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Abstract—Most real-world environments are subject to differ-
ent sources of uncertainty which may vary in magnitude over
time. We propose that while Type-1 (T1) Non-Singleton Fuzzy
Logic System (NSFLSs) have the potential to tackle uncertainty
within the input Fuzzy Sets (FSs), Type-2 (T2) input FSs provide
the ability to also capture variation in uncertainty levels by means
of their extra degrees of freedom. Specifically, in this paper,
we propose a strategy to design Interval Type-2 (IT2) input
Membership Functions (MFs) in an online manner to ensure
the parameters of input MFs are updated dynamically, thus
capturing varying levels of uncertainty affecting systems’ inputs.
In this strategy, first, uncertainty detection is performed over
a given time-frame (the Uncertainty Estimation Time-frame) and
Type-1 (T1) input MFs are constructed by utilising the detected
uncertainty level. Second, the variation of the uncertainty levels
over a sliding window (the Uncertainty Variation Window) is used
to capture the degree of variation in the detected uncertainty
levels over time, which in turn informs the size of the Footprint
of Uncertainty (FOU) of the IT2 MF associated with the T1
principal MF. Using time-series prediction experiments as an
initial evaluation and demonstration platform for the proposed
architecture, we show that the proposed strategy of designing
IT2 input MFs has the potential to deliver performance benefits.
Specifically, it allows systems to not only adapt to specific
uncertainty levels but also to be more resilient to the variation
of said uncertainty levels over time, thus offering a pathway to
robust performance in real-world applications.

I. INTRODUCTION

The real-world encompasses different noise sources and
these sources may affect system inputs at different levels.
While these noise sources may vary vastly and cause either
major or minor impact on a system’s inputs. It is in particular
the variations in the noise levels which makes estimating
and handling uncertainty/noise a complex and challenging
task which, resulting in non-optimal outcomes. For example,
attempting to remove noise from an inputs signal based on
a poor noise estimation may negatively affect the system
performance significantly.

Fuzzy Set (FS) theory was introduced by Zadeh [1] and is
applied to Fuzzy Logic Systems (FLSs) which are considered
as robust systems for capturing and handling uncertainty
in decision making applications. A number of studies have
shown that in cases where inputs are affected by uncertainty,
Non-Singleton Fuzzy Logic Systems (NSFLSs) become more

advantageous than singleton Membership Functions (MFs)
designs [2]-[5]. In NSFLSs construction, each input of the
FLSs is modelled as a Non-Singleton (NS) FS which enables
it to capture input uncertainty.

Type-2 (T2) FSs [6] are an extension of the T1 FSs, where
each degree of membership is a FS rather than a crisp number.
Due to this extra degree of freedom, generally, T2 FSs provide
a better ability to capture variation in uncertainty levels which
is omnipresent in the real-world. [7]-[13].

Although, the NSFLS design can provide better perfor-
mance in FLSs, so far, a relatively small number of studies has
considered the usage of NSFLSs, including [14]-[25]. One of
the reasons for this can be related to the parameter definition of
Non-Singleton (NS) input MFs. Generally, the parameters of
NS input MFs require either a priori knowledge of uncertainty
levels or data-driven training. Yet, a priori knowledge may
not be available, as the uncertainty level cannot be known
in advance. Also, training procedures might be an impractical
solution to define NS input MF parameters as training samples
may be limited or cannot cover all the possible circumstances.

Considering the potential advantages of NSFLSs and Type-
2 designs in respect to input FSs, in this paper, we propose a
strategy to design Interval Type-2 (IT2) input MFs of NSFLSs
at run-time. In this strategy, an uncertainty detection technique
is utilised to construct T1 NS input MFs. Further, the variation
of the stored uncertainty levels is used to generate a Footprint
of Uncertainty (FOU) for the T1 MFs resulting in the IT2 input
MFs. This ensures that IT2 input MFs are designed adaptively
in an online manner which removes the requirement of a
priori knowledge of uncertainty levels and training procedures
in parameter definitions. Also, by modelling the variation of
the uncertainty levels, the real-world uncertainty conditions
affecting a system’s inputs are captured in the input MFs.

