaria transmission.  
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Variability in malaria suitability estimates  

We calculated the distribution of malaria suitable areas for 1986-2005 using hydrological outputs 

from seven Global Hydrological Models (GHMs), which were each driven with climate data 

from four Global Climate Models (GCMs). When a precipitation threshold is used to represent 

surface water availability, estimates of areas suitable for malaria transmission across the GCMs 5 

show very limited variability (Fig. 1B, Fig. S1), as shown by the strong agreement among 

estimates. In contrast, explicit representation of hydrological processes using the GHMs shows 

greater variability in projections for areas of malaria transmission, reflecting different structures 

among hydrological models. Although total extents of hydro-climatic suitability (i.e., the length 

of transmission season (LTS) > 1 month) were similar across the GHMs (Fig. S2), estimates 10 

from the ORCHIDEE model show particularly large areas of endemic malaria (> 9 months 

continuous transmission suitability) while the LPJml showed the least extent of endemic malaria.  

Continental-scale malaria distribution patterns are broadly similar for each hydrological 

representation we examined, although hydrology-based estimates are patchier than precipitation-

based estimates. However, hydrological estimates are more physically realistic and identify 15 

larger areas with year-round malaria (Fig. 1). Large-scale river networks are highlighted as local 

foci of endemic malaria, particularly the Nile. With human population centres typically located 

around large waterways, these differences are more significant when considering the number of 

people residing in potentially malaria endemic areas (29 million people at risk using 

precipitation-based estimates compared with 107 million people at risk when discharge is used). 20 

While malaria transmission may not be observed in all these locations today thanks to successful 

interventions, they nevertheless remain hydro-climatically suitable for transmission.  



Submitted Manuscript: Confidential 
Template revised November 2022 

6 
 

To represent the likelihood of temporary rain-fed puddles forming, while also 

incorporating water fluxes within continental-scale river networks, the potential 

evapotranspiration to precipitation ratio was calculated and hydrological suitability computed. 

This ratio provides a basic surface water balance and was added to the discharge suitability layer 

(Q_PE). Including the local surface runoff expands the area further with larger areas suitable for 5 

>3 months per year. Conversely, the additional criteria of a minimum relative humidity threshold 

restricts this suitable area, notably at the northern extent, particularly Chad, Mali and Sudan. 

However, active transmission in eastern Sudan has been observed in proximity to rivers even in 

hot dry seasons (26). 

 10 

Calculation of variance ratios shows that GHMs are the primary influence, with GCMs 

contributing only 2% of variance in endemic malaria areas, 7% for areas of seasonal malaria and 

16% for all areas >1 month suitability for the Q_PE hydrological representation. For discharge 

alone, the values are lower (all 2% or less) but when including the additional relative humidity 

threshold, the values are slightly higher, owing to the additional climate dependency (Fig. 1G). 15 

When examining sources of variance in LTS estimates for each grid cell, Fig. 1G highlights the 

overall dominance of GHMs, although GCMs are locally important in the Ethiopian highlands 

and other high-altitude areas of East Africa, in areas at the northern fringe of transmission 

suitability and an isolated area in Mozambique.    

 20 
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Fig. 1. Variability in malaria hydro-climatic suitability estimates (1986-2005). (A) Mean 

Length of Transmission Season (LTS, in months) estimates for each hydrological representation 

(mean of all GCM and GHM combinations). (B) Model agreement across each ensemble. Maps 5 

indicate the percentage of models in the ensemble that estimate LTS > 6 months (full data 
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presented in Fig. S1 and Table S1). (C) LTS estimates for each hydrological representation 

calculated within 3-month bands using the model ensemble weightings established in later 

validation. (D-F) Estimates of seasonal (LTS > 6 months) and endemic malaria suitability (LTS 

> 9 months) showing all individual model estimates across different hydrological models (bars 

showing mean value) and global climate models (individual points for each climate model, n = 5 

4). Precipitation is plotted separately in (D). (G) Variance ratios for all hydrology-derived layers 

showing the percentage of variance in malaria LTS contributed by GCMs for each model cell. 

Ensemble weighting and model performance 

 

Validation of estimates of hydro-climatic suitability is problematic because malaria transmission 10 

is driven by non-climatic factors, notably successful interventions reducing the geographic 

spread of transmission (3). We also recognise that sub-Saharan vector species vary in their larval 

habitat requirements (27), and often use small, shallow sunlit water-filled depressions such as 

hoof prints, wheel ruts and puddles for breeding sites (e.g., An. gambiae sensu stricto and An. 

arabiensis), though even here habitat hydrology and geomorphology have been shown to control 15 

the distribution of malaria vector larva (28). Conversely, other major vectors (e.g., An. funestus) 

require semi-permanent fresh water bodies such as swamps, ponds and lake edges (27) and 

secondary vectors such as An. Coustani and An. Squamosus breeding in large, vegetated 

floodplains connected to rivers can be locally and regionally important vectors (29,30).  Local 

variability in vector ecology presents a challenge to any geographically uniform approach to 20 

model malaria suitability (31), though the inclusion of both local runoff and large-scale water 

fluxes in the composite hydrological metric (Q_PE) is an attempt to ensure both habitat types are 

represented.  
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We validate malaria suitability estimates for the preindustrial period 1875-1900 against the pre-

intervention map of Lysenko and Semashko (32) (Fig. 2A) which approximates malaria extents 

at ~1900 AD. The performance of each model is used to allocate a model weight in an ensemble 

for future predictions of extent (see Materials and Methods, Figs. S3-S5 and Tables S2-S5 for 5 

details).  

Ensemble estimates are shown in Fig. 2B and Figs. S6 and S7 with estimates compared 

against observations in Fig. 2F and Fig. S8. Hydrology-based estimates (discharge with potential 

evapotranspiration) performed only very slightly better than estimates made with precipitation 

alone (ensemble score of 0.817 vs 0.816) and a relative humidity filter reduced this performance 10 

owing to underestimation in the northern fringes of transmission. All models are slightly biased 

towards under-prediction (negative bias scores in Fig. 2C). The spatial extent of pre-industrial 

malaria suitability estimates is broadly similar to those of the historical period presented in Fig. 

1, with the more substantial increases in suitability observed at high elevations in East Africa 

focused on Ethiopia and Uganda (Fig. S3). 15 

Overall, validation shows a close match between modelled and observed suitability. All 

models overestimate the extent of areas suitable for mosquito breeding in South Africa, but the 

northern fringes of the transmission zone are correctly represented, with only minor 

underestimates (Fig. 2F). Similarly, areas suitable for malaria transmission in the Horn of Africa 

are underestimated in all models. All models underestimate the potential for malaria transmission 20 

along the North African coast, although here hydrology-based estimates outperform the 

precipitation-based estimates. The presence of different malaria vector species in North Africa 

with different thermal ranges to the typical sub-Saharan species (33) may explain this 
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discrepancy. Some over-estimation is evident in the Sahara for the hydrological model output 

(without the relative humidity filter), where the course of the now dry Tamanrasset palaeoriver 

(34) is identified as suitable for malaria transmission for individual months. However, the Nile 

corridor of malaria risk in Egypt, where malaria was endemic until the 1990s, is only identifiable 

in the models that describe discharge and discharge with potential evapotranspiration (35). The 5 

relative humidity threshold applied at this grid scale appears to be overly restrictive and cannot 

represent the fine-scale local influence of water bodies on air humidity. Overall, there is no 

strong evidence to distinguish between the performance of precipitation and discharge with 

potential evapotranspiration representations (Fig. 2D). Further validation of weighted layers for 

the 1986-2005 time period against anopheline observations (36), parasite ratios (37) and 10 

modelled probabilities of occurrence of Anopheles gambiae (38) (Fig. S9, Table S6) confirm that 

both precipitation and discharge with potential evapotranspiration representations perform 

equally well. Thus, future suitability estimates from both are considered in Fig. 3. 

