
A Robust Study of High-redshift Galaxies: Unsupervised Machine Learning for
Characterizing Morphology with JWST up to z∼8

C. Tohill1 , S. P. Bamford1 , C. J. Conselice2 , L. Ferreira3 , T. Harvey2 , N. Adams2, and D. Austin2
1 University of Nottingham, School of Physics & Astronomy, Nottingham NG7 2RD, UK; clar-brid.tohill@nottingham.ac.uk

2 Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester, UK
3 University of Victoria, Astronomy Research Centre, Victoria, British Columbia, Canada

Received 2023 June 29; revised 2023 December 8; accepted 2023 December 19; published 2024 February 19

Abstract

Galaxy morphologies provide valuable insights into their formation processes, tracing the spatial distribution of
ongoing star formation and encoding signatures of dynamical interactions. While such information has been
extensively investigated at low redshift, it is crucial to develop a robust system for characterizing galaxy
morphologies at earlier cosmic epochs. Relying solely on nomenclature established for low-redshift galaxies risks
introducing biases that hinder our understanding of this new regime. In this paper, we employ variational
autoencoders to perform feature extraction on galaxies at z> 2 using JWST/NIRCam data. Our sample comprises
6869 galaxies at z> 2, including 255 galaxies at z> 5, which have been detected in both the Cosmic Assembly
Near-infrared Deep Extragalactic Legacy Survey Hubble Space Telescope fields and the Cosmic Evolution Early
Release Science Survey done with JWST, ensuring reliable measurements of redshift, mass, and star formation
rates. To address potential biases, we eliminate galaxy orientation and background sources prior to encoding the
galaxy features, thereby constructing a physically meaningful feature space. We identify 11 distinct morphological
classes that exhibit clear separation in various structural parameters, such as the concentration, asymmetry, and
smoothness (CAS) metric and M20, Sérsic indices, specific star formation rates, and axis ratios. We observe a
decline in the presence of spheroidal-type galaxies with increasing redshift, indicating the dominance of disk-like
galaxies in the early Universe. We demonstrate that conventional visual classification systems are inadequate for
high-redshift morphology classification and advocate the need for a more detailed and refined classification
scheme. Leveraging machine-extracted features, we propose a solution to this challenge and illustrate how our
extracted clusters align with measured parameters, offering greater physical relevance compared to traditional
methods.

Unified Astronomy Thesaurus concepts: Galaxy evolution (594); Convolutional neural networks (1938); High-
redshift galaxies (734); Galaxy classification systems (582)

1. Galaxy Morphology

The morphology of a galaxy is a record of its formation
history. It has been shown that the morphology of a galaxy traces
the spatial distribution of ongoing star formation and encodes the
signatures of past and ongoing dynamical interactions, which
can give us an indication of how galaxies evolved throughout
cosmic time (Holmberg 1958; Dressler 1980; Kauffmann et al.
2003; Conselice et al. 2013). The Hubble classification scheme
describes the morphologies of galaxies observed in the local
Universe. This classification scheme not only describes the
visual appearance of the galaxy, but it has been shown that
morphological type correlates strongly with many intrinsic
properties such as the star formation rate (SFR), age, number of
past merging events, etc. (Sandage 1986; Lotz et al. 2008).
However, while this system has recently been shown to describe
galaxies up to very high redshifts of z� 5 (Ferreira et al. 2023;
Huertas-Company et al. 2023; Jacobs et al. 2023; Kartaltepe
et al. 2023), the number of irregular galaxies increases rapidly
with redshift (Abraham et al. 1996; Mortlock et al. 2013;
Ferreira et al. 2020), thus requiring a more detailed description.

Investigating galaxies at higher redshifts we observe much
more peculiar and clumpy morphologies (Conselice et al. 2005).

Due to the variety of galaxy types we observe it becomes
challenging to create a classification scheme for all galaxies akin
to the Hubble tuning fork we apply at low redshifts. Relying on
the nomenclature that has served us at low redshift risks biasing
our understanding of this new regime. For example, work carried
out in the past by Elmegreen et al. (2005) classified high-redshift
galaxies in the Hubble Ultra Deep Field into six main groups:
chain, clump cluster, double clump, tadpole, spiral, and elliptical.
These groups were determined by eye to match matched
previous classifications made by others (Cowie et al. 1995; van
den Bergh et al. 1996). While many galaxies at high redshift fall
into one of these categories, a more robust classification scheme
is needed. The CAS parameter system (concentration, Bershady
et al. 2000; asymmetry, Schade et al. 1995; and smoothness of a
galaxy’s light profile), defined in Conselice (2003), is one way
this can be achieved. For example, galaxies that have been
classified as “tadpole” galaxies tend to have high asymmetries
while “clump cluster” galaxies tend to have low concentration
values. Similarly the Gini (G)–M20 nonparametric measurement
system introduced by Lotz et al. (2004) showed that combining
the CAS parameters with G and M20 was a more effective
approach to classifying different morphologies. While these
parameters can aid in distinguishing between certain classifica-
tions, it remains unclear if all high-redshift galaxies neatly fit into
these morphological categories and how these relate to
quantitative structure and other physical properties. Therefore,
it is crucial to develop an efficient and robust method that groups
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galaxies based on their intrinsic features, without imposing our
own biases on the classification classes and criteria.

A classification scheme for early galaxies would allow us to
probe deeper into the intrinsic properties of these galaxies and
will help to better understand their evolution. We know that the
SFR in the Universe peaked at around z∼ 2 (Madau &
Dickinson 2014), meaning that galaxies would have had more
star-forming regions, leading to more clumpy morphologies.
We also know that the merger rates were higher in these earlier
times (Patton et al. 2002; Duncan et al. 2019), meaning
galaxies possess more disturbed morphologies with tidal
disruptions, multiple cores, etc. However, what is not under-
stood is how these galaxies evolved into those we observe
today. For example, looking at galaxies, both star-forming and
quiescent, at a fixed stellar mass, we observe those at higher
redshift to be more compact than their lower-redshift counter-
parts (Wilman et al. 2020). How these evolved into what we
see today could possibly be studied by investigating the
evolution in morphological type with redshift. How to define
morphological type is however not obvious at high redshift,
which is the focus of this paper.

With the successful launch of the James Webb Space
Telescope (JWST) we have access to the highest resolution
imaging of these distant galaxies, allowing us to explore the
high-redshift regime in the greatest depth and detail to date.
This opens a window into better understanding the formation of
the first galaxies and their evolution over cosmic time. There
have already been a number of studies investigating the
morphologies of these most distant objects (Ferreira et al. 2023;
Guo et al. 2023; Huertas-Company et al. 2023). While these
studies focus on the morphologies of these distant galaxies,
they still characterize them using nomenclature used at low
redshift, investigating fractions of spheroid-, disk-, and
irregular-type morphologies. While some galaxies at high
redshift fall into one of these groups, it is not known if this is
applicable to all galaxies we observe in the distant Universe.
Nor is it known what features are important when concluding
into which morphological group a galaxy falls.

The problem that we investigate is how do we robustly
classify these distant galaxies into self-similar types? How do
we determine what features of a galaxy’s morphology are most
important in its characterization? Previous attempts to solve
this issue involve citizen science projects such as Galaxy Zoo
(Willett et al. 2013). These aim to amass a large number of
visual classifications by asking the public to answer a number
of questions about a galaxy’s shape, color, etc. (Bamford et al.
2009; Cardamone et al. 2009; Schawinski et al. 2014).
However, there are a finite number of questions and features
that each classifier is able to select. This functions well for
galaxies in the local Universe and up to z∼ 1, where the
majority of galaxies fall into broad classifications of spiral,
elliptical, and irregular; however, this breaks down at the
higher redshifts where the majority of galaxies lie in this
irregular group. In order to classify galaxies at high redshift
better using this method there needs to be new questions and
features available for each classifier to choose. The issue is
these features are unknown, as there is no robust classification
scheme in the distant Universe. There is a solution to this
problem, and one that has become popular in recent years:
machine learning (ML). Work has been carried out by
Walmsley et al. (2022a) that combines these visual classifica-
tions from Galaxy Zoo with ML, allowing for many more

classifications, and also enabling researchers to locate anoma-
lies within their data sets (Walmsley et al. 2022b). While these
techniques have proven very successful, they still require labels
to train the networks initially. By using unsupervised ML we
can remove the need for any classifications or labels.
In this work we utilize an unsupervised deep learning

algorithm to extract the most dominant morphological features
of distant JWST galaxies and separate them into self-similar
types, allowing for a new broad classification system. The
intrinsic properties of the galaxies within each group are
investigated with redshifts, masses, and SFRs to provide new
insights into the evolution of galaxy structure since z< 8.
This paper is organized as follows. In Section 2 we introduce

the imaging data and survey used in this work, along with our
selection criteria. In Section 3 we detail the various
architectures we explore in this work as well as the clustering
algorithm used. We discuss our data standardization process in
Section 4 and the optimization of our networks in Section 5.
The clustering algorithm used in this work is detailed in
Section 6. The resulting optimized network and results are
included in Section 7, which also includes information about
the extracted morphologies and clusters. We conclude with a
brief summary of our main results in Section 8.

