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A B S T R A C T   

Spatially disaggregated estimates provide valuable insights into the nature of a disease. They highlight in-
equalities, aid public health planning and identify avenues for further research. Spatial microsimulation is ad-
vantageous in that it can be used to create large microdata sets with intact microlevel relationships between 
variables, which allows analysis of relationships between variables locally. This methodological paper outlines 
the design and validation of a 2-stage static spatial microsimulation model for chronic back pain prevalence 
across England, suitable for policy modelling. Data used was obtained from the Health Survey for England and 
the 2011 Census. Microsimulation was performed using SimObesity, a previously validated static deterministic 
program, and the synthetic chronic back pain microdataset was internally validated. The paper also highlights 
modelling considerations for researchers embarking on similar work, as well as future directions for research in 
this area of microsimulation.   

1. Background 

Spatial epidemiology is a field of epidemiology focusing on the 
spatial patterns and processes of health and disease. It is closely related 
to health geography, a field of human geography that utilises geographic 
information for the study of health, disease and health services. Single 
global estimates of disease, for example, national prevalence, are useful 
but possess different benefits to spatially disaggregated estimates, for 
example, the prevalence of a disease in each region within a nation. 
Possessing spatially disaggregated estimates allows for the study of the 
spatial pattern of a disease, increasing understanding of the processes 
underlying it, highlighting inequalities, enabling public health planning 
and identifying avenues for further research (Edwards and Clarke, 2009; 
D Ballas et al., 2006; Procter et al., 2008). When working with spatially 
disaggregated data it is important to consider how finely estimates are 
disaggregated (if at all) depending on the study question attempting to 
be answered. That is, the spatial scale at which the disease is studied, is 
an important consideration. If the scale is too large, processes acting at a 
smaller spatial scale will be unappreciable, for example studying a dis-
ease at county level may show no variation across a nation despite 
clusters of the disease existing around city centres. Smaller scales can 
identify these more local variations and allow finer gradients to be 
established. However, too small a scale may bring difficulties due to 

confidentiality, resource intensity and small number issues (Twigg et al., 
2000; Pearce et al., 2003). 

A spatially disaggregated dataset can be obtained from primary data 
collection or via modelling. Primary data collection at a small area level 
over a large study area, e.g., a country, is extremely resource-intensive. 
A large total sample size would be required to accurately represent each 
small area. Small area estimation (SAE) provides a solution to this. There 
are two commonly used methods of SAE – statistical e.g. regression 
modelling or geographical (spatial microsimulation) (Koh et al., 2018). 
A statistical example relevant to chronic back pain (CBP) is the Versus 
Arthritis Musculoskeletal Calculator (Versus Arthritis, 2021) which uses 
logistic regression modelling (Adomaviciute et al., 2018). This approach 
can prove useful but only provides an output for the outcome variable. It 
is therefore not possible to analyse the relationship between the 
outcome variable and its covariates at a small area level or to predict the 
impact of modification of such variables. 

Spatial microsimulation (SMS) is a category of microsimulation used 
to create large spatially disaggregated microdata sets containing vari-
ables of interest for which previously only aggregate data was possessed 
(Tanton and Clarke, 2014). Unlike statistical approaches to SAE, SMS 
produces a microdata set/ synthetic population. This is a dataset 
approximately equal in size to and representative of the true population 
where each synthetic individual is characterised by all the variables 
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entered into the model. Relationships between variables are intact at the 
microlevel. As such, local relationships between variables can be ana-
lysed. As well as SAE, SMS can be used for small area projection and 
small area policy modelling (Tanton and Edwards, 2012). The multi-
variate nature of SMS applies well to the study of chronic disease as 
many chronic diseases are multifactorial. However, the use of SMS in the 
field of health is still growing. Its uses have included the study of obesity 
(Edwards and Clarke, 2009; Koh et al., 2018), COVID-19 (Spooner et al., 
2021), osteoarthritis (Ifesemen et al., 2019), health behaviours (Smith 
et al., 2011) and health inequality (Campbell and Ballas, 2016; D Ballas 
et al., 2006). 

