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Abstract
Microrheology with optical tweezers (MOT) is an all-optical technique that allows the user to investigate a materials’ vis-
coelastic properties at microscopic scales, and is particularly useful for those materials that feature complex microstructures, 
such as biological samples. MOT is increasingly being employed alongside 3D imaging systems and particle tracking methods 
to generate maps showing not only how properties may vary between different points in a sample but also how at a single 
point the viscoelastic properties may vary with direction. However, due to the diffraction limited shape of focussed beams, 
optical traps are inherently anisotropic in 3D. This can result in a significant overestimation of the fluids’ viscosity in certain 
directions. As such, the rheological properties can only be accurately probed along directions parallel or perpendicular to 
the axis of trap beam propagation. In this work, a new analytical method is demonstrated to overcome this potential artefact. 
This is achieved by performing principal component analysis on 3D MOT data to characterise the trap, and then identify 
the frequency range over which trap anisotropy influences the data. This approach is initially applied to simulated data for 
a Newtonian fluid where the trap anisotropy induced maximum error in viscosity is reduced from ~ 150% to less than 6%. 
The effectiveness of the method is corroborated by experimental MOT measurements performed with water and gelatine 
solutions, thus confirming that the microrheology of a fluid can be extracted reliably across a wide frequency range and in 
any arbitrary direction. This work opens the door to fully spatially and angularly resolved 3D mapping of the rheological 
properties of soft materials over a broad frequency range.

Keywords  Microrheology · Computer modeling · Simulation · Viscosity

Introduction

Microrheology techniques are a highly effective and versatile 
family of tools that allow experimentalists to analyse the free 
or driven motion of probe particles suspended in a complex 
media of interest. From this motion, the viscoelastic prop-
erties of materials at micron and sub-micron length scales 

can be extracted. These techniques are typically classified 
as either ‘active’ or ‘passive’ microrheology depending on 
whether the motion of the probe particle is induced by an 
external force field or by the thermal fluctuation of the mol-
ecules of the suspending media, respectively. In the case 
of microrheology with optical tweezers (MOT), sometimes 
referred to as a hybrid approach, a tracer bead or other probe 
particle is optically trapped by a highly focussed laser beam. 
Although held by the trap(Ashkin, et al. 1986), the bead still 
undergoes Brownian motion within a finite volume defined 
by the trap, and its trajectory can be traced and analysed 
to determine the viscoelastic properties of the suspending 
media (Furst 2005; Kumar, et al. 2021; Meyer, et al. 2006; 
Nemet and Cronin-Golomb 2003; Pesce, et al. 2005). This 
has proved to be a highly effective technique, especially for 
the analysis of biological samples (Ashworth, et al. 2020; 
Guadayol, et al. 2021; Mao, et al. 2022; Rizzi and Tassieri 
2018; Watts, et al. 2013; Weihs, et al. 2006; Xing, et al. 
2018).
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Typically particle tracking, and therefore MOT, is car-
ried out using the 2D projection of the trajectory across the 
imaging plane of the microscope (often referred as the x–y 
plane, see Fig. 1a) (Ciccone, et al. 2020; Tassieri 2019). 
However, several different tracking approaches have been 
developed for performing microrheology in 3D (Liang, et al. 
2020; Matheson, et al. 2021b; Rohrbach and Stelzer 2002). 
This theoretically offers the possibility of probing the vis-
coelastic properties of the sample in all directions simultane-
ously. This is particularly appealing for biological samples 
where viscoelastic properties will vary spatially in all three 
dimensions, and could be highly anisotropic at a given point 
(Hasnain and Donald 2006; Mendonca, et al. 2023). Fur-
thermore, it is well established that in the proximity to an 
interface, the viscosity as obtained from microrheology may 
vary significantly with angle (Leach, et al. 2009; Schäffer, 
et al. 2007), providing an additional possible application for 
full angular resolution.

Moreover, in the field of microrheology, it is desirable to 
obtain measurements over the widest range of experimen-
tally accessible frequencies. The latter has an upper limit 
dictated by the acquisition rate of the imaging system and 
the resolution of the particle tracking system. For MOT, the 
minimum frequency that can be accessed experimentally is 

closely linked to the so called ‘corner frequency’ ( fc ) of the 
system:

where � is the trap stiffness, � is the fluid viscosity, and a is 
the probe radius. Therefore, for any given combination of 
bead probe and material, the lowest accessible frequency can 
only be extended by reducing � (typically by lowering the 
power of the laser). However, there is a delicate balance to 
be struck, because if � is set too low, it will not be possible 
to optically trap the bead and the bead will diffuse out of the 
field of view while the measurement is being made. Track-
ing in 3D offers a route to extend the low frequency range of 
MOT measurements. Due to diffraction and the fundamental 
physics underpinning optical trapping, under normal oper-
ating conditions (i.e., when the laser intensity profile is a 
Gaussian beam), the trap strength is weakest along the axis 
of laser propagation and strongest in the plane perpendicular 
to the direction of laser propagation. (Ashkin, et al. 1986). 
Though the axis of laser beam propagation z′ (see Fig. 1a) 
will not necessarily be perfectly coincident with the axis 
perpendicular to the imaging plane of the system, z, in all 
but the most extreme cases of misalignment, z′ will be much 