 

Future projections of declining malaria risk  15 

For the RCPs 2.6 and 6.0 model ensembles there is agreement that a modest initial increase in 

areas of hydro-climatic suitability for malaria transmission (2006-2025; <0.5 Mn km2) is 

followed by an overall decline (Tables S7-S8) to 2100. RCP2.6 predicts the greatest increase in 

malaria transmission suitability, which reverses by 2075-2100.  Conversely, RCP 8.5 shows little 

or no initial increase prior to a more substantial decline in area. Considering only areas where the 20 

signal-to-noise ratio >0.5, both hydrological and precipitation-based estimates agree that the 

overall hydro-climatic suitability for malaria transmission decreases from the baseline period 

(Fig. 3). The decreasing area suitable for malaria transmission becomes more pronounced 
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through time and for higher greenhouse gas emissions scenarios (RCP 6.0 and RCP 8.5), 

although it should be noted that hydrological estimates show greater sensitivity to the choice of 

RCP than precipitation-based malaria suitability estimates (Fig.3B vs 3F).  

 

 5 

 

Fig. 2. Validation of model hydroclimatic malaria suitability estimates. (A) Pre-intervention 

malaria map of Lysenko and Semashko (32); (B) weighted ensemble model estimates of hydro-

climatic malaria suitability LTS (1875-1900); (C-D) summary of ensemble validation metrics for 

each hydrological representation, with both metrics plotted separately and combined as an 10 
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ensemble score (full data in Tables S2-S3); (E) estimates of malaria suitability by the weighted 

ensembles for each hydrological representation calculated within 3-month bands; (F) selected 

validation maps comparing observed and modelled malaria suitability (where at least one month 

is suitable). Figs. S6-S9 present validation maps and LTS maps for all hydrological 

representations. 5 

 

 

 

Fig. 3. Future projections of malaria hydro-climatic suitability. (A, E) Projected Length of 

Transmission Season in RCP 8.5 for 2076-2100. Areas showing an increase or decrease in 10 
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suitability since 1986-2005 across all scenarios and time periods are plotted in (B, F) showing 

only areas with a signal-to-noise ratio (SNR) > 0.5. The locations of these changing areas are 

shown for RCP 8.5 (2076-2100) in (C, G) and for all RCP scenarios and time periods in Fig. 

S11. The extent of change in suitability (number of months change) is plotted by signal-to-noise 

ratio as stacked histograms for RCP 8.5 in (D, H) and for all scenarios in Fig. S12.  5 

 

 

Precipitation-based estimates show a larger shift in the geographical locations of malaria 

transmission suitability, with large areas (3-4 Mn km2) experiencing increasing malaria risk in all 

RCPs and time periods (mostly greater than twice that of the hydrology-based estimates; Table 10 

S9) that are offset by growing areas of decreasing suitability for malaria transmission (> 2 

million km2). By contrast, hydrology-based estimates show smaller areas increasing in suitability 

for malaria, and a greater sensitivity to the RCP, particularly for the areas diminishing in malaria 

suitability (Fig. 3). Precipitation-based estimated changes are mostly small (a reduction in the 

LTS by 1 month, Fig. 3D); conversely, hydrology-based estimates show substantial areas where 15 

suitability for malaria transmission decreases by 4 months or more (Fig. 3H; Fig. S12). Thus, 

projected changes using hydrology-based estimates are more concentrated but also more intense 

when compared with precipitation-based estimates. Calculation of the overall magnitude of the 

change (i.e., the product of the change in LTS in months and the area) shows the reduction in 

suitability is more pronounced in the hydrology-based estimates, but only for RCP 8.5, where it 20 

is more than double precipitation-based estimates by 2076-2100 (Fig. S10 and Table S10). 

 

The pattern of projected changes in malaria distribution is markedly different between 

precipitation and hydrology-based estimates (Fig. 3C and G; Fig. S11). While both approaches 
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identify future declines in malaria transmission across West Africa, the area experiencing a 

reduction in LTS is more extensive with hydrology-based estimates, stretching as far east as 

South Sudan. Increases in areas of malaria risk in the highlands of Ethiopia are expected to 

expand (although to a lesser extent than modelled previously (39)), but the increase in projected 

malaria prevalences for Kenya, Uganda and the north of the Democratic Republic of the Congo 5 

estimated by precipitation-based models are not seen for any RCP. Small decreases in the LTS of 

<1 month across Tanzania and Zambia are also not observed with any hydrology-based 

estimates, but for RCP 8.5 a stronger focus of decreasing risk emerges further south in 

Mozambique, Zimbabwe, Botswana and Namibia. Finally, the small area of increasing malaria 

risk centred on Lesotho is seen in all estimates, but also stretches west along waterways 10 

(specifically the Orange River where flood-driven malaria has been observed historically (40)) 

when fluvial water transfer is represented in the hydrology-based estimates. 

 

At the country level, inclusion of hydrological processes in malaria distribution models 

results in larger modelled decreases in LTS, when compared with precipitation based estimates, 15 

in those countries where the projected changes are focused (particularly West Africa and the 

northern fringes of malaria transmission suitability; Fig. S13). Future estimated populations at 

risk show considerable growth in areas having longer estimated periods of malaria transmission 

suitability (Fig. 4). The difference between precipitation and hydrology-based estimates is 

particularly pronounced for endemic areas with LTS >9 months, with the populations affected 20 

being four-times greater when hydrology is represented. Again, this highlights the combination 

of waterways as centres for human population growth and foci for malaria risk (Figs S14-S16 

and Table S11). 
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Fig. 4. Future populations in areas hydro-climatically suitable for malaria transmission. 

(A) Populations within 3-month bands of LTS for both precipitation and discharge with potential 5 

evapotranspiration hydrological representations. Bars show total populations for each RCP for 

each weighted ensemble. Points indicate population under-5 years old. Populations calculated 

using UN medium variant projections for each period. (B) Predicted percentage changes in 

population-months (i.e., population exposed multiplied by the number of additional months of 

exposure) since 1986-2005 by country for RCP 8.5 only (see Fig. S13 for each RCP). White 10 

indicates no estimated malaria suitability. 
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Discussion 

Changes in malaria transmission are complex and not driven by climate alone; yet, the effect of 

climate change on malaria prevalence is pronounced, particularly in Africa (2). Many models 5 

have been used to estimate future transmission risk using simple precipitation-based approaches; 

however, positive correlations between malaria and rainfall are not consistent (41). We present a 

multi-model ensemble of hydrological and global climate models to estimate changes in malaria 

transmission risk, which reveals substantial variability in estimates from different hydrological 

models and the value of an ensemble approach where models are evaluated based on historical 10 

performance (42, 43). GHM ensembles are now routinely used within climate change impact 

assessments (e.g., 5, 23, 44-46); however, these have not previously been applied to represent 

malaria transmission. 

