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Abstract
In DEM simulations of triaxial tests, modelling a flexible lateral membrane is crucial and challenging. It is essential for the 
correct application of a uniform lateral pressure and for an accurate measurement of sample volume. Here, we introduce a 
membrane made of triangular facets, and model it as a continuum; we then compare this approach with a well-established 
method that uses a layer of bonded spheres. With either method, it is also possible to assess the additional stress applied by the 
membrane as it deforms, i.e. the difference between the stress applied at the boundary and the actual stress within the sample. 
It is shown that this difference has two origins: the tension developed in the membrane, as it deforms; and the curvature of 
the membrane, since this causes a vertical component of the confining pressure which can be significant. These findings 
may be used to inform and improve the membrane correction commonly used in experiments, where similar effects occur.
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1 Introduction

In the DEM modelling of triaxial tests on soil, one of the 
most important features and challenging tasks is the mod-
elling of a flexible membrane. This is crucial in order to 
achieve realistic behaviour of the material. The main pur-
pose for using a flexible lateral boundary in laboratory tri-
axial tests is to limit the lateral constraint on the sample, 
while applying a vertical load, so that the sample remains 
quite free to deform as it naturally would in the lateral direc-
tion. By doing so, it can be assumed that the natural failure 
mode can develop. However such membranes are known to 
have an effect on the stress within a sample [1, 2].

In DEM, a properly modelled flexible membrane allows 
for lateral pressure, applied by a confining fluid, to be 
applied uniformly over all regions of the lateral surface, as 
well as for volumetric deformations to be measured accu-
rately. A rigid cylindrical boundary would instead result 

in stress concentrations, and would also prevent any strain 
localisation from taking place.

In early DEM work on 3D triaxial tests, true triaxial con-
ditions, i.e. cubical samples with flat rigid boundaries, were 
often used [3, 4], instead of replicating the axisymmetric 
conditions of a standard triaxial test, for which a cylindrical 
flexible membrane was needed. Some early attempts at mod-
elling a flexible membrane in 3D included the application of 
lateral forces directly onto sample grains [5].

Other methods model the membrane as a separate body, 
e.g. as a layer of bonded monodisperse spheres ([6–9] among 
others) or as a set of connected triangular facets with degrees 
of freedom in their vertices [10, 11]. The former approach, 
in particular, has recently become quite popular, as it is sim-
ple to implement and has been proven to work effectively. 
Among other applications, this allowed for a realistic mod-
elling of the very heterogeneous lateral deformation of a 
railway ballast triaxial sample [7, 12].

Despite its success, this approach also has some limita-
tions. In particular, the choice of bond parameters, despite 
some attempts at linking them to the membrane material 
properties, still remains rather arbitrary. Other parameters 
that can affect the response include the resolution adopted 
(i.e. the size and number of spheres), the geometrical 
arrangement of spheres, and their initial overlap. A sufficient 
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resolution, in particular, is required in order to have a mem-
brane that is as continuous as possible and avoid gaps, which 
may however still occur, considering its discrete nature, 
especially at large strains and when the sample dilates. 
Spheres should therefore be small enough to prevent the 
smallest grains from escaping; this can lead to membranes 
made of a very large number of small spheres, and can also 
reduce the simulation timestep. Both these will impact the 
computational performance.

Due to these limitations, it can be worth considering 
alternative ways of modelling a flexible membrane. A fac-
eted membrane, with triangular facets connected to each 
other, whose vertices can move independently, can solve 
most of the bonded spheres membrane limitations. In par-
ticular, it provides geometric continuity with no need to 
resort to impractically high resolutions. In order to achieve 
a realistic response, it is important to include realistic mate-
rial properties in the modelling of the deformation of such 
a membrane.

Independently of the method used for modelling the mem-
brane in DEM, it is important to acknowledge that there is an 
effect of the membrane on the internal state of stress of the 
sample, just like in experiments. In DEM, this effect comes 
from the same causes that act in experiments; however, in 
case there should be any additional effect due to specific 
features of the DEM model, this needs to be acknowledged. 
It is therefore important to achieve a membrane model that is 
as realistic as possible, and that does not add any unwanted/
unphysical effect on the internal stress. Membrane effect has 
been often overlooked in previous DEM works, but it is an 
important feature that should not be neglected. In DEM it is 
possible to measure the internal state of stress directly from 
the interparticle contact forces, thus allowing for a simple 
estimation of membrane effect as a result of the comparison 
with the external stress that is measured at the boundaries, in 
a similar way to the measurements obtained experimentally.

In the following sections, after describing the two dif-
ferent membrane models adopted, the approach to the esti-
mation of membrane effect will be described, highlight-
ing all stress components involved. The insights obtained 
with this approach may also be useful for experiments: 
some of the corrections to external stress highlighted here 
also apply to the experimental case, and could be used to 
inform and improve the corrections currently adopted by 
the specifications.