2. Data

2.1. JWST Data

All of the images used in this project are from the Cosmic
Evolution Early Release Science Survey (CEERS; PI: Finkel-
stein, ID= 1345; Finkelstein et al. 2023) pubic release fields
(Bagley et al. 2023), imaged with the NIRCam instrument on
JWST. NIRCam offers wavelength coverage from 0.6 to
2.3 μm with a resolution of 0 031 pixel−1, and from 2.3 to
5 μm with a resolution of 0 063 pixel−1 .
The data have been reduced using the pipeline mentioned in

Ferreira et al. (2023). This is a modified version of the JWST
official pipeline 1.6.2, see Ferreira et al. (2023), Adams et al.
(2023) for more detail. We select galaxies that overlap with the
Cosmic Assembly Near-infrared Deep Extragalactic Legacy
Survey (CANDELS; Grogin et al. 2011; Koekemoer et al.
2011) for this work. In total we have ∼10,000 galaxies from
CEERS that overlap with sources in the CANDELS field across
all redshifts. The reason for matching our JWST sample to HST
imaging is so that we can use the reliable and well-tested
redshift, photometry, mass, and SFR measurements that have
been derived and utilized in previous works (Duncan et al.
2019; Whitney et al. 2021). Known active galactic nuclei have
also been removed. In total we select 6869 galaxies with z> 2
that have a match in the CANDELS survey. The apparent
magnitude–size distribution of our sample is shown in Figure 1.
While we will be using the redshift, SFR, mass and other
measurements from the original CANDELS galaxies, we
remeasure the nonparametric morphologies with MORFOME-
TRYKA to have updated and more accurate CAS, Sérsic,
Gini–M20, etc., values. We expect these to change from the
values measured from the HST images due to the increase in
resolution and signal-to-noise ratio (S/N) of the data. It should
be noted that these measurements were performed on the
original galaxy stamps from JWST before any standardization,
discussed in Section 4, was applied. As we want to probe the
rest-frame optical wavelength for all of the galaxies in our
sample, we use imaging from the F150W, F200W, F277W,
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F356W, F410M, and F444W bands and match to the redshift of
each galaxy; see Table 1 for the redshift cuts.

In order to ensure that the conclusions we draw in this work
are representative of the sample we make a mass cut at
M* > 108.5 Me to ensure we are complete at the highest
redshifts. This can be seen in Figure 2. Galaxies above this
limit are used for the analysis in this work.

3. Method

3.1. Machine Learning

In recent years ML has proven to be very successful in
astronomy and has been applied to many different problems.
ML has been utilized to predict many morphological
parameters of galaxies from parametric measurements such as
the Sérsic index (Tuccillo et al. 2018; Li et al. 2022; Tortorelli
& Mercurio 2023), to nonparametric structural measurements
such as the CAS system (Tohill et al. 2021). Supervised ML
has also been successfully applied to visual classifications such
as mergers (Ferreira et al. 2020), anomaly detection (Walmsley
et al. 2022b), and Hubble-type classifications (Dieleman et al.
2015; Domínguez Sánchez et al. 2018; Cheng et al. 2020b).
More recently Robertson et al. (2023) used deep learning to
uncover the abundance of “disky” objects at high redshift with
JWST. While these studies have proven to be successful, they
require prior knowledge of the data in order to have labels with
which to train the network. This comes with its own issues: first
you need to amass enough labels to train your networks, which
is possible through citizen science projects such as Galaxy Zoo
(Lintott et al. 2008). However, as these classifications are made
by humans they come with their own intrinsic biases due to the
subjective nature of the classifier. When we use these labels to
train ML networks we are propagating this bias forward into
any future classifications as well. With the future of astronomy
consisting of ”Big Data” surveys, it will take hundreds of
people years to classify all of the 1.5 billion resolved galaxies
in the Euclid survey (Laureijs et al. 2011). One solution to
remove this bias and to improve the efficiency of these

classifications is to move toward using unsupervised ML
techniques.

3.2. Unsupervised Machine Learning

As the name suggests, unsupervised ML techniques require
no labels to train but use only the data that you are interested in
investigating as an input. For this reason unsupervised methods
can be a more robust and unbiased method for data analysis.
There have been studies in recent years that have applied
unsupervised techniques to different problems in astronomy
such as strong gravitational lenses (Cheng et al. 2020a),
anomaly detection (Baron & Poznanski 2017; Margalef-
Bentabol et al. 2020), and galaxy morphology (Hocking et al.
2018; Martin et al. 2020; Cheng et al. 2021). These studies
work by training a network to perform feature extraction on
input data to recover the main features of the images. These
features can then be explored and analyzed, allowing the user
to perform different tasks, such as grouping similar images
together (a classification-type analysis), finding outliers in the
data (anomaly detection), looking for correlations between
features and physical properties (morphology studies), etc. As
the issue we are trying to address is a classification-type
analysis we will need to group similar extracted features
together. To perform our feature extraction we explore the use
of variational autoencoders (VAEs; Kingma & Welling 2013),
which we describe in detail below.

Figure 1. Distribution of the apparent H160 magnitude of our galaxy sample vs.
half-light radius in pixels. The resolution from NIRCam is 0 03 and
0 063 pixel–1 for 0.6–2.3 μm and 2.3–5 μm, respectively. Our sample is
measured from JWST/CEERS imaging.

Table 1
Summary of the Bands Utilized from JWST NIRCam with the Associated

Redshift That Aligns with the Optical Rest Frame

Redshift Range Band Total λpivot (μm)

2.0 � z < 3.0 F150W 4186 1.501
3.0 � z < 4.0 F200W 1672 1.990
4.0 � z < 5.0 F277W 644 2.786
5.0 � z < 6.0 F356W 142 3.563
6.0 � z < 7.0 F410M 71 4.092
z � 7.0 F444W 42 4.421

Figure 2. Distribution of the stellar masses of galaxies within our matched
sample vs. redshift. The red line shows the mass cut at 108.5 Me. Galaxies
above this mass are utilized in this work, which is above the completeness limit
at all redshifts.
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3.3. VAEs

In this work we utilize a type of autoencoder (AE) network.
The main idea behind an AE network is that of dimensionality
reduction. Dimensionality reduction is the process by which the
number of features needed to describe some data are reduced.
An AE is composed of two main components, the encoder and
the decoder (see Figure 3). The encoder takes an input, which
in this example is an image, and encodes the information into a
lower dimensional representation of the data. This lower
dimensional representation is stored in the latent space, which
is also referred to as the feature space. These terms will be used
interchangeably throughout this work. The decoder then
samples from this latent space to create a reconstruction of
the input. The AE is trained to compress the input data while
minimizing the reconstruction loss between it and the out-
putted, decoded image. One downfall to AEs is that they are
prone to overfitting as there is no regularization of this latent
space. In order to combat this, we can use a VAE (Kingma &
Welling 2013). The main idea behind a VAE is that instead of
encoding each extracted feature into one number, it is instead
encoded as a distribution that the decoder can sample from to
recreate the input. This forces the latent space to be smoother,
which can also allow for generative processes (i.e., creating
mock galaxy images). During the training of these networks the
reconstruction loss is minimized the same way as before,
however, there is an extra penalty on the network if the latent
space diverges from a standard normal distribution. This is
called Kulback–Leibler (K-L) divergence. While the traditional
VAE has been used in many studies with success (Thorne et al.
2021; Xu et al. 2023), it has been shown that the extracted
features can be entangled and difficult to separate into distinct,
differentiable features. This is an issue for our work as we want
to be able to compare the network’s features to known and
well-established morphological properties, e.g., the concentra-
tion of light, close pairs, asymmetries, etc. There are a number
of variations to the VAE that aim to address this issue of
entanglement. Two of the more success variations are β-VAE
(Higgins et al. 2017), and the maximum mean discrepancy
(MMD)-VAE (Zhao et al. 2017). While Locatello et al. (2018)
state that perfect disentangled representations are theoretically
impossible, imperfectly disentangling features is an extremely

useful concept and has been shown to be a very powerful tool
in many disciplines (Chen et al. 2016; Higgins et al. 2017;
Eastwood & Williams 2018). We investigated both network
architectures in our work to determine the optimal structure for
our problem, which we explain in detail below.