 

As river systems are directly represented in a hydrological approach, the largest differences 15 

between precipitation-based and hydrology-based malaria estimates are observed near rivers and 

floodplains, which are also the largest population foci. As a consequence, hydrology-based 

approaches indicate that the number of people residing in potentially malaria endemic areas is 

four-times that estimated with precipitation-based estimates. There is also a greater sensitivity of 

malaria outcomes to the choice of RCP when hydrology is simulated explicitly. There is general 20 

agreement that malaria transmission will decrease across much of West Africa, as also predicted 

in previous studies (e.g., 13, 18, 20, 47), although when the hydrological processes that 

determine viable vector habitat formation are modelled explicitly, estimates for transmission 
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decrease more extensively. The warming and drying trends underlying this decrease in areas 

suitable for malaria themselves present profound environmental and social challenges (48), not 

least other predictions that this trend will increase dengue suitability (49).  

 Embedding GHM estimates of hydrological suitability for vector breeding directly into 

process-based malaria models such as VECTRI and LMM (14, 15) will permit a more direct 5 

evaluation of transmission intensity in future. Differences in mosquito ecology and breeding 

habitat preferences across Africa are not presently included in the model. Representing the 

regional variability in mosquito vectors while also partitioning modelled surface water bodies by 

mosquito species breeding site preferences would more directly represent this important source 

of variability. However, this information is currently beyond the capabilities of GHM ensembles 10 

and would require a more hydrodynamic approach. While more detailed hydrological treatments 

have already been tested at regional or village scales (8), currently, the spatial resolution of 

available data limits our ability to model individual water bodies explicitly at the continental 

scale or to identify specific Anopheles vector niches.  

 15 

The continental-scale evaluation of malaria climate change impacts using GHM ensembles 

presented here imposes the relatively coarse half-degree grids that are presently the main 

limitation of this approach. Finer details of waterbody dynamics such as the flushing of habitat 

require higher resolution models of individual floodplains. Situations where drought and falling 

river levels causes flow disconnection and formation of isolated stream-bed water bodies that 20 

function as suitable breeding habitats (9) are not well captured by our current approach. As these 

data sources become increasingly available, we will benefit from their explicit incorporation in 
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projections of hydrological processes to explain physically realistic malaria transmission risk at 

scales that can inform national operational malaria control strategies. 
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Figure Captions 

 

Fig. 1. Variability in malaria hydro-climatic suitability estimates (1986-2005). (A) Mean 

Length of Transmission Season (LTS, in months) estimates for each hydrological representation 5 

(mean of all GCM and GHM combinations). (B) Model agreement across each ensemble. Maps 

indicate the percentage of models in the ensemble that estimate LTS > 6 months (full data 

presented in Fig. S1 and Table S1). (C) LTS estimates for each hydrological representation 

calculated within 3-month bands using the model ensemble weightings established in later 

validation. (D-F) Estimates of seasonal (LTS > 6 months) and endemic malaria suitability (LTS 10 

> 9 months) showing all individual model estimates across different hydrological models (bars 

showing mean value) and global climate models (individual points for each climate model, n = 

4). Precipitation is plotted separately in (D). (G) Variance ratios for all hydrology-derived layers 

showing the percentage of variance in malaria LTS contributed by GCMs for each model cell. 

 15 

Fig. 2. Validation of model hydroclimatic malaria suitability estimates. (A) Pre-intervention 

malaria map of Lysenko and Semashko (32); (B) weighted ensemble model estimates of hydro-

climatic malaria suitability LTS (1875-1900); (C-D) summary of ensemble validation metrics for 

each hydrological representation, with both metrics plotted separately and combined as an 

ensemble score (full data in Tables S2-S3); (E) estimates of malaria suitability by the weighted 20 

ensembles for each hydrological representation calculated within 3-month bands; (F) selected 

validation maps comparing observed and modelled malaria suitability (where at least one month 
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is suitable). Figs. S6-S9 present validation maps and LTS maps for all hydrological 

representations. 

 

Fig. 3. Future projections of malaria hydro-climatic suitability. (A, E) Projected Length of 

Transmission Season in RCP 8.5 for 2076-2100. Areas showing an increase or decrease in 5 

suitability since 1986-2005 across all scenarios and time periods are plotted in (B, F) showing 

only areas with a signal-to-noise ratio (SNR) > 0.5. The locations of these changing areas are 

shown for RCP 8.5 (2076-2100) in (C, G) and for all RCP scenarios and time periods in Fig. 

S11. The extent of change in suitability (number of months change) is plotted by signal-to-noise 

ratio as stacked histograms for RCP 8.5 in (D, H) and for all scenarios in Fig. S12.  10 

 

Fig. 4. Future populations in areas hydro-climatically suitable for malaria transmission. 

(A) Populations within 3-month bands of LTS for both precipitation and discharge with potential 

evapotranspiration hydrological representations. Bars show total populations for each RCP for 

each weighted ensemble. Points indicate population under-5 years old. Populations calculated 15 

using UN medium variant projections for each period. (B) Predicted percentage changes in 

population-months (i.e., population exposed multiplied by the number of additional months of 

exposure) since 1986-2005 by country for RCP 8.5 only (see Fig. S13 for each RCP). White 

indicates no estimated malaria suitability. 

  20 
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Materials and Methods 

 
Climate data 

Climate data were downloaded for four Global Climate Models (GCMs) (GFDL-
ESM2M, HadGem2-ES, IPSL-CM5A-LR and MIROC-ESM-CHEM) for three RCPs (RCP 2.6, 5 

RCP 6.0 and RCP 8.5) chosen to represent a range of radiative forcings and uncertainty 
regarding future greenhouse gas emissions. These data were retrieved from the database of the 
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b) (25, 54). All climate variables 
were obtained on a latitude-longitude grid of 0.5 x 0.5 degrees covering the extent of Africa. 
Climate variables comprised of bias-adjusted (25, 55) daily mean surface temperature (in K), 10 

daily total precipitation (in kg m-2 s-1), and daily relative humidity (in %). Historical daily 
climate data were downloaded for the period 1986-2005; future climate simulations for each 
RCP were split into four periods: 2006-2025 (to represent present conditions), 2026-2050, 2051-
2075 and 2076-2100. 
 15 
Hydrological modelling 

Climate data from each combination of GCM and RCP were used to drive seven global 
hydrological models on a daily time step. Global hydrological models included were CLM45 
(56), H08 (57), LPJml (58), MPI-HM (59), ORCHIDEE (60), PCR-GLOBW (61) and 
WaterGAP2-2c (62). The GHMs represent an ensemble of opportunity and while some models 20 

use similar methods to represent some hydrological processes, there are many differences in the 
ways that the models parameterize others (21). The differences in LTS between LPJmL and 
ORCHIDEE (Fig. S2) reflect these model differences. The different approaches for calculating 
potential evapotranspiration between GHMs often explains some of the differences between the 
ISIMIP2b GHM simulations of runoff (63, 64), for example, ORCHIDEE applies a simplified 25 

Penman–Monteith equation whereas LPJmL applies the Priestley–Taylor equation (21). While 
historical society scenarios were used to model human influences on hydrology (e.g., land use 
and irrigation) for the preindustrial and historical model runs (25), 2005 society models were 
used for all future estimates to isolate the climate change signal. Daily modelled discharge (m3 s-

1) and monthly modelled potential evapotranspiration (both in kg m-2 s-1) output from GHMs 30 
were used as variables to represent hydrological malaria suitability. These data were available 
via the ISIMIP2b database. 