(1)fc =
�

6��a

Fig. 1   a Schematic representation of a misalignment between the 
optical axis of the imaging system (z, shown in black), and the axis 
of trapping beam propagation (z′, shown in red), perpendicular to z is 
the plane being imaged (x–y, shown in blue). b Simulated 3D trajec-
tory of a bead with �x� = �y� = 1 × 10−7 N m−1,  �z′  = 1 × 10−8 N m−1 
and z′ at 20° to z. The x′, y′, and z′ axes are shown in green, yellow, 
and red, respectively. c–d The projections of the bead trajectory on 

the x–y and x–z planes, respectively. The projections of the same tra-
jectory on the x′-y′ and x′-z′ planes are shown in e and f, respectively, 
together with the vector r(��,� �) used for the microrheology analy-
sis. The purple arrow in f gives an approximate measure of the spread 
of coordinates along r(��,� �) due to the trap geometry, whereas the 
green arrow shows the maximal spread expected for a symmetric trap
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closer to z than to x–y. Therefore, by switching from tracking 
in 2D (x–y plane) to 3D (x, y, and z) one can gain access to 
lower frequencies (as 𝜅z < 𝜅x,, 𝜅y ) without the need to reduce 
the trap strength of the system and thus risk losing the bead.

In recent work from this group, it has been shown that 
using the standard 2D analytical tools on a trap with a 
degree of anisotropy of 30% or higher can result in a 
substantial underestimation of the trap strength, and an 
overestimation of the fluid viscosity in certain directions 
(Matheson et al. 2021a). Crucially, as a consequence of 
diffraction and the focal spot being stretched along the 
axis of laser beam propagation, the difference in trap 
strength between �z′ versus �x′ and �y′ has been observed 
to exceed this level of anisotropy (Matheson et al. 2021a, 
Matheson, et al. 2021b; Mendonca, et al. 2023). This is 
without even considering other aberrations in the optical 
system may also introduce additional sources of trap ani-
sotropy (Bowman, et al. 2010; Dutra, et al. 2007, 2012; 
López-Quesada, et al. 2009; Roichman, et al. 2006). The 
simplest solution to this problem is to identify the direc-
tions for which the variance in the bead displacement, and 
hence, � is either at its maximum or minimum, as along 
these directions the estimate of trap strength should be 
accurate and discrepancies in the microrheology meas-
urement minimised (Matheson et al. 2021a). In practice, 
this means identifying and then performing the analysis 
only along the direction of z′ and the orthogonal plane 
x′-y′, which for a well aligned trap should be equivalent 
to z and x–y, respectively. However, this means that the 
bead trajectory along all other directions is then disre-
garded, prohibiting properties such as viscosity, and stor-
age and loss moduli from being fully angularly resolved. 
To the best of our knowledge, an analytical approach 
that allows microrheological properties to be accurately 
probed in any direction in 3D using MOT is still miss-
ing from the literature. In this work, we present such a 
method for evaluating the rheological properties of flu-
ids from MOT measurements fully in 3D first testing it 
on simulated data, and then confirming its effectiveness 
on water and gelatine samples. This will allow for more 
rapid identification of z′ than in previous work (Mathe-
son et al. 2021a), and help correct for artefacts due to 
misalignment. More significantly, whereas in previous 
work, we described how anisotropy may cause artefacts 
in MOT results (Matheson et al. 2021a), and how to find 
the angles where these artefacts will not be present; here, 
we have developed a method to avoid these artefacts 
completely at any angle. This will allow for the research-
ers to accurately measure the viscoelastic properties of 
a material in any arbitrary direction, rather than being 
constrained to just z′ and the x′-y′ plane.

Experimental methods

Microrheology with optical tweezers

The optical trap was generated using a 1064-nm DPSS 
laser (Opus, Laser Quantum) with a maximum output of 
5W on an inverted microscope set up (Olympus IX-73) 
with a high NA objective lens (LUMFLN60XW 60 × 1.1 
NA 1.5 mm WD; Olympus). For tracking in 3D, a multi-
plane imaging system utilising a pair of gratings to pro-
duce nine images spatially separated on the image sen-
sor each with a different focal plane was employed, the 
details of which are described elsewhere (Matheson et al. 
2021a, Matheson, et al. 2021b; Mendonca, et al. 2023). In 
brief, a 4f image relay system consisting of two 300 mm 
lenses was set up in the detection path between the cam-
era (Hamamatsu ORCA Flash 4.0 V2) and the microscope 
body, and the multiplane grating pair was placed in the tel-
ecentric position. The relay and grating combination used 
here gives a plane separation of Δz = 0.79 μm with the 
nine images spanning 7.11 μm. The constrained Brownian 
motion of the trapped 6 μm diameter microsphere probe 
was recorded using MicroManager (version 1.4) and analy-
sis carried out in Matlab (R2021b, Mathworks) to extract 
trajectories. A full description of the particle detection 
system can be found in Matheson, et al. (2021b), but in 
brief, centre of mass is used to calculate x and y coordi-
nates, while a combination of centre of mass and image 
sharpness are used to calculate the z position. The resolu-
tion of these techniques are approximately 15 nm in x and 
y, and 30 nm in z. Temperature control was provided via 
the laboratory air conditioning system, with temperature 
monitored using a digital thermometer to ensure thermal 
stability.