Various methods of SMS exist and have been discussed in detail by 
Tanton (Tanton, 2013). They typically involve taking a national survey 
dataset which includes variables of interest, and a census dataset, which 
includes local demographic data and matching the survey data to the 
census data. Individuals from the survey are allocated to geographic 
areas based on how well their characteristics fit the demographics of 
that area. The demographic variables on which individuals are matched 
to areas are known as constraint variables. Additional (non-constraint) 
variables can be included from the survey dataset to create a synthetic 
population in which each individual is characterised by more than just 
the constraint variables. These non-constraint variables do not dictate 
the matching process in any way but can be used in later analysis. 

SimObesity (Edwards and Clarke, 2009) the SMS program used in 
this study utilises a static deterministic method which is described 
briefly below and in more detail by Edwards et al. (Edwards and Clarke, 
2012). The main advantage of a deterministic method is that the same 
result is produced each time the model is run for a given input dataset. 
This means that any change seen in the output is a result of the change in 
the input rather than occurring due to chance. This is a particularly 
relevant consideration when performing what-if analyses. 

CBP carries a significant burden in England and worldwide (Bridges, 
2012; Hoy et al., 2014). CBP is typically defined as constant or inter-
mittent pain in the posterior thoracic (upper back) or posterior lumbar 
(lower back) region lasting 3 months or more (The World Health Or-
ganization 2020). Back pain can be broadly categorised as specific 
where the pain is caused by a known pathophysiological mechanism, for 
example, a sprain/strain, disc herniation or fracture, or non-specific in 
which there is no known pathophysiological mechanism. Non-specific 
back pain is a diagnosis of exclusion and is commonly cited as making 
up 90 % of low back pain cases (Maher et al., 2017). Back pain is more 
common in women and black individuals (Fillingim et al., 2009; Knox 
et al., 2012; Carey et al., 2010). Its prevalence increases up to the age of 
60 and then decreases (Hoy et al., 2012; Björck-van Dijken et al., 2008; 
Papageorgiou et al., 1995). Prevalence is also higher amongst those with 
occupations that involve a high physical workload as well as in those 
with a lower educational status (Björck-van Dijken et al., 2008; Coenen 
et al., 2014; Lötters et al., 2003; Costa-Black et al., 2010; Dionne et al., 
2001). Smoking and obesity have also both been associated with an 
increased risk of back pain (R Shiri et al., 2010; Green et al., 2016; 
Alkherayf et al., 2010; R Shiri et al., 2010; Leboeuf-Yde, 2000). Low 
physical activity (PA) is another possible risk factor and presents a target 
for consideration by public health planners (Shiri and Falah-Hassani, 
2017). Producing a validated model for CBP prevalence across England, 
with the ability to simulate the effect of policies to increase PA, could 
lead to an enhanced understanding of the disease and aid public health 
planning. 

This paper outlines the development and validation of a static two- 
stage spatial microsimulation model for chronic back pain prevalence 
across England. 

2. Method 

A two stage SMS approach using SimObesity (Edwards and Clarke, 
2009) was adopted as seen in work by Ifesemen et al. (Ifesemen et al., 
2019). This approach was chosen to enable later ‘what-if’ analysis, due 

to requirements for policy-useful constraint variables. Stage 1 matched 
individuals from a national survey dataset, containing PA, to wards of 
the 2011 Census based on shared demographic data. Stage 2 then 
matched individuals from a national survey dataset containing chronic 
back pain (CBP) and PA to the stage 1 output PA geofile. See Fig. 1. 

