
IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 1

Self-Bidirectional Decoupled Distillation for Time
Series Classification

Zhiwen Xiao, Member, IEEE, Huanlai Xing, Member, IEEE, Rong Qu, Senior Member, IEEE, Hui Li, Li Feng,
Bowen Zhao, and Jiayi Yang

Abstract—Over the years, many deep learning algorithms have
been developed for time series classification (TSC). A learning
model’s performance usually depends on the quality of the
semantic information extracted from lower and higher levels
within the representation hierarchy. Efficiently promoting mutual
learning between higher and lower levels is vital to enhance the
model’s performance during model learning. To this end, we
propose a self-bidirectional decoupled distillation (Self-BiDecKD)
method for TSC. Unlike most self-distillation algorithms that
usually transfer the target-class knowledge from higher to lower
levels, Self-BiDecKD encourages the output of the output layer
and the output of each lower-level block to form a bidirectional
decoupled knowledge distillation (KD) pair. The bidirectional
decoupled KD promotes mutual learning between lower- and
higher-level semantic information and extracts the knowledge
hidden in the target and non-target classes, helping Self-BiDecKD
capture rich representations from the data. Experimental results
show that compared with a number of self-distillation algorithms,
Self-BiDecKD wins 35 out of 85 UCR2018 datasets and achieves
the smallest AVG rank score, namely 3.2882. In particular,
compared with a non-self-distillation Baseline, Self-BiDecKD
results in 58/8/19 regarding ‘win’/‘tie’/‘lose’.

Index Terms—Convolutional Neural Network, Deep Learning,
Data Mining, Knowledge Distillation, Time Series Classification

IMPACT STATEMENT

Time series data has been widely applied to various
real-world applications, e.g., sleep staging, electromyo-
graphy signal classification, and arrhythmic heartbeat
classification. The performance of a learning model re-
lies on the representations captured from the data for
download tasks, such as classification. In this paper, we
introduce self-bidirectional decoupled distillation (Self-
BiDecKD) for time series classification (TSC). Unlike most

Manuscript received 11, Sep., 2023; revised X, XX, XXXX; accepted
XX,XX. This work was partially supported by the National Natural Science
Foundation of China (No. 62172342 and No.62202392), the Natural Science
Foundation of Hebei Province (No. F2022105027), the Natural Science Foun-
dation of Sichuan Province (No. 2022NSFSC0568, No. 2022NSFSC0944, and
No. 2023NSFSC0459), and the Fundamental Research Funds for the Central
Universities, P. R. China (Corresponding Author: Huanlai Xing).

Z. Xiao, H. Xing, L. Feng, and B. Zhao are with the School of Com-
puting and Artificial Intelligence, Southwest Jiaotong University, Chengdu
610031, China, also with the Tangshan Institute of Southwest Jiaotong
University, Tangshan 063000, China, and also with the Engineering Re-
search Center of Sustainable Urban Intelligent Transportation, Ministry of
Education, China (Emails: xiao1994zw@163.com; hxx@home.swjtu.edu.cn;
fengli@swjtu.edu.cn; cn16bz@icloud.com).

R. Qu is with the School of Computer Science, University of Nottingham,
Nottingham NG7 2RD 455356, UK (Email: rong.qu@nottingham.ac.uk).

H. Li is with the School of Mathematics and Statistics, Xi’an Jiaotong
University, Xi’an 710049, China (Email: lihui10@mail.xjtu.edu.cn).

J. Yang is with the School of Software Engineering, Tongji University
201804, China (Email: 2052522@tongji.edu.cn).

self-distillation algorithms that usually transfer the target-
class knowledge from higher to lower levels, Self-BiDecKD
encourages the output of the output layer and the output
of each lower-level block to form a bidirectional decoupled
knowledge distillation pair. When compared to several
state-of-the-art self-distillation algorithms, Self-BiDecKD
consistently demonstrates outstanding performance across
a wide range of TSC applications.

I. INTRODUCTION

T IME series data is a sequence of time-ordered data points
associated with univariate or multiple time-dependent

variables. It has been widely applied to areas, such as, sleep
staging [1], electromyography and electroencephalogram sig-
nal analysis [2], arrhythmic heartbeat classification [3], and
fault diagnosis [4]. It is crucial for an arbitrary time series
classification (TSC) algorithm to extract both local and global
patterns of data for various types of features [5], [6].

Over the years, deep learning algorithms for TSC have
attracted extensive attention in the community because they
can mine the intrinsic relationships among representations
by constructing the internal representation hierarchy of data
[7]. These algorithms can be roughly classified into single-
network-based and dual-network-based models. A single-
network-based model usually uses one (usually hybridized)
network to extract the significant connections within the
hierarchy, e.g., the residual network (ResNet) [8], multilayer
perceptron (MLP) [8], fully convolution network (FCN) [8],
ROCKET [9], ConvTimeNet [10], and InceptionTime [11]. In
contrast, a dual-network-based model places one local-feature
extraction network and one global-relation extraction network
in parallel. The former, usually based on CNNs, focuses on the
local features, while the latter captures the connections among
the features already extracted, e.g., long short-term memory
(LSTM)-FCN [12], SelfMatch [13], and robust neural temporal
search network (RNTS) [14].

However, most deep learning models for TSC lack self
reflection on their structures. A learning model’s performance
usually depends on quality of the semantic information ex-
tracted from lower and higher levels within the representation
hierarchy [15]. It is known that higher-level semantic informa-
tion is obtained from lower levels. Most learning models use
the backpropagation (BP) approach to update their parameters
[16]. According to BP, the parameter updates at lower levels
are influenced by those at higher levels, i.e., higher-level
semantic information can affect lower-level semantic infor-
mation to a certain extent. Therefore, lower- and higher-level

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 2

semantic information learns from and influences each other
during model learning. Efficiently promoting mutual learn-
ing between lower- and higher-level semantic information is
crucial for improving the model’s performance during model
learning.

Recently, self-distillation has become popular in the knowl-
edge distillation (KD) community. It itself acts as a student
and a teacher at the same time, promoting knowledge flow
within the model for the regularization purpose [17]. For
example, BYOT transferred the knowledge extracted from
the output layer to each lower-level block [18]. Ji et al.
[19] proposed a feature refinement method that used self-
knowledge distillation to transfer the refined knowledge for the
classifier network through an auxiliary self-teacher network.
Wang et al. [20] designed an end-to-end progressive self-
label correction method, called ProSelfLC, to fit the noise
and minimum entropy regularization principle. Zhang et al.
[21] proposed two methods, namely transitive distillation
and densely connected distillation, to enable the hierarchical
knowledge transfer from higher to lower levels. However, most
self-distillation algorithms suffer from two drawbacks listed
below.
• They emphasize the knowledge transfer from higher to

lower levels, ignoring the importance of lower-level se-
mantic information to higher-level one, e.g., BYOT [18],
ProSelfLC [20], transitive distillation [21], and densely
connected distillation [21].

• They emphasize the target-class knowledge, ignoring the
exploitation of “dark knowledge” hidden in the non-
target class. However, such knowledge is also important
to support efficient KD [23].