2  Modelling a flexible membrane in DEM

2.1  Faceted membrane

The faceted membrane adopted here is obtained by defining 
a hexagonal arrangement of points on the sample’s lateral 

surface. The edges connecting neighbouring nodes define 
triangular facets. Each node can move independently of the 
others, which makes this membrane flexible.

The commercial software used for the DEM simulations 
is PFC3D [13], and it can be used in combination with the 
finite-volume code FLAC3D [14], thus providing a solution 
for continuum modelling of the membrane based on its real 
material properties.

The membrane is modelled here as a shell structure resist-
ing only membrane action (no bending action). Each trian-
gular facet defines one shell element. Each element is mod-
elled as a thin-shell constant strain triangle (CST) element, 
for which transverse shear deformations can be neglected. 
Elements are assumed to follow the behaviour of an iso-
tropic, linearly elastic material; the parameters defined for 
the constitutive model are Young’s modulus E = 1.4MPa 
and Poisson’s ratio � = 0.3 . Membrane thickness also needs 
to be assigned; depending on the type of laboratory test to 
be simulated, different values can be chosen—e.g. a thicker 
membrane for ballast compared to sand. The two end rows of 
the faceted membrane are rigidly attached to the polyhedral 
elements that are used to simulate the end platens in the 
DEM model (Fig. 1c).

2.2  Bonded spheres membrane

Bonded spheres membranes have become increasingly popu-
lar in recent years [6–9]. All applications are quite similar to 
each other. Some differences can be found in the geometry, 
e.g. in the resolution (number and size of spheres) as well 
as in the geometrical arrangement: most applications use 
a hexagonal arrangement, though a square one can also be 
found [15].

Bond stiffness parameters can affect the response of 
the membrane, and should therefore be chosen with care. 

Fig. 1  Image of two different DEM models of a flexible membrane: 
a layer of bonded spheres; b corresponding network of bonds; and c 
faceted membrane
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Some authors have proposed an approach to match results 
of experimental tests on membranes without the granular 
material [7], while others used a calibration based on strain 
energy that links the microscopic stiffness parameters with 
the membrane’s macroscopic properties [16, 17]. Using 
this approach, bond stiffnesses in the normal and tangential 
direction were determined also in this work as a function 
of the same macroscopic properties adopted for the fac-
eted membrane in Sect. 2.1 (Young’s modulus E , Poisson’s 
ratio � and membrane thickness t  ), based on the following 
equations:

Spheres can sometimes be slightly enlarged so that they 
initially overlap, to remove gaps and improve continu-
ity; however, this may increase the possibility of contacts 
between non-neighbouring spheres, which, being compres-
sive, may generate unwanted deformation patterns. There-
fore, here spheres were generated with no initial overlap.

3  Estimating the membrane effect

The effect of such membrane models on the stress within a 
sample has rarely attracted much attention. De Bono et al. 
[8] acknowledged and compensated for a membrane effect 
by enlarging spheres as the membrane deforms, to relieve 
excessive radial stresses. Le Pen et al. [18] tried investigat-
ing this effect with simple DEM simulations of spheres in 
a face centred cubic packing, modelling the membrane as 
an array of points surrounding the specimen and connected 
elastically.

More recently, Huang et al. [17] analysed membrane 
effect by looking at the change in stress as a result of a 
change in bond stiffness parameters, although without resort-
ing to stress computations from interparticle forces which 
can shed more light on how the membrane affects stress.

In experiments, membrane effect is typically estimated 
and corrected by assuming the membrane deforms as a right-
cylinder, or by resorting to compression shell theory (when 
the membrane follows the deformation of the specimen) and 
hoop tension theory (if the membrane buckles) [1, 2]. How-
ever, these situations do not always capture the membrane’s 
behaviour realistically, especially when the membrane defor-
mation is highly heterogeneous. This can come e.g. from 
strain localisation, but particular deformation patterns can 
also appear when the membrane tends to penetrate through 
large pores, e.g. when particles are relatively large compared 
to the sample such as for tests on railway ballast.

(1)

⎧
⎪⎨⎪⎩

kn =
Et√

3(1−�)

ks =
Et(1−3�)√
3(1−�2)

3.1  Stress tensor from boundary or internal forces

Nicot et al. [19] give the following definition of the average 
Cauchy stress tensor in a granular assembly, based on the 
classic Love-Weber formula [20–22]:

where external forces f⃗
ext,p

 on the boundary �V  are applied 
at contact points of position �⃗xp and are acting on boundary 
particles of position �⃗xGp = �⃗x

p
− r⃗

p (Fig. 2). When the number 
of particles in a sample is sufficiently large, ‖r⃗p‖ ≪ ‖�⃗xGp‖ 
and therefore the second term can be omitted.

This expression defines the stress tensor as a function of 
external forces, but a perfectly equivalent expression can be 
derived from Eq. 2, having omitted the second term, using 
interparticle contact forces instead of external forces [19]:

where f⃗
c
 and l⃗

c
 are the contact force and branch vector (con-

necting the two particles’ centres of mass) for each interpar-
ticle contact c , while f⃗

p
 and ��⃗wp are the resultant and gravita-

tional force acting on each particle p . Gravity has not been 
modelled in the DEM simulations carried out in this work, 
therefore ��⃗wp will be henceforth omitted.