All the experiments used 6 μm diameter beads (Poly-
bead® Microspheres 6.00  μm; PolySciences) as the 
trapped probe particle. For the water experiments, beads 
were dispersed in an 8 u-well glass bottom coverslip 
(ibidi) at a final dilution of 1:500,000 from a stock con-
centration of 2.1 × 108 particles/ml. For gelatin experi-
ments, gelatin powder (Sigma-Aldrich, 48,723-500G-F, 
Lot# BCBW0732) was dissolved in warm distilled water 
and beads were dispersed at a final dilution of 1:25,000 in 
the solution. This was then placed in a water bath at 70 °C 
for 15 min while being sonically agitated. The gelatin and 
bead solution (300 μl) was then added to each well of a 
8 u-well glass bottom coverslip (ibidi) and left to set for 
24 h at 4 °C. In both case, beads were trapped > 40 μm 
from the coverslip.
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Computational simulation

Monte Carlo simulations were carried out using Matlab 
(R2021b, Mathworks) code based on the work presented 
by Volpe et al. (Volpe and Volpe 2013) and following the 
approach described by Matheson et al. (Matheson et al. 
2021a) but extended into 3D. To briefly summarise, ther-
mal forces are simulated to conform to a Boltzmann dis-
tribution, acting along the x′, y′, and z′ axes. There are 
corresponding restorative forces which then accelerate the 
bead back towards the centre of the trap. For the simula-
tions shown in Fig. 1, the parameters used were �x� = �y� = 
1 × 10−7 N m−1,  �z′ = 1 × 10−8 N m−1 and z′ was at 20° to z, 
with a bead radius of 1 μm and a solvent simulated to have 
the same viscosity as water at 20 °C. These parameters 
were chosen to be of the same order of magnitude as those 
typically present in microrheology measurements, such as 
the experimental data presented in this paper.

Bulk rheology

Bulk rheology measurements of water and gelatine were per-
formed by using a single head stress-controlled rheometer 
(Anton Paar MCR 302) equipped with a cone-plate measur-
ing system (CP60-1-SN42255). The temperature was con-
trolled by means of a Peltier system connected to a water 
bath. The viscosity of the fluid was measured by performing 
a flow curve test at shear rates varying from 50 to 500 s−1. 
For both the samples, seven replicates were recorded and the 
mean average taken.

Theoretical background

If one begins by considering a bead trajectory of the form 
shown in Fig. 1b, the scatter plot is clearly elongated along 
an axis z′, and narrowest in the plane defined by x′-y′. It 
can therefore be described as anisotropic. The scatter plot 
resembles an ellipsoid with x′, y′, and z′ as the semi-axes. 
For this trap, z′ (the axis of trap propagation) is not colinear 
with z (the axis of the imaging system), so as well as being 
anisotropic, the trap is misaligned. This results in an oval 
cross-section in x–y (Fig. 1c) and a clear tilt in x–z (Fig. 1d), 
despite being circular in x′-y′ (Fig. 1e) and symmetric in x′-
z′ (Fig. 1f). Trap anisotropy is an unavoidable consequence 
of the Abbe diffraction limit, and will be present in all trap 
beams. Trap misalignment can be avoided, but is not always 
easy to spot when detection is only carried out in 2D. How-
ever, provided the trap is well aligned, the resulting scatter 
plot is isotropic if one is only considering the projection of 
coordinates onto a 2D plane (as in Fig. 1e), as is the norm 
for most MOT measurements. When looking at the full 3D 
scatter-plot, this is not the case and an anisotropy in the 

trajectory is unavoidable. The following describes the conse-
quences of this, and how to mitigate any artefacts it causes.

Estimating the trap stiffness in 3D

For optical tweezers, the trap stiffness is calculated by 
appealing to the principle of equipartition of energy:

where kB is the Boltzmann constant, T  is the absolute tem-
perature, and ⟨r2(��,� �)⟩ is the variance of the particle tra-
jectory r(t, ��,� �) . Here, the subscript ‘Eq’ is used to dif-
ferentiate it from the other means of calculating � outlined 
later. It has been shown that Eq. 2 gives spurious results 
when analysing ⟨r2(��,� �)⟩ if it is neither in the x′-y′ plane 
or aligned with z′ (Matheson et al. 2021a). This is because 
in these cases, motion along the direction being analysed 
(defined by the unit vector r̂(��,� � , shown in Fig. 1 e and f) 
becomes correlated with motion in the directions orthogonal 
to r̂(��,� �) . This implies that the value of ⟨r2(��,� �)⟩ is no 
longer defined purely by the trap stiffness �(��,� �) aligned 
in the r̂(��,� �) direction but also by the trap stiffness along 
the orthogonal directions. This is represented graphically 
by the green and purple arrows in Fig. 1f. It follows that a 
different approach must be devised for calculating �(��,� �) , 
as elucidated hereafter.

The restoring force acting on a bead along any direction 
defined by θ′ and ψ′ can be described as:

By considering the force along the  r̂(��,� �)  direction to 
be the vector sum of the forces acting along the x′, y′, and 
z′ axes, the trap strength along r̂(��,� �) direction is defined 
as follows:

Hence, the need to find the direction of propagation of the 
laser beam, which here is defined as z′, so that x′, y′, and z′ 
can be properly identified. In order to identify z′, we perform 
a principal component analysis (PCA) of the particle trajec-
tory, which here has been implemented by using the built 
in ‘pca’ function in Matlab. This routine returns the prin-
cipal component coefficients of the data. The first principal 
component corresponds to z′, i.e., the axis with the largest 
possible variance in the particle trajectory. The other two 
principal components are orthogonal to the first principal 
component and represent x′ and y′ in our 3D distribution.