To overcome the two disadvantages above, we propose a
self-bidirectional decoupled distillation (Self-BiDecKD) for
TSC. Considering that lower- and higher-level semantic in-
formation learns from and influences each other during model
learning, Self-BiDecKD pairs the output of the output layer
with the output of each lower-level block to form a bidirec-
tional decoupled KD structure.

Our significant contributions are summarized as follows.
• Unlike classical self-distillation algorithms that usually

transfer the target-class knowledge from higher to lower
levels, Self-BiDecKD’s bidirectional decoupled KD en-
ables mutual knowledge flow between lower and higher
levels and also pays attention to the knowledge hidden in
the target and non-target classes, helping Self-BiDecKD
extract abundant representations from the data.

• Experimental results demonstrate that Self-BiDecKD
outperforms six state-of-the-art self-distillation algo-
rithms on 85 standard UCR2018 datasets regarding
‘win’/‘tie’/‘lose’ measure and AVG rank, both based
on the top-1 accuracy. Self-BiDecKD is a win-
ner of 35 datasets, achieving the smallest AVG rank
score, namely 3.2882. In particular, compared with
a non-self-distillation Baseline, Self-BiDecKD obtains
‘win’/‘tie’/‘lose’ in 58/8/19 cases, showing its potential
in addressing various TSC problems.

The paper’s remainder is listed below. Section II first reviews

many classical TSC algorithms. Then, the key components
of Self-BiDecKD are described in Section III. Section IV
provides the experimental analysis and discussion. Finally,
Section V summarizes a conclusion.

II. RELATED WORK

This section reviews a number of existing traditional and
deep learning-based TSC algorithms.

A. Traditional Algorithms

There are two mainstream algorithms in the TSC com-
munity, namely, Distance- and feature-based algorithms.
Distance-based algorithms aim to capture the significant dif-
ferences between different samples. The nearest neighbor
(NN)- and dynamic time warping (DTW)-based algorithms are
widely adopted distance-based algorithms [24], e.g., adaptive
DTW (DTWA), dependent DTW (DTWD), and independent
DTW (DTWI). Many NN- and DTW-based ensemble algo-
rithms have been an emerging trend for TSC. Many NN- and
DTW-based ensemble algorithms have been an emerging trend
for TSC. For instance, Lines et al. [25] introduced an elastic
ensemble (EE) method integrating 11 classical classifier, e.g.,
weighted DTW, time warp with edit, and longest common sub-
sequence, to solve various TSC problems. Bagnall et al. [26]
proposed a transformation-based ensemble (COTE) method
for feature extraction, fusing 37 classifiers constructed in the
frequency, time, change, and shapelet transformation domains.
Based on COTE, Lines et al. [27] designed a hierarchical
structure with probabilistic voting to achieve decent perfor-
mance on 85 benchmark datasets. Fauvel et al. [28] devised
an explainable-by-design ensemble method based on boosting-
bagging and divide-and-conquer approaches for multivariate
TSC. Middlehurst et al. [29] presented an improved HIVE-
COTE with temporal dictionary ensemble and Arsenal, namely
HIVE-COTE 2.0, to extract the potential relationships and
regularizations hidden in the data.

Feature-based algorithms aim to extract representative fea-
tures from the input. For example, Pei et al. [30] proposed
a time-series hidden-unit logistic method to capture tempo-
ral dependencies in the data. Tuncel et al. [31] designed
an autoregressive forest ensemble algorithm to discover hi-
erarchical relationships in the data. Baydogan and Runger
[32] presented a local auto-pattern method to construct the
dependency connection in time series. Large et al. [33] put
forward a bag of symbolic Fourier approximation symbol
method to model the spatial features in time series. Schäfer and
Leser [34] devised a novel approach with word extraction and
multivariate unsupervised symbols and derivatives for feature
selection and weighting in time series. Wu et al. [35] put
forward a broad fuzzy cognitive map system containing sparse
autoencoder, high-order fuzzy cognitive map, and multilayer
perceptron for TSC.

B. Deep Learning-based Algorithms

Deep learning algorithms aim to model a representation
hierarchy of the given data, capturing the potential connections

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 3

!"#
"$
"%
"&

!
"
#
$
%&
%'
'
%'
(
)

*
+
,
-
./
0

!
"
#
$
%&
%'
1
%(
2
3

*
+
,
-
./
0

!
"
#
$
%&
%'
'
%2
'
(

*
+
,
-
./
0

!
"
#
$
%&
%'
'
%(
2
3

*
+
,
-
./
0

4$.567.8""9

:.#;.%/6<.5

4
$
.567

.8
"
"
9

:
.#
;.%/

6<
.5

!"#$*9"=> ' !"#$*9"=> (!"#$*9"=> 1 !"#$*9"=> ?

!96;;@A@.5%'

4$.567.8""9

:.#;.%/6<.5

!96;;@A@.5%(

4$.567.8""9

:.#;.%/6<.5

!96;;@A@.5%1

!
96;;@A@.5%?

*@B@5.=C@"#69%:.="DE9.B%F#"G9.B7.%:@;C@996C@"#

!"#$%&"'()$&#*$+&

Fig. 1. The schematic diagram of Self-BiDecKD. Note that ‘Conv x 11 128’ represents a 1-dimensional convolutional neural network, where its filter and
channel sizes are set to 11 and 128. ‘BN’ is a batch normalization module [22], and ‘ReLU’ is the rectified linear unit activation function.

among representations. Single- and dual-network-based mod-
els are two representative research methods. A single-network-
based model uses one (often mixed) network to extract sig-
nificant connections within a hierarchy. For example, Shi
et al. [36] introduced a multi-relationship modeling module
to capture the diversity of the relationships among classes.
Chen et al. [37] devised a dual-attention-based network for
local and global feature extraction. Xiao et al. [38] presented
a multi-process collaborative architecture based on capsule
networks to extract multi-scale features from the input. Li et
al. [39] devised an embedding shapelet model based on deep
neural networks called ShapeNet for discriminative shapelet
selection. In [9], a random convolutional kernel classification
approach (ROCKET) was used to address a series of TSC
problems. Based on ROCKET, Dempster et al. [40] proposed
an improved ROCKET (mini-ROCKET) for feature extraction.
The typical single-based models include MLP [8], FCN [8],
ResNet [8], InceptionTime [11], ConvTimeNet [10], adversar-
ial joint-learning RNN [41], deep contrastive representation
learning with self-distillation [42], and learnable dynamic
temporal pooling [43]. On the contrary, a dual-network-based
model usually contains two feature network in parallel, one for
local-feature extraction and other for global-relation extrac-
tion. In [12], LSTM-FCN used its fully convolutional network
and LSTM-based network for local-feature and global-relation
extraction. In [44], a residual attention net contained a residual
network and a transformer-based network to handle various
TSC applications. In [45], a robust temporal neural network

(RTFN) with a temporal feature network and an LSTM-based
attention network achieved decent performance on a large
number of multivariate and univariate time series datasets.
The SelfMatch [13], RNTS [14], and attentional prototypical
network [46], are representative dual-network-based models.