 
Estimation of malaria hydrological suitability  

Average daily surface temperature, relative humidity, discharge, potential 35 

evapotranspiration and total precipitation were calculated for each month. For each combination 
of GCM and GHM, six methods of estimating hydrological suitability for malaria transmission 
were calculated based on monthly values of climate and hydrological parameters averaged across 
each of the above time periods.  

(i) Precipitation (PR): the 60 mm monthly precipitation threshold of Tanser et al. (65) 40 

was implemented, including the requirement of a catalyst 80 mm month (i.e., a single month 
where precipitation exceeds 80 mm).  

(ii) Discharge (Q): a minimum of 1 mm depth across the grid cell was used as a threshold 
for daily hydrological model discharge output, indicating sufficient water availability (equating 
to approximately 30 m3 s-1). Previous sensitivity analysis (20) indicated limited sensitivity of 45 
hydro-climatic malaria suitability estimates to this value, particularly when compared to the 
sensitivity of precipitation thresholds. The number of days this condition is met per month was 
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then averaged for each time period; when this exceeded the temperature-dependent development 
period of Anopheles mosquitoes (calculated using the model of Bayoh and Lindsay (10)), the 
month was deemed to be hydrologically suitable for malaria transmission. As per Smith et al. 
(20), the average daily mean surface air temperature was used to establish the development rate 
to maturity, though where this is below the 31 °C optimum water temperature, we apply a +2 °C 5 

offset as suggested by Paaijmans et al. (66) to account for the typical difference observed 
between surface air temperature and water temperature. Since shading is often available, we do 
not apply this offset for temperatures above the optimum as larvae are likely to seek optimum 
conditions where available.  

(iii) Discharge with relative humidity (Q_RH): an additional criterion was imposed on the 10 
discharge estimates of a minimum relative humidity of 40% (67).  

(iv) Potential evapotranspiration (PE): the ratio of total precipitation and potential 
evapotranspiration was calculated and following Lindsay et al. (68) a minimum value of 0.5 was 
considered suitable for malaria transmission.  

(v) Discharge with potential evapotranspiration (Q_PE): a union of the discharge and 15 

potential evapotranspiration suitability layers was computed as the most physically realistic of 
representing locally-generated surface water alongside larger discharge transfers. Combining 
suitability layers in this way avoids any double-counting of water in the hydrological model 
outputs.  

(vi) Discharge with potential evapotranspiration and relative humidity (Q_PE_RH): the 20 

relative humidity criterion was also applied to (v).  
 
All data were transformed into an equal area projection (Africa Albers Equal Area Conic) 
appropriate for calculation of areas of malaria transmission over the African continent.  
 25 
Hydro-climatic suitability and model metrics  

We combine our hydrological suitability layers with the temperature curve of Mordecai et 
al. (8). Following (17) and given our focus on hydro-climatic suitability, the full range of viable 
temperatures (16-34°C) is considered suitable. The temperature suitability was then combined 
with each hydrological suitability layer to create a monthly mask of hydro-climatically suitable 30 

areas for malaria suitability. The Length of Transmission Season (LTS) was then determined as 
the maximum number of continuous months of hydro-climatic suitability. Subsequent data 
analysis was undertaken in Stata 12.1.  

 
Calculation of Model Variance  35 

To calculate whether the variance in estimated malaria suitability is introduced primarily 
through GCMs or GHMs, the variance ratio (Rvar) of GCMs to GHMs was calculated (69). For 
each grid cell, the average variance in malaria LTS for all GCMs (σ2

GCM) and the average 
variance in malaria LTS for all GHMs (σ2

GHM) are computed and the variance ratio calculated as 

𝑅௩ =  
ಸಾ

మ

ಸಾ
మ ା ಸಹಾ

మ  . 40 

(Equ. 1) 
To provide an overall metric of the source of variance, Equ. 1 was also applied to model 
estimates of areas of stable (>3 months), seasonal (>6 months) and endemic (>9 months) malaria 
transmission and all suitable areas (>1 month).  

 45 
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Model Validation and Ensemble Creation  
Estimates of hydro-climatic suitability for malaria transmission are challenging to 

evaluate quantitatively, as there are numerous non-climatic controls on malaria transmission (70) 
including the successful reduction in transmission ranges due to interventions over the last 
century (3). For this reason, we focus our validation efforts on the pre-intervention map of 5 

Lysenko and Semashko (32) which is an approximation of malaria extents at ~1900AD, though 
the exact boundaries should be viewed with caution. ISIMIP2b climate and hydrological data 
were extracted for the years 1875-1900 and malaria hydro-climatic suitability calculated. 
Preindustrial climate and CO2 scenarios were used where available; only 1986-2005 were 
available for ORCHIDEE (the differences and possible effects are demonstrated in Fig. S3). Two 10 
validation metrics are used: the most comprehensive performance score is the F2 score (71) 
calculated from observed (Fo) and modelled (Fm) extents as 

𝐹ଶ =
ி∩ி

ி∪ ிబ
’ 

(Equ. 2) 
where Fm∩ Fo is the intersection of modelled and observed malaria suitability extent (i.e. correct 15 

forecasts) and Fm∪  Fo is the union of modelled and observed extents. Since the F2 score is 
biased towards overprediction (72), we follow Bernhofen et al. (73) in also calculating the bias 
metric (71) which measures whether an estimate is biased towards underprediction (negative bias 
score) or overprediction (positive) calculated as 

𝐵𝑖𝑎𝑠 =
(𝐹 ∩ 𝐹) + 𝐹

(𝐹 ∩ 𝐹) + 𝐹
− 1. 20 

(Equ. 3) 
 
The performance of each individual model on each of these metrics is shown in Fig. S4. Finally, 
following (73) a single Ensemble Score (ES) was calculated as 

𝐸𝑆 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹ଶ − |0.2 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑖𝑎𝑠|, 25 

(Equ. 4) 
where the bias adjustment factor of 0.2 was selected to penalise for bias while still weighting F2 
as the most important score. ES was calculated for all hydro-climatic layers at two malaria LTS 
levels: >1 month (i.e., all malaria suitability) or >3 months continuous transmission suitability to 
indicate meso-endemicity, following Chemison et al. (74) and Martens et al. (75) (Tables S2-S3). 30 
 