The structure of this paper is as follows: Section II provides
brief background information about Singleton, Non-Singleton,
and IT2 FSs along with the noise detection paradigm that is
used in this paper. Section III gives the proposed method to
design IT2 input MFs. In Section IV, the experimental setup
and associated results of the proposed approach is provided
with the discussion. Lastly, in Section V, the conclusions of the
current work with possible future work directions are given.



II. BACKGROUND
A. Singleton and Non-Singleton Fuzzy Sets

In the fuzzification step of FLSs, the system inputs are
mapped to Singleton or Non-Singleton MFs. Assume that
is a fuzzy set in the universe of discourse X and the Type-1
MF I can be defined as below:

I={z,pu(z)| Ve e X}. (1)

where p7(x) is the membership degree of the MF 1.
The singleton MF is characterised as follows:
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Non-Singleton Fuzzification is useful in cases where the
system inputs are affected by an external factor which causes
a distortion in the actual input. To capture this distortion,
inputs are designed as Non-Singleton FSs. Conceptually, in
Non-Singleton fuzzification, it is commonly assumed that the
crisp input x is likely to be correct value, but that because
of existing uncertainty, neighbouring values of x have also
potential to be the accurate values. However, the possibility
of being accurate gets less and less as going further from the
received x value [26], [27]. The equation of a Gaussian Non-
singleton input MFs is commonly used to model NS input

MFs:
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where o is the width or standard deviation of the MF which
captures the uncertainty level of the NS input MF and z’ are
the neighbouring values of the input x.

An illustration of Singleton and Gaussian Non-Singleton
input MFs comparison can be seen in Fig. 1.
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Fig. 1. Singleton and Non-Singleton Gaussian MFs
B. Interval Type-2 Fuzzy Sets

Studies show that the ability of T1 FSs to model uncertain-
ties and in particular variation in uncertainty may be limited
when compared to T2 FSs. [28]-[30].

A T2 FS [6] is constructed using a T2 membership function
formulated as 0 < p7(x,u) <1 where x € X and u € J, C
[0,1] as follows:
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Due to the high computational requirements of T2 FSs, as
a special case, Interval Type-2 (IT2) FSs, was proposed and
widely used for their reduced computational cost [27], [31].
In IT2 FSs designs, the secondary membership grade is set to
value 1 as follows:

I= / / 1/(z,u)  J, €[0,1]. (5)
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Since IT2 FSs include an extra degree of freedom,
studies have shown that FLSs which utilise IT2 FSs (other
parameters such as the number of rules remaining constant)
can outperform their T1 FLSs counterparts in a variety of
applications [7]-[13].

C. Related Literature in NSFLSs

In the literature, a number of studies were carried out to
define parameters of NS input MFs in the fuzzification in an
‘offline’ manner. Some preliminary works were implemented
by relying on training procedures [26], [32]. Later studies were
performed with the aim to achieve higher convergence speed
in the training [33], [34]. These studies mainly focused on
T1 parameter definitions with training procedures. However,
as all the possible real-world circumstances and, in particular,
variation in those circumstances cannot be known a priori,
training datasets cannot fully cover each possible scenario.

Going beyond T1 input MFs, some recent applications
[23]-[25] were implemented to generate IT2 input MFs. In
those studies, first, a non-specified shape, convex T1 MFs is
generated from a set of collected sensor values. Then, the
same procedures are repeated under different circumstances
to gather different T1 MFs. Lastly, by combining the gathered
T1 FSs, IT2 input MF is generated by following the proce-
dures from [35]. In [13], Quantum-behaved Particle Swarm
Optimisation algorithm is utilised to define parameters of T2
MFs of NSFLSs using offline training procedures.