2.1. Data sources 

This study used data from the Health Survey for England (HSE), 
obtained from the UK Data Service (University College London 2017) 
and the UK Census, obtained from InFuse (Office for National Statistics 
2017). The HSE is an annual cross-sectional survey of the health of 
adults and children living in England (University College London 2017). 
This simulation used HSE years 2013 (NatCen Social Research 2015), 
2014 (NatCen Social Research 2018), 2015 (NatCen Social Research 
2019) and 2017 (University College London 2017). It is common in 
microsimulation methodology to amalgamate multiple years of a survey 
to achieve a larger sample size. However, doing so depends on the 
relevance of year to the outcome of interest, and data used must be 
present in all years. The HSE has a set of core questions and then has 
additional questions which vary annually depending on the chosen focus 
for that year. The 2017 HSE is the only year containing both CBP and PA 
data needed for the stage 2 simulation, whilst the 2013, 2014 and 2015 
HSEs provided data on PA for the stage 1 simulation. PA data is in mi-
nutes of moderate-to-vigorous physical activity per week (MVPA), 
whilst CBP is binary. The 2011 UK Census (Office for National Statistics 
2017) provided small area level demographic data for the stage 1 
simulation (the 2021 Census was not available at the time of this anal-
ysis). The Census is performed every 10 years and gathers data on the UK 
population required for resource planning and allocation. The Census 
surveys households and presents the results aggregated to various levels. 
The smallest level is the output area, which are formed from combining 
adjacent postcodes (Office for National Statistics 2021). Estimates for all 
larger area sizes are produced by best-fitting from output areas to the 
level desired (Office for National Statistics 2021). This study used data at 
the census merged ward level. 

2.2. Data handling 

The four HSE datasets were downloaded from the UK Data Service 
(University College London 2017). The datasets were reduced to vari-
ables of interest only. For the stage 1 dataset, the three years were 
merged and variables of interest not present or inconsistently defined 
across all three years were removed. Variables required from the 2011 
Census were selected and downloaded from InFuse (Office for National 
Statistics 2017). Where necessary, potential constraint variables were 
manipulated in the HSE and/or Census datasets by collapsing categories 
to achieve consistency between the HSE and census definitions. For 
variables with >5 % missing data, missing values were imputed in R 
version 4.1.0 (R Core Team 2021) using the MICE (Multivariate Impu-
tation by Chained Equations) package (van Buuren and Groothui-
s-Oudshoorn, 2011). For variables with <5 % missing data, missing 
values were dealt with via listwise deletion. This method was chosen as a 
less resource-intensive option, compared with imputing all missing 
values. Non-spatial statistical analyses were performed using IBM SPSS 
Statistics version 27 (Corp, 2020). 

2.3. Model selection 

A shortlist of potential constraint variables was determined from a 
literature review and was based on their ability to predict CBP and PA. 
The strength of these predictors in the HSE datasets was then assessed 
further using regression analysis. For the PA simulation, shortlisted 
constraint variables in the stage 1 dataset first underwent univariate 
multinomial logistic regression. Statistically insignificant and variables 
with small effect sizes were discarded. To assess for collinearity, 
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pairwise independence was examined using the chi-squared test. The 
remaining variables then underwent multivariate multinomial logistic 
regression, with the most predictive variables selected. This process was 
repeated for the stage 2 dataset using univariate then multivariate bi-
nary logistic regression. To determine which combination of constraints 
simulated most accurately, several simulations were ran and internally 
validated (see below). 

2.4. Simulation - SimObesity 

The algorithms used in SimObesity have been described in detail by 
Edwards et al. (Edwards and Clarke, 2012). In brief, there are two main 
stages involved in estimation using SimObesity. Firstly, for each area a 
deterministic reweighting algorithm is used to alter the weights applied 
to individuals in the survey dataset so that the aggregate of the survey 
data matches the census data for that area. This is done for each of the 
constraint variables. Following this, the weights are converted to in-
tegers, using a cumulative process on ranked weights, so that the output 
simulated dataset is comprised of whole individuals only. 

2.5. Validation 

Validation was undertaken to determine whether the simulated 
dataset was representative of the real population (at ward level). This 
can be achieved by comparing values from the simulated dataset to 
corresponding known values in the real population. It is essential that all 
SMS models are internally validated (Edwards et al., 2011). In this 
study, internal validation was achieved by plotting scatter plots for each 
category of each constraint variable, with the simulated prevalence on 
the y-axis and the census (real) prevalence on the x-axis. A simulated 
dataset identical to the census dataset should result in a regression line y 
= x. Then, for each constraint variable total absolute error (TAE) of all 
wards was calculated and divided by the number of wards to give mean 
absolute error (MAE) (Timmins and Edwards, 2016; Lovelace et al., 
2015). Finally, the total number of simulated areas for each of the 
constraint categories with >5 % error (E5) and >10 % error (E10) was 
also calculated (Timmins and Edwards, 2016; Lovelace et al., 2015). 