3.2  Membrane considered as external to the sample

Considering the sample as composed only of its particles, 
and combining Eqs. 2 and 3 to calculate the stress tensor 
from external and internal forces, the following expression 
holds:
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Fig. 2  Centre and point of application of the external force on a 
membrane sphere
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with each stress tensor obtained from a different group 
of forces, marked with a different number, as indicated in 
Fig. 3. In particular, the left hand-side is obtained from Eq. 2 
considering forces applied by the platens (1) and the mem-
brane (2) to the grains, while the right-hand side comes from 
Eq. 3, considering grain-to-grain contacts (3) and resultant 
forces of grains (having omitted gravity). Stress tensors from 
external forces are calculated using contact positions �⃗x(n) , as 
in the general form of the equation (Eq. 2), while stress ten-
sors from internal forces use branch vectors l⃗

(n) , as in Eq. 3.

3.3  Membrane considered as part of the sample

If we consider the membrane as part of the sample, it is 
possible to calculate a stress tensor of the whole system 
composed of the grains and the membrane. By doing so, we 
can obtain an expression equivalent to Eq. 4, and compare 
the two expressions to highlight the difference between the 
stress applied to the membrane and the stress that is actu-
ally transmitted to, and felt by, the grains within the sample.

The groups of forces identified as external and internal 
under this assumption are shown in Fig. 4. External forces, 
to be used in Eq. 2, are now the forces applied by the plat-
ens to the grains (as in Sect. 3.2) and the forces applied by 
the confining fluid to the membrane (instead of the forces 
transmitted by the membrane to the grains, that were used 
in Sect. 3.2). In the case of faceted membrane, the confining 
pressure applied is equivalent to a set of forces that are each 
acting on one triangular facet of the membrane, in a direc-
tion normal to the facet, and with magnitude equal to the 
facet’s area multiplied by the confining pressure; a similar 
set of forces can be identified for the bonded spheres mem-
brane. In addition, the forces exerted by the platens onto 

the membrane to fix its position at the two ends should be 
included here; this will be referred to as “O-ring forces” as 
they correspond to the sealing action performed by O-rings 
in a laboratory test setup. In the case of a bonded spheres 
membrane, these O-ring forces can be determined as the 
resultant forces acting on the two layers of spheres that are 
fixed to the platens and follow their motion. For the faceted 
membrane, such forces are determined in a similar way, as 
the resultant forces on those membrane nodes that are con-
nected with the platens and fixed to their position.

The internal forces to be used in Eq. 3 will now include, 
in addition to the interparticle contact forces and resultant 
forces on grains, the internal forces acting within the mem-
brane, as well as the resultant forces acting on membrane 
elements. For the bonded spheres membrane, these forces 
will be respectively the contact forces acting at each bond 
between membrane spheres and the resultant forces on each 
sphere. For the faceted membrane, equivalent forces can be 
identified in a similar way, based on the data returned by the 
software: a “contact” force will be the force between each 
facet’s centroid and the facet’s three vertices, while resultant 
forces are directly provided at each facet’s centroid.

Having defined external and internal forces in this way, 
the combination of Eqs. 2 and 3 gives:

Each group of forces is identified with a number as 
indicated in Fig. 4; the last two elements take into account 
unbalanced forces on grains and membrane nodes.

By solving Eqs. 4 and 5 for the common term containing 
interparticle contact forces 1

V
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Fig. 3  Image showing the groups of forces used to define each stress 
tensor in Eq. 4, with the membrane considered as external to the sam-
ple: a external forces applied to the sample; b internal forces of the 
sample

Fig. 4  Image showing the groups of forces used to define each stress 
tensor in Eq.  5, with the membrane considered as part of the sam-
ple: a external forces applied to the sample and membrane; b internal 
forces of the sample + membrane system
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obtain an expression linking the stress applied by the cell 
fluid to the membrane with the stress actually transferred by 
the membrane to the sample:

The left-hand side of Eq. 6 is the difference between the 
lateral stress transferred to the sample (2) and the lateral 
stress applied to the membrane (5); the terms on the right-
hand side are, respectively, the stress due to O-ring forces 
(4), the stress due to membrane internal forces (6), a stress 
correction that accounts for the transfer from the point of 
application of lateral forces (2) to the centre of boundary 
particles, and the stress due to unbalanced forces in the 
membrane (which can be neglected if the simulation is car-
ried out with a sufficiently low strain rate, i.e. 1 or 2 orders 
below the limit of quasi-static behaviour [23]). Also the term ∑

f
(2)

i
l
(2)

j
 can be assumed to be small compared to the other 

terms, and neglected, if the particles are sufficiently small, 
for the same argument used in Eq. 2 to discard the term with 
r⃗
p . This term was indeed found to be very small in the tests 

shown here (< 1 kPa for simulations at 60 kPa). In typical 
soil samples (e.g. sand), with much smaller particles, this 
term would be even smaller, so it is safe to neglect it. It is 
then clear that the difference between the stress applied later-
ally and the actual stress within the sample is a function of 
both the stresses developed inside the membrane as it 
deforms and the forces that fix the position of the membrane 
at the two end platens. These need to be considered when 
correcting the stress tensor calculated from external forces.