ES was used to weight all models within the ensemble (i.e., all combinations of global climate 
models and hydrological models for each hydro-climatic suitability layer). Weights from unity-
based normalisation (scaled 0-1) were awarded to each model separately for each malaria level. 
Finally, model agreement layers (i.e., minimum number of models in the ensemble agreeing that 35 

malaria transmission is suitable at a given location) were created for all agreement levels 
(ranging from a layer showing where at least one model identified suitability to a layer showing 
only where all models in the ensemble agreed was suitable for malaria). Each of these agreement 
layers was validated based on ES (Fig. S5). The optimum number of model agreements for each 
hydro-climatic suitability layer was calculated (see Table S4) and that number of the top 40 

performing models in each ensemble were then awarded a maximum weight (73). The weights 
for all and meso-endemic malaria levels were merged and then renormalized such that the total 
weights in each ensemble are 1 (Fig. S6 and Table S5). These ensemble weights were then used 
to make future predictions using the model ensembles, noting that some rescaling is needed for 
RCP 8.5 where MPI-HM and PCR-GLOWB hydrological model outputs were unavailable. This 45 
ensemble approach is common practice and allows for a representation of the range of possible 



Submitted Manuscript: Confidential 
Template revised November 2022 

46 
 

outcomes across the models used. However, the cascade of uncertainty that prevails in climate 
change impact assessment (76), means that even with model intercomparison projects like 
ISIMIP and CMIP, it is impossible to analyse the full range of uncertainty because such projects 
are not exhaustive in their selection of models and scenarios. 
 5 

Further validation of the final weighted layers was performed for each hydrological 
representation using the historical time period (1986-2005). The anopheles inventory for sub-
Saharan Africa (1898-2016) of Kyalo et al. (36) is independent of climate but provides only a 
discontinuous distribution of observation locations. Given this limitation and the more reduced 
range of contemporary malaria and anopheles prevalence, the percentage of positive observations 10 
that are correctly modelled was calculated as the most appropriate metric (Table S6). We also 
compare model predictions with both malaria parasite ratio data from the Malaria Atlas Project 
(considering areas where the parasite ratio >0.01% in the year 2000 (37)) and the estimate of the 
mean modelled relative probability of occurrence of Anopheles gambiae (considering areas 
where the probability >0.05) of Wiebe et al. (38) (Fig. S9). However, it should be noted that both 15 

these datasets rely in some part on gridded climate data for interpolation and do not therefore 
serve for validation analysis independent of climate. 

 
Population data  

Human population analysis was carried out using the methodology outlined in Smith et 20 

al. (20). Gridded estimates of the human population in Africa were provided by WorldPop (51) 
at a resolution of 30 arc seconds (~1 km at the equator). These were used to evaluate the number 
of individuals residing within areas climatically suitable for malaria transmission. Analysis was 
performed for individuals of all ages and for children aged under five years of age as this group 
is particularly susceptible to malaria (77, 78). Analysis was performed for the mid-point of each 25 
time period using the closest WorldPop grids (available annually between 2000 and 2020). For 
past and contemporary scenarios, grids were rescaled to match country level UN estimates (total 
population and under 5s) at the mid-point year of each time period (52). A similar approach was 
used for future scenarios, using country level UN projections (52) to maintain consistency with 
estimates for the historical periods. Primary analysis was based on the UN medium projection 30 

variant, whilst supplementary analysis was performed using the UN low and high projection 
variants for comparison and sensitivity analysis. Final results were aggregated to the continental 
and country level. 

 
 35 
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Fig. S1. 

Areas of different levels of model agreement for model ensembles for each hydrological 
representation (areas stated in Mn km2) and four malaria season length classifications: ‘All’ 
(LTS >1 month), ‘Stable’ (LTS > 3 months), ‘Seasonal’ (LTS > 6 months) and ‘Endemic’ (LTS 5 

> 9 months). Maps show the percentage of models in each ensemble that agree malaria is present 
to at least each transmission level. Note the different ensemble sizes for each hydrological 
representation (Table S1). 
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Fig. S2. 

Comparison of historical (1986-2005) malaria length of transmission season (LTS) estimates for 
each hydrological model, for both ‘discharge’ and ‘discharge with potential evapotranspiration’ 
hydrological representations. LTS estimates are averages across the four global climate models. 5 
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Fig. S3. 

Example difference in LTS of malaria transmission hydro-climatic suitability for validation 5 

layers (Q_PE hydrological representation, IPSL GCM, H08 hydrological model). Pre-Industrial 
society (1875-1900) (A) is used for model validation; however, due to data availability, 
ORCHIDEE hydrological models use 1986-2005 data (B) as an approximation. (C) Shows the 
changes in LTS estimates since the preindustrial period (i.e., historical – preindustrial) where red 
shades indicate an extension of the transmission season. 10 
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Fig. S4. 

Validation metrics of model performance (F2 and Bias) for all models in each ensemble (shown 
here for the >1 month malaria suitability level). The central panel shows all ensembles together, 
while those around the periphery separate these by hydrological representations and labels for 5 

each point indicate the hydrological model (or GCM for precipitation models). 
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Fig. S5. 

Weighting curves applied to each model ensemble based on validation performance. (A) 
Schematic of weighting curve calculation. Ensemble score (ES) is used to rank each model and a 
unity-based normalisation used to assign a weight. The best models up to the best-performing 5 

number of model agreements are then assigned a maximum weighting, with weights calculated 
separately for ‘all malaria’ and >mesoendemic season length (>3 months). These are summed 
and rescaled to 1. Models are ordered from best performing (left) to worst performing (right). (B-
G) Weights are shown for ensembles for each hydrological representation. 
  10 
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Fig. S6. 

Malaria season length maps (1875-1900) for each hydrological representation model ensemble. 
Fig. 2E displays the areas by 3-month wide classification. 
 5 
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Fig. S7. 

An enlarged version of the malaria season length predictions from the weighted ensemble of 
hydrologically-informed (Q_PE) malaria season length models for the historical period (1986-5 

2005) for each hydrological representation model ensemble. 
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Fig. S8. 

Validation layers for final weighted ensembles for each hydrological representation. The 
Lysenko and Semashko (32) pre-intervention malaria map is compared against model estimates 
for 1875-1900 with a pre-industrial society model.  5 
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Fig. S9.  
Validation of weighted malaria suitability estimates (for discharge with potential evaporation and 
precipitation-based estimates) against more recent data sources for ‘All malaria’ (>1 month 
suitability) transmission suitability calculated over the time period 1986-2005. (A) Kyalo et al. 5 

(36) anopheles inventory of sub-Saharan Africa (1898-2016) displaying all observations of 
anophelines. (B) Malaria Atlas Project modelled estimates of parasite rate from Bhatt et al. (37) 
for 2000. (C) Wiebe et al. (38) estimate of the mean modelled relative probability of occurrence 
of Anopheles gambiae. 
  10 
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Fig. S10. 

Projected changes from 1985-2005 in malaria suitability ‘month-areas’ suitable (in millions mo 
km2) in future projections where the areas are multiplied by the number of months change in 
malaria climatic suitability to provide a clearer indication of the magnitude of changes) for each 5 

time period, RCP and hydrological representation.  
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Fig. S11. 

Changes in duration of malaria transmission climatic suitability between the period 1985-2005 
and each future period for each RCP and hydrological representation. Different saturations 
indicate the signal-to-noise ratio across the model ensemble, with the noise defined as the 5 

standard deviation of estimates across the projections, as per Fig. 3. 
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Fig. S12. 

Areas with changing malaria transmission suitability. Stacked histograms showing changes in 
number of months climatically suitable between the period 1985-2005 and all future time periods 
for each RCPs and hydrological representation, split into categories of signal-to-noise ratio as per 5 
Fig. 3.  
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Fig. S13. 