Many deep learning models for TSC overlook the in-
teraction between lower and higher-level semantic informa-
tion within the representation hierarchy. While most models
emphasize learning higher-level semantic information from
lower-level semantic information, they often underestimate
the impact of lower-level semantic information on influencing
the higher-level semantic information. In reality, both lower-
and higher-level semantic information mutually influence each
other during model learning. To end this, we introduce Self-
BiDecKD, which facilitates mutual knowledge flow between
lower and higher levels.

III. SELF-BIDECKD

This section first defines the problem formulation, and it
then describes the feature extraction and bidirectional decou-
pled KD components. Finally, the loss function is introduced.

A. Problem Formulation

Let xt = {{x(t)1,1, ..., x
(t)
1,d}, ..., {{x

(t)
l,1 , ..., x

(t)
l,d}} ∈ X de-

note the t-th input sample, where X ⊆ Rl×d is the input
space, and l and d denote the length and dimension of xt,
respectively. yt ∈ Y is a categorical variable related to

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 4

xt, where Y stands for the target space. This paper aims
to train a predicted model F : X 7→ Y on an arbitrary
dataset, D = {Dtrain,Dval,Dtest}. Dtrain = {xt, yt}ntrain

t=1 ,
Dval = {xt, yt}nval

t=1 , and Dtest = {xt, yt}ntest
t=1 are the

training, validation and testing data, respectively, where ntrain,
nval, and ntest are the sizes of training, validation and testing
data, respectively.

B. Feature Extractor

The feature extractor consists of four convolutional blocks
(i.e., ConvBlock 1, ConvBlock 2, ConvBlock 3 and ConvBlock
4) and a classifier, as shown in Fig. 1. Each block contains
a 1-dimensional CNN (Conv) module, a batch normalization
(BN) module [22], and a rectified linear unit activation (ReLU)
function, defined in equation. (1).

fConvBlock(x) = ReLU(BN(Wcnn ⊗ x+ bcnn)) (1)

where Wcnn and bcnn are the weight and bias vectors of
CNN, respectively. ⊗ denotes the convolutional computation
operation. ReLU() and BN() represent the ReLU and batch
normalization functions, respectively.

The classifier is comprised of an average pooling layer and a
dense (i.e., fully-connected) layer, mapping the features output
by ConvBlock 4 to the corresponding labels.

C. Bidirectional Decoupled Knowledge Distillation

The bidirectional decoupled KD promotes mutual knowl-
edge transfer between lower and higher levels and extracts
the knowledge hidden in the target and the non-target classes,
helping Self-BiDecKD mine rich representations from data.

Let Oit = [Oit,1, O
i
t,2, ..., O

i
t,C] ∈ R1×C , t = 1, 2, ..., ntrain,

denote the t-th output vector of Classifier i, where C is the
number of classes. Let P it = [P it,1, P

i
t,2,, P

i
t,C] ∈ R1×C

and P it,\ = [P it,\1, P
i
t,\2,, P

i
t,\C] ∈ R1×C be the classifica-

tion probabilities of the target and non-target classes of Oit,
respectively. P it,j ∈ P it and P it,\j ∈ P

i
t,\ (j = 1, 2, ..., C) are

defined as:

P it,j =
exp(Oit,j/T)∑C
k=1 exp(O

i
t,k/T)

P it,\j =

∑C
m=1,m 6=j exp(O

i
t,m/T)∑C

k=1 exp(O
i
t,k/T)

(2)

where T is a temperature scaling parameter. Following the
literature [18], [19], [20], [21], we set T = 1.0 in this paper.

The loss of the bidirectional decoupled KD measures the
difference between the classification probabilities of the target
class of two given classifiers and the difference between the
classification probabilities of the non-target class of the same
classifiers above. Let Li,tBTCL and Li,tBNCL, i = 1, 2, 3, be
the bidirectional target class loss and the bidirectional non-
target class loss of the t-th input sample between Classifier
i and Classifier 4, xt. Let Li,tBDKD, i = 1, 2, 3, denote
the bidirectional decoupled KD’s loss of xt. Li,tBDKD is a
combination of Li,tBTCL and Li,tBNCL via the weighted sum
method, defined in equation (3).

Li,tBDKD = αLi,tBTCL + βLi,tBNCL
= α(KL(P it , P

4
t) +KL(P 4

t , P
i
t))

+ β(KL(P it,\, P
4
t,\) +KL(P 4

t,\, P
i
t,\))

(3)

where α and β are the weights of Li,tBTCL and Li,tBNCL. KL()
represents the Kullback Leibler (KL) function. As the previous
study suggested [23], we set α = 1.0. Meanwhile, based on our
experimental results, we set β =1.0 (More details are found in
Subsection IV-C).

D. Loss Function

The loss function of Self-BiDecKD, L, comprises a su-
pervised loss, Lsup, and a bidirectional decoupled KD loss,
LBDKD.

As the previous self-distillation work in [18], [19], [21],
Lsup is the summation of the supervised loss functions on the
four classifiers. The supervised loss on each classifier is based
on the cross-entropy function, CE(), to measure the average
difference between the ground truth labels and their prediction
vectors. Lsup is defined in equation (4).

Lsup = −
1

ntrain

4∑
i=1

ntrain∑
t=1

CE(P it , yt) (4)

where yt is a ground truth label associated with xt.
As shown in Fig. 1, LBDKD consists of the bidirectional

decoupled KD loss between Classifier 1 and Classifier 4,
the bidirectional decoupled KD loss between Classifier 2 and
Classifier 4, and the bidirectional decoupled KD loss between
Classifier 3 and Classifier 4, defined in equation (5).

LBDKD = − 1

ntrain

3∑
i=1

ntrain∑
t=1

Li,tBDKD (5)

The loss function of Self-BiDecKD, L, is calculated as:

L =(1− µ)Lsup + µLBDKD + λ||θ||22

=− 1

ntrain

ntrain∑
t=1

((1− µ)(
4∑
i=1

CE(P it , yt)) +

3∑
i=1

µLi,tBDKD)

+ λ||θ||22
(6)

where θ represents the parameters of Self-BiDecKD, µ (0 <
µ < 1) is a coefficient of L, and λ is a coefficient of ||θ||22
(i.e., L2 regularization). In the experiments, we set µ = 0.1
(More details are found in Subsection IV-C). Besides, the Self-
BiDecKD’s pseudo-code is given in Algorithm 1.

IV. PERFORMANCE EVALUATION

This section first explains the experimental setup and
performance metrics. It then describes the hyper-parameter
sensitivity, ablation study, and effects of different classifiers.
Finally, the experimental results are analyzed.

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 5

TABLE I
DETAILS OF 85 UCR DATASETS.