3.4  Geometric effect of membrane deformation: 
axial component of confining pressure

In triaxial tests, and in DEM simulations of such tests, it is 
typically assumed that the lateral (radial) stress is applied 
uniformly and remains constant throughout the whole 
test, while the axial stress changes as a deviatoric strain is 
applied, and it is measured from contact forces at the end 
platens. It was shown in Sect. 3.3 that the stress transmitted 
laterally differs from the one actually applied, due to stresses 
within the membrane and at the contact between the mem-
brane and the end platens, both of which can be estimated 
in DEM simulations.

However, another source of error—possibly the main 
one, and often overlooked in both simulations and experi-
ments—comes from considering the stress applied to be con-
stant. This assumes that the sample preserves its original 

(6)
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−
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cylindrical shape as it deforms throughout the test. While 
this can be a convenient assumption (e.g. for estimating a 
radial deformation from the measured axial and volumetric 
deformation), it can also be very far from reality, especially 
when relatively large deformations are achieved. In general, 
as the sample and membrane deform, there are two most 
common situations: if the deformation remains uniform, the 
sample often expands radially and normally bulges, espe-
cially when the response is dilative, with the largest expan-
sion happening around the middle section, while the defor-
mation near the two ends is smaller due to the membrane 
being constrained to follow the platens; if, on the other hand, 
strain localises around a shear band, the radial deformation 
may be less predictable as the sample becomes segregated 
by the shear band in two (or more) blocks displacing almost 
rigidly, separated by a thin layer of dilating soil. Here, we 
will focus on the first situation. The deviation from the cylin-
drical shape is a function of the radial strain, which means 
that the deviation increases with the tendency of a sample 
to dilate as it is sheared.

The confining pressure is applied normally to the mem-
brane surface; due to this deviation from the cylindrical 
shape, at large strains the confining pressure in general is 
no longer acting only in the radial direction, but it develops 
forces in the axial direction as well. This applies also to the 
case in which the deviation from the cylindrical shape hap-
pens because of an overall decrease in volume of the sample; 
its effect may therefore be compressive or tensile depending 
on whether the sample has expanded or contracted in the 
radial direction (Fig. 5). In case of radial shortening, the 
global contribution of the confining pressure in the axial 
(vertical) direction is equivalent to the effect of forces pull-
ing the two end platens apart, i.e. it is a tensile contribu-
tion ( 𝜎zz,app < 0 ). If the sample expands radially, the overall 
contribution is a compressive one ( 𝜎zz,app > 0 ), adding on 
to the compression applied by the platens. This situation, in 
particular, should be treated with care, as the deviation from 
the undeformed shape can be more significant in this case, 
and therefore the contribution can be significant comparing 
with the axial stress transmitted through the platens. Hence, 
this should be considered when correcting stress measure-
ments in DEM simulations, and it might be significant also 
in laboratory tests. On the other hand, the geometric effect 
of membrane deformation has no effect on the radial com-
ponents of the laterally applied stress, which have been veri-
fied to remain constant and equal to the confining pressure 
applied even when the membrane has deformed.
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4  Results: membrane effect broken 
down in its components

4.1  Sample generation and properties

DEM simulations of triaxial tests were carried out by means 
of the popular commercial software PFC3D [13]; two dif-
ferent samples were used (Fig. 6). A quite dense sample 
of coarse sandy material (h = 76 mm, d = 38 mm) was gen-
erated with 25,000 grains, using a library of 14 irregular 
shapes. These shapes had been previously obtained from 
laser scans of railway ballast grains, and it is assumed they 
can be used to reproduce a realistic sample of angular sand. 
Polyhedral blocks, with about 100 faces each, were used to 
model each particle’s shape; these proved to be more com-
putationally efficient than clumps (clusters of overlapping 
spheres) with such a large number of particles. The parti-
cle size distribution has a d50 of 1.7 mm and a uniformity 
coefficient Cu of 1.34. A membrane thickness of 0.3 mm is 
assumed for this sample for both models used. Grains were 
first generated with a smaller size, and then expanded until 
a void ratio e0 = 0.6 was achieved.

The second sample analysed is a large triaxial sample of 
railway ballast (h = 450 mm, d = 300 mm) obtained from 
X-Ray scans of an untested laboratory sample subject to 
resin impregnation [12]. In this case, clumps were used to 
model particle shape; this was possible due to the relatively 
small number of particles, which also allowed for a higher 
resolution for each particle (about 100 spheres per particle). 
Clumps have been shown to capture some aspects of the 
mechanical response of ballast better than equivalent poly-
hedra [24]. A much thicker membrane is used in laboratory 
tests on ballast, to avoid piercing; a thickness of 4 mm was 
chosen for the simulations, as in previous experimental tests 
on similar samples.