3.3.1. β-VAE

The β-VAE architecture was first introduced by Higgins
et al. (2017). This type of VAE incorporates a weight on the
K-L loss to improve the disentanglement of features in the
latent space. A value of β= 1 represents the original VAE,
while β> 1 forces a stronger constraint on the latent space to
learn a more efficient latent representation of the data. The idea
is that if there are some features of the data that are independent
of each other then the network will be able to disentangle them
better, leading to a more robust representation of the data. The
loss is defined as

= + , 1total recon KL   ( )

where

= qf
p x zlog , 2q z xrecon ^ ( | ) ( )( | )

åb b
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+ - -
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Here, qp x z( ˆ∣ ) is the likelihood of data x̂ given latent space z
and qf(z|x) is the posterior distribution of the latent space. The
aim is that the network will reduce the reconstruction loss
between the input and the decoded data while at the same the
K-L divergence encourages the posterior to follow a distribu-
tion, normally a unit Gaussian. The reconstruction loss ( recon )
in this work is simply the mean squared error (MSE) between
the reconstructed image and the input data. The network will be
penalized for diverging from either of these conditions, as is the
case with the traditional VAE. In β-VAE there is an additional
adjustable hyperparameter β that is introduced to the K-L
divergence term to balance this with the reconstruction loss.
Higgins et al. (2017) showed that this additional hyperpara-
meter is able to moderate the latent information and force the
network to learn a more efficient representation of the data that

Figure 3. Architecture of our MMD-VAE network. On the left is the encoder, which takes the input data and compresses it into a smaller number of dimensions
represented by the feature space (z). The decoder then samples from this feature space to create a reconstruction of the input. The aim of this work is to cluster this
feature space to extract groups of galaxies with similar morphologies.
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is also disentangled. As we are interested in comparing the
extracted features to known morphological features this
disentanglement is important; however, while the K-L
divergence can be moderated it still penalizes the latent space
diverging from a unit Gaussian. While this is useful for
generative purposes as it creates a smooth latent space to
sample from, it may not be best suited for our proposes as we
are interested in retrieving distinct subclusters within the
feature space in order to obtain a robust separation of galaxy
types. With this in mind we explore another variation of the
VAE known as MMD-VAE.

3.4. MMD-VAE

The second network we investigate is MMD-VAE. This type
of network differs from β-VAE in that it does not exploit the
K-L divergence but instead finds the MMD (Gretton et al.
2008) between the prior distribution p(z) and the posterior q(z).
The MMD of two distributions is minimized when they are
identical. Instead of comparing the overall distributions like the
K-L divergence, it samples from each distribution and
compares the means of each sample. If these are very different
it is unlikely that the two samples are from the same
distribution. In order to sample from each distribution the
kernel trick is used. This allows nonlinear data to be projected
onto a higher dimensional space where it can be linearly
divided by a plane. The MMD loss is thus defined as

= +

-

¢ ¢

¢
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¢

k z z k z z

k z z
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where ¢k z z,( ) can be any universal function, the most common
being a Gaussian kernel, which we utilize in this work. The
reconstruction loss is the same as before and so we end up with
the total loss function in our MMD-VAE

= +- . 5MMD VAE recon MMD   ( )

The advantage MMD-VAE has over β-VAE is that it is not
penalized for diverging from a Gaussian distribution, as the
loss is defined by the moments of the distributions and not the
density. This is better suited to our problem as we ideally want
a latent space that is easy to separate into clusters, which is
more achievable when the latent space is less compact/dense as
it is when you have a high β-value in the β-VAE network.

To compare both networks fully we optimize both and
compare how the reconstruction loss varies between them for
the same number of latent variables. This comparison is
discussed in Section 5.

4. Data Preprocessing

4.1. Observational Bias: Rotation Invariance

One common issue that can arise with feature extraction is
the fact that the network is trying to reproduce the input images
with as few features as possible. This causes features such as
shape, orientation, size, and position to be encoded first as these
will result in a smaller reconstruction loss than more finer
details. These features however are not intrinsic to the galaxy
and are in fact observational biases that we have imposed on
the data simply because of our observational position on Earth.
The dominance of these features has been well demonstrated in
Spindler et al. (2021). In their work they show how almost half
of their latent information space encodes the orientation of their

galaxies and the positions of background sources. While they
were able to produce generated galaxy images with their
network, they show one of the main downfalls of unsupervised
ML techniques. Other authors such as Cheng et al. (2021)
address this rotation issue after feature extraction. During their
clustering of the extracted features, they use the rotation of each
galaxy as a feature to define the clusters, thus avoiding galaxy
orientation as a feature. This method was successful; however,
one downfall is that other structural features could be
unintentionally excluded from the clustering method as some
of their encoded information was used to encode this rotation.
Addressing this rotation issue manually also means that this
method is no longer totally unsupervised.
In our work we want to address and remove these

observational biases before trying to cluster our galaxies, thus
allowing the feature space to be physically meaningful and
without the risk of missing any other subtle features of the
galaxies.

4.2. Image Standardization

To address these observational biases in our work we
preprocess our data before training the network to prevent these
features from being an issue by standardizing our galaxy
sample.
An example of this is shown in Figure 4. In the top row we

have our original JWST images with the target galaxy in the
center; however, as you can see there are quite a number of
background sources that, as we have seen previously, the
network will try to encode as a feature. We first remove these
sources from our images using the galclean (de Albernaz
Ferreira & Ferrari 2018) algorithm. This algorithm removes
any noncentral sources at a certain threshold above the
background level. These masked areas are replaced with values
sampled randomly from the background distribution to ensure
they do not leave shapes which could be picked up by the
network. The clean images can be seen in the middle row. The
next issue we address is the orientation of the galaxies. As it
has been shown in previous works this is one of the dominant
features in a network and so we rotate all of our galaxies by

Figure 4. An example of our image standardization process. Top: original
CEERS JWST images. Middle: this shows the galaxy images after they have
been cleaned of background sources. Bottom: rescaled and rotated images.
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their position angle to prevent this from becoming an issue. The
position angle is measured on the JWST images to ensure that
faint objects do not bias the standardization process. The last
feature we address is the apparent size of the galaxies. We
rescale all of our images to an average Petrosian radius (Rp) of
15 pixels if they are smaller than this. This will allow the
network to focus on the finer details of the images instead of
wasting information encoding the size of the galaxies. We do
not downscale our images as we do not want to lose any
resolution as this will take away from the feature extraction and
some finer features could be lost. As our galaxies are all at high
redshift we also crop our images to remove as much of the
background as possible. An example of this can be seen in the
bottom row of Figure 4. We then use these cleaned images to
train our network.

5. Model Training and Optimization

Depending on the chosen network architecture, there will be
a varying number of hyperparameters that need to be
optimized. There are various methods to determine what set
of hyperparameters will provide a suitable architecture for the
problem being addressed. These range from the more basic
random or grid search methods (Bergstra et al. 2011), to more
advanced techniques such as random forest (Hutter et al. 2011).
These methods, while being used successfully in the past, are
computationally expensive and can take a while to converge on
an optimum value. A more efficient approach to optimizing
network architectures is Bayesian optimization (Snoek et al.
2015). Bayesian optimization builds upon previously evaluated
models to create a probabilistic model which is built upon to
converge on an optimum solution more efficiently. The
hyperparameters within our network are the batch size fed to
the network during training, the initial number of filters in the
first layer of the network, the number of dense filters in the
dense layer on the encoder, the optimizer used, the values of β
and λ depending on the network being trained, and the number
of latent dimensions used to encode our data. The latter we will
address separately, as simply by increasing the number of latent
dimensions the loss from our network will decrease; so, to
force the optimization process to focus on the architecture of

the network we keep the number of latent dimensions fixed at
five. We chose this value as it is large enough to let the network
encode the main features of each image so to have a reasonable
loss to optimize the network on, but not too large that we risk
encoding noise that would cause variations each time the
network is trained. The optimum network hyperparameters are
shown in Table 2. For all networks trained the learning rate was
reduced when the validation reconstruction loss had plateaued
for a set number of epochs, which is referred to as the
“patience.” The patience of our learning rate was 20 epochs and
if no improvement was seen after 50 epochs (the patience for
the reconstruction loss) the training was stopped. All networks
were allowed to run until there was no improvement seen in the
validation reconstruction loss.

5.1. Dimensionality of Latent Space

The main principle of a VAE is that of dimensionality
reduction. Determining the optimum number of latent dimen-
sions to encode the data into is another hyperparameter. A
small number of latent features and you do not adequately
capture the morphological information stored in each galaxy
image. Too high, and you are left with a latent representation
that is large and hard to interpret, making the idea of
dimensionality reduction meaningless. To determine a good
balance between these extremes we test 12 cases, varying the
dimensionality of the latent space from 3 to 30. We use the
reconstruction loss from our validation sample, which is simply
the MSE between the reconstructed image from the decoder
and the input image to determine the optimum number of latent
features. We separate this loss into the total reconstruction loss
(i.e., the whole image) recon and the loss within an aperture of
Rp= 15 pixels, aper , i.e., the average size of all our galaxy
sample. The idea is that when the network has encoded the
main features within each galaxy it will start to use information
to encode the noise in the images. By exploring where the
aperture loss plateaus we can select this to be the optimum
number of latent dimensions to encode the morphological
information of our sample of galaxies. The average variation in
the loss for both networks is shown in Figure 5. The average
loss is calculated on the validation set during the last 50 epochs
of training each network, which is the patience value for our
training (i.e., when the training plateaus and there is no more
improvement in the loss), and the error bars show the 1σ
variations in this loss. Both networks perform similarly, both at
encoding the whole galaxy image and within 1 Rp for each
galaxy (see Appendix Figure A1 for the training and test sets).
For all latent dimensions investigated, the total reconstruction
loss continues to improve from an MSErecon of ∼15.5 to an
MSErecon of ∼13.5, and continues to improve. However, it can

Figure 5. Variation of the reconstruction loss, both total and within an aperture,
of the validation set from our networks vs. the dimensionality of the latent
space. The solid points show the average MSE for the last 50 epochs (our
patience value, see text for details) and the error bars show 1σ of the variation.
It can be seen that after 23 latent dimensions there is no improvement in
aperture loss within the errors, while the total reconstruction loss continues to
decrease.