3. Results 

3.1. Input datasets (HSE and census) 

3.1.1. Missing values 
The amalgamated HSE 2013–2015 (PA) dataset contained responses 

from 24,906 adults. Most variables had a small amount of missing data 
(<1 %). National Statistics Socio-economic Classification (NS-SEC) had 
1.9 % and alcohol intake had 2.7 % missing data. These cases were dealt 
with via listwise deletion. 1240 individuals were deleted. Variables with 
large amounts of missing data (14.1–16.7 %) included variables related 
to PA, sedentary time and BMI. These missing values were imputed. The 
2017 HSE (CBP) dataset contained responses from 7997 adults. Most 
variables had <1 % missing data. NS-SEC had 1.9 % and alcohol intake 
had 2.5 %. These cases were dealt with via listwise deletion. 419 in-
dividuals were deleted. Variables with large amounts of missing data 
(9.2–18.3 %) included variables related to PA, sedentary time, BMI, 
anxiety/depression and life satisfaction. These missing values were 
imputed. 

3.1.2. Potential constraint variables 
Most potential constraints were defined in the same way in the 

Census as the HSEs. These variables were categorised in the same way or 
were able to be matched by collapsing categories. The only exception 
was the variable disability, which had to be excluded. See Fig. 2. 

3.1.3. Non-constraint variables 
Most of the extra variables intended for inclusion were present and 

defined consistently over all three years for the PA dataset. Fruit and 
vegetable consumption, cardiovascular disease, anxiety/depression and 
life satisfaction were exceptions to this (Fig. 3) and so could not be 
included in the stage 1 simulation. All extra variables intended for in-
clusion, present in the 2017 survey (CBP dataset), were still included in 
the stage 2 simulation as alignment of these variables with stage 1 was 
not necessary. 

3.2. Stage 1 (PA) simulation 

3.2.1. Analysis of potential constraint variables 
Univariate multinomial logistic regression showed that all the po-

tential constraints (seen in Fig. 2) were statistically significant predictors 

Fig. 1. Two-stage spatial microsimulation process.  
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of PA (Table 1). General health and age were the strongest individual 
predictors of PA. Ethnicity and marital status were relatively weak 
predictors and so were not included in the multivariate analysis. 
Assessing the data for collinearity revealed high collinearity between 
NS-SEC and Standard Occupational Classification, which is to be ex-
pected as NS-SEC is derived from Standard Occupational Classification. 
Accordingly, these two variables were not included together in any of 
the multivariate models. 10 multivariate multinomial logistic regression 
models were produced to assess potential constraint variable combina-
tions. Sex and age were included in all multivariate models. Limited 
improvement was seen between four-variable and five-variable models. 
Excluding the five-variable models, Models 6 and 8 performed the best 
(Table 2). 

3.2.2. Simulating and validating outputs 
The best performing multivariate regression models, shown in 

Table 2, were run as simulations. The results of the internal validation of 
these simulations are summarised in Table 3. S1.2, S1.4 and S1.8 per-
formed the best over the three internal validation measures. These three 
models were taken forward and used to produce inputs for the stage 2 
(CBP) simulations for further validation. 

In each simulation containing general health, for the general health 
variable there were a high number of areas with >10 % error. In an 
attempt to improve these simulations, the general health variable was 
collapsed from 5 categories to 3 (GENHELF2). This resulted in a modest 
improvement to the stage 1 simulations (Table 4). 

3.3. Stage 2 (CBP) simulation 

The process to determine the optimum constraint variable combi-
nations was repeated for stage 2, starting with the analyses of potential 
constraint variables with univariate and then multivariate regression 
models. The stage 2 (CBP) simulations were performed using the same 
constraints as their corresponding stage 1 (PA) simulation with the 
addition of the PA variable MVPA as a constraint. For example, S1.4 
AGE+SEX+SOC2010 became S2.4 AGE+SEX+SOC2010+MVPA. 