By-country comparison of average changes in malaria transmission suitability season length 
between the period 1985-2005 and each future period. Discharge and potential 
evapotranspiration and precipitation-based estimates are plotted on separate axes and the 1:1 line 5 

shown in red. Countries with an estimated average change of >1 month are named in each plot. 
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Fig. S14. 

Comparison of UN population variants. The effect of UN population variant (High, Medium or 
Low) on future population predictions of malaria suitability in Africa for the discharge with 
potential evapotranspiration (Q_PE) hydrological representation. Results from each RCP are 5 

displayed separately. 
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Fig. S15. 

Predicted percentage changes in population-months (i.e., population exposed multiplied by the 
number of additional months of exposure) since 1986-2005 by country and for each RCP. White 
shading indicates no estimated malaria suitability. 5 
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Fig. S16. 

Country-by-country comparison of population-months. Comparison of population-month 
estimates (i.e., population exposed multiplied by the number of additional months of exposure) 
from the Q_PE and PR hydrological representations is presented for both the historical period 5 

1986-2005 (using population estimates) and 2076-2100 (using RCP 8.5 and the Medium UN 
population estimates). The 1:1 line is shown in red. Individual countries are highlighted when a 
large difference in predictions is observed or for countries with high overall values. 
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Table S1. Areas of different model agreement levels for model ensembles for each hydrological 
representation (areas stated in Mn km2) and four malaria season length classifications: ‘All’ 
(LTS >1 month), ‘Stable’ (LTS > 3 months), ‘Seasonal’ (LTS > 6 months) and ‘Endemic’ (LTS 
> 9 months). 
 5 

Malaria 
level Hydrology 

Total 
Models 

No Models 
Predict 

Minority 
Agree 

Majority 
Agree 

All Models 
Agree 

 
 

All 
 
 
 

PR 4 10.13 0.63 0.79 18.26 
Q 27 9.14 7.45 7.47 5.75 

PE 23 10.11 2.43 1.97 15.30 
Q_PE 23 7.28 4.23 2.48 15.82 
Q_RH 27 10.58 6.19 7.35 5.68 

Q_PE_RH 23 8.57 3.19 2.33 15.72 

Stable 

PR 4 14.67 0.63 0.76 13.74 
Q 27 11.92 7.25 6.16 4.48 

PE 23 14.96 2.23 1.86 10.75 
Q_PE 23 10.37 4.95 2.58 11.91 
Q_RH 27 14.47 5.28 5.87 4.19 

Q_PE_RH 23 12.62 3.05 2.39 11.74 

Seasonal 

PR 4 21.94 0.61 0.59 6.67 
Q 27 14.41 8.09 4.74 2.57 

PE 23 21.29 2.26 1.57 4.68 
Q_PE 23 13.38 5.74 3.53 7.16 
Q_RH 27 17.67 5.80 4.20 2.14 

Q_PE_RH 23 16.64 3.59 3.06 6.51 

Endemic 

PR 4 27.57 0.39 0.24 1.61 
Q 27 17.04 7.69 3.92 1.17 

PE 23 26.79 1.37 0.74 0.91 
Q_PE 23 16.91 6.20 3.49 3.21 
Q_RH 27 21.02 4.85 2.94 1.00 

Q_PE_RH 23 20.81 3.59 2.52 2.88 
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Table S2. Ensemble Score validation metric (Equ. 4) for each model for ‘All malaria’ (>1 month 
suitability) transmission suitability based on the pre-intervention (~1900) map of Lysenko and 
Semashko (32). The final row shows the ensemble score for the final weighted ensembles. 
 

GCM Hydrological 
Model PR Q PE Q_PE Q_RH Q_PE_RH 

GFDL 

- 0.816 - - - - - 
CLM45 - 0.533 - - 0.526 - 
H08 - 0.529 0.730 0.753 0.522 0.746 
LPJ - 0.676 0.732 0.782 0.661 0.774 
MPI_HM - 0.270 0.790 0.810 0.260 0.802 
ORCHIDEE - 0.593 0.708 0.750 0.588 0.748 
PCR_GLOWB - 0.509 0.806 0.817 0.506 0.819 
WATERGAP2 - 0.507 0.747 0.775 0.500 0.773 

HadGEM 

- 0.808 - - - - - 
CLM45 - 0.584 - - 0.575 - 
H08 - 0.572 0.745 0.766 0.565 0.760 
LPJ - 0.703 0.739 0.784 0.681 0.769 
ORCHIDEE - 0.635 0.717 0.762 0.628 0.759 
PCR_GLOWB - 0.541 0.792 0.809 0.537 0.809 
WATERGAP2 - 0.562 0.746 0.784 0.554 0.778 

IPSL 

- 0.784 - - - - - 
CLM45 - 0.530 - - 0.525 - 
H08 - 0.522 0.717 0.738 0.517 0.733 
LPJ - 0.653 0.703 0.760 0.635 0.745 
MPI_HM - 0.265 0.767 0.784 0.255 0.776 
ORCHIDEE - 0.592 0.686 0.734 0.582 0.730 
PCR_GLOWB - 0.506 0.784 0.799 0.501 0.798 
WATERGAP2 - 0.495 0.721 0.759 0.485 0.750 

MIROC5 

- 0.816 - - - - - 
CLM45 - 0.547 - - 0.540 - 
H08 - 0.538 0.728 0.749 0.532 0.744 
LPJ - 0.675 0.737 0.787 0.658 0.776 
MPI_HM - 0.279 0.790 0.806 0.270 0.800 
ORCHIDEE - 0.613 0.725 0.765 0.608 0.765 
PCR_GLOWB - 0.538 0.809 0.821 0.535 0.822 
WATERGAP2 - 0.530 0.752 0.780 0.525 0.778 

WEIGHTED ENSEMBLE 0.816 0.723 0.782 0.817 0.698 0.808 
 5 
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Table S3. Ensemble Score validation metric (Equ. 4) for each model for ‘Mesoendemic’ (>3 
months) transmission suitability based on the pre-intervention (~1900) map of Lysenko and 
Semashko (32).  
 

GCM Hydrological 
Model PR Q PE Q_PE Q_RH Q_PE_RH 

GFDL 

- 0.777 - - - - - 
CLM45 - 0.596 - - 0.598 - 
H08 - 0.560 0.730 0.751 0.562 0.757 
LPJ - 0.653 0.700 0.762 0.648 0.770 
MPI_HM - 0.316 0.769 0.774 0.309 0.779 
ORCHIDEE - 0.639 0.705 0.756 0.651 0.773 
PCR_GLOWB - 0.495 0.762 0.724 0.512 0.765 
WATERGAP2 - 0.489 0.724 0.744 0.491 0.759 

HadGEM 

- 0.751 - - - - - 
CLM45 - 0.631 - - 0.629 - 
H08 - 0.569 0.732 0.756 0.569 0.761 
LPJ - 0.670 0.707 0.764 0.666 0.766 
ORCHIDEE - 0.685 0.698 0.756 0.692 0.776 
PCR_GLOWB - 0.531 0.738 0.706 0.545 0.736 
WATERGAP2 - 0.525 0.708 0.740 0.522 0.747 