A classic Hertz contact model was used, with E = 70GPa 
and � = 0.2 for both materials; a higher Young’s modulus 
( 210GPa ) was assigned to the steel end platens. An inter-
particle friction coefficient � = 0.6 was used for ballast, 

and � = 0.2 for sand, consistently with data from experi-
mental interparticle tests by [25, 26] respectively. For both 
membrane models, the contact parameters assigned to the 
membrane were the same as those used for modelling the 
membrane’s behaviour, i.e. E = 1.4MPa and � = 0.3 . Both 
membranes and platens were assumed to be frictionless. For 
the bonded spheres membrane, bond stiffness parameters 
were determined based on Eq. 1 using the same membrane 
properties E and � , as well as the appropriate membrane 
thickness t for each case.

A hexagonal geometrical arrangement was used for both 
membrane models. The faceted membrane for the sand 
sample is composed of 480 triangular facets (12 layers); 
two additional layers were added in correspondence of the 
end platens and are attached to them, to mimic the effect of 
O-rings in laboratory tests (Fig. 1c). As long as the mem-
brane deformation profile is expected to be smooth (when 
the number of grains is sufficiently high), a higher resolu-
tion is not normally required, as this model already provides 
geometrical continuity (no holes). However that is not the 
case for ballast, for which membrane deformation is known 
to be very irregular due to the large size of grains and pores, 
and therefore a higher resolution (2400 facets, 30 layers) 
was used. On the other hand, a higher resolution is always 
needed for the bonded spheres membrane, since this is also 
related to the size of the spheres used, which should be small 
enough to provide a realistic deformation (preventing large 
overlaps between membrane spheres as they move) and to 
avoid large gaps which would allow small grains to exit the 
sample. A set of 4800 spheres with a radius of 0.8 mm for 
the sand sample, and 8400 4 mm spheres for the ballast sam-
ple, were found to satisfy these two criteria; these include 
two layers (one at each end) that are attached to the end Fig. 5  Image describing the orientation of the lateral confining pres-

sure as a function of the sample’s radial deformation: contraction 
(left), no deformation (centre) and expansion (right)

Fig. 6  Image of the two samples used in DEM simulations with both 
membrane models: a and b coarse sand (h = 76  mm, d = 38  mm) 
modelled with polyhedral blocks; c and d large triaxial sample of 
railway ballast reconstructed from X-Ray CT scans (h = 450  mm, 
d = 300  mm), modelled with clumps. Particles are colourised based 
on their volume, with different scales for the two samples (color fig-
ure online)
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platens, in a similar way to the other model (Fig. 1a). Fig-
ure 7 shows the deformation of both membranes at the end 
of shearing ( �a = 30% ) in simulations of sand.

Before shearing, each simulation starts with a phase 
of isotropic consolidation, where a confining pressure is 
applied, with a gradual increase up to the target value, to 
the membrane and top platen simultaneously, while the bot-
tom platen is not allowed to move. In simulations of the sand 
sample, the top platen was prevented from rotating, while it 
was allowed to rotate for the ballast samples, to replicate the 
laboratory conditions of those tests. Both membrane models 
managed to handle the deformation, while still preserving 
the attachment condition at the two ends, including in the 
case of the rotating top platen. No gravity was modelled in 
any of these simulations. However, it is not expected that it 
would affect the results significantly; also, it would be easy 
to account for it in the calculation of stresses from Eq. 3.

After an equilibrium state was achieved at the end of iso-
tropic consolidation, shearing was applied by assigning a 
constant vertical upwards velocity to the bottom platen, 
while preventing the top platen from displacing (only rota-
tion was allowed in the simulations of ballast). The shear 
rate applied had to be sufficiently low in order to reduce 
unwanted inertial effects and be able to apply the definition 
of Love-Weber stress tensor in Eq. 2 and all following equa-
tions derived from it. To demonstrate this, the strain rate had 
to comply to the condition on the inertial number 
I = �̇�

√
m

pdD−2
< 10

−3 [23], where I is a function of strain rate, 

pressure, grain size and mass. Velocities of 0.1m∕s and 
0.01m∕s were therefore chosen for the sand and ballast 
simulations, respectively.

Figure 8 shows the stress–strain and volumetric response 
for simulations of sand using the two different models. Stress 
components were calculated from internal forces, as in Eq. 3. 
The behaviour is similar between the two models, and it 
captures the main features of dense sand behaviour: peak 
and critical state happen at the same axial strain for both 
simulations; the peak in shear stress matches well the highest 
dilation; the friction angle at zero dilation is essentially the 
same as the critical state friction angle. Therefore it can be 
concluded that both models can be successfully used. While 
the faceted model seems generally preferable, for the reasons 
presented in Sect. 2, they both provide satisfactory results 
and therefore both will be used in the analysis of membrane 
effect in the following sections, also to investigate if they 
have a different effect on the stress state within a sample.