3.3.1. Analysis of potential constraint variables 
Univariate binary logistic regression showed all potential constraints 

except ethnicity and marital status (which were then excluded) to be 
statistically significant predictors of CBP (Table 5). Multivariate binary 
logistic regression showed that the models containing general health 
were superior predictors of CBP (Table 6). As in Stage 1, a collapsed 3- 
category general health variable (GENHELF2) was also trialled. 

3.3.2. Simulating and validating outputs 
The internal validation results showed an overall reduction in ac-

curacy when comparing the stage 2 simulations with the stage 1 simu-
lations (see Tables 3, 4 and 7). Improvements seen through modification 
of the general health variable in stage 1 were not conferred to stage 2, 
still leaving a sizeable number of >10 % outliers (Table 7). 

3.3.3. The final model 
Of the stage 2 simulations S2.4 performed the best on internal 

Fig. 2. Potential constraint variables.  
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validation and was selected as the final model. That is, age, sex and 
standard occupational classification 2010 (major group) were chosen as 
the final model constraint variables. Scatterplots of the validation of 
stages 1 and 2 of this final model, by constraint variable category, are 
attached as e-appendices. They show that the model validates 
adequately. Additionally, the fit of the constraint variables in the final 
simulation models at the national level can be seen in Fig. 4. It shows 
that overall, the demographics of the synthetic population are close to 
that of the true population (2011 census). The simulations were robust 

and reliable. 

4. Discussion 

This paper has outlined the production and validation of a 2-stage 
static SMS model of CBP at ward level in England. The use of a SMS 
methodology allowed simulation of all variables of interest at the small 
area level, with robust validation. These data will allow analysis of the 
relationship between CBP and potentially confounding variables locally. 

Fig. 3. Non-constraint variables included in the model (useful for subsequent analyses).  
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Table 1 
Results of univariate multinomial logistic regression for potential stage 1 
constraint variables.  

Independent variable Chi- 
Squared 

Degrees of 
freedom 

P value Nagelkerke’s 
R2 

Age 1022 24 <0.001 0.046 
Ethnicity 67 12 <0.001 0.003 
Highest qualification 776 15 <0.001 0.035 
Eight-class NS-SEC 546 24 <0.001 0.025 
Household reference 

person eight-class NS- 
SEC 

405 24 <0.001 0.019 

Standard occupational 
classification 2010 
(Major group) 

586 27 <0.001 0.027 

General health 1714 12 <0.001 0.076 
Sex 392 3 <0.001 0.018 
Marital status 48 3 <0.001 0.002  

Table 2 
Results of multivariate multinomial logistic regression of potential stage 1 constraint variable combinations. 
NSSEC8 - Eight-class NS-SEC, TOPQUAL - Highest qualification, SOC2010 - Standard occupational classification 2010, GENHELF - General health.  

Model Variables Chi-squared Degrees of freedom P value Nagelkerke’s R^2 

M1.1 SEX+AGE 1439 27 <0.001 0.065 
M1.2 SEX+AGE+NSSEC8 1861 57 <0.001 0.083 
M1.3 SEX+AGE+TOPQUAL 1756 42 <0.001 0.078 
M1.4 SEX+AGE+SOC2010 1856 54 <0.001 0.083 
M1.5 SEX+AGE+GENHELF 2706 39 <0.001 0.118 
M1.6 SEX+AGE+GENHELF+NSSEC8 3108 63 <0.001 0.135 
M1.7 SEX+AGE+GENHELF+TOPQUAL 2900 54 <0.001 0.126 
M1.8 SEX+AGE+GENHELF+SOC2010 3097 66 <0.001 0.134 
M1.9 SEX+AGE+GENHELF+NSSEC8+TOPQUAL 3202 78 <0.001 0.138 
M1.10 SEX+AGE+GENHELF+SOC2010+TOPQUAL 3178 81 <0.001 0.138  

Table 3 
Results of the internal validation of stage 1 simulations.  