IPSL 

- 0.765 - - - - - 
CLM45 - 0.605 - - 0.605 - 
H08 - 0.567 0.724 0.751 0.570 0.756 
LPJ - 0.672 0.689 0.766 0.666 0.771 
MPI_HM - 0.321 0.756 0.766 0.319 0.770 
ORCHIDEE - 0.655 0.696 0.750 0.665 0.763 
PCR_GLOWB - 0.517 0.750 0.735 0.532 0.765 
WATERGAP2 - 0.504 0.705 0.742 0.506 0.752 

MIROC5 

- 0.765 - - - - - 
CLM45 - 0.614 - - 0.614 - 
H08 - 0.565 0.719 0.745 0.569 0.751 
LPJ - 0.667 0.696 0.766 0.663 0.772 
MPI_HM - 0.327 0.756 0.762 0.323 0.766 
ORCHIDEE - 0.676 0.720 0.766 0.692 0.790 
PCR_GLOWB - 0.535 0.747 0.722 0.554 0.762 
WATERGAP2 - 0.529 0.711 0.745 0.530 0.753 

 5 
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Table S4. Optimum number of model agreements used to award maximum weight to the best 
performing models up to that limit (following (73)) for each hydrological representation and a 
range metrics.  
 

Hydrological 
Representation 

Optimum agreement levels 
Ensemble Score F2 Bias 

All  Mesoendemic All  Mesoendemic All  Mesoendemic 
PR 1 1 1 1 1 2 

Q 1 5 1 5 1 5 
PE 1 3 1 3 1 2 

Q_PE 3 9 3 9 3 9 
Q_RH 1 2 1 1 1 3 

Q_PE_RH 2 6 2 5 1 7 
 5 
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Table S5. Weights applied to model ensemble for each hydrological representation.  
 

GCM 
Hydrological 

Model Q PE Q_RH Q_PE Q_PE_RH 

GFDL 
 

PR 
0.4244 

CLM45 0.0393  0.0394   
H08 0.0364 0.0409 0.0365 0.0299 0.0234 
LPJ 0.0533 0.0230 0.0522 0.0550 0.0465 
MPI_HM 0.0004 0.0863 0.0003 0.0740 0.0752 
ORCHIDEE 0.0466 0.0177 0.0475 0.0308 0.0477 
PCR_GLOWB 0.0301 0.0921 0.0318 0.0514 0.0677 
WATERGAP2 0.0295 0.0436 0.0299 0.0376 0.0381 

HadGEM 
 

PR 
0.1337 

CLM45 0.0454  0.0450   
H08 0.0399 0.0474 0.0399 0.0387 0.0330 
LPJ 0.0576 0.0301 0.0549 0.0559 0.0417 
ORCHIDEE 0.0530 0.0169 0.0532 0.0451 0.0532 
PCR_GLOWB 0.0350 0.0680 0.0363 0.0371 0.0408 
WATERGAP2 0.0360 0.0330 0.0358 0.0405 0.0324 

IPSL 
PR 

0.1283 

CLM45 0.0399  0.0398   
H08 0.0364 0.0325 0.0368 0.0226 0.0155 
LPJ 0.0542 0.0062 0.0518 0.0438 0.0458 
MPI_HM 0.0004 0.0781 0.0007 0.0557 0.0479 
ORCHIDEE 0.0478 0.0047 0.0481 0.0201 0.0186 
PCR_GLOWB 0.0316 0.0725 0.0329 0.0455 0.0554 
WATERGAP2 0.0299 0.0224 0.0299 0.0292 0.0220 

MIROC5 
PR 

0.3136 

CLM45 0.0417  0.0415   
H08 0.0374 0.0331 0.0377 0.0254 0.0177 
LPJ 0.0558 0.0229 0.0531 0.0572 0.0616 
MPI_HM 0.0018 0.0783 0.0020 0.0665 0.0571 
ORCHIDEE 0.0515 0.0333 0.0518 0.0466 0.0561 
PCR_GLOWB 0.0351 0.0797 0.0368 0.0504 0.0654 
WATERGAP2 0.0341 0.0370 0.0344 0.0410 0.0371 

 
 
Table S6. Validation of weighted malaria suitability estimates against more recent data sources 5 

for ‘All malaria’ (>1 month suitability) transmission suitability calculated over the time period 
1986-2005.  

 

Hydrological 
Representation 

Percentage of positive occurrences correctly identified by malaria suitability model 
Anopheles inventory of 

sub-Saharan Africa 
(1898-2016) from Kyalo 

et al. (29) 

Malaria Atlas Project 
modelled estimates of 

parasite rate for 2000 from 
Bhatt et al. (30) 

 estimate of the mean 
modelled relative probability 
of occurrence of Anopheles 

gambiae by Wiebe et al. (31) 
PR 93.1 95.3 94.1 
Q 84.7 85.2 87.5 

PE 89.9 91.9 91.4 
Q_PE 93.3 94.6 94.6 
Q_RH 82.5 83.1 85.6 

Q_PE_RH 92.1 94.2 93.8 
 
  10 



Submitted Manuscript: Confidential 
Template revised November 2022 

70 
 

Table S7. Areas estimated to be hydro-climatically suitable for malaria transmission by the 
weighted ensembles of each hydrological representation for each RCP and time period. Areas 
suitable for > 1 month (‘All’) and > 3 months (i.e., stable areas) are calculated.  
 

 Total Area (Mn km2) Stable Area (Mn km2) 
 Q_PE PR Q_PE_RH Q_PE PR Q_PE_RH 
1875-1900 19.825 18.907 18.457 14.646 13.863 13.968 
1986-2005 19.315 18.776 18.121 14.588 14.113 13.936 
RCP 2.6 
2006-2025 19.814 19.011 18.396 14.675 14.252 14.031 
2026-2050 19.486 18.762 18.127 14.521 13.892 13.828 
2051-2075 19.579 18.953 18.338 14.544 14.057 13.869 
2076-2100 19.466 18.733 18.176 14.298 13.814 13.626 
RCP 6.0 
2006-2025 19.544 18.979 18.367 14.570 14.182 13.901 
2026-2050 19.312 18.773 18.089 14.515 14.147 13.855 
2051-2075 19.307 18.724 18.156 14.530 13.901 13.872 
2076-2100 19.205 18.362 17.976 14.281 13.773 13.620 
RCP 8.5 
2006-2025 19.170 19.034 17.857 14.408 13.979 13.773 
2026-2050 19.109 18.843 17.692 14.353 14.139 13.579 
2051-2075 19.049 18.486 17.547 14.055 13.521 13.315 
2076-2100 18.892 17.895 17.240 13.455 13.037 12.785 
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Table S8. Changes in total (suitable for > 1 month) and stable areas (suitable for > 3 months) 
between the historical period (1985-2005) and each time period. Results for each weighted 
ensemble are presented. 
 