Table 2
Summary of the Hyperparameters Selected by the Bayesian Optimization

Technique

Hyperparameter Optimum Value

MMD-VAE β-VAE

Batch size 32 32
Fully connected layer size 256 128
Number of filters 32 64
Optimization Adam Adamax
β N/A 0.01
λ 10 N/A
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be seen that after 23 latent dimensions there is no improvement
within the aperture loss for either network. The MSEaper of the
reconstructions within the aperture plateau at around ∼15.8 for
both networks. This indicates that the networks are utilizing
any extra dimensions to encode the noise in the image or
background sources that might have been missed from the
image cleaning process, about which we also do not care. This
is also reflected in the larger error bars when we get to this
many latent dimensions. Thus for the analysis in this work we
have a dimensionality of 23 for our feature space. We expected
a smaller number of features would be needed to encode the
main morphological structure of our sample, as one of the main
aims of this work is to minimize the latent space in order to
ensure it is interpretable and physically meaningful. In earlier
iterations of this work we utilized five latent dimensions to
encode the data and found that, while the overall reconstruc-
tions were reasonable, the network tended to use individual
latent features to encode a variety of physical features. This
indicated that limiting the number of features to very low
dimensionality limited both the networks reconstructions and
also limited us from mapping individual latent features to
physical features. The fact that 23 latent dimensions are needed
to well reconstruct our galaxy sample reflects the diversity of
morphologies observed in the early Universe at the resolution
of JWST. This number of latent dimensions, while higher than
first expected, is much lower than previous works that allowed
their feature space to get very large in order to achieve the best
reconstructions possible, thus rendering their feature space
uninterpretable and difficult to map to physical features. For the
rest of the analysis in this work we utilize the MMD-VAE
network as both networks have a similar performance;
however, for the reasons stated earlier in Section 3.4, MMD-
VAE has been shown to be better at disentangling features and
puts less constraint on the distribution of the latent features,
which is better for our problem.

6. Clustering

The aim of our work is to be able to separate our galaxies
into different clusters based on their intrinsic features
determined by our network. This is not a simple task, as we
do not know the true number of clusters that exist in our data
and so the question is, how do we determine how many
different groups of galaxies exist in our data? To address this
issue we explore a method known as hierarchical clustering
(HC), as no prior knowledge of how many “true” clusters there
are within the data is required.

6.1. Hierarchical Clustering

Within this work we utilize the HC algorithm (Johnson 1967).
We focus specifically on agglomerative HC, which can be
thought of as a “bottom-up” clustering approach. This technique
initially assumes that each point is its own cluster and will merge
similar clusters together after every iteration until all data points
are contained within one cluster. Clusters are merged or
considered similar if they are close together in the feature space.
This method allows for uneven cluster sizes and also uneven
shaped clusters. This allows more freedom in the latent space,
which is a feature of the MMD-VAE that we utilize in this work.
An example of an HC dendrogram is shown in Figure 6. This
method has been used in similar studies for classifying different
morphological classes at low redshift (Cheng et al. 2021).

In order to measure how similar two clusters are the Ward’s
linkage method is used. This method measures the variance
within each cluster by means of the sum of squares within
them, and aims to minimize this when grouping clusters
together. The distance computed is thus the increase in the sum
of squares when two clusters are merged. As this distance is
minimized, the resulting clusters are created by grouping the
closest points in the feature space together. In order to select
clusters using this method, traditionally a single distance is
used as a cutoff point, and then selecting all clusters above this
threshold. However, this is not applicable to galaxy morph-
ology studies as different morphological types require more
features to describe them than others; for example, spheroids
require less information than mergers or spiral galaxies. In
order to ensure that the clusters we extract are well separated
and that we do not miss any due to a restrictive cut, we explore
splits down each branch in the HC tree until the split is due to
the S/N of the sample or if the cluster has fewer than 50
samples, as this is ∼1% of our sample and would not allow any
meaningful analysis to be conducted in terms of redshift
evolution or different SFRs. The extracted clusters from our
trained feature space are discussed in Section 7.2.

7. Results

7.1. Image Reconstruction and Feature Extraction

We train our MMD-VAE network on a subset (80%) of the
images in our sample and use a validation set (10%) to monitor
the training to ensure the network is not overfitting. We then
compare the reconstruction loss between the validation data
and a further independent test sample (10%) to evaluate the
performance of the network. We find a similar loss between
these subsamples, indicating that the network architecture we
have trained is robust. An example of some reconstructions
from the network can be seen in Figure 7. The top row shows
the input augmented JWST images, the middle shows the
reconstructions from the network, and the final row shows the
residuals between the input and the reconstructions. It can be
seen that the network is able to encode the general morphology

Figure 6. Dendrogram of the HC algorithm. The y-axis shows the similarity or
distance between the points while the x-axis shows the number of data points in
the smallest clusters. The horizontal black line shows the cutoff point in
similarity that would result in three clusters.
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of each galaxy, including shape, ellipticity, concentration, and
asymmetry of the light distribution, pairs, and the clumpiness.
This is a good sign as we do not see any orientation effects
taking up any of the encoded information. We can also see the
effect of information loss, as our reconstructions are very
smooth and noise has been removed from the images.

Looking into the latent dimensions individually we can
investigate which features the network is encoding. We have 23
latent dimensions in total that represent the feature space. In
order to understand the encoded space better we investigate if
there are any correlations between known galaxy parameters,
both parametric and nonparametric, and individual latent
features. We compute the Spearman’s correlation coefficient
between each latent feature and our measured morphology to
understand better what is being encoded. The highest ranked
latent feature and the corresponding measurement can be seen
in Table 3. (The full correlation matrix can be seen in Appendix
Figure A2.)

In order to visualize this correlation better we plot each
correlated feature versus the latent dimension with which it had
the highest Spearman’s correlation coefficient. We split each
feature into bins to visualize better where different galaxy types
lie along each feature. These can be seen in Figure 8. Looking
at the parametric and nonparametric properties we can see that
they are well separated in each of these features, which is
important, as it shows us that the network is learning features
that are physically meaningful to our galaxy sample. We expect
this from looking at the reconstructions from the network as
they capture the overall morphology of our galaxies well. As a
further demonstration, we show generated images from our
learned latent space in Figure A3. The generated images show a
smooth transition in morphology along each latent feature as
expected with a VAE. We include examples for the latent
features that had the largest Spearman’s correlation coefficients
with measured physical and structural properties, as shown in
Figure 8.

We can see that while the sSFR does correlate with latent
dimension 8 it is not as well separated as the other
morphological measurements. This is to be expected as not
all galaxies with high sSFRs will appear morphologically
similar. It has been observed that in the high-z Universe high
star-forming galaxies can be quite compact, and do not always
resemble the classic star-forming clumpy morphology we think

of traditionally. This makes it difficult to separate out one
feature to describe how star formation affects galaxy morph-
ology and makes visually identifying high star-forming
galaxies biased and incomplete. By clustering galaxies based
on a combination of all their extracted features we can avoid
any predefined assumptions and uncover high star-forming
galaxies with many different morphologies. We explore the
morphology of high-sSFR galaxies in Section 7.7.
Another method for visualizing how our latent space

correlates with the measured properties of the galaxies is to
apply further dimensionality reduction to our 23-dimension
space and represent it on a 2D plane. To do this we utilize the
UMAP algorithm (McInnes et al. 2018). The UMAP algorithm
seeks to produce an embedding, which is a low dimensional
projection of the data that best preserves the topological
structure of the manifold. The 2D projection of our latent space
is used to help visualize how the network is learning different
structures in our data but it is important to remember that the
coordinates of the UMAP plane have no physical meaning and
are not used for any clustering purposes in this work. The
UMAP representation of our 23-dimension latent space for our
galaxy sample is shown in Figure 9. Each UMAP visualization
is colored by the median value of a different measured galaxy
parameter. It can be seen that as you move across the UMAP
space from right to left there is a clear correlation with
increasing asymmetry and decreasing concentration, Sérsic
index, and axis ratio. We can also see a trend in the sSFR with
the lower-sSFR galaxies residing in the lower-right region of
the UMAP. However, as mentioned above, the sSFR does not
correlate as well as the other measurements. From this we
can see that our encoded representation space correlates with

Figure 7. Top: images input to the encoder. Middle: reconstructed images from the test set using 23 encoded features. Bottom: residuals showing how the
reconstructions have encoded the galaxy light and not noise. It can be seen that the network is capturing the overall morphologies of the galaxy sample well. Note that,
while the main morphology of each galaxy is well reconstructed, some finer details are missed, such as the brightness of each clump. This is good for this work as we
want to classify different galaxy morphologies robustly, e.g., clumpy vs. nonclumpy morphology and not end up with many more groups split by small variations in
the location of clumps, as in some previous works. This allows us to have a broader, more robust separation of galaxy morphologies.