ID Type Data Name Test Train Length Classes ID Type Data Name Test Train Length Classes
1 Image Adiac 391 390 176 37 44 Image MedicalImages 760 381 99 10
2 Image ArrowHead 175 36 251 3 45 Image MiddlePhalanxOutlineAgeGroup 154 400 80 3
3 Spectro Beef 30 30 470 5 46 Image MiddlePhalanxOutlineCorrect 291 600 80 2
4 Image BeetleFly 20 20 512 2 47 Image MiddlePhalanxTW 154 399 80 6
5 Image BirdChicken 20 20 512 2 48 Sensor MoteStrain 1252 20 84 2
6 Sensor Car 60 60 577 4 49 ECG NonInvasiveFetalECGThorax1 1965 1800 750 42
7 Simulated CBF 900 30 128 3 50 ECG NonInvasiveFetalECGThorax2 1965 1800 750 42
8 Sensor ChlorineConcentration 3840 467 166 3 51 Spectro OliveOil 30 30 570 4
9 Sensor CinCECGTorso 1380 40 1639 4 52 Image OSULeaf 242 200 427 6
10 Spectro Coffee 28 28 286 2 53 Image PhalangesOutlinesCorrect 858 1800 80 2
11 Device Computers 250 250 720 2 54 Sensor Phoneme 1896 214 1024 39
12 Motion CricketX 390 390 300 12 55 Sensor Plane 105 105 144 7
13 Motion CricketY 390 390 300 12 56 Image ProximalPhalanxOutlineAgeGroup 205 400 80 3
14 Motion CricketZ 390 390 300 12 57 Image ProximalPhalanxOutlineCorrect 291 600 80 2
15 Image DiatomSizeReduction 306 16 345 4 58 Image ProximalPhalanxTW 205 400 80 6
16 Image DistalPhalanxOutlineAgeGroup 139 400 80 3 59 Device RefrigerationDevices 375 375 720 3
17 Image DistalPhalanxOutlineCorrect 276 600 80 2 60 Device ScreenType 375 375 720 3
18 Image DistalPhalanxTW 139 400 80 6 61 Simulated ShapeletSim 180 20 500 2
19 Sensor Earthquakes 139 322 512 2 62 Image ShapesAll 600 600 512 60
20 ECG ECG200 100 100 96 2 63 Device SmallKitchenAppliances 375 375 720 3
21 ECG ECG5000 4500 500 140 5 64 Sensor SonyAIBORobotSurface1 601 20 70 2
22 ECG ECGFiveDays 861 23 136 2 65 Sensor SonyAIBORobotSurface2 953 27 65 2
23 Device ElectricDevices 7711 8926 96 7 66 Sensor StarLightCurves 8236 1000 1024 3
24 Image FaceAll 1690 560 131 14 67 Spectro Strawberry 370 613 235 2
25 Image FaceFour 88 24 350 4 68 Image SwedishLeaf 625 500 128 15
26 Image FacesUCR 2050 200 131 14 69 Image Symbols 995 25 398 6
27 Image FiftyWords 455 450 270 50 70 Simulated SyntheticControl 300 300 60 6
28 Image Fish 175 175 463 7 71 Motion ToeSegmentation1 228 40 277 2
29 Sensor FordA 1320 3601 500 2 72 Motion ToeSegmentation2 130 36 343 2
30 Sensor FordB 810 3636 500 2 73 Sensor Trace 100 100 275 4
31 Motion GunPoint 150 50 150 2 74 ECG TwoLeadECG 1139 23 82 2
32 Spectro Ham 105 109 431 2 75 Simulated TwoPatterns 4000 1000 128 4
33 Image HandOutlines 370 1000 2709 2 76 Motion UWaveGestureLibraryAll 3582 896 945 8
34 Motion Haptics 308 155 1092 5 77 Motion UWaveGestureLibraryX 3582 896 315 8
35 Image Herring 64 64 512 2 78 Motion UWaveGestureLibraryY 3582 896 315 8
36 Motion InlineSkate 550 100 1882 7 79 Motion UWaveGestureLibraryZ 3582 896 315 8
37 Sensor InsectWingbeatSound 1980 220 256 11 80 Sensor Wafer 6164 1000 152 2
38 Sensor ItalyPowerDemand 1029 67 24 2 81 Spectro Wine 54 57 234 2
39 Device LargeKitchenAppliances 375 375 720 3 82 Image WordSynonyms 638 267 270 25
40 Sensor Lightning2 61 60 637 2 83 Motion Worms 77 181 900 5
41 Sensor Lightning7 73 70 319 7 84 Motion WormsTwoClass 77 181 900 2
42 Simulated Mallat 2345 55 1024 8 85 Image Yoga 3000 300 426 2
43 Spectro Meat 60 60 448 3

A. Experimental Setup

1) Data Description: Following the previous works [9],
[11], [39], [40], we select 85 widely used datasets from the
UCR 2018 archive [47]. The number of categories ranges from
2 to 60 and the length is from 24 to 2709, involving in multiple
domains such as motion and electrocardiogram (ECG). More
details about the datasets can be found in Table I.

2) Implementation Details: We set the decay value of BN
to 0.9. To avoid overfitting during the training process, this
paper adopts L2 regularization. At the same time, we use the
Adam optimizer with the momentum term, initial learning rate,
and decay value set to 0.9, 0.001, and 0.9, respectively. All
experiments are conducted on a workstation with Intel Xeon
E5-2667V4 8 Core CPU × 2 3.2 GHz, 128 GB RAM, and 4
× Nvidia GTX Titan V 12G GPU.

B. Performance Metrics

To verify the Self-BiDecKD’s performance, we use two
widely used metrics: ‘win’/‘tie’/‘lose’ and AVG rank, both

based on the top-1 accuracy. As the previous works suggest
[8], [9], [11], [12], [13], [14], [37], [39], [40], each algorithm’s
‘win’, ‘tie’, and ‘lose’ values indicate it is better than, equiv-
alent to, and worse than the other algorithms on how many
datasets, respectively; The ‘best’ value is the summation of
the corresponding ‘win’ and ‘tie’ values. Besides, following
the studies in [8], [9], [11], [12], [13], [14], [40], we use the
AVG rank value to compare different algorithms regarding
their performance on accuracy. The AVG rank score is based
on the Wilcoxon signed-rank test [48] with Holm’s alpha (5%)
correction.

C. Hyper-parameter Sensitivity

We use 85 UCR2018 datasets to study the impact of
different hyper-parameter settings on the performance of Self-
BiDecKD.

1) Self-BiDecKD with different β values: As aforemen-
tioned, β is the weight of the bidirectional non-target class
loss. Table II shows the statistical results with different β (i.e.,
β = 0.1, 0.5, 1.0, 2.0, 5.0) values on 85 datasets. It is seen that

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 6

Algorithm 1 Self-BiDecKD
Input: D = (Dtrain,Dval,Dtest);
Output: Y;

1: Initialize the model parameters, θ0;
2: //Training and validation
3: for k = 1 to nep do . nep is the size of training epochs.
4: Feedforward Dtrain into Self-BiDecKD;
5: Obtain Lsup using equation (4);
6: Obtain LBDKD using equation (5);
7: Obtain L using equation (6);
8: Update θk using θk = θk−1 − η∇θk−1

L(θk−1); .
η is the learning rate, and θk−1 and ∇θk−1

denote the
parameters and gradient at the (k-1)-th training epoch,
respectively.