 Total Area (Mn km2) Stable Area (Mn km2) 
 Q_PE PR Q_PE_RH Q_PE PR Q_PE_RH 
RCP 2.6 
2006-2025 0.499 0.235 0.275 0.087 0.139 0.096 
2026-2050 0.171 -0.014 0.006 -0.067 -0.220 -0.107 
2051-2075 0.264 0.177 0.217 -0.043 -0.055 -0.067 
2076-2100 0.151 -0.043 0.055 -0.290 -0.299 -0.310 
RCP 6.0 
2006-2025 0.229 0.203 0.246 -0.017 0.070 -0.035 
2026-2050 -0.003 -0.003 -0.032 -0.072 0.035 -0.081 
2051-2075 -0.009 -0.052 0.035 -0.058 -0.212 -0.064 
2076-2100 -0.110 -0.414 -0.145 -0.307 -0.339 -0.316 
RCP 8.5 
2006-2025 -0.145 0.258 -0.264 -0.180 -0.133 -0.162 
2026-2050 -0.206 0.067 -0.429 -0.235 0.026 -0.357 
2051-2075 -0.267 -0.290 -0.574 -0.533 -0.591 -0.620 
2076-2100 -0.423 -0.881 -0.881 -1.133 -1.075 -1.151 
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Table S9. Areas (in Mn km2) experiencing an increase and decrease in malaria suitability in 
future ensemble projections since the historical period (1985-2005). Note that the net value 
includes areas with an average change of <1 month and only where the signal to noise ratio >0.5.  
 

 Q_PE PR Q_PE_RH 
 Increasing Decreasing Net Increasing Decreasing Net Increasing Decreasing Net 

RCP 2.6 
2006-2025 0.710 0.328 0.383 3.658 2.907 0.751 0.971 0.493 0.478 
2026-2050 0.771 0.991 -0.220 3.188 4.087 -0.899 0.890 1.791 -0.901 
2051-2075 0.942 0.901 0.041 3.840 3.669 0.171 1.070 1.307 -0.238 
2076-2100 0.878 1.356 -0.478 3.246 4.936 -1.690 0.910 2.220 -1.310 
RCP 6.0 
2006-2025 0.661 0.530 0.130 3.551 2.954 0.597 0.803 0.580 0.223 
2026-2050 0.733 0.806 -0.072 3.698 2.875 0.823 0.809 0.977 -0.168 
2051-2075 1.368 1.403 -0.035 4.649 4.255 0.394 1.359 2.017 -0.658 
2076-2100 1.672 2.939 -1.267 4.539 5.380 -0.841 1.664 4.168 -2.504 
RCP 8.5 
2006-2025 2.206 2.539 -0.333 4.177 2.890 1.287 2.510 3.307 -0.797 
2026-2050 2.380 3.206 -0.826 4.452 3.646 0.806 2.345 4.052 -1.707 
2051-2075 2.238 4.748 -2.510 4.635 5.542 -0.907 1.980 6.139 -4.159 
2076-2100 2.603 6.823 -4.220 4.058 7.516 -3.458 2.380 7.965 -5.585 
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Table S10. Increase and decrease in malaria suitability ‘month-areas’ (in millions mo km2) 
between future projections and the historical period (1985-2005). Areas used to calculate totals 
in Table S9 are multiplied by the number of months change in malaria climatic suitability to 
provide a clearer indication of the magnitude of changes.  
 5 

 Q_PE PR Q_PE_RH 
 Increasing Decreasing Net Increasing Decreasing Net Increasing Decreasing Net 

RCP 2.6 
2006-2025 0.532 -0.297 0.235 2.333 -1.726 0.607 0.668 -0.264 0.404 
2026-2050 0.742 -0.913 -0.171 2.101 -2.472 -0.371 0.746 -1.014 -0.268 
2051-2075 0.816 -0.975 -0.159 2.439 -2.339 0.100 0.874 -0.709 0.165 
2076-2100 0.770 -1.325 -0.555 2.127 -3.155 -1.027 0.748 -1.270 -0.522 
RCP 6.0 
2006-2025 0.481 -0.442 0.039 2.123 -1.839 0.284 0.555 -0.310 0.245 
2026-2050 0.572 -0.693 -0.120 2.226 -1.548 0.678 0.587 -0.535 0.052 
2051-2075 1.296 -1.672 -0.377 3.130 -2.574 0.557 1.239 -1.249 -0.010 
2076-2100 1.874 -3.974 -2.100 3.464 -3.455 0.009 1.725 -3.061 -1.336 
RCP 8.5 
2006-2025 1.926 -2.374 -0.448 2.709 -1.738 0.971 1.794 -2.761 -0.967 
2026-2050 2.242 -3.623 -1.381 2.829 -2.104 0.725 1.827 -3.553 -1.726 
2051-2075 2.458 -6.646 -4.188 3.914 -3.632 0.283 2.094 -5.817 -3.723 
2076-2100 3.078 -13.005 -9.927 4.040 -6.413 -2.372 2.816 -10.756 -7.940 
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Table S11. Total populations (Mn) and children under 5 years old within areas of climatic 
suitability for malaria transmission in Africa (>1 month) and climatic suitability for stable 
malaria transmission (>3 months). Population figures are calculated from the mid-point of each 
time period using the UN Medium Variant figures, except 2006-2025 which use Worldpop 
gridded estimates. 5 
 

 LTS >1 month  LTS >3 months  
Q_PE PR Q_PE_RH Q_PE PR Q_PE_RH 

Total Population (Mn) 
RCP 2.6 
2006-2025 1060.8 990.4 1034.4 866.4 826.9 845.5 
2026-2050 1803.0 1716.2 1765.8 1510.5 1414.3 1466.7 
2051-2075 2714.8 2610.7 2663.0 2251.7 2118.0 2183.8 
2076-2100 3410.6 3292.9 3345.9 2821.1 2632.1 2705.0 
RCP 6.0 
2006-2025 1059.6 994.2 1031.8 850.0 807.7 821.5 
2026-2050 1794.9 1710.0 1747.9 1479.8 1401.8 1447.5 
2051-2075 2704.9 2597.6 2658.7 2247.0 2122.1 2177.4 
2076-2100 3407.6 3276.6 3337.3 2805.3 2678.1 2698.5 
RCP 8.5 
2006-2025 1083.0 997.9 1039.5 850.7 814.2 832.5 
2026-2050 1860.1 1717.5 1791.3 1485.4 1417.7 1434.5 
2051-2075 2780.0 2601.2 2717.8 2196.2 2071.0 2119.3 
2076-2100 3424.6 3229.0 3325.7 2678.4 2515.3 2548.1 

Under 5s (Mn) 
RCP 2.6 
2006-2025 172.0 163.6 168.2 143.9 137.7 140.2 
2026-2050 233.7 226.2 229.6 198.2 186.2 192.3 
2051-2075 262.8 255.9 258.4 219.9 207.3 212.5 
2076-2100 258.9 252.2 254.4 214.4 200.9 204.9 
RCP 6.0 
2006-2025 171.9 164.0 167.8 140.7 134.5 135.7 
2026-2050 233.0 225.6 228.0 195.5 185.4 190.4 
2051-2075 262.1 255.0 258.1 219.3 206.9 212.1 
2076-2100 258.6 251.0 253.4 212.6 202.7 203.7 
RCP 8.5 
2006-2025 175.0 164.5 169.3 142.2 135.9 138.9 
2026-2050 238.7 226.5 232.0 196.9 187.1 189.7 
2051-2075 267.1 255.0 261.7 214.0 201.0 205.6 
2076-2100 259.0 246.9 251.7 202.0 189.0 191.5 
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