Once x′, y′, and z′ are identified, it is a trivial step to 
calculate the trap strength acting along these directions by 
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using Eq. (2), and then to calculate the trap strength in any 
arbitrary direction via Eq. (4). In order to obtain �Eq(��,� �) 
at the necessary angles, the trajectory can be scanned in 5° 
intervals of the angles θ′ and ψ′ around the z′ and y′ axes, 
respectively. In practice, this is achieved by iteratively per-
forming linear coordinate transformations of the particle 
coordinates and then sampling the transformed data along 
the x′ axis, as shown in Fig. 1 e and f.

The values of the trap strength obtained by using Eq. 2 
( �Eq

(
�′,� ′

)
 ) and Eq. 4 (�Force

(
��,� �

)
) are shown in Fig. 2a. 

Except for at � � = 0◦, 90◦ ,  �Force
(
�′,� ′

)
 exceeds �Eq

(
�′,� ′

)
 

due to the anisotropy. For completeness, Fig. 2b shows the 
same parameters but plotted as a function of θ’, where we 
see very little variation in either value, and almost perfect 
agreement between them due to the lack of anisotropy in the 
x′-y′ plane (see Fig. 1e).

In common with all MOT measurements, this technique 
relies upon acquiring enough data points over a long time, 
so that the bead explores the entire volume of the optical trap 
(Smith et al. 2023). Additionally, this method is appropriate 
only for the simple case of single beam optical traps, with 
only one point of focus, as used for the majority of hybrid 
MOT measurements.

Measuring the viscosity of fluids

For a bead of radius a suspended in a Newtonian fluid of 
viscosity � and subjected to a trapping force (proportional 
to −�r ), the normalised position autocorrelation function 
(NPAF) can be used to calculate the fluid viscosity (Tassieri, 
et al. 2015):

where � is the lag-time. The NPAF is closely related to the 
particle normalised mean squared displacement (NMSD):

(5)NPAF
�
�, ��,� �

�
=

⟨r
�
�0, �

�,� �
�
r(�0 + �, ��,� �)⟩

⟨r2(��,� �)⟩
= exp

�
−
�Eq

�
��,� �

�
�

6��(��,� �)a

�

where MSD
(
𝜏, 𝜃�,𝜓 �

)
=< r2

(
𝜏, 𝜃�,𝜓 �

)
> . By combining 

Eqs. 2, 5, and 6, one obtains:

It has been shown that although Eq. 7 works well when 
analysing trajectories from isotropic 2D data(Tassieri, et al. 
2015), it may return erroneously high values of η if there is 
a high degree of anisotropy in the trajectory, as is common 
in 3D data (Matheson et al. 2021a). This is because (except 
for when r

(
t, ��,� �

)
= z� or is confined to the x′-y′ plane), 

the particle motion along r(t, ��,� �) becomes correlated to 
motion along the directions orthogonal to r(t, ��,� �) and 
Eqs. 2 and 7 become invalid. This results in the aforemen-
tioned under-estimation of �Eq (see Fig. 2), and an MSD 
curve which is no-longer purely mono-exponential. When 
analysing trajectories in the x − y image plane, this will 
not affect results provided the trap beam is aligned per-
pendicularly with the imaging system and z = z′. However, 
any misalignment of the trap beam is likely to result in this 
phenomenon affecting the analysis of traditional 2D MOT 
data. Regardless, even with perfect alignment, this artefact 
prohibits accurate extraction of microrheological proper-
ties for motion along the full array of available solid angles 
theoretically available from 3D MOT measurements.

A possible solution to this problem could be achieved by 
looking at very short timescales so that the bead motion is 
affected only by the local trapping force and not the overall 
trap geometry. This may be done by analysing only the MSD 
data at lag-times 𝜏 ≪ 1∕fC and using Fick’s law for uncon-
strained Brownian motion:
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Fig. 2   κ calculated using Eq. 2 (blue) and Eq. 4 (red), plotted as a function of a) ψ′ and b) θ′
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where d is the dimensionality of the trajectory being ana-
lysed (d = 1 in this case) and D is the diffusion coefficient 
defined by the Stokes–Einstein relation:

In the case of MOT measurements, the bead is con-
strained by the optical trap and the MSD of its trajectory will 
deviate from Eq. 8. However, for very short lag-times, Eq. 8 
provides a very good estimation of the MSD of the trapped 
particle. This is because (to a first approximation) the confin-
ing potential of the optical trap is quadratic (Ashkin, et al. 
1986). Therefore, small displacements result in only very 
weak restoring forces, and at short timescales, the resulting 
MSD will be equivalent to that of an un-trapped bead. It fol-
lows that by combining Eqs. 8 and 9 one obtains:

Therefore, by determining the gradient of the MSD for the 
first two lag-times (i.e., �2 and �1 , the shortest time delays 
MSD

(
�, �′,� ′

)
 is calculated for), one should derive a good 

estimation of �(��,� �) , as recently corroborated by this group 
while measuring the apparent viscosity experienced by a bead 
approaching a hard interface in 3D (Mendonca, et al. 2023). 
However, it must be noted that, in practice, the MSD values 
for the earliest lag times may be erroneously high if the real 
displacement is less than the resolution of the tracking system. 
Therefore, for experimental data, we ignore the lag times for 
which MSD < 8 × 10−16 m−2, which is derived from the resolu-
tion of the tracking system in the z-direction.