Recent studies [14]-[16], [20], [21], [36] have suggested
new methodologies to allow better tracking of uncertainty in
the inferencing of NSFLSs. Due to the page limitation, in
this paper, we focus on the traditional approach for NSFLS
inference (based on using the maximum of the intersection
of input and antecedent MFs). An expansion of the work
and experiments to include novel NSFLS approaches will be
included in a forthcoming journal publication.

D. Uncertainty Detection (Noise Estimation)

In the literature, there are numerous noise estimation tech-
niques for uncertainty detection [37]-[41]. In the current paper,
one of the initial noise estimation studies for images [42] is
leveraged to estimate uncertainty levels of a frame, however
we do not advocate this technique as the only or best — it
was chosen as it illustrates the proposed approach well. In this
estimation technique, the following calculations are performed
to detect uncertainty levels:
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where t is the time, p is the value number in a defined window
which is utilised for detection and &,, represents the noise level
which is used to generate T1 input MFs.

E. Symmetric Mean Absolute Percentage Error

The symmetric mean absolute percentage error (SMAPE) is
a measure of prediction accuracy of a forecasting method and
it was first proposed by Armstrong [43]. Due to the SMAPE
limits the error rate to 200% and is robust to outliers, it is an
alternative to the commonly used Mean Square Error measure.
Both sMAPE and MSE will be provided in the results section
of this paper. The SMAPE measure is calculated as follows:
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where z; is the actual value, &; is the forecast value and N is
the number of values in the time-series.

III. METHODOLOGY

In real-world circumstances, as varying levels of noise
source may disturb input data at different levels/times, cap-
turing and handling this variation of noise is an essential step
for applications. Therefore, in this paper, we introduce a new
strategy to capture noise variations by means of IT2 input MFs
for NSFLSs.

In the methodology, first, T1 input MFs are constructed by
detecting the uncertainty over a time-frame (the Uncertainty
Estimation Time-frame). Simultaneously, the detected uncer-
tainty is stored along with the previously detected levels of
uncertainty. Second, the variation of the stored uncertainty
levels is captured over a sliding window (the Uncertainty
Variation Window) and utilised to construct an FOU which
is associated with the T1 MF, resulting in an IT2 input MF.

The methodology is summarised below in six steps:

1) Time-frame for the uncertainty estimation: A sequence
of observations from the input source of a system are
collected over a given time-frame which is referred
as Uncertainty Estimation Time-frame. Based on the
design, the size/length of this time-frame can be dy-
namically changed or can be stable.

2) Uncertainty Detection: Over the collected observations,
an uncertainty detection technique is implemented to es-
timate the current uncertainty level. In this step, different
techniques can be utilised. For example, the algorithm
shown in Section II-D can be used to compute a noise
level estimate.

3) Storing the detected uncertainty: Detected uncertainty
levels are stored for each Uncertainty Estimation Time-
frame. Thus, as this time-frame advances, for each new
time-step, a new estimate will be stored.

4) Building a Type-1 input MF: A Type-1 input MF is
constructed by using the detected uncertainty level of
the most recent time-frame. This detected uncertainty
can be used for example with Gaussian MFs to inform
their width/standard deviation.

5) Sliding window for the stored uncertainty levels: A
sliding window is defined to capture a sequence of
the detected uncertainty levels. As for the Uncertainty
Estimation Time-frame, the size/length of the sliding
Uncertainty Variation Window can be changed according
to the application.

6) Building an Interval Type-2 input MF: Here, the vari-
ation of the uncertainty levels over the Uncertainty
Variation Window is computed and is used to specify
the size of the IT2 FOU around the initial T1 (principal)
MF generated in Step 4.

The flowchart of this approach can be seen in Fig. 2.

The proposed framework can be employed in a variety
of applications where the input is subject to varying noise
levels over time. In this paper, we focus on the time-series
prediction as the generation of time-series is easily manageable
and different noise levels can be added in a controlled manner.