9: if k > 1 then
10: Validate Self-BiDecKD using Dval;
11: end if
12: end for
13: // Testing the model
14: Use the trained model to predict Y of Dtest.

TABLE II
THE STATISTICAL RESULTS WITH DIFFERENT β VALUES ON 85 DATASETS.

Metrics β
0.1 0.5 1.0 2.0 5.0

Best 25 19 38 22 29
Win 13 12 20 6 14
Tie 12 7 18 16 15

Lose 60 66 47 63 56
AVG rank 3.2471 2.9647 2.4824 2.8882 3.4176

β = 1.0 results in 20/18/47 regarding ‘win’/‘tie’/‘lose’ and the
smallest AVG rank, namely 2.4824. This means β = 1.0 is
appropriate to help Self-BiDecKD mine rich representations
from the data.

2) Self-BiDecKD with different µ values: µ is a coefficient
of Self-BiDecKD to balance the supervised loss and the
bidirectional decoupled KD loss. Table III shows the statistical
results with different µ (i.e., µ = 0.1, 0.2, ..., 0.9) values on
85 datasets. One can observe that 0.1 is the best value for µ
as it helps Self-BiDecKD to obtain the highest ‘best’ value,
namely 49, and the smallest AVG rank score, namely 2.8765.

3) Self-BiDecKD with different KD losses: An appropriate
KD loss function is crucial for Self-BiDecKD to measure the
knowledge difference between two given neural network lay-
ers. Table IV shows the statistical results with different losses
on 85 datasets, including L1 (Mean Absolute Error), L2 (Mean
Squared Error), CE (Cross Entropy), KL, JS (Jensen Shannon),
and WD (Wasserstein Distance) losses. Clearly, KL outper-
forms the other 5 losses regarding ‘best’/‘win’/‘tie’/‘lose’ and
AVG rank values. Therefore, we choose KL loss to promote
the knowledge flow within the model.

D. Ablation Study

To study the effectiveness of the decoupled KD and bidi-
rectional decoupled KD, we compare Self-BiDecKD with two
of its variants listed below.

TABLE III
THE STATISTICAL RESULTS WITH DIFFERENT µ VALUES ON 85 DATASETS.

Metrics µ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Best 49 28 16 17 11 12 2 2 1
Win 36 14 5 6 3 3 0 0 0
Tie 13 14 11 11 8 9 2 2 2

Lose 36 57 69 68 74 73 83 83 84
AVG rank 2.8765 3.1353 3.5118 3.7824 4.8235 5.5353 6.1529 7.0941 8.0882

TABLE IV
THE STATISTICAL RESULTS WITH DIFFERENT LOSSES ON 85 DATASETS.

Metrics L1 L2 CE KL JS WD
Best 19 20 28 39 31 26
Win 12 12 14 20 14 14
Tie 7 8 14 19 17 12

Lose 66 65 57 46 54 59
AVG rank 4.8262 4.7782 3.3527 2.3694 2.8815 3.8834

• Self-UniDecKD: the unidirectional self-decoupled distil-
lation method with the feature extractor in Fig. 1, which
feeds back the knowledge obtained from the output layer
to guide the learning process of each lower-level block
via the decoupled KD loss function.

• Self-UniKD: the unidirectional self-distillation method
with the feature extractor in Fig. 1, which feeds back
the knowledge obtained from the output layer to guide
the learning process of each lower-level block via the
traditional self-distillation loss function, i.e., KL().

1) Effectiveness of Decoupled Knowledge Distillation: To
study the effectiveness of the decoupled KD, we compare Self-
UniDecKD with Self-UniKD on 85 datasets. Fig. 2 depicts
the accuracy plot of Self-UniDecKD against Self-UniKD.
Compared with Self-UniKD that only considers the target-
class knowledge, Self-UniDecKD pays attention to both the
target- and non-target class knowledge. That is why Self-
UniDecKD achieves 52/4/29 with respect to ‘win’/‘tie’/‘lose’
compared with Self-UniKD.

2) Effectiveness of Bidirectional Decoupled Knowledge
Distillation: To study the effectiveness of the bidirec-
tional decoupled KD, we compare Self-BiDecKD with Self-
UniDecKD on 85 datasets. Fig. 3 depicts the accuracy plot
of Self-BiDecKD against Self-UniDecKD. Compared with
Self-UniDecKD, Self-BiDecKD obtains 47/8/30 regarding
‘win’/‘tie’/‘lose’. That is because, unlike Self-UniDecKD that
uses unidirectional decoupled KD, Self-BiDecKD applies bidi-
rectional decoupled KD to promoting the mutual learning be-
tween lower- and higher-level semantic information, extracting
abundant knowledge hiding in the data.

E. Impact of Different Classifiers

We also study the performance of different classifiers lo-
cated at different network depths on 85 datasets. Fig. 4 shows
the accuracy plot of two adjacent classifiers. One can observe
that Classifier 2 achieves a ‘win’/‘tie’/‘lose’ of 79/2/4, com-
pared with Classifier 1; Classifier 3 obtains a ‘win’/‘tie’/‘lose’
score of 82/3/0, compared with Classifier 2; Classifier 4 gets a

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 7

TABLE V
THE STATISTICAL RESULTS WITH VARIOUS SELF-DISTILLATION ALGORITHMS ON 85 DATASETS.

Metrics Baseline BYOT TSD SAD ProSelfLC SelfRef ESD Self-BiDecKD
Best 11 16 14 21 20 13 21 35
Win 4 6 4 10 5 6 10 16
Tie 7 10 10 11 15 7 11 19

Lose 74 69 71 64 65 72 64 50
AVG rank 5.3882 4.5471 4.7589 4.5706 4.0471 4.7765 4.6235 3.2882

Fig. 2. Accuracy plot showing the performance difference between Self-
UniDecKD and Self-UniKD on 85 datasets.

Fig. 3. Accuracy plot showing the performance difference between Self-
BiDecKD and Self-UniDecKD on 85 datasets.

‘win’/‘tie’/‘lose’ score of 84/0/1, compared with Classifier 3. It
means that a classifier closer to the output layer achieves better
performance. That is because, as the network depth deepens,
the features carried become richer and richer.

F. Result Analysis and Discussion

To evaluate the performance of Self-BiDecKD, we compare
it with a number of state-of-the-art self-distillation algorithms
below on the 85 UCR2018 datasets. Note that for fair com-
parison, the feature extractor used in each of these algorithms
is the same as that in Fig. 1.

• Baseline: the proposed feature extractor in Fig. 1, which
is a non-self-distillation model for TSC.

• BYOT: the best your own teacher [18] method adapted
for TSC.

• TSD: the transitive self-distillation [21] method adapted
for TSC.

• SAD: the layer-wise attention self-distillation [49]
method adapted for TSC.

• ProSelfLC: the end-to-end progressive self-label correc-
tion [20] method adapted for TSC.