Table 3
The Highest Correlation Value and Corresponding Galaxy Property for Each

Latent Feature

Latent Feature Correlated Feature Spearman’s Rank

Latent 1 Axis ratio 0.43
Latent 8 Asymmetry 0.49
Latent 7 Sérsic index 0.38
Latent 8 sSFR 0.19
Latent 17 Concentration 0.32
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Figure 8. Correlation between features in the latent space and known measured properties for our galaxy sample. Each measured property is split into bins and plotted
against the latent feature with which it had the largest Spearman’s correlation coefficient. The median value for each selected range is also plotted. The ranges selected
for each parameter can be seen in the legend. It can be seen that the features that the network are learning are physically meaningful and correlate with well-known
galaxy properties.
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well-know measured galaxy properties as expected and hence
can be use to group structurally similar galaxies together,
which is the aim of this work. This correlation is similar to that
found by Vega-Ferrero et al. (2024). In their work they used a
UMAP representation of their 1024-dimension space, and
showed how their space also correlates with many physical
properties and how this can be beneficial when separating
different types of galaxies.

7.2. Extracted Clusters

Running our HC clustering algorithm on our trained feature
space we can investigate how the network has separated
galaxies based on their morphological features and physical
properties. We run the HC algorithm as explained in Section 6.
We find a total of 11 clusters after removing the clusters that
extracted the lowest-S/N galaxies. These low-S/N galaxies
accounted for 5% of the sample and had an average S/N per
pixel (S/Np) of S/Np∼ 2 (see Tohill et al. 2021 for calculation
of S/Np). The median S/Np for the rest of our groups was ∼10
for comparison. The S/Np distributions for our groups can be
seen in Appendix Figure A5. Randomly selected cutouts of
galaxies from the 11 clusters found can be seen in Figure 10.
Visually inspecting the galaxies within each cluster we can
already see how they are visually distinct from each other. Each
cluster label indicates which main/parent branch it splits from
in the HC tree. This parent branch is labeled as a supergroup in
Figure 10 along with the dominant morphology of galaxies
along this branch. The supergroup label is not designed to be a
morphological classification as each supergroup is composed of
galaxies with distinct structural features; it is simply one global
feature that galaxies within this group have in common. This
shows how the clustering algorithm has separated out different
areas in the latent space as having very separate overall shape.
Supergroup 2.2 for example is labeled as “centrally

concentrated” as each of the morphological classes within this
group have a bright bulge-like region. However, group 2.2.1 is
dominated by galaxy pairs or double cored, so possesses
structural parameters more associated with irregular-type
galaxies.
Next, we compare our machine-extracted clusters to previous

works that also utilize unsupervised ML to extract morpholo-
gical clusters. For example, Hocking et al. (2018) found 200
clusters when trying to classify morphologies from the
CANDELS fields. Our method results in much fewer clusters,
allowing for a more broad classification of the main features
each galaxy image possesses. It also allows us to explore the
evolution in morphology with redshift and what the main
morphological features are for each group more easily than
comparing 200 separate clusters. It should be noted that their
work does not include as high redshifts as ours: Hocking et al.
(2018) include galaxies up to z∼ 4 and also include low-
redshift galaxies, which require more information to describe
their morphological features simply due to the increase in
resolution. This could account for the greater number of
clusters they obtain. The evolution of our machine-selected
clusters as a function of redshift will be explored in a follow-up
paper.
While our machine-found clusters appear to be different

galaxy types by eye, we want to investigate their structural and
physical properties to determine if they also correlate with their
apparent morphologies.

7.3. Comparison to Structural and Physical Properties

We use sSFRs, masses, and redshifts from the original
CANDELS galaxies as explained in Duncan et al. (2019) to
ensure that the classifications are reliable. However, we remeasure
both the parametric and nonparametric morphological parameters
of each galaxy using MORFOMETRYKA (Ferrari et al. 2015) as

Figure 9. Uniform Manifold Approximation and Projection (UMAP) visualization of our 23 latent features for our entire galaxy sample colored by different measured
morphological parameters. Each plot is colored by the median value in each hexagonal bin in the 2D UMAP plane. From left to right shows the distribution of the
concentration, asymmetry, axis ratio, Sérsic index, and the specific star formation rate (sSFR) for our galaxy sample.
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these will benefit from the higher resolution offered by JWST,
allowing more accurate measurements compared to those
measured with the HST images. MORFOMETRYKA uses

nonstandardised images, along with the associated point-spread
function (PSF) images, to calculate these parameters. Investigating
the distributions of these structural measurements will give better

Figure 10. Examples of galaxies from each group found by the HC algorithm. It can be seen that each group is visually distinct from each other. Group names indicate
which parent branch they belong to from the HC tree, and parent branches are labeled as supergroups along with the dominant morphology along that branch.
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insight into the physical properties of the galaxies within each
group, as seen in Figure 11.

Figure 11 shows the median values of the different physical
and structural parameters for each of our machine-defined
clusters. The error bars show the 25th and 75th percentiles of
the distribution of values within each group. It can be seen that
each of our morphological groups possesses distinct physical
and structural properties, even though these parameters were
not used to perform the clustering. While the separation
between the groups can be small, considering the distribution
within each group, there are still clear transitions between the
properties of the galaxies as you move between different
morphological classes. Note that the error on the mean is
∼20 times smaller than the interquartile range. The groups have
been ordered in increasing value for each parameter to show
this smooth transition better. For example, looking at group
2.2.4, galaxies in this group possess the highest concentration
of light from all groups, most symmetric light distributions, low
sSFRs, and high Sérsic indices, agreeing with what we would
classify visually as dominated by spheroidal, compact, bulge-
dominated systems. The same can be said for groups 1.1 and
1.2, which possess almost the opposite properties, with
asymmetric light distributions, low central concentrations,
and the highest sSFRs of the sample, agreeing with our
knowledge that star-forming clumps increase the asymmetry of
the galaxy’s light distribution. We also find no separation
between our groups with redshift, which indicates that the

network is not splitting galaxies based on any redshift effects.
This reinforces the claim that our standardization process has
removed the majority of observational effects from the latent
space, allowing for a more robust classification scheme. The
redshift distributions of our groups are shown in Appendix
Figure A4.
Figure 12 shows where each cluster lies in the C–A plane as

well as the distribution in Sérsic index with asymmetry. Each
colored point shows the median value for each of our machine-
found clusters and the error bars show the interquartile ranges
of the objects within each cluster. Clusters are well separated in
the C–A plane and show less, but still clear, separation with
Sérsic index. Similar results have been found by Kartaltepe
et al. (2023) when investigating the separation of their visually
defined galaxy types. In their work they showed that defining
galaxy morphology by a cut in Sérsic index would lead to a
high misclassification rate between spheroids and disk galaxies
due to the overlap in these mesasurments between different
morphological types. This further emphasizes the need for a
more refined and robust classification scheme based on the
morphological features of a galaxy and not on model-
dependent measurements. Nevertheless Figure 12 shows a
clear correlation between our clusters and the measured
structural parameters of our galaxy sample. By using the
average structural properties and visually inspecting galaxies
from each group we can associate a morphological label to
each, which are listed in Table 4.

Figure 11. Distributions of the properties of the galaxies within each group determined by the HC algorithm. Each group is distinct from each other in both parametric
and nonparametric morphology measurements and also physical properties such as the sSFR. Groups are ordered in increasing value within in measurement. Colored
points and symbols are the median, which match across all figures. The error bars show the 25th and 75th percentiles of the distribution of values within each cluster.
Note that the error on the mean is ∼20 times smaller, hence the trends we see are of high significance.
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Below we give a brief description of the main morphological
features of each cluster and compare these to previous studies
of high-redshift morphology.

7.3.1. Group 1.1: Chain Galaxies

These galaxies resemble the “chain-type” morphologies first
introduced by Cowie et al. (1995). They are very elongated
structures with low axis ratios, dominated by a very elliptical
shape that lacks a clear central bulge. Cowie et al. (1995) stated
that these extreme ellipticities argue against the possibility that
these are simply galaxies viewed from edge on and are in fact
their own class of peculiar objects. More recently, however,
work by both van der Wel et al. (2014) and Zhang et al. (2019)
suggest that there is a population of star-forming galaxies that
are intrinsically more elongated/prolate at higher redshifts that
transition to more oblate structures later on in their evolution.
Zhang et al. (2019) also compare their results to simulations

and find this to be consistent with the predictions by Ceverino
et al. (2015) and Tomassetti et al. (2016).