However, this approach returns only a value of �(��,� �) , and 
does not allow the frequency domain to be analysed. To gain 
access to the frequency domain but avoid anisotropy induced 
artefacts, one must identify the time range where MSD

(
�, �′,� ′

)
 

values are overwhelmingly governed by the trapping force acting 
along the direction  r̂(��,� �) , and not by those acting in the 
direction perpendicular to  r̂(��,� �) . This time-
scale, 𝜏 < 𝜏Threshold , will be closely related to the inverse of the 
fc value for the trap acting along ̂r(��,� �) ,  �c =

1

fc
=

6��a

�(��,� �)
 . It 

is possible to gain a good estimation of  fC from the MSD value 
using �Force

(
�′,� ′

)
 , as explained hereafter.

If the trap strength were not anisotropic, the MSD value 
shou ld  t end  towards  an  a sympto t i c  va lue 
MSDIso

(
� → ∞, ��,� �

)
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2kBT

�Force(�
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(
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)
> MSDIso

(
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)
 . 

Therefore, if one observes that  MSD(𝜏,𝜃�,𝜓 �)
MSDIso(𝜏→∞,𝜃�,𝜓 �)

> 1 beyond 
a specific value of � , this strongly indicates that particle 
motion on this timescale is not consistent with an idealised 
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system where motion is uncorrelated from forces acting in 
the orthogonal directions. Conversely, if one chooses the 
timescale where MSD(𝜏,𝜃�,𝜓 �)

MSDIso(𝜃
�,𝜓 �)

< 1 , there can be a greater 
degree of confidence that the bead trajectory along r̂(��,� �) 
is not being influenced by forces acting orthogonally to 
r̂(��,� �).

In real experiments, the trajectory will likely begin to 
exhibit motion due to orthogonal forces before it reaches the 
MSDIso

(
�′,� ′

)
 value, and therefore, it is worth choosing a 

cut-off value close to the theoretically expected plateau for 
an isotropic trap, but without exceeding it. In this regard, 
a convenient value to choose may be 0.95MSDIso(�

�,� �) , 
because of the following reasons: –

a)	 It fulfils the requirement of being close to MSDIso(�
�,� �) 

without exceeding it;
b)	 Even when analysing isotropic MOT data, the data are 

often disregarded for rheological purposes at a point 
close to 95% the plateau MSD value as this tends to be 
close to the noise floor of the corresponding NPAF plot;

c)	 F o r  a n  i s o t r o p i c  t r a p , 
0.95MSDIso

(
��,� �

)
∼
(
1 − exp

(
−

�(�� ,� �)3�c
6��a

))
MSDIso

(
��,� �

) ; there-
fore, by using this value as a cut-off, one may relate this 
time-range to 3�c = 1∕3f c.

To elaborate on point c, one would expect the mean 
squared displacement value to be at 95% of  MSDIso

(
�′,� ′

)
 

at � = 3�c if the trajectory is mainly influenced by the trap 
force acting along r̂(��,� �) ; i.e.:

Therefore, the point at which Eq.  11 is satis-
fied seems a sensible first approximation for the 
maximum time range to analyse the MSD values, 
i.e., MSD

(
�Threshold, �

�,� �
)
= 0.95MSDIso

(
��,� �

)
 . By com-

bining all the above equations, one obtains the following:

Figure 3 a shows the MSD plots for motion along three 
different directions for the simulated data reported in Fig. 1. 
These correspond to z� = r

(
�� = 0,� � = 90

)
 (black), 

x� = r
(
�� = 0,� � = 0

)
 (blue), and an intermediate direction 

r
(
�� = 0,� � = 25

)
  (red). When data are normalised by twice 

their variance ( 2 < r2
(
𝜃′,𝜓 ′

)
> ), Fig. 3b is generated. From 

these NMSD plots, it is apparent that the red curve does not 
have a mono-exponential form, unlike the black and blue ones. 
However, this is not in itself sufficient to confirm the effects of 
trap anisotropy. A highly non-mono-exponential MSD curve 

(11)
MSD

(
�Threshold = 3�c, �

�,� �
)
=MSDIso

(
��,� �

)(
1 − e−3

)

=0.95
2kBT

�Force(�
�,� �)

(12)

MSD
(
𝜏, 𝜃�,𝜓 �

)
=

2kBT

𝜅Force(𝜃
�,𝜓 �)

(
1 − exp

(
−
𝜅Force

(
𝜃�,𝜓 �

)
𝜏

6𝜋𝜂(𝜃�,𝜓 �)a

))
,∀𝜏 < 𝜏Threshold
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with more than one plateau may be produced by a viscoelastic 
material in a symmetric trap (Tassieri, et al. 2010), which may be 
hard to distinguish from the effect of trap anisotropy (Matheson 
et al. 2021a). Importantly, the approach developed in this paper 
is based on the absolute value of the MSD curve rather than its 
shape, thus avoiding confusion between the side effect of trap 
anisotropy and the genuine viscoelastic response of the materials.