• SelfRef: the feature refinement self-distillation [19]
method adapted for TSC.

• ESD: the ensemble self-distillation [21] method adapted
for TSC.

Table V shows the statistical results with various self-
distillation algorithms on 85 datasets. Self-BiDecKD is the
best self-distillation algorithm among the eight algorithms as
it obtains the best ‘best’/‘win’/‘tie’/‘lose’ and the smallest
AVG rank values, namely, 35/16/19/50 and 3.2882. That is
because that Self-BiDecKD uses the bidirectional decoupled
KD to promote mutual knowledge transfer between lower and
higher levels, efficiently learning the knowledge hidden in
the target and non-target classes. ProSelfLC takes advantage
of its progressive self-label correction to modify the target
gradually and adaptively as training continues and to avoid
entropy minimization. That brings it second in terms of ‘win’
and AVG rank, namely 10 and 4.0471. On the contrary, it is
difficult for SelfRef to extract sufficient features from the input
through feature refinement only, resulting in its performing the
worst among all the self-distillation algorithms for comparison.

To further study the effectiveness of Self-BiDecKD, we
compare it with the non-self-distillation Baseline on 85
datasets. Fig. 5 depicts the accuracy plot of Self-BiDecKD
against the Baseline. The results show that Self-BiDecKD
achieves a ‘win’/‘tie’/‘lose’ of 58/8/19. That is because the
decoupled KD efficiently promotes lower- and higher-level
semantic information to learn from each other and helps
Self-BiDecKD mine rich and diversified relationships and
regularizations from the data. The AVG rank results of the
eight self-distillation algorithms are shown in Fig. 6.

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 8

Fig. 4. Accuracy plot results showing the performance difference between two adjacent classifiers on 85 datasets.

Fig. 5. Accuracy plot showing the performance difference between Self-
BiDecKD and Baseline on 85 datasets.

G. Evaluation on ResNet and InceptionTime

To investigate the impact of Self-BiDecKD on different fea-
ture extractors, we consider two widely used feature extractors,
i.e., ResNet [8] and InceptionTime [11].

• Baseline (ResNet): a residual convolutional network
containing four residual blocks, which is a non-self-
distillation model for TSC. Each residual block is com-
prised of three convolutional blocks, where their filter
sizes are 8, 5, and 3, respectively.

• Self-BiDecKD (ResNet): the proposed self-bidirectional
decoupled distillation, where ResNet is used as its feature
extractor.

• Baseline (InceptionTime): an Inception convolutional net-
work containing four Inception blocks, which is a non-
self-distillation model for TSC. Each Inception block
consists of 5 convolutional blocks and 1 maxpooling
block, where the filter sizes of these convolutional blocks
are 17, 11, 9, 5, and 3, respectively.

• Self-BiDecKD (InceptionTime): the proposed self-
bidirectional decoupled distillation, where InceptionTime

is used as its feature extractor.
To visualize the differences between Self-BiDecKD

(ResNet) and Baseline (ResNet), we provide the accuracy
plot of Self-BiDecKD (ResNet) against Baseline (ResNet) on
85 datasets in Fig. 7. The figure shows that Self-BiDecKD
(ResNet) obtains 58/11/16 regarding ‘win’/‘tie’/‘lose’, reflect-
ing that the proposed method promotes mutual knowledge
flow between lower and higher levels within the model and
is thus able to extract abundant representations from the data.
Similarly, Self-BiDecKD (InceptionTime) beats Baseline (In-
ceptionTime). As shown in Fig. 8, Self-BiDecKD (Inception-
Time) obtains 57/10/18 in terms of ‘win’/‘tie/‘lose’, showing
the effectiveness of Self-BiDecKD on knowledge transfer.

V. CONCLUSION

Self-BiDecKD enables the output of the output layer to
form a bidirectional decoupled KD with the output of each
lower-level block. While the knowledge captured by higher
levels supervises lower levels, the bidirectional decoupled KD
enables the knowledge extracted from lower levels to guide
higher levels. Moreover, it pays attention to the knowledge
hidden in the target and the non-target classes, which helps
Self-BiDecKD to mine rich relationships and regularizations
from the data. Experimental results show that compared with a
number of self-distillation algorithms, Self-BiDecKD wins 35
out of 85 datasets and achieves the smallest AVG rank score,
namely 3.2882. In particular, compared with the non-self-
distillation Baseline, Self-BiDecKD obtains a ‘win’/‘tie’/‘lose’
of 58/8/19, which unveils the potential of Self-BiDecKD to be
applied to TSC problems in various real-world domains.

ACKNOWLEDGEMENT

The authors extend their heartfelt gratitude to the editors and
referees for their invaluable suggestions that have significantly
enhanced the quality of this article.

REFERENCES

[1] Z. Jia, X. Cai, G. Zheng, J. Wang, and Y. Lin, “Sleepprintnet: A
multivariate multimodal neural network based on physiological time-
series for automatic sleep staging,” IEEE Trans. Artif. Intell., vol. 1,
no. 3, pp. 248–257, 2020.

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 9

12345678910

Baseline
SelfRef

TSD
ESD SAD

BYOT
ProSelfLC
Self-BiDecKD

Fig. 6. AVG rank results of various self-distillation algorithms on 85 datasets.

Fig. 7. Accuracy plot showing the performance difference between Self-
BiDecKD (ResNet) and Baseline (ResNet) on 85 datasets.

Fig. 8. Accuracy plot showing the performance difference between Self-
BiDecKD (InceptionTime) and Baseline (InceptionTime) on 85 datasets.

[2] A. Erazo and S.-B. Ko, “A long short-term memory-based intercon-
nected architecture for classification of grasp types using surface-
electromyography signals,” IEEE Trans. Artif. Intell., pp. 1–14, 2023.

[3] S. Bhattacharyya, S. Majumder, P. Debnath, and M. Chanda, “Arrhyth-
mic heartbeat classification using ensemble of random forest and support
vector machine algorithm,” IEEE Trans. Artif. Intell., vol. 2, no. 3, pp.
260–268, 2021.

[4] G. Dewangan and S. Maurya, “Fault diagnosis of machines using deep
convolutional beta-variational autoencoder,” IEEE Trans. Artif. Intell.,
vol. 3, no. 2, pp. 287–296, 2022.

[5] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,

“Deep learning for time series classification: a reviewer,” Data Min.
Knowl. Disc., vol. 33, pp. 917–963, 2019.

[6] H. Xing, Z. Xiao, R. Qu, Z. Zhu, and B. Zhao, “An efficient federated
distillation learning system for multi-task time series classification,”
IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, 2022.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, pp. 436–
444, 2015.

[8] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in Proc. Int. Jt. Conf.
Neural Networks (IJCNN), 2017, pp. 1578–1585.

[9] A. Dempster, F. Petitjean, and G. Webb, “Rocket: exceptionally fast and
accurate time series classification using random convolutional kernels,”
Data Min. Knowl. Disc., vol. 34, p. 1454–1495, 2020.