The proposed strategy is employed by leveraging the six-
step methodology over the generated time-series as shown
in Fig. 3. By following (6), the uncertainty level () is
detected in the Uncertainty Estimation Time-frame (red dashed
lines in Fig. 3) and it is stored along with the previously
detected uncertainty levels. To construct Type-1 input MF, the
detected uncertainty is utilised as the standard deviation of the
Gaussian MF. So that the (7,) is used for the o value in (3).
Thereafter, Uncertainty Variation Window (blue dashed line in
Fig. 3) is defined and the variance for the estimates within this
sliding window is calculated. The gathered variance is used to
generate FOU of the constructed T1 input MF which resulting
in IT2 input (blue MFs in Fig. 3). The well known uncertain
standard deviation technique is performed by simply adding
and subtracting the gathered noise variance from the actual
(,,) value to calculate the standard deviation of upper and
lower MFs of the IT2 input MF.

1. [ Define Uncertainty Detection time-frame size ]ﬁ

!

2. [ Detect uncertainty in the defined time-frame
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Fig. 2. Flowchart of the Interval Type-2 input MF constructing
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The proposed approach to ’envelop’ (using the FOU) the
variation of noise levels affecting a system over time is de-
signed to capture the often strong variation encountered by real
world systems. For example, if the environmental conditions
are unstable in a robotics application, the uncertainty levels
vary considerably and the adaptive FOU provides the degrees
of freedom to capture this variation. If the circumstances tend
to be more stable, then the variation of the uncertainty levels is
smaller, resulting automatically in narrower FOUs more akin
to type-1 MFs, enabling the system to respond quickly and
efficiently to changes in its inputs.

Fig. 4 illustrates this adaptive behaviour. Even though the
noise level estimated most recently is similar in both examples,
the variation of the noise over the window (note, here, both the
windows are of equal size for simplicity) differs substantially
in both cases. Specifically, in Fig. 4a, the noise levels are rela-
tively stable over the time (,,), in Fig. 4b, the noise levels vary
significantly. The adaptive input MF and FOU generation thus
leads to two very different IT2 input MFs, with a smaller FOU
generated for the more stable case on the left (Fig. 4a) and a
wider FOU for the more unstable case on the right (Fig. 4b).

IV. EXPERIMENTS AND RESULTS

As one of the commonly used chaotic time-series, Mackey-
Glass (MG) is used to implement a series of forecasting exper-
iments in this paper. In order to provide chaotic behaviour in
MG, T value is set to 30, while a = 0.2 and b = 0.1. During
the time-series generation, firstly, 2000 samples (from t=—999
to t=1000) are generated and due to the fluctuation tendency

in the initial part of the time-series, the last 1000 (from t=1
to t=1000) values are taken to be used in the experiments.

For the training phase of the Mamdani [44] NSFLSs,
rule generation is completed by utilising the common Wang-
Mendel method [45] over the first 70% of the data points from
the noise-free MG series. Nine past points are used to make
the prediction and seven antecedents are utilised in the rule
generation. For the testing phase, two different noisy data sets
are generated. In the inference step of NSFLSs, the minimum
t-norm AND, max t-conorm OR operators are utilised and the
same number of discretisations (500) are used for all NSFLSs.
In order to mitigate the effect of randomness in the noise
addition process, each experiment is repeated 30 times, while
the prediction error is captured using both the commonly used
Mean Square Error (MSE) and the average of the generated
Symmetric Mean Absolute Percent Error (sSMAPE) measures.
Note that, in this paper, we are not interested in achieving
the best possible prediction accuracy, but in the relative
differences in performances between different NSFLSs.

Two different set of experiments, with different testing time-
series data sets, are implemented to conduct the comparison
between the proposed adaptive and non-adaptive NSFLSs. As
nine past points are used in the prediction, the frame and
the window sizes (Uncertainty Estimation Time-frame and
Uncertainty Variation Window) are set to nine as well in this
paper. While this is an intuitive choice, other choices may
provide superior results — this may be investigated as part of
future work.