In Fig. 3c, the same data as in Fig. 3a are plotted, but nor-
malised not to 2 < r2

(
𝜃′,𝜓 ′

)
> , but to the MSDIso(�

�,� �) 
value. Moreover, the time axis has been made the dimension-
less value �∗ = �

�C
 , where �C has been calculated using the � 

value employed as simulation input. As a result, the early time 
data collapses onto a master curve, as expected for an isotropic 
fluid (Matheson, et al. 2021b; Tassieri, et al. 2015). The solid 
horizontal line in Fig. 3c marks 0.95 MSDIso(�

�,� �) , i.e., the 
point at which we set �Threshold for each data set, whereas the 
dashed vertical lines represent the �Threshold points, colour-coded 
to match each trajectory. In Fig. 3c, the curves for  𝜏 > 𝜏Threshold 
have been plotted more faintly than those for 𝜏 < 𝜏Threshold ; as 
it is known that for 𝜏 > 𝜏Threshold , data may induce artefacts to 
further analysis. Notably, for the data aligned along the semi-
axis of the trap (black and blue lines), �Threshold is very close to 
the 3�c value we would expect for a Newtonian fluid, which is 
a good indication of the robustness of this technique. For the 
data not aligned with the x� − y� plane or z′ (red line), however,  
�Threshold occurs earlier which is an indication that the trajectory 
along this direction has become correlated with the bead 
motion in an orthogonal direction.

Frequency domain analysis

In order to measure the frequency-dependent viscoelastic prop-
erties of materials, the methodology outlined by Smith et al. 
(2021) provides a valuable starting point. Briefly, the Fou-
rier transform of the normalised mean squared displacement 
( N̂MSD ) is used to calculate the complex shear modulus of 
the material, G∗

(
�, ��,� �

)
:

The Fourier transform to calculate N̂MSD(�, ��,� �) 
is performed up to the point where NMSD(�, ��,� �)  
approaches its plateau value, where it will comply with 
the boundary condition dMSD(�→∞,��,� �)

d�
= 0 . Typically, this 

means performing a Fourier transform on the data up to the 
range of 0.95 < NMSD

(
𝜏, 𝜃′,𝜓 ′

)
< 1 . As outlined previ-

ously, extending the time range over which the transform 
is applied to longer times may generate artefacts in the out-
put, while curtailing the data too early may introduce other 
artefacts due to the function not being close enough to its 
boundary conditions.

(13)G∗
(
�, ��,� �

) 6�a

�(��,� �)
=

1

i�N̂MSD(�, ��,� �)

Fig. 3   a MSD and b NMSD data versus delay time for trajectories 
aligned along x′ (blue), z′ (black), and at an angle 25° from x′ (red). 
c MSD∕MSDIso versus �∕�c for the same trajectories, with the solid 
horizontal line marking 0.95 and the dashed vertical lines repre-
senting the �Threshold point for each data set. Bold lines are used for 
data < �c , with fainter lines used for data after this point
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By replacing NMSD with MSD in Eq. 13 and by using 
Eq. 2 to remove the dependency on � , one obtains the fol-
lowing relationship:

where the real part and the imaginary parts are the stor-
age and loss moduli of the material, respectively, and are a 
measure of the elastic and viscous character of the material.

In order to find the frequency domain where the moduli 
will be free from artefacts induced by trap anisotropy 
(via MSD

(
�, �′,� ′

)
 ), the same basic approach used for 

Eq. 11 may be adopted. Indeed, by finding the value of 
�Threshold where MSD

(
�Threshold, �

�,� �
)
= 0.95MSDIso

(
��,� �

)
 , 

and taking its inverse, one may identify a cut-off fre-
quency  fThreshold =

1

�Threshold
 , which can be used as a low-fre-

quency cut-off value. In the case when the bead trajectory 
along the direction r̂(��,� �) is independent of the forces act-
ing in the orthogonal direction, then one would obtain: 
fThreshold ∼

1

3�c
=

fc

3
.

(14)

G∗
(
�, ��,� �

)
=

(
kBT

3�a

)
1

i�M̂SD(�, ��,� �)
= G�

(
�, ��,� �

)
+ iG��

(
�, ��,� �

)

Finally, for a Newtonian fluid, the complex viscosity 
�∗
(
�, ��,� �

)
 can be obtained using the following equation:

By determining the frequency at which f > fThreshold , the 
region where Eq. 15 holds can be identified and the fluid 
viscosity determined.

Results and discussion

Simulated data

To validate the analytical framework introduced above, sim-
ulated trajectories were used to avoid un-accounted sources 
of anisotropy in the η value. The simulated trajectory of a 
bead in water (i.e., a homogenous Newtonian fluid) shown 

(15)||�∗(�, ��,� �)|| ≡
|||G

��
(
�, ��,� �

)|||
�

Fig. 4   a Relative viscosity as a function of ψ′ in the x′-z′ plane 
calculated via Eq.  7 (blue), Eq.  10 (red), and Eq.  15 (gold). b A 
spherical surface shaded to represent viscosity for motion along 
the vector running from the origin to the shaded point, calculated 
using Eq.  7, c as b but calculated using Eq.  10, d η* with data for 

f < fThrehsold shown as a faint line and f > fThrehsold shown as bold for  
�� = 0◦,� � = 0◦, 25◦, 90◦ (blue, red, black, respectively). fThreshold is 
represented as a vertical dashed line for each data set. e as b and c but 
calculated using the mean of η* obtained from Eq. 15
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in Fig. 1b and discussed in the previous section will be used 
for this purpose.