[10] K. Kashiparekh, J. Narwariya, P. Malhotra, L. Vig, and G. Shroff,
“Convtimenet: A pre-trained deep convolutional neural network for time
series classification,” in Proc. Int. Jt. Conf. Neural Networks (IJCNN),
2019, pp. 1–8.

[11] H. I. Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, J. Weber,
G. I. Webb, L. Idoumghar, P.-A. Muller, and F. Petitjean, “Inceptiontime:
finding alexnet for time series classification,” Data Min. Knowl. Disc.,
vol. 34, pp. 1936–1962, 2020.

[12] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate lstm-
fcns for time series classification,” Neural Networks, vol. 116, pp. 237–
245, 2019.

[13] H. Xing, Z. Xiao, D. Zhan, S. Luo, P. Dai, and K. Li, “Selfmatch:
Robust semisupervised time-series classification with self-distillation,”
Int. J. Intell. Syst., vol. 37, pp. 8583–8610, 2022.

[14] Z. Xiao, X. Xu, H. Xing, R. Qu, F. Song, and B. Zhao, “Rnts: Robust
neural temporal search for time series classification,” in Proc. Int. Jt.
Conf. Neural Networks (IJCNN), 2021, pp. 1–8.

[15] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Intell., vol. 35,
no. 8, pp. 1798–1828, 2013.

[16] L. Jin, J. Cheng, J. Shi, and F. Huang, “Brief introduction of back
propagation (bp) neural network algorithm and its improvement,” In:
Jin, D., Lin, S. (eds) Advances in Computer Science and Information
Engineering. Advances in Intelligent and Soft Computing, 2012.

[17] J. Guo, B. Yu, S. Maybank, and D. Tao, “Knowledge distillation: A
survey,” Int. J. Comput. Vision, vol. 129, p. 1789–1819, 2021.

[18] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be your own
teacher: Improve the performance of convolutional neural networks via
self distillation,” in Proc. IEEE Int. Conf. Comput. Vision (ICCV), 2019,
pp. 3712–3721.

[19] M. Ji, S. Shin, S. Hwang, G. Park, and I.-C. Moon, “Refine myself
by teaching myself: Feature refinement via self-knowledge distillation,”
in Proc IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognit.
(CVPR), 2021, pp. 10 659–10 668.

[20] X. Wang, Y. Hua, E. Kodirov, D. A. Clifton, and N. M. Robertson,
“Proselflc: Progressive self label correction for training robust deep
neural networks,” in Proc IEEE Comput. Soc. Conf. Comput. Vision
Pattern Recognit. (CVPR), 2021, pp. 752–761.

[21] L. Zhang, C. Bao, and K. Ma, “Self-distillation: Towards efficient and
compact neural networks,” IEEE Trans. Pattern Anal. Intell., vol. 44,
no. 8, pp. 4388–4403, 2022.

[22] S. Ioffc and C. Szegedy, “Batch normalization: accelerating deep net-
work training by reducing internal covariate shift,” arXiv preprint arXiv:
1502.03167, 2015.

[23] B. Zhao, Q. Cui, R. Song, Y. Qiu, and J. Liang, “Decoupled knowledge
distillation,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern
Recognit. (CVPR), 2022, pp. 11 943–11 952.

[24] A. Bagnall., J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: a review and experimental evaluation
of recent algorithmic advances,” Data Min. Knowl. Disc., vol. 31, pp.
1–55, 2017.

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 10

[25] J. Lines and A. Bagnall, “Time series classification with ensembles of
elastic distance measures,” Data Min. Knowl. Disc., vol. 29, pp. 565–
592, 2015.

[26] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time series classification
with cote: the collective of transformation-based ensembles,” in Proc.
IEEE Int. Conf. Data Eng. (ICDE), 2016, pp. 1548–1549.

[27] J. Lines, S. Taylor, and A. Bagnall, “Time series classification with hive-
cote: the hierarchical of transformation-based ensembles,” ACM Trans.
Knowl. Discov. D., vol. 21, no. 52, pp. 1–35, 2018.

[28] K. Fauvel, É. Fromont, V. Masson, P. Faverdin, and A. Termier, “Xem:
An explainable-by-design ensemble method for multivariate time series
classification,” Data Min. Knowl. Disc., vol. 36, pp. 917–957, 2022.

[29] M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bag-
nall, “Hive-cote 2.0: a new meta ensemble for time series classification,”
Mach. Learn., vol. 110, pp. 3211–3243, 2021.

[30] W. Pei, H. Dibeklioğlu, D. M. J. Tax, and L. van der Maaten, “Multi-
variate time-series classification using the hidden-unit logistic model,”
IEEE Trans. Neur. Net. Lear., vol. 29, no. 4, pp. 920–931, 2018.

[31] K. S. Tuncel and M. G. Baydogan, “Autoregressive forests for multi-
variate time series modeling,” Pattern Recogn., vol. 73, pp. 202–215,
2018.

[32] M. G. Baydogan and G. Runger, “Time series representation and
similarity based on local auto patterns,” Data Min. Knowl. Disc., vol. 30,
pp. 476–509, 2016.

[33] J. Large, A. Bagnall, S. Malinowski, and R. Tavenard, “From bop to boss
and beyond: time series classification with dictionary based classifier,”
arXiv preprint arXiv:1809.06751, 2018.

[34] P. Schäfer and U. Leser, “Multivariate time series classification with
weasel+muse,” arXiv preprint arXiv:1711.11343, 2017.

[35] K. Wu, K. Yuan, Y. Teng, J. Liu, and L. Jiao, “Broad fuzzy cognitive
map systems for time series classification,” App. Soft Comput., vol. 128,
pp. 1–13, 2022.

[36] P. Shi, X. Dang, W. Ye, Z. Li, and Z. Qin, “Mrm2: Multi-relationship
modeling module for multivariate time series classification,” in Proc.
IEEE Int. Conf. Data Min. (ICDM), 2022, pp. 1185–1190.

[37] R. Chen, X. Yan, S. Wang, and G. Xiao, “Da-net: Dual-attention network
for multivariate time series classification,” Inf. Sci., vol. 610, pp. 472–
487, 2022.

[38] Z. Xiao, X. Xu, H. Zhang, and E. Szczerbicki, “A new multi-process
collaborative architecture for time series classification,” Knowledge-
Based Syst., vol. 220, pp. 1–11, 2021.

[39] G. Li, B. Choi, J. Xu et al., “Shapenet: A shapelet-neural network
approach for multivariate time series classification,” in Proc. AAAI Conf.
Artif. Intell., 2021, pp. 8375–8383.

[40] A. Dempster, D. F. Schmidt, and G. I. Webb, “Minirocket: A very fast
(almost) deterministic transform for time series classification,” in Proc.
ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2021, pp. 248–257.

[41] Q. Ma, S. Li, and G. W. Cottrell, “Adversarial joint-learning recurrent
neural network for incomplete time series classification,” IEEE Trans.
Pattern Anal., vol. 44, no. 4, pp. 1765–1776, 2022.