Sim Variables Statistic AGE SEX GENHELF NSSEC8 SOC2010 TOPQUAL Whole model mean 

S1.2 AGE+SEX+NSSEC8 MAE 2.032 3.475  2.021   2.509   
E5 3012 2920  3997   3310   
E10 244 2  293   180 

S1.4 AGE+SEX+SOC2010 MAE 1.997 3.397   1.217  2.204   
E5 3377 3122   822  2440   
E10 43 0   12  18 

S1.5 AGE+SEX+GENHELF MAE 1.943 3.811 3.168    2.974   
E5 3440 0 8404    3948   
E10 5 0 892    299 

S1.6 AGE+SEX+GENHELF+NSSEC8 MAE 2.133 3.467 3.159 2.056   2.703   
E5 4112 2869 8363 4572   4979   
E10 204 2 970 273   362 

S1.8 AGE+SEX+GENHELF+SOC2010 MAE 2.083 3.386 3.146  1.274  2.472   
E5 4149 3060 8299  1238  4187   
E10 27 0 750  14  198 

S1.9 AGE+SEX+GENHELF+NSSEC8+TOPQUAL MAE 2.490 3.472 3.378 2.552  6.440 4.583   
E5 7389 3744 9289 9503  21,278 12,801   
E10 275 2 2415 748  11,726 3792 

S1.10 AGE+SEX+GENHELF+SOC210+TOPQUAL MAE 2.431 3.339 3.341  1.548 6.422 3.416   
E5 7201 2948 9148  4650 21,206 9031   
E10 150 0 2297  1103 11,658 3042  

Table 4 
Results of the internal validation of stage 1 simulations containing the modified general health variable (GENHELF2).  

Sim Variables Statistic AGE SEX GENHELF2 NSSEC8 SOC2010 TOPQUAL Whole model mean 

S1.5b AGE+SEX+GENHELF2 MAE 1.932 3.818 1.625    2.459   
E5 3395 4 3138    2179   
E10 7 0 104    37 

S1.8b AGE+SEX+GENHELF2+SOC2010 MAE 2.064 3.389 1.732  1.267  2.113   
E5 3958 3052 3968  1106  3021   
E10 30 0 218  13  65  

Table 5 
Results of univariate binary logistic regression of potential stage 2 constraint 
variables.  

Independent variable Chi- 
Squared 

Degrees of 
freedom 

P value Nagelkerke’s 
R2 

Age 116 8 <0.001 0.026 
Ethnicity 4 4 0.377 0.001 
Highest qualification 59 5 <0.001 0.013 
Eight-class NS-SEC 48 8 <0.001 0.011 
Household reference 

person eight-class NS- 
SEC 

34 8 <0.001 0.008 

Standard occupational 
classification 2010 
(Major group) 

41 9 <0.001 0.009 

General health 589 4 <0.001 0.128 
Sex 36 1 <0.001 0.008 
Marital status 2 1 0.162 0.000  
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4.1. Choice of method 

SimObesity was used in this study, a previously validated SMS pro-
gram with a demonstrated ability to simulate health data (Edwards and 
Clarke, 2009; Ifesemen et al., 2019; Edwards and Clarke, 2012). The use 
of a pre-existing SMS program such as this can substantially reduce 
project workload. In this study, a 2-stage SMS approach previously seen 
in work by Ifesemen et al. (Ifesemen et al., 2019) was adopted with 
success. The use of a 2-stage approach will allow for later ‘what-if’ 
analysis. In Ifesemen et al.’s work (Ifesemen et al., 2019), in stage 2 they 
used a survey data file from The English Longitudinal Study of Aging 
(ELSA) which included their outcome of interest knee osteoarthritis. As 
BMI was not included in the ELSA, they incorporated BMI as a constraint 
variable by using a HSE dataset in stage 1. In contrast, in this study, the 
HSE contains both data on our outcome of interest CBP and our main 
predictor of interest, PA. Nevertheless, a 2-stage approach was still 
chosen to enable later what-if analysis, highlighting the value of a 
2-stage approach beyond just variable imputation. 