4.2  Membrane effect and correction of radial stress

Having computed all stress tensors as explained in Sect. 3, 
it is possible to break stress down into distinct components 
and highlight the effect of the membrane on stress.

Figure 9 shows the evolution of membrane radial stress 
in a simulation of sand with bonded spheres membrane. 
Radial stress is computed as the sum of stress components 
in the radial direction due to membrane internal forces 
and to link forces between membrane and platens (O-ring 
forces). Figure 9 also shows that this stress is equal to 
the difference between the radial stress applied externally 
(constant and equal to the applied confining pressure, as 
was verified by computing it from the forces applied onto 
each facet/sphere) and the radial stress transmitted to the 
sample (calculated from contacts between membrane and 
grains), as demonstrated by Eq. 6. The comparison of 
Fig. 9a with b shows that the magnitude of the membrane 
radial stress typically increases with the stress level.

It can be observed that membrane radial stress can take 
both negative and positive values; here, it starts as negative 
and then quickly increases and becomes positive (compres-
sive). An initially negative membrane radial stress means 
that the membrane can also take on some of the applied pres-
sure, i.e., the pressure transferred to the sample can be lower 
than the applied pressure. After the initial contraction, as the 
sample dilates, the membrane radial stress will increase and 
eventually turn positive, meaning that it will add on to the 
applied pressure. The rate of increase reaches a maximum 
value, after which it slows down, until radial stress reaches 
a plateau. This behaviour seems more consistent with the 
volumetric behaviour, rather than with the radial strain that 
increases monotonically even at large strains, and this is con-
firmed by drawing the two curves together (volumetric strain 
and radial stress, Fig. 10). The curves look very similar from 
a qualitative point of view, and, most importantly, there is a 
good match between the point of maximum rate of increase 
of both volumetric strain (i.e. dilation) and radial stress, as 
well as between the point of zero volumetric strain and that 
of zero radial stress. The dependence of membrane radial 

Fig. 7  Membrane deformation for an axial strain of 30%, for a faceted 
(left) and bonded spheres (right) membrane, in DEM simulations of 
sand. Colourisation is based on the distance from the sample’s axis 
(radial coordinate) (color figure online)
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stress on the volumetric strain instead of radial strain can 
be explained considering that axial strain affects the ability 
of the membrane to deform radially. In this particular case, 
as the sample shortens axially, the membrane becomes less 

constrained, and can therefore more easily deform radially. 
Figure 11 shows that the same result holds also for a differ-
ent sample (ballast); data is less smooth because of the small 
number of grains, but the correlation appears quite clearly, 
nonetheless.

A comparison of the behaviour of the two membrane 
models shows similar results from a qualitative point of 
view for the sand sample, even at relatively large stress 
levels (Fig. 12a), despite a small softening observed with 
the faceted membrane. With ballast, on the other hand, the 
responses of the two models tend to diverge more clearly, 
especially at large strains (Fig.  12b); in particular, the 
bonded spheres model shows more scattered data and a 
much larger increase in radial stress, with no plateau. This 
might be explained with reference to the particular deforma-
tion pattern of this test (high dilation, highly heterogeneous 
deformation), which may cause unrealistically large bond 
forces developing locally when neighbouring spheres are 
pushed away from each other. This is a limitation of the 

Fig. 8  a Stress–strain and b volumetric response of DEM simulations 
of sand with the two membrane models, for a confining pressure of 
60 kPa

Fig. 9  Evolution of membrane radial stress in DEM simulations of 
sand using a bonded membrane, with a 60 kPa and b 300 kPa confin-
ing pressure

Fig. 10  Comparison of volumetric strain (black curve, left vertical 
axis) and membrane radial stress (grey curve, right vertical axis) for 
two DEM simulations of sand samples using a bonded membrane, 
respectively at 60 kPa (left) and 300 kPa (right) confining pressure. 
The dashed lines are the gridlines at zero volumetric strain (black) 
and zero radial stress (grey)

Fig. 11  Comparison of volumetric strain (black curve, left vertical 
axis) and membrane radial stress (grey curve, right vertical axis) for 
two DEM simulations of ballast samples using a faceted membrane, 
respectively at 60 kPa (left) and 150 kPa (right) confining pressure. 
The dashed lines are the gridlines at zero volumetric strain (black) 
and zero radial stress (grey)

Fig. 12  Comparison of membrane radial stress calculated for simula-
tions of a sand and b ballast, at 300 kPa confining pressure, with two 
different membrane models (bonded spheres and faceted)
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bonded spheres model that should be taken into account. 
Also, in this situation, the bonded spheres membrane has 
been found to be likely to fail, with gaps opening and grains 
free to escape, whereas the faceted one has shown robust 
behaviour also under large stresses. All this corroborates the 
preference for a faceted model.