In both experiments, we investigate that which FOU value
in IT2 input MFs provides the least prediction error and how
does this compare to the proposed adaptive approach. In the
investigation, 10 different sequential FOU values, between
0.01 and 0.1, are picked and applied to IT2 input MFs in
each set of experiment. Then the proposed adaptive approach
is implemented to generate FOU in an online manner and the
results are compared to manually adjusted FOU experiments.

A. Experiment A - FOU creation under stable noise levels

In this experiment, the noise level in the test time-series
is kept constant to evaluate two main points: (i) Demonstrate
and analyse the behaviour of the proposed adaptive approach
in terms of the generated FOU sizes under stable noise.
(i) Compare the adaptive prediction results against the non-
adaptive different NSFLSs with manually adjusted FOU sizes
in order to explore how arbitrarily selected FOUs affect the
FLSs performance in comparison to those arising from the
adaptive approach. The experiment is performed by following
the steps below:

1) SNR 20 dB Gaussian noise is added to each value of
the noise-free testing set.

2) Next, the proposed adaptive IT2 input MF generation
strategy is implemented and prediction results captured
using both the MSE and sMAPE measures.

3) After evaluating the adaptive approach, a follow-on set
of experiments is conducted where a set of predefined
FOU sizes are used, rather than automatically adapting
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Fig. 4. Illustration of different generated IT2 input MFs.

the FOU size. Here, first, the T1 MFs are generated
by following the first 4 steps of the procedure (Noise
Estimation, see Section III), after which we evaluate the
performance of the NSFLS for 10 fixed FOU sizes, i.e.
for values between 0.01 and 0.1. For all 10 experiments,
the MSE and sMAPE are again captured.

The results of the 11 experiments are compared in
order to validate if the adaptive approach successfully
generates suitable FOU sizes in this most simple case —
when uncertainty is constant, rather than varying.

4)

An illustration of the used time-series is provided in Fig. 5.

B. Experiment B - FOU creation under varying noise levels

Since the proposed technique is designed to capture the
varying noise levels common in real-world settings, in this
experiment, different noise levels are sequentially injected into
the time-series test set. Specifically, a sequence of relatively
low (20 dB) and high level (0 dB) of noise is injected as
illustrated in Fig. 6. While the beginning of this time-series is
subject to a low, 20 dB noise level, this is increased to a high
0 dB level and after that, reduced back to the low 20 dB level
of noise (see the middle part of Fig. 6). By generating this
pattern of noise variation, we attempt to replicate real-world
situations where an unexpected disturbance suddenly occurs in
the signal data (e.g. light variation affecting a camera). Five
examples of the generated IT2 input MFs are shown in the

—— Noise Free —— Noisy
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Fig. 5. Illustration for a stable noise level (20 dB), showing the perturbed time
series (top), the (constant) SNR (middle) and 5 example MFs as generated at
timesteps 720, 800, 870, 910 and 980.

lower part of Fig. 6. The same steps from the Experiment A
are followed for performance evaluation.

C. Results

The results of Experiment A in Fig. 7 show that the
adaptive approach and the best manually specified FOU have
similar SMAPE and MSE results which indicates an accurate
adaptation of the FOU size in this context where the noise
remains constant. In a real world context, it would of course
not possible to run all different FOU sizes sequentially, and
the proposed approach for its automatic adaption would be
strongly preferable.

In Experiment B, the results visualised in Fig. 8 reveal that
the adaptive strategy again produces both sMAPE and MSE
results which are close to the optimal manually selected FOU
size. We note that the performance of the adaptive approach is
not substantially better than any manually selected FOU size
even though the uncertainty levels are varied across the testing
set. At the time of writing this article, we believe that this may
be due to the overall limited level of variation of noise in the
testing set, i.e. while the noise level is changed twice across the
time series, this limited amount of variation can be captured
well by predefined FOU sizes, thus do not leave much scope
for the adaptive approach to show improved performance.