4.2. Input data 

Our final model constraint variables were age, sex, standard occu-
pational classification 2010 and MVPA (as an elective constraint). Age, 
sex and markers of socioeconomic status are commonly used constraints 
in SMS models (Edwards and Clarke, 2009; Koh et al., 2018; Spooner 
et al., 2021; Ifesemen et al., 2019; Smith et al., 2011; Campbell and 
Ballas, 2016; D Ballas et al., 2006). Specific to CBP estimation, Ado-
maviciute et al.’s (Adomaviciute et al., 2018) final CBP model, like our 
model, included age, sex and socioeconomic status. For socioeconomic 
status they used eight-class NS-SEC. Standard occupational classification 
appears not to have been trialled in their models. Whilst NS-SEC is 
derived from standard occupational classification, we found standard 
occupational classification to perform better than NS-SEC on internal 
validation. In addition to these variables, they also included BMI, 
smoking and education. Whilst we found these variables to be associated 
with CBP in our literature review, variables for BMI and smoking are not 
included in the 2011 census and so could not be considered for use as 
constraint variables. The education variable ‘Highest qualification’ was 
trialled but was excluded in favour of standard occupational classifica-
tion. Another example relevant to CBP estimation, this time at an indi-
vidual level, is Mukasa et al.’s (Mukasa and Sung, 2020) Cox 

proportional hazard model of first onset LBP, developed on large-scale 
Korean prospective cohort data. Similarly, to our model, they included 
age, sex, income and PA. However, their model comprised a total of 11 
variables, with BMI, alcohol consumption, total cholesterol, blood 
pressure, bone mineral density disorders, disc degeneration and spinal 
stenosis also included. 

Our model used relatively few predictor (constraint) variables 
compared to these statistical models. Increasing the number of con-
straints tended to worsen the internal validation measures. This issue 
has been noted previously by Chin et al. (Chin and Harding, 2006). This 
results from the model having to ‘compromise’ between more con-
straints and so each individual constraint is less accurately represented 
in the synthetic population. However, this does not necessarily mean 
that the synthetic population is overall less representative of the actual 
population. 

The HSE and Census datasets used in the construction of this model 
are two well-recognised high-quality datasets. MVPA was estimated at 
ward level using large HSE samples (n = 24,906 Stage 1; n = 7997 Stage 
2). Whilst the use of a 2-stage approach may seem to increase sample 
size (Ifesemen et al., 2019), individuals in the stage 1 survey dataset are 
not available for selection in stage 2 and vice versa. It is therefore the 
case that the chain is as strong as its weakest link. A low sample size in 
one stage cannot be made up for by a large sample size in another stage. 

In the preparation of the study datasets, a multiple imputation 
approach was taken using MICE in R. The imputations were averaged to 
produce a single dataset to allow input into SimObesity. This effectively 
reduces the approach to a single imputation method (van Buuren, 2018). 
In future it may be possible to explore a solution to this, for example, 
running simulations for each of the m imputations. Albeit, this would 
increase workload. 

Another consideration is that of the socio-economic variables’ clas-
sification. In SOC2010 used in the final simulation, both students and 
people who have never worked fall outside the classification system and 
are grouped in a ‘not applicable’ category. However, these two pop-
ulations are not necessarily similar and the proportions of the two will 
vary largely by area, e.g., mainly made up of students in areas close to 
Higher Education Institutions for example. Having these two pop-
ulations grouped relies on other constraints, such as age, to differentiate 
the two populations and select the correct ‘type’ of individuals to 
populate a synthetic area. This may explain why SOCX performed 
relatively poorly on internal validation. 

Table 6 
Results of multivariate binary logistic regression of potential stage 2 constraint variable combinations.  

Sim Variables Chi-squared Degrees of freedom P value Nagelkerke’s R^2 

M2.2 AGE+SEX+NSSEC8+MVPA 263 20 <0.001 0.058 
M2.4 AGE+SEX+SOC2010+MVPA 262 21 <0.001 0.058 
M2.5b AGE+SEX+GENHELF2+MVPA 630 14 <0.001 0.137 
M2.8 AGE+SEX+GENHELF+SOC2010+MVPA 679 25 <0.001 0.147 
M2.8b AGE+SEX+GENHELF2+ SOC2010+MVPA 636 23 <0.001 0.138  

Table 7 
Results of the internal validation of stage 2 simulations:.  