4.3  Membrane effect and correction of axial stress

As explained in Sect. 3.4, there are two sources of error 
that may cause a deviation of the real axial stress from the 
axial stress that would be measured simply from contacts 
between end platens and grains. One source is the stress 
associated with membrane deformation and O-ring con-
nections, in the same way as discussed in Sect. 4.2 for the 
radial direction. The other source is the vertical component 
of the confining pressure, which acts perpendicularly to the 
lateral membrane: as this deforms, it deviates from the right 
cylinder shape, and therefore a stress component arises in 

the axial direction (Fig. 5). While this is often overlooked, 
it can sometimes cause a significant error, that should be 
taken into account appropriately. Figures 13 and 14 show 
all these stress components associated with the membrane 
deformation, for simulations on sand at different stress lev-
els. The sum of membrane and O-ring components is the 
equivalent, in the axial direction, of the stress component in 
the radial direction in Fig. 9. The component of axial stress 
due to the confining pressure is also shown; the sum of these 
components is equal to the component of stress transmitted 
to the sample (in the same way as observed in Fig. 9 and 
demonstrated in Eq. 6). The membrane and O-ring compo-
nent is found to be small compared to the stress component 
due to confining pressure, which increases linearly and, at 
large strain, can be as large as 15% of the total axial stress.

This monotonic increase of membrane axial stress is dif-
ferent from the membrane radial stress, which was found to 
stabilise at large strains, showing a good correlation with 
volumetric strain. Axial stress correlates well with radial 
strain (Fig. 15), as its main effect is a purely geometric one, 
related with the way the membrane deforms radially. The 
membrane’s deviation from cylindrical shape is clearly cor-
related with radial strain: as the sample expands radially, the 
amount of membrane surface with a vector area in the verti-
cal direction also increases. A simple expression for the esti-
mation of the amount of stress applied in the axial direction 
as effect of the confining pressure can be obtained assuming 
a linear proportion between the applied stress �app,lat

zz  and the 
radial strain. An empirical equation that links these terms 
through a constant k = 1.8 and the cell pressure p was found 
to give a good approximation of the excess vertical stress 
due to membrane deformation, with an error < 1% even at 
large strains:

This is found to hold for several different simulations for 
which the profile of membrane deformation is smooth, and 
generally characterised by bulging. It is slightly less accu-
rate, but still provides a good estimation, whenever the mem-
brane profile gets very irregular, due to the sample being 
made of few large particles, as is the case for ballast.

Stress correction in both axial and radial direction was 
shown to be affected by the radial and volumetric deforma-
tion of the sample. To emphasise this, simulations of the 
same sand sample were carried out with different values of 
interparticle friction coefficient ( � = 0.2 and an artificially 
high 0.7 , Fig. 16). The higher � results in a significantly 
higher dilation and radial strain. The effect on radial stress 
(Fig. 16a) and axial stress (Fig. 16b) is an increase of both 
stress components with respect to the case of � = 0.2.

(7)�app,lat
zz

= 1.8p�r.

Fig. 13  a Vertical stress from external forces (platen only, and both 
platen and membrane); b vertical stress contributions from membrane 
and O-rings, and vertical stress applied as part of the confining pres-
sure, from DEM simulation on sand with faceted membrane, under 
60 kPa confining pressure

Fig. 14  a Vertical stress from external forces (platen only, and both 
platen and membrane); b vertical stress contributions from membrane 
and O-rings, and vertical stress applied as part of the confining pres-
sure, from DEM simulation on sand with faceted membrane, under 
300 kPa confining pressure
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4.4  Stress invariants

It can be useful to analyse these corrections in terms of the 
stress invariants that are widely used in soil mechanics. At 
the same time, stress can be calculated in simulations in 
the same way it is commonly measured in experiments, to 
compare this with the real stress within the sample that is 
obtained from contact forces.

Figure 17 compares the deviatoric stress q and mean pres-
sure p . Internal stress invariants are obtained from inter-
particle contact forces, as in Eq. 3. They are calculated as 
q = �ax − �rad and p = (�ax + 2�rad)∕3 ; axial and radial 
stresses are obtained from the stress tensor components as 
�ax = �zz and �rad = 0.5(�xx + �yy) . The same invariants are 
calculated as they would be measured in experiments by 
t a k i n g  �ax = 0.5

(
�ax,top + �ax,bot

)
= 0.5(Ftop + Fbot)∕A  , 

where Ftop and Fbot are the total contact forces at the end 
platens, and A is the average cross-sectional area of the sam-
ple. Figure  17a also shows the actual correction 
Δq = qint−qexp , as well as the estimated correction based on 

the formula provided by the specifications: Δq =
4Emtm�a

Dc

 , 
where Em and tm are membrane parameters (Young’s modu-
lus and thickness, respectively) as defined in Sect. 4.1, �a is 
the axial strain and Dc the sample diameter after consolida-
tion [27]. This formula, applied to the case of this DEM 
model, can underestimate the correction. The specifications 
only provide a correction for the deviatoric stress, but mean 
pressure is also subject to error as shown in Fig. 17b. The 
underestimation of both stress invariants means that the error 
in terms of dimensionless measures such as stress ratio q∕p 
or mobilised friction angle Φ is lower, though non-negligible 
as shown in Fig. 18a, both at peak and at critical state. Look-
ing at the individual stress components in axial and radial 
direction, it can be observed that the axial stress is consist-
ently smaller than it should be when computed from external 
(platen) forces, and the radial stress is slightly larger at first, 
and is then overcome by the real (internal) radial stress 
which increases as the membrane deforms.