7.3.2. Group 1.2: Clump Clusters

Group 1.2 has similar properties to our chain galaxies (group
1.1). It, however, possess larger axis ratios, giving rise to the
argument that these galaxies are simply the face-on views of
chain galaxies. This argument was first put forward by
Elmegreen et al. (2004) who named these “clump clusters”
and stated that the distribution of axis ratios agrees with what
we see for normal disk galaxies. Comparing the properties of
this group with our chain galaxies (group 1.1) we see that they
possess very similar distributions except for their axis ratios
and asymmetries. This increase in asymmetry is consistent with
the fact that these objects are face on and hence have a larger
projected area resulting in a larger asymmetry. Both groups
also occupy a similar redshift range and mass distribution with
a median mass for group 1.1 of log(mass[Me])= -

+9.60 0.38
0.26 and

Figure 12. Distributions of the structural properties of the galaxies within each group determined by the HC algorithm. Each point represents one of our groups from
our unsupervised ML clustering. Points show the median value and the error bars show the 25th and 75th percentiles of the values within each cluster. The symbols
and colors are the same as in Figure 11.

Table 4
Brief Description of Each Group’s Morphology, Number of Samples in Each Cluster, and Median Values of the Structural Measurements

Group No. of samples Morphological description C1/2 A1/2 M20, 1/2 sSFR1/2 Sérsic1/2

1.1 58 Edge on, multiple systems, chain, clumpy 0.44 0.29 −1.02 0.55 0.60
1.2 135 Face on, multiple systems, clump clusters, mergers 0.44 0.37 −1.02 1.05 0.54
1.3 365 Clumpy, disk-like, face-on disk 0.48 0.26 −1.46 0.50 0.88

2.1.1 619 Edge-on disks, clumpy, single objects 0.48 0.22 −1.40 0.14 0.77
2.1.2 171 Disturbed disks, tidal features 0.50 0.33 −1.32 0.59 1.06
2.1.3 455 Tadpole galaxies, asymmetry along semimajor axis 0.52 0.33 −1.74 0.29 1.90

2.2.1 112 Close pairs, doubles 0.47 0.37 −1.13 0.39 0.84
2.2.2 439 Disks with tail/tidal disruption, tadpole 0.50 0.32 −1.56 0.24 1.21
2.2.3 1138 Smooth light distribution, spheroidal, elongated 0.52 0.19 −1.58 0.19 1.45
2.2.4 922 Spheroidal, bulge dominated, centrally concentrated 0.57 0.18 −1.76 0.15 2.25
2.2.5 626 Bulge and disk component 0.56 0.21 −1.70 0.17 1.50

Note. The horizontal lines show the supergroup splits.
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-
+9.64 0.37

0.50 for group 1.2 (where the errors denote the 25th–75th
percentile range of the distribution).

7.3.3. Group 1.3: Clumpy Disks

These galaxies, while possessing a slightly clumpy morph-
ology, are disk dominated, with a central bulge-like region.
They possess the highest axis ratios, resembling face-on disks,
but have a higher concentration than the clump clusters (group
1.2) hinting at a more evolved morphology. These systems
have intermediate asymmetries, possibly due to the fact they
have high sSFRs, which lead to some clumpy features.

7.3.4. Group 2.1.1: Edge-on Disks

Resembling edge-on disks with no central concentrated
bulge region, these galaxies are quite symmetric in their light
distribution with an intermediate concentration indicating no
clear central region. They possess the lowest sSFRs of our
sample with low Sérsic indices. This lack of ongoing star
formation could indicate that these galaxies are more evolved
with an outside-in formation, so that they will perhaps form
their bulge later in their evolution via means other than star
formation.

7.3.5. Group 2.1.2: Disrupted Disks

These objects are disk-dominated, single-object systems that
possess disrupted morphologies that could be the result of
possible mergers or tidal interactions. These objects have very
low axis ratios with intermediate concentrations, indicating that
the central galaxy is disk-like. However, they have very high
asymmetries and M20 values due to tails and plumes caused by
some interactions. As there are no companions visible, it is
possible that these galaxies have been caught after a recent
merger, which could account for their disturbed morphologies.

7.3.6. Group 2.1.3: Tadpole Galaxies

Closely resembling a “tadpole-type” galaxy (van den
Bergh 1998), with an offset nucleus and a tail resembling the
shape of a tadpole. These galaxies are very asymmetric along
their semimajor axis and have a range of axis ratios. The origin
of this structure is not fully understood; in some cases they
could be caused by an offset burst of star formation, tidal
interactions, ram pressure stripping, or accretion of cosmic gas
(Elmegreen & Elmegreen 2010).

7.3.7. Group 2.2.1: Close Pairs/Double Clumps

Visually dominated by two close objects or two main
clumps, these are the most asymmetric galaxies in our sample.
They are similar in morphology to those found in many
previous studies, such as the “double nuclei in a common
envelope” by Toomre & Toomre (1972) and “double-core”
galaxies in Elmegreen et al. (2004).

7.3.8. Group 2.2.2: Tail and Tadpole Galaxies

This group possesses structural parameters very similar to
our tadpole group (Group 2.1.3); however, the bright nuclei in
this sample are to the left of the main object as opposed to the
right with the previous group. This is due to our image
standardization process, whereby each galaxy is rotated
according to its position angle. This results in some tadpole

galaxies being aligned 180° opposite to others. While this
removes random orientations from our network to allow
meaningful features to be encoded, we cannot avoid the
separation of these clusters in the feature space even though
they have the same distribution of physical and structural
properties. This issue will be addressed in more detail in a
follow-up paper.

7.3.9. Group 2.2.3: Elongated Spheroids

This class is dominated by symmetric, high-axis-ratio, low-
sSFR galaxies with intermediate Sérsic indices. They are
spheroidal in shape but elongated, closely resembling smooth,
disky objects. While some may classify these objects as disks
visually, their physical parameters are more in tune with what
we would expect for spheroidal galaxies. This is discussed in
more detail in Section 7.4.

7.3.10. Group 2.2.4: Compact Spheroids

With the most concentrated and symmetric light distributions
of our whole sample, these galaxies match the classic compact
spheroidal-type galaxies as expected from visual assessment.
These galaxies are similar in properties to our elongated
spheroids (group 2.2.3), they however have higher Sérsic
indices, and are more centrally concentrated. These also match
well with the visual classifications discussed in Section 7.4 in
more detail. They make up a total of 17.3% of our sample.

7.3.11. Group 2.2.5: Bulge and Disk Components

The final class of galaxy found by our clustering technique is
galaxies with edge-on disks and a clear bulge component.
These are separate to the other edge-on disks in our sample as
they have a centrally concentrated bulge component and a clear
disk component. The fact we see these types of galaxies at high
redshift is an indicator that bulge and disk formation is already
in place very early on.

7.4. Comparison to Visual Classifications

While the aim of this work is to provide a robust, nonbiased
approach to classifying galaxy morphology, we want to
compare how the network’s classification system holds up
against visual classifications. We have a total of 2619 visual
classifications for our sample taken from Ferreira et al. (2023).
While this is only ∼50% of our sample it should still give us an
indication of the average galaxy type from each HC cluster.
These can be seen in Figure 13 (the same plot but for the
supergroups is shown in Appendix Figure A6). While there is
by no means a clear correlation between the visual classifica-
tions and our clusters, this is to be expected, as the classifiers
only had a limited number of labels into which each galaxy had
to be classified. These are the classic spheroid, disk, peculiar,
and PSF labels that have been utilized in many low-z studies.
There was also an option for the classifiers to choose
“ambiguous” if they felt that no label represented the object
or if they were unsure, which account for 15% of the
classifications in our sample.
While we can see some correlations with the visual

classifications, such as 70% of the spheroid classifications
residing in clusters 2.2.3 and 2.3.4, which agrees with our
assessment of these clusters and their structural parameters; and
groups 2.1.1 and 2.2.5, which are disk dominated, agreeing
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with our expectations there are few other strong correlations.
The aim of this work is to show that these traditional
“morphological types” are not representative of the wide
variety of galaxy morphologies and structures we see in the
high-z Universe and that we need to understand better which
features are important at better separating galaxies in various
stages of their evolution. Ferreira et al. (2023) also state in their
work that there can be issues with the misclassification of face-
on disks with spheroids, and so suggest a combination of visual
classifications and structural parameters would help to resolve
this issue. We are combining such an approach in our feature
extraction process here, as the network has all the information
about the pixel-by-pixel light distribution of each galaxy. In
recent work, Vega-Ferrero et al. (2024) found that a large
proportion of visually classified disks perhaps lie in a region of
representation space populated with spheroids. They compared
their results with galaxies from TNG50 and found these regions
are “occupied by objects with low stellar specific angular
momentum and nonoblate structure.” Looking at our clusters
we find that group 2.2.3, while having ∼45% of the spheroid
classifications, also has a large proportion of disk-like
classifications. This could be due, in part, to the reasons stated
by Vega-Ferrero et al. (2024) above. The properties of this
group more closely resemble spheroid-like galaxies with high
concentrations of light, low sSFRs, low asymmetries, and
larger Sérsic indices.