Sim Variables Statistic AGE SEX GENHELF(2) NSSEC SOC2010 TOPQUAL Whole model mean 

S2.4 AGE+SEX+SOC2010+MVPA MAE 2.835 4.244   1.775  2.213   
E5 11,937 5938   3791  7222   
E10 293 282   106  227 

S2.5b AGE+SEX+GENHELF2+MVPA MAE 2.668 4.146 2.495    3.103   
E5 8916 1676 7080    5891   
E10 147 0 1499    549 

S2.8 AGE+SEX+GENHELF+SOC2010+MVPA MAE 3.057 4.267 3.837  1.918  3.269   
E5 12,121 6029 9712  5253  8279   
E10 659 246 3514  392  1203 

S2.8b AGE+SEX+GENHELF2+SOC2010+MVPA MAE 3.006 4.251 2.803  1.888  2.987   
E5 11,803 6002 8238  5128  7793   
E10 585 246 2520  253  901  
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4.3. Output considerations 

This simulation was carried out at ward level. Whilst smaller and 
larger scales would have been possible, this was deemed a good 
compromise of factors previously mentioned (appreciating more local 
variation versus avoiding issues with confidentiality, resource intensity 
and small numbers). Nevertheless, by not using a finer scale, patterns 
present within wards will inevitably be missed. 

The model created in this study is a static SMS model. The time 
period of such a model is dictated by the datasets used to construct it. 
The census file used was the 2011 Census, whilst the 2017 HSE con-
tained the outcome, CBP. Individuals were therefore chosen to match 

the distribution of constraint variables in 2011 wards (confirmed on 
internal validation). However, as the synthetic individuals are from the 
2017 HSE, the prevalence of CBP in each area will be determined by the 
relationship between CBP and its predictors for that 2017 population. 
The demographics of areas may have changed by varying amounts since 
the 2011 Census, but the relationship between CBP and its predictors is 
likely more stable. Therefore, this simulation likely represents CBP 
prevalence across England in 2011. 

4.4. Validation 

In this study a combination of published internal validation methods 

Fig. 4. Summary of constraint categories at national level for both stages of the SMS.  
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were used; TAE and MAE were used to assess overall accuracy and E5 
and E10 were used to assess outliers. Mean validation statistics were 
calculated to allow comparison between models of varying sizes. In the 
evaluation of SMS models, TAE has been suggested and utilised by 
various authors (Voas and Williamson, 2001; Williamson et al., 1998; 
Tanton and Vidyattama, 2009; Lovelace and Dumont, 2018). The E5 
statistic has also been previously suggested by Lovelace et al. (Lovelace 
et al., 2015). In addition to E5, in this study E10 was also used. This was 
done to evaluate more severe outliers. The use of MAE, E5 and E10, 
combined with visualisation through scatter plots, creates an easily 
accessible comprehensive assessment of internal validity with intra and 
intermodel comparability. Overall, the final model performed well on 
internal validation. However, there was some reduction in performance 
between stage 1 and stage 2. This pattern has also been noted by Ife-
semen et al. (Ifesemen et al., 2019) in their 2-stage simulation and may 
be a factor associated with the reduction in population sample size. As 
highlighted by Huang et al. (Huang and Williamson, 2001), when 
employing a combinatorial optimisation method, having a larger survey 
sample size allows for more possible combinations of individuals in the 
synthetic population and thus a higher likelihood of an accurate model 
fit. However, this degradation may also be a feature of the 2-stage 
approach as the second stage is simulating based on an already syn-
thetic population, therefore compounding the error. 

External validity is an important factor in any predictive model. 
Assessing external validity in SMS is challenging as data often doesn’t 
exist for the variable being simulated at the small area level (this is why 
the simulation is being performed). Hence, this step is often missed by 
researchers (Edwards et al., 2011). Methods have been suggested to 
work around this issue but there are still considerable difficulties 
involved (Edwards et al., 2011). As such, external validation has not yet 
been performed for this model. 

5. Conclusion 

SMS is a valuable method of small area estimation. This study suc-
cessfully utilised a 2-stage SMS approach to produce a synthetic CBP 
microdata set which was internally validated. This will prove useful in 
subsequent research to understand the spatial pattern of CBP and the 
processes underlying it, as well as allowing ‘what-if’ analyses. In future, 
further options need to be explored for multiple imputation and external 
validation in this and similar SMS models. 
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