[42] Z. Xiao, H. Xing, B. Zhao, R. Qu, S. Luo, P. Dai, K. Li, and Z. Zhu,
“Deep contrastive representation learning with self-distillation,” IEEE
Trans. Emerg. Top. Comput. Intell., pp. 1–13, 2023.

[43] D. Lee, S. Lee, and H. Yu, “Learnable dynamic temporal pooling for
time series classification,” in Proc. AAAI Conf. Artif. Intell., 2021, pp.
8288–8296.

[44] S. H. Huang, L. Xu, and C. Jiang, “Residual attention net for superior
cross-domain time sequence modeling,” Fintech with Artificial Intelli-
gence, Big Data, and Blockchain. Springer, 2021.

[45] Z. Xiao, X. Xu, H. Xing, S. Luo, P. Dai, and D. Zhan, “Rtfn: A robust
temporal feature network for time series classification,” Inf. Sci., vol.
571, pp. 65–86, 2021.

[46] X. Zhang, Y. Gao, J. Lin, and C.-T. Lu, “Tapnet: Multivariate time series
classification with attentional prototypical network,” in Proc. AAAI Conf.
Artif. Intell., 2020, pp. 6845–6852.

[47] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. Keogh, “The ucr time series archive,”
IEEE/CAA J. Autom. Sin., vol. 6, no. 6, pp. 1293–1305, 2019.

[48] D. Rey and M. Neuhäuser, “Wilcoxon-signed-rank test,” In: Lovric, M.
(eds) International Encyclopedia of Statistical Science, 2021.

[49] Y. Hou, Z. Ma, C. Liu, and C. C. Loy, “Learning lightweight lane
detection cnns by self attention distillation,” in Proc. IEEE Int. Conf.
Comput. Vision (ICCV), 2019, pp. 1013–1021.

Zhiwen Xiao (Member, IEEE) received the B.Eng.
degree in network engineering from the Chengdu
University of Information Technology, Chengdu,
China, and the M.Eng. degree in computer science
from the Northwest A & F University, Yangling,
China. He is pursuing the Ph.D. degree in computer
science at Southwest Jiaotong University, Chengdu,
China. His research interests include semantic com-
munication, federated learning (FL), representation
learning, data mining, and computer vision.

Huanlai Xing (Member, IEEE) received Ph.D. de-
gree in computer science from University of Notting-
ham (Supervisor: Dr Rong Qu), Nottingham, U.K.,
in 2013. He was a Visiting Scholar in Computer Sci-
ence, The University of Rhode Island (Supervisor:
Dr. Haibo He), USA, in 2020-2021. Huanlai Xing is
with the School of Computing and Artificial Intelli-
gence, Southwest Jiaotong University (SWJTU), and
Tangshan Institute of SWJTU. He was on Editorial
Board of SCIENCE CHINA INFORMATION SCI-
ENCES. He was a member of several international

conference program and senior program committees, such as ECML-PKDD,
MobiMedia, ISCIT, ICCC, TrustCom, IJCNN, and ICSINC. His research in-
terests include semantic communication, representation learning, data mining,
reinforcement learning, machine learning, network function virtualization, and
software defined networking.

Rong Qu (Senior Member, IEEE) is a full Professor
at the School of Computer Science, University of
Nottingham. She received her B.Sc. in Computer
Science and Its Applications from Xidian University,
China in 1996 and Ph.D. in Computer Science from
The University of Nottingham, U.K. in 2003. Her
research interests include the modelling and optimi-
sation for logistics transport scheduling, personnel
scheduling, network routing, portfolio optimization
and timetabling problems by using evolutionary
algorithms, mathematical programming, constraint

programming in operational research and artificial intelligence. These compu-
tational techniques are integrated with knowledge discovery, machine learning
and data mining to provide intelligent decision support on logistic fleet
operations at SMEs, workforce scheduling at hospitals, policy making in
education, and cyber security for connected and autonomous vehicles.

Dr. Qu is an associated editor at Engineering Applications of Artificial
Intelligence, IEEE Computational Intelligence Magazine, IEEE Transactions
on Evolutionary Computation, Journal of Operational Research Society and
PeerJ Computer Science. She is a Senior IEEE Member since 2012 and
the Vice-Chair of Evolutionary Computation Task Committee since 2019
and Technical Committee on Intelligent Systems Applications (2015-2018) at
IEEE Computational Intelligence Society. She has guest edited special issues
on the automated design of search algorithms and machine learning at the
IEEE Transactions on Pattern Analysis and Machine Intelligence and IEEE
Computational Intelligence Magazine.

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 11

Hui Li received the B.Sc. and M.Sc. degrees in
applied mathematics from the School of Mathemat-
ics and Statistics, Xi’an Jiaotong University, Xi’an,
China, in 1999 and 2002, respectively, and the Ph.D.
degree in computer science from the University of
Essex, Colchester, U.K., in 2008. He is currently
a Professor with the School of Mathematics and
Statistics, Xi’an Jiaotong University. His current
research interests include evolutionary computation,
multiobjective optimization, and machine learning.
Dr. Li was a recipient of the 2010 IEEE TRANSAC-

TIONS ON EVOLUTIONARY COMPUTATION Outstanding Paper Award
as one of the inventors for MOEA/D.

Li Feng received his PhD degree from Xi’an Jiao-
tong University under the supervision of Prof. Xiao-
hong Guan (Academian of CAS, IEEE Fellow). He
is a Research Professor and PhD supervisor with
the School of Computing and Artificial Intelligence,
Southwest Jiaotong University, Chengdu. His re-
search interests include artificial intelligence, cyber
security and its applications.

Bowen Zhao received his B. Eng. degree in Com-
puter Science and Technology in 2020, from South-
west Jiaotong University, Sichuan, China. He is
currently pursuing the master’s degree in the School
of Information Science and Technology, Southwest
Jiaotong University, Chengdu, China. His research
interests include deep reinforcement learning, cloud
computing, and deep learning.

Jiayi Yang is pursuing her bachelor’s degree in
software engineering at Tongji University, expecting
to graduate in 2024. Her research interests include
deep neural networks, reinforcement learning, and
computer vision.

	Introduction
	Related Work
	Traditional Algorithms
	Deep Learning-based Algorithms

	Self-BiDecKD
	Problem Formulation
	Feature Extractor
	 Bidirectional Decoupled Knowledge Distillation
	Loss Function

	Performance Evaluation
	Experimental Setup
	Data Description
	Implementation Details

	Performance Metrics
	Hyper-parameter Sensitivity
	 Self-BiDecKD with different values
	 Self-BiDecKD with different values
	Self-BiDecKD with different KD losses

	Ablation Study
	Effectiveness of Decoupled Knowledge Distillation
	Effectiveness of Bidirectional Decoupled Knowledge Distillation

	Impact of Different Classifiers
	Result Analysis and Discussion
	Evaluation on ResNet and InceptionTime

	Conclusion
	References
	Biographies
	Zhiwen Xiao
	Huanlai Xing
	Rong Qu
	Hui Li
	Li Feng
	Bowen Zhao
	Jiayi Yang