There is an argument for moving away from visual
classifications all together as we now have more advanced
techniques to separate galaxies based solely on their physical
and measured features alone. With the increase in the amount
of data being collected every day, visually inspecting each
galaxy is also inconceivable. Measuring the properties of each
galaxy accurately, however, requires detailed spectral analysis
which is time consuming and again would be inconceivable for
the amount of data now available. Performing feature
extraction on galaxy images unifies these two methods together
and can be trained on a small subsample of images with
detailed measurements and then applied to a much larger, un-
abeled data set, ideal for the future of galaxy surveys and
galaxy evolution studies.

7.5. Impact of Noise

One common issue with visual classifications and both
parametric and nonparametric measurements is that they are
sensitive to noise (van den Bergh et al. 2002; Ferrari et al.
2015; Gullberg et al. 2019). This is another motivation behind
utilizing unsupervised ML to extract different morphological
features, and why we optimize our latent space to focus on
encoding the galaxy light and not the background noise (see
Section 5.1). While the network is performing well at
separating out distinct morphological clusters of galaxies, we
want to evaluate how robust these clusters are to the S/N level
of our images. To test this we select a sample of 15 high-S/N
(14< S/Np< 20) galaxies from each machine-defined cluster
and simulate each galaxy at various S/Np levels from 12 down
to 2 (for details of how these images are simulated see Tohill
et al. 2021). An example of the simulated noisy images can be
seen in Figure 14. We assume for this test that these high-S/Np

images are in their “true” clusters, as the majority of their
features should be detectable by the network. We then run the
simulated images through the trained network and the HC
algorithm to check what fraction of galaxies remain in the same
morphological cluster. The results are plotted in Figure 15. The
black points show the fraction of galaxies where their
classifications changed and the error bars show 1σ of the
binomial distribution. The first point is plotted at an S/Np of
14, and it is located at zero in the plot as we are assuming these
galaxies to be in the correct cluster. The median S/Np of our
entire galaxy sample is shown by the red vertical line. It can be
seen that at the median S/Np of our sample, 87%–91% of our
galaxies remain in their original machine-defined cluster. This
means that per group we would expect ∼1% to change class at
this S/Np level. As the S/Np in the images continues to
decrease we see an increase in the fraction of galaxies that
change classification. Groups 2.1.1 and 2.1.2 had the largest
fractions of galaxies changing class, while group 2.2.3
remained the most consistent. This is to be expected as when
the noise in an image increases you start to lose fainter features
from the images rapidly. This means that, for example, galaxies
defined as having tidal features in our classifications (group
2.1.2) would no longer be differentiable from the background
noise by the network, and end up in a different morphological
category defined by the remaining detectable features. This is
not something that can be fully addressed in any classification
scheme as this would also mean these features would no longer
be picked up in a visual classification, parametric, or
nonparametric measurement system. A good example of this
can be seen in Figure 14, where the fainter structures in the
galaxy become indistinguishable from the background noise
around S/Np= 5. From this we can argue that the different
morphological clusters found by our method are robust to
various levels of noise however, for S/Np< 6 there is less
certainty of the morphological classification from this method.
For reference, 82% of our sample has S/Np> 6, so we can be
confident in the majority of our morphological classifications.

7.6. Evolution of Massive Galaxies

As this work covers a large redshift range we can start to
explore the evolution of the different clusters with redshift. To
investigate these trends we plot the evolution of the fraction of
galaxies in each cluster split into four bins: 2< z< 3,
3< z< 4, 4< z< 5, and z> 5. In order to ensure any

Figure 13. Bar plot of visual classifications from Ferreira et al. (2023) within
each of our HC-found clusters. We have a visual classification for ∼50% of our
sample.
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conclusions drawn are not affected by incompleteness we look
at the most massive galaxies (logM*/Me> 10) within our
sample across the whole redshift range. This can be seen in
Figure 16. The groups are split by their HC supergroup for ease
of visualization and so it is easier to compare the different
groups. We have a total of 507 galaxies above this mass and so
at the highest-redshift bins we can be affected by small sample
statistics, which is reflected in the errors at these values.
Consequently the last bin includes all galaxies above z> 5 as
there are not enough objects at this redshift to split this further.
For this reason there is less certainty of the evolution after z> 5
and we will need larger samples to study this in depth, which
will be possible in the near future with more data from JWST.
While there are not many galaxies at these masses we can still
see some clear trends especially with group 2.2.4 (our spheroid-
dominated class) decreasing with redshift, which agrees with
results found in other works using similar data from JWST.
Huertas-Company et al. (2023) found a decrease in early-type/

bulge-dominated systems with redshift as did Kartaltepe et al.
(2023), who found a decrease in spheroid-only classified
galaxies at high masses (although they note this could be due to
faint features being missed or small number statistics). When
we reduce our mass cut to match the analysis in Kartaltepe
et al. (2023), >109 Me, and investigate our two spheroid-
dominated classes (2.2.3 and 2.2.4), we find that the amount of
galaxies decrease from ∼38% at z= 3–4 to ∼32% at z> 5,
similar to their findings that their spheroid-only class falls from
∼42% at z= 3 to ∼30%–40% at z> 5. These results are fairly
similar even though our sample size is more than double the
sample used by Kartaltepe et al. (2023) at this mass range. We
also see an increase in groups 1.3 and 2.1.2, which are various
types of disk-dominated galaxies in our classification system
but are distinct from each other in terms of being face-on disks
and disturbed disks, respectively. This result agrees with many
works that find disks to be dominant or already in place at high
redshift (Ferreira et al. 2023, 2022; Huertas-Company et al.
2023). We also see a growth in group 2.2.5, which are galaxies
with a distinct bulge and disk component, indicating that the
process of forming a bulge with a disk component is already in
place very early on, agreeing with some of the main findings
from Huertas-Company et al. (2023). We acknowledge that
these findings are subject to small sample statistics and can be
further explored and solidified with future surveys and more
data especially at the high-z end. However, it is a good sign that
even with the variety of morphologies that are found by
exploring the network-extracted features, similar results are
found in other works, who used very different methods. We
will study the evolution of these galaxies with redshift in more
depth in a follow-up paper.

7.7. Morphology of High-sSFR Galaxies

We analyze the morphology of high star-forming galaxies
within our machine-found clusters by making a cut at log
(sSFR)> 0.5, as this is representative of our galaxy population
in the high-z regime. This cut can be seen in Figure 17. While
we are most likely missing a lot of the fainter and lower-mass
galaxies at high redshift, we expect to be more complete for the

Figure 14. An example of our simulated noisy galaxy images. In the top-left panel we show the original JWST cutout followed by the same galaxy at different
simulated S/Np levels.

Figure 15. Fraction of galaxies that change classification in our machine-
defined clusters vs. the S/Np of the galaxy. The errors are given as 1σ of the
binomial distribution. The red vertical line shows the median S/Np of our full
sample.
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high-sSFR galaxies as their high SFRs are what allows us to
detect even the most distant galaxies.

We find that four out of our 11 machine-defined clusters
have a median sSFR above this cut and so we can begin to
investigate the variation in morphology seen for these high star-
forming systems. The four groups are the chain galaxies (group
1.1), the clump clusters (group 1.2), clump disks (group 1.3),
and disrupted disks (group 2.1.2). Both the chain and clump
cluster groups possess galaxies with the highest sSFRs in our
sample, which is to be expected as it is believed the bright
knots dominating their morphology are areas undergoing
intense star formation (Cowie et al. 1995; Elmegreen et al.
2004). These star-forming clumps are picked up easily as
structural parameters as these groups also possess the lowest
concentrations of light and Sérsic indices, and possess high
asymmetry values. On top of these, they are also the two
highest-M20 groups, showing that these systems could be
picked up easily using traditional methods. The clump disk
galaxy type in our classification scheme appears visually to be
slightly messy, containing some clumpy morphologies, which
could indicate they are undergoing intense star formation.
However, looking at the nonparametric measurements alone we
find this group to have intermediate CAS and M20 values and
so could be missed if selection cuts were to be made using

these structural measurement systems. They are, however,
found by our classification system, showing again that our
network is able to pick up on features that are missed with
current measurements. The final group we look at is the
disturbed disks, which, like our clump disk group, are
asymmetric but possess intermediate concentrations of light
corresponding to a bulge component, indicating that these
systems are more evolved than the chain and clump cluster
systems. These systems do not possess the classic star-forming
clumpy morphology, but instead have an asymmetry in the
form of a tail or disturbed region. As these are all individual
systems with no clear neighbors, it could be argued these
galaxies have recently undergone a merger, which could
account for both their disturbed morphologies and corresp-
onding increased star formation. From these groups we can
already see how diverse and varied the morphologies of these
high-sSFR galaxies are and why it is important to understand
the processes that lead to this diverse structure if we want to
constrain their formation and evolution better. We acknowl-
edge that the classifications presented in this work do not allow
us to confirm the formation histories of these systems;
however, the ability to separate out these high-sSFR systems
with different morphologies for future, more detailed analysis
and observations allows for an unbiased and robust selection
process. Again it should be noted that more detailed analysis of
the evolution of these morphological groups with redshift will
be carried out in a follow-up paper.