—— Noise Free

—— Noisy

Fig. 6. Illustration for a sequence of varying noise levels (20 dB, 0 dB, 20
dB), showing the perturbed time series (top), the (varying) SNR (middle) and
5 example MFs as generated at timesteps 720, 800, 870, 910 and 980.
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Fig. 7. Experiment A - The MSE and sMAPE prediction result comparison
of adaptive and non-adaptive FOU generation in the test set which has stable
20 dB noise level

D. Discussion

In this paper, two different noisy time-series datasets (stable
and varying noise) are used in the testing of the NSFLSs
and the proposed adaptive strategy is utilised to generate 1T2
input MFs with uncertain standard deviation and different FOU
values are used to make the comparison.

In Experiment A, the constant level of noise is used in the
testing time-series data set in order to analyse the behaviour of
the proposed adaptive approach. During this experiment, the
noise level remains constant at 20 dB, resulting - as expected
- in a constant FOU size as shown in Fig. 7. In Experiment
B, the varying noise levels result in adaptation of the FOU
sizes. When the data exhibits low variation in the levels of
noise, the FOU is smaller, while high variation results in larger
FOUs. We note in particular the narrower FOU size towards
the middle of the time series (middle MF in Fig. 8). It reflects
that the noise level is constant (at 0 dB) toward the middle of
the time series (at step 870), while the MFs are points of the
time series where the noise levels are changing (e.g. 800 and
910) show wider FOUs.

Further, as shown in Figs. 7 and 8, the proposed adaptive
approach produce MSE and sMAPE values which are close to
the lowest error values achieved by the best of the 10 NSFLSs
with fixed, manually specified FOU sizes. Although it may
seem fixed FOU sizes are used (i.e. 0.01 or 0.02) and there
are no substantial differences between the adaptive and the
best manually specified NSFLS results, it is crucial to note
that when we use the proposed adaptive technique, we do
not need to know any a priori information about the noise
levels, their variation or any specific FOU sizes. Le. in real
applications, manually adjusting FOU sizes of IT2 input MFs
would both be impractical and commonly not feasible as no
information is available on what FOU size would result in the
best performance for future levels of noise variation.

V. CONCLUSIONS

In this paper, a new type of noise-robust, adaptive IT2 input
NSFLS is proposed which enables on-the-fly adaptation of
the input fuzzy set to capture both different levels of noise
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Fig. 8. Experiment B - The MSE and sMAPE prediction result comparison of
adaptive and non-adaptive FOU generation in the test set with varying noise
levels

(affecting the input(s)) and variation in said levels. Specifically,
principal T1 input MFs are generated by detecting uncertainty
within an Uncertainty Estimation Time-frame. Then, the T1
principal MF is extended with an FOU to an IT2 input MF,
where the size of the FOU is driven by variation of uncertainty
levels as measured over an Uncertainty Variation Window and
the FOU is applied to T1 input MFs.

The proposed adaptive approach allows for the construction
IT2 input MFs dynamically in a fully online manner, which
can capture and handle both noise and changes in noise levels
without requiring any a priori information on noise levels.

Initial experiments conducted in this paper based on MG
time series prediction show that the proposed adaptive strategy
provides a promising approach to dealing with noise in real-
world applications.

In the future, the proposed approach will be further evalu-
ated both with other time-series datasets and other applications
(such as in robotics). Further, we will specifically focus on
evaluating the architecture’s performance under conditions
where noise levels vary strongly (e.g. Quadcopters subjected to
wind gusts). Finally, we will explore the integration of recently
proposed advanced techniques [14], [15], [21] to determine
the firing strength of NSFLSs which are designed to model
the interplay of input and antecedent MFs (and associated
uncertainty models) with high fidelity. Also, Type-2 and Type-
1 comparison will be implemented by varying window sizes
in an online manner.
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