In order to measure fluid viscosity with MOT measure-
ments, typically Eqs. 5–7 are employed. However, as dem-
onstrated previously, this may result in erroneous results due 
to trap shape anisotropy. In Fig. 4a are the relative viscosity 
values (drawn as a blue line in the plot) obtained via Eq. 7 by 
holding �� = 0 and varying � ′ (i.e., by resampling the data in 
the x′–z′ plane). Figure 4 b shows a spherical surface, where 
the position on the surface identifies the direction of motion 
being probed and the shading corresponds to the measured 
viscosity, as indicate by the colour bar. From Fig. 4b, it is 
clear that Eq. 7 returns a significant overestimation of the 
fluid’s viscosity, with a maximum relative value of ηr ~ 2.5, 
representing an error of ~ 150%.

Figure 4 a and c show the viscosity values obtained by 
means of Eq. 10. Over all angles, the average viscosity is 
1.01 Pa ⋅ s, with a maximum error of just 3%. Hence, the 
accuracy in calculating the viscosity of Newtonian fluids has 
been significantly improved. However, this approach does 
not allow access to the frequency domain.

Figure 4 d, however, shows the complex viscosity vs. 
frequency obtained from the full frequency resolved analy-
sis of the same data. In this graph, data below fThrehsold (as 

identified in Fig. 3) are shown as faint lines and will be unre-
liable because of the trap anisotropy (for data not aligned 
along z′ or x′–y′ ) and noise in the plateau region of the 
NMSD plot (all data), whereas data at higher frequencies 
than this threshold should return valuable results.

To obtain a single value of the Newtonian viscosity, one 
may take the mean of the data for f > fThreshold . These values 
are shown in Fig. 4a (yellow line) as a function of angle in 
the x − z plane and in 3D are shown in Fig. 4e. Notably, over 
the range of explored angles, this approach returns a mean 
value of �r = 0.98 , with a maximum mean squared error of 
only 5.7%. It is thus apparent that by using �Force and the 
curtailed MSD data the accuracy of the calculated viscosity 
over the full angular range has been significantly improved 
compared to Eq. 7, while still allowing η to be probed over 
a broad frequency range unavailable using Eq. 10.

Experimental data

Having demonstrated the effectiveness of this method 
on simulated data, attention is turned to experimentally 
obtained data. Figure 5 a shows the trajectory of an opti-
cally trapped bead in water, with z and z′ clearly not aligned.

Fig. 5   a The scatter plot for an optically trapped bead in water, the 
x′, y′, and z′ axes are shown in green, yellow, and red, respectively. 
b Relative viscosity as a function of ψ′ in the x′-z′ plane calculated 
via Eq. 7 (blue), Eq. 10 (red), and Eq. 15 (gold). c A spherical sur-
face shaded to represent viscosity for motion along the vector run-

ning from the origin to the shaded point, calculated using Eq.  7, d 
as b but calculated using Eq. 10. e Viscosity vs f obtained via Eq. 15 
for θ′ = 0°, ψ' = 0°, 25°, 90° (blue, red, black, respectively). Data for 
f < fthreshold shown as a faint line and f > fthreshold shown as bold. f as c 
but calculated using Eq. 15
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In Fig. 5b, we report the viscosity calculated using each 
of the three methodologies introduced earlier as the data is 
sampled through the x′-z′ plane. As for the simulated data, 
Eq. 7 gives a highly anisotropic and erroneous viscosity 
output with Eqs. 10 and 15 showing much less viscosity 
variation over the range of explored angles. Indeed, over a 
rotation of ψ' in the θ' = 0 plane, by using Eq. 7, we see a 
maximum error in this plane of ~ 120%, whereas for Eq. 10, 
the error is ~ 22%, while for Eq. 15, it is just 11%. In Fig. 5c, 
the complex viscosity vs. frequency is plotted for ψ' = 0°, 
25°, and 90°. Once again, the threshold frequencies (rep-
resented by the vertical dashed lines) seem to match well 
the point at which the viscosity begins to deviate from its 
otherwise very flat and constant value of ~ 1 mPa ⋅ s. Thus, 
corroborating the effectiveness of the analysis method intro-
duced in this work.

In real experiments, it is very easy to unknowingly intro-
duce tilt into the propagation of the trap beam. Indeed, it was 
not deliberately added to the data shown in Fig. 5 (which 
showed a fairly isotropic cross section in the x–y plane), the 

tilt was only apparent when the data was analysed in 3D. 
Interestingly, this suggests that without fully measuring and 
analysing MOT data in 3D, experimentalists may be unaware 
of slight misalignments of the z and z' axes (which will result 
in an overestimation of viscosity in the x–y plane), giving 
a further demonstration of the value of a full 3D analysis. 
Previously, we demonstrated that detailed resampling of 2D 
projections of the scatter plot to find z′ may help to correct 
for this (Matheson et al. 2021a), but the principal compo-
nent analysis approach outlined in this work samples the 
entire 3D space simultaneously, making this faster and more 
precise. However, even if z and z′ are perfectly coincident, 
the trap anisotropy would prevent accurate measurement of 
viscoelastic properties in directions not aligned parallel or 
perpendicular with z'.