Fig. 15  Correlation between vertical stress component applied through the membrane (black curve, left vertical axis) and radial strain (grey 
curve, right vertical axis) for the following DEM simulations: a sand, 60 kPa; b sand, 300 kPa; c ballast, 60 kPa

Fig. 16  Evolution during shearing of a membrane radial stress and b 
axial stress applied through the membrane as a function of interparti-
cle friction (different volumetric behaviour)

Fig. 17  a Deviatoric stress invariant q and b mean pressure p calcu-
lated from internal forces and from external forces (as they would 
be measured in experiments). The actual correction of q (difference 
between the two curves) and its estimation with the correction pro-
vided by the specifications are also shown on the left. Results from 
simulation of sand with bonded spheres membrane and 300 kPa con-
fining pressure
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5  Conclusions

A new method for the modelling of a flexible membrane in 
DEM simulations of triaxial test has been proposed. This 
method consists in a faceted wall that is used to model the 
membrane as a continuum. It was shown to perform well 
after being tested on two different samples: a sample of sand 
with a relatively large number of grains and a smooth defor-
mation of the membrane, and a sample of railway ballast 
with few large grains and large pores, with a very irregu-
lar membrane deformation. The model was also compared 
to the well-established bonded spheres membrane, show-
ing that the two methods give similar results. The faceted 
membrane has some inherent benefits: geometric continu-
ity independently of resolution, which allows for a good 
response even with a relatively low resolution, which is not 
the case for the other model; and also permits the possibility 
of directly taking into account the real material and geomet-
ric properties of the membrane. This seems to indicate that 
the faceted model may in the future substitute the bonded 
spheres model.

The two models were then used to determine the effect 
of membrane deformation on the stress within a sample, 
starting with the definition of stress from single forces 
derived from the classic Love-Weber formula. Stress tensor 
contributions were determined for each part of the DEM 
model, including the membrane and its connections to the 
end platens. In this way, it was also possible to achieve a 
better understanding of the origin of the difference between 
the stress as it is measured in experiments (a constant lateral 
pressure, and an axial stress coming from forces measured 
at the end platens) and the real stress within the sample, that 
can be measured in DEM from contact forces. This consists 
in an effect in both radial and axial direction. Membrane 
radial stress was found to be correlated with the volumet-
ric deformation of the sample; it can have a tensile effect 

(reducing compression) when the sample has contracted, but 
most importantly it has a compressive effect when it dilates; 
it was also found to be proportional to the stress level. Axial 
stress has a similar component due to membrane tension and 
O-ring connections; however, the most significant error in 
this direction was found to be related to the vertical compo-
nent of confining pressure. This is often overlooked as the 
sample is assumed to undergo a right-cylinder deformation; 
however, this assumption is in fact quite far from reality, and 
it can be responsible for a quite large, non-negligible error 
on the axial stress. It is recommended that this is taken into 
account appropriately when calculating the stress in a DEM 
simulation of triaxial test, when this is not done directly 
from internal contact forces.

Some of these findings shed more light onto the estima-
tion of membrane effect in laboratory triaxial tests, which 
has been a subject of research in the field of laboratory test-
ing for decades. Membrane effect is shown here to originate 
from both the tension in the membrane and its curvature. 
Currently, the standard approach only takes into account the 
first aspect, neglecting the effect of membrane curvature, i.e. 
the presence of a vertical component of confining pressure. 
This additional stress, which can be positive or negative, 
was found to correlate well with radial strain, therefore an 
empirical formula for the correction of this component as a 
function of radial strain has been proposed.

As for the effect of membrane tension, its treatment in 
the current standards also appears to be incomplete. Cur-
rently a correction is applied directly only to the deviatoric 
stress; it would be better to compute corrections separately 
for axial and radial stress, and consequently determine a cor-
rection also for mean pressure. Furthermore, the empirical 
formula for deviatoric stress correction only depends on the 
axial strain, and does not account for the radial or volumetric 
strain (any two of these will give the third) which have been 
shown to be directly correlated with the measured membrane 
stress; in particular, it is important to express membrane cor-
rection as a function of the volumetric response of a sample, 
since the tendency of a sample to dilate affects both mem-
brane tension and its curvature.
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Fig. 18  a Mobilised friction angle Φ and b axial and radial stress cal-
culated from internal forces and from external forces (as they would 
be measured in experiments). Results from simulation of sand with 
bonded spheres membrane and 300 kPa confining pressure
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