8. Summary

We present our work utilizing unsupervised ML to perform
feature extraction on high-redshift galaxies imaged with JWST.
We apply an HC algorithm to extract separate, self-similar,
morphological classes of galaxies, resulting in a robust, more
meaningful classification system of these objects. This is the
highest-redshift sample to date using this technique. Applying
our method to optical rest-frame galaxy images imaged with
NIRCam on JWST we find 11 separate morphological clusters
that possess different morphological features, physical proper-
ties, and structural measurements, e.g., sSFR, CAS–M20

parameters, Sérsic indices, and axis ratios. Our resulting
clusters are devoid of human biases and would not be as well
separated if classified with traditional nomenclature. We
compare our findings with visual classifications and find that

Figure 16. Evolution of the most massive galaxies within each morphological cluster with redshift. The errors are given as 1σ of the binomial distribution. The colors
and symbols are the same as in Figures 11 and 12. The groups are divided by their HC supergroup for ease of visualization and comparison. The shaded regions show
the bin widths for each point. The last bin includes all galaxies above z > 5. See text for details.

Figure 17. Distribution of the sSFRs of galaxies within our matched sample vs.
redshift. The red line shows the sSFR cut of >log sSFR 0.5( ) .
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only spheroids are well separated in this traditional classifica-
tion system and that disks and peculiar-type galaxies need
much more detailed descriptions. We improve upon previous
studies using similar methods in multiple ways:

1. We remove the observational biases imposed on the
images by standardizing our sample before performing
any feature extraction. This allows the network to focus
on the morphological features of the target galaxy without
wasting information encoding the position angle of the
galaxy, background sources, and noise, leading to a more
physically meaningful feature space.

2. Our method results in many fewer, well-separated,
morphological classes that can be investigated in detail,
which is not possible in some previous studies when
hundreds of clusters are extracted.

3. We have a relatively small feature space that can be
investigated and linked to individual structural properties,
leading to clusters that are well separated in both
parametric and nonparametric parameters.

4. We explore the highest-redshift sample to date utilizing
unsupervised ML. Thanks to JWST we also have access
to rest-frame optical imaging across all redshifts, so our
classification system is not biased by variations between
UV and optical morphologies.

Due to the wide redshift range covered in this work we have
access to a wide span of early history of galaxy formation,
which allows us to investigate various trends with cosmic time.
Our main findings are summarized below.

1. We find that there is a wide variety of galaxy
morphologies already in place at high redshift. In total
we find 11 distinct morphological types for our sample.

2. We confirm that our unsupervised machine-defined
clusters support work to construct a visual classification
scheme suitable for high redshift, while sidestepping the
issue of applying predefined categories to new observa-
tional regimes.

3. We find a decrease in concentrated spheroidal-type
galaxies with redshift as found by others, and find that
disk-like galaxies dominate at high redshift, though these
are typically clumpy and/or disturbed in morphology.

4. Unsupervised methods allow us to establish which
morphological features are important and have an impact
on the physical properties of the galaxies themselves. The
resulting extracted features provide a more detailed and
better suited classification system.

As mentioned in the paper, we plan to carry out more detailed
studies with redshift evolution and link the morphological
classes found in this work to the low-redshift Universe. With
the accumulation of data from JWST we expect our view of the
distant Universe to continue to expand and improve with more
and more observations and detailed analyses, all of which will
help improve galaxy evolution studies such as the work carried
out in this paper. Such approaches to galaxy morphology
classification are also required to handle the amount of data
expected with the future of JWST and similar surveys.
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Appendix A
Dimensionality of the Latent Space

In Figure A1 we show the variations in the reconstruction of
both the training and test sets versus the dimensionality of the
latent space. The solid points show the average MSE for the
last 50 epochs (our patience value, see text for details) and the
error bars show the 1σ spread of the variations. As with the
validation set (see Figure 5) the reconstruction loss will
continue to improve with more latent features, however the
aperture loss plateaus off. This indicates that the network is
using the extra dimensions to encode some background noise in
the images, about which we do not care.
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Appendix B
Visualizing the Latent Space

In Figure A2 we show the full Spearman’s correlation matrix
for each of our 23 latent dimensions and the measured galaxy
properties. In Table 3 we list the highest correlated latent variable
for each of the galaxy properties. Note that each latent variable is
sensitive to a particular combination of particular attributes; for
example, latent feature 1 correlates with both asymmetry and axis
ratio but not with concentration or M20. We can see that it is not a
one-to-one correlation between each latent dimension and each
physical parameter, indicating that the network is using multiple
latent features to encode each physical property. The fact that
there are combinations of correlations between the features and
latent dimensions and not just random noise shows that the
network is learning the different features of each galaxy, thus
allowing the clustering of the latent space to provide different
morphological types for the galaxies.

In Figure A3 we show generated images from our trained
latent space. Plotted are the latent features that had the highest
Spearman’s correlation coefficients with measured physical and
structural properties. These are not real galaxy images but
images generated from the encoded space learned by our
network. We generate these images by calculating the mean
and range of each latent feature and then interpolating along
each feature, generating a new image with the network each
time, while the other latent features are keep constant. This
shows that our network has learned a smooth feature space
(which is expected with a VAE), as the morphology transitions
smoothly along, and between, each latent feature. We can also
see correlations with known morphologies. Visually we can see
how the first latent feature correlates well with axis ratio, while
feature 7 correlates well with Sérsic index. Another important
morphological feature is the bulge-to-disk ratio, which is well
encoded in feature 16.

Figure A1. Variation in the total reconstruction loss and the reconstruction loss within an aperture (see Section 5.1 for details) for the test and training sets (same as in
Figure 5). The solid points show the average MSE for the last 50 epochs and the error bars show the 1σ spread of the variations. The dashed line shows the chosen
dimensionality of the latent space for our analysis.
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Figure A2. Distribution of the Spearman’s rank correlation coefficients for each latent dimension in our trained MMD-VAE and each measured galaxy property.
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Appendix C
Correlation of Latent Space with Nonphysical Properties

In Figure A4 we show the distribution of the redshifts within
each morphological class. It can be seen that there is no
significant difference between any of the groups and that they
all span similar ranges, indicating that our network is not
splitting based on redshift effects or different observational
bands. This further supports the power of our standardization
process at removing observational effects from our images,

such as apparent size and brightness, as otherwise the network
would have used these features to separate the groups. It can be
seen that the groups in the first supergroup have slightly larger
errors than the other groups, but this is due to the small number
of galaxies in each of these groups as they are the most
irregular of our sample. The same can be seen for the S/Np of
each group in Figure A5. We see that the network is not using
the noise in an image to split the groups. This is important as
we have taken care to try to prevent the network from learning
noise in an image as a feature (see Section 5.1).

Figure A3. Generated images from the trained latent space. Here we show examples of generated galaxy images along different dimensions in the latent space to show
the smooth transition between morphologies. The latent dimensions shown are those with the highest correlation to measured properties (see Figure 8 for more details).
We calculate the mean of each feature and linearly interpolate between ±2σ while keeping all other latent features constant to show the morphology encoded by each
dimension.

21

The Astrophysical Journal, 962:164 (24pp), 2024 February 20 Tohill et al.



Appendix D
Comparison to Visual Classifications

In Figure A6 we show the comparison between our HC super-
groups and the visual classifications from Ferreira et al. (2023). As

it can be seen there are no strong correlations except for the
centrally concentrated supergroup (2.2) possessing most of the
spheroid classifications. This further supports the argument that the
visual classification systems used at low redshift are not suitable
for the high-redshift regime.

Figure A4. Distributions of the redshifts of galaxies within each morphological cluster. It can be seen that the network does not split groups based on their redshift,
which further supports the claim that our standardization approach successfully removes many observational biases such as apparent size and apparent brightness. This
also allows us to study further the evolution of galaxies within each morphological class with cosmic time. The colored points and symbols are the same as the other
figures in this work. The solid points show the means and the error bars show the standard deviation within each group.

Figure A5. Distributions of the S/Np of galaxies within each morphological cluster. It can be seen that the network does not split groups based on their S/Np. The
colored points and symbols are the same as the other figures in this work. The solid points show the means and the error bars show the standard deviation within each
group.
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