To demonstrate the efficacy of the proposed framework 
on a sample with higher viscosity, Fig. 6 shows experi-
mental data obtained for a 0.5% gelatine in water solution. 
Figure 6 a shows the viscosity of the solution obtained by 
using Eq. 7, returning a relative viscosity ranging from 2.3 

Fig. 6   Results for a 0.5% gelatine solution. a A spherical surface shaded 
to represent viscosity for motion along the vector running from the ori-
gin to the shaded point, calculated using Eq.  7, b as a but calculated 
using Eq. 10. c Viscosity vs f obtained via Eq. 15 for θ′ = 0°, ψ′ = 0°, 25°, 
90° (blue, red, black, respectively). Data for f < fthreshold shown as a faint 

line and f > fthreshold shown as bold. d as a and b but calculated using 
Eq. 15. e Bulk rheology results for a 0.5% gelatine solution (black sym-
bols). Mean viscosity values obtained using Eq. 7 (red), Eq. 10 (gold), 
and Eq. 15 (blue) are shown as solid lines for comparison, with dotted 
lines to show the standard deviation around this mean
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to 4.9. Whereas, we obtain a relative viscosity ranging from 
1.7 to 2.3 by means of Eq. 10. Figure 6 c shows the �∗ vs 
frequency plot for this sample at a range of angles. Again, 
we see that at lower frequencies below fThreshold significant 
deviation between the viscosity obtained at differing angles, 
but close agreement at higher frequencies. This is borne out 
in the relative mean viscosities shown in Fig. 6d which vary 
between 1.7 and 2.9. To allow for a ground truth, bulk rheol-
ogy values were obtained for a 0.5% gelatine in water solu-
tion, as shown in Fig. 6e. Averaging over shear rate for all 
seven measurements, this returned a mean relative viscosity 
value of 2.0 ± 0.1, which when compared to the value of 
3.2 ± 0.8 for the mean over all space obtained with Eq. 7, and 
to the value of 2.0 ± 0.1 obtained via Eq. 10, and 1.8 ± 0.1 
via Eq. 15, it confirms the improved accuracy achieved by 
the latter two approaches.

We now wish to explore the effectiveness of the proposed 
framework in terms of the viscoelastic moduli. Figure 7 a 
and b show the moduli values for the simulated data shown 
in Figs. 1–4, Fig. 7 c and d show the moduli for the bead 
trapped in water shown in Fig. 5, and Fig. 7 e and f show 
the moduli for the bead in a 0.5% gelatine solution shown in 
Fig. 6. We see that far all the data presented, in the region 
above fThreshold G′′ (bold circles, lower row of panels) is 

independent of angle, as expected for an isotropic fluid. The 
values of G′′ below this frequency (faint circles, lower row 
of panels) are much noisier and show significant variation 
with angle. The results for G′ (upper row of panels) match 
well to  �Theory∕(6�a) (marked as a horizontal dotted line) 
as expected for an optically trapped bead in a viscous fluid 
(Tassieri, et al. 2010). It should be noted that for the data 
aligned along z′ in particular, the G′ values are very noisy, 
as the G′ values here are close to the resolution of what 
can be achieved with the tracking system. Nevertheless, 
this is a further demonstration of both the imaging system 
and the tracking and analysis methodology, as it is able to 
return results which match what is theoretically expected. A 
next step for this analytical method will be to turn attention 
towards samples which have a higher value of G′ and a more 
pronounced viscoelastic character.

Conclusions

Although there are many potential pitfalls when analysing 
anisotropic microrheology data obtained in 3D microrheol-
ogy with optical tweezers, this work demonstrates an analyti-
cal solution that ensures accurate characterisation. The key to 

Fig. 7   G′ (panels a, c, and e) and G″ (panels b, d, and f) as a function 
of frequency. Data for the simulated bead (shown in Figs. 1–4) is in 
panels a and b. Data for the bead trapped in water (shown in Fig. 5) 
are in panels c and d. Data for the bead in a 0.5% gelatine solu-
tion (shown in Fig. 6) is included in panels e and f. Dashed vertical 
lines correspond to fthreshold values for each dataset, dotted horizon-

tal lines are equal to G�
(
��,� �

)
= �Force(�

�,� �)∕(6�a) . Data points 
at frequencies above threshold are shown in bold; data points below 
threshold are shown faintly. The colours black, red, and blue are used 
to correspond to the data at �� = 0,� � = 90 , �� = 0,� � = 25 , and 
�� = 0,� � = 0 , respectively. The dashed and dotted lines are colour-
coded to match the symbols of the data set they refer to
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this is the identification of the time regimes where the MSD 
along a given direction shows minimal correlation with the 
strength of the trap acting along directions orthogonal to this. 
This approach is corroborated by analysing both simulated 
and experimental data. When analysing data using the tradi-
tional means of MOT analysis, the level of trap anisotropy 
typical in a 3D trap is shown to over-estimate the fluids’ vis-
cosity by a factor of 2.5 along certain directions. By using 
the methods detailed, here, it is possible to reduce this error 
down to < 6%, either by fitting to only the very early times 
of the particles’ mean square displacement to Fick’s law 
for Newtonian fluids, or by analysing the fluids’ frequency 
dependent response over a broader time-scale. The analytical 
framework presented offers the opportunity to significantly 
enhance 3D MOT measurements, allowing for full angularly 
resolved 3D viscoelasticity mapping of complex media, and 
the exploration of the materials’ frequency response in any 
arbitrary solid angle. For a homogenous material, this has the 
added benefit of increasing the frequency range over which 
the microrheology characterisation can be made by taking 
advantage of the different trap strengths in x and y compared 
to z.
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