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Environmental information from place-names has largely been overlooked by 

geoarchaeologists and fluvial geomorphologists in analyses of the depositional histories of 

rivers and floodplains. Here, new flood chronologies for the rivers Teme, Severn, and Wye are 

presented, modelled from stable river sections excavated at Broadwas, Buildwas, and 

Rotherwas. These are connected by the Old English term *wæsse, interpreted as ‘land by a 

meandering river which floods and drains quickly’. The results reveal that in all three places 

flooding during the early medieval period occurred more frequently between AD 350–700 than 

between AD 700-1100, but that over time each river’s flooding regime became more complex 

including high magnitude single events. In the sampled locations the fluvial dynamics of 

localised flood events had much in common, and almost certainly differed in nature from other 

sections of their rivers, refining our understanding of the precise nature of flooding which their 

names sought to communicate. This study shows how the toponymic record can be helpful in 

the long-term reconstruction of historic river activity and for our understanding of past human 

perceptions of riverine environments. 
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INTRODUCTION 

Most English place-names fall into two categories: habitative names which describe aspects 

of the built or cultural environment (settlements, buildings, enclosures etc.) and topographical 

names which describe the physical landscape or types of land use (hills, valleys, woodland 

etc.) (Gelling, 1984; Cameron, 1988: 27–32; Gelling & Cole, 2000). Among the latter, names 

indicating what must have been, to place-namers, significant local characteristics of rivers, 



minor watercourses and wet ground are common. Across the country, nearly 2000 major 

settlement-names contain some reference to river forms and flowing water. Linguistically, the 

great majority of these names are either Old English or Old Norse in origin (Gelling, 1978: 

19–29). Their creation can, thus, be dated to the period when these languages were spoken in 

England. For Old English, that is (roughly) from the fifth to the eleventh century AD, and for 

Old Norse, from the ninth to the eleventh. Further chronological precision for certain 

individual names is provided by attestations in written sources which offer a terminus ante 

quem for their existence. In an otherwise relatively poorly documented period, water-related 

place-names represent one of the most closely observed, and most extensive, repositories of 

material informing directly on the physical character of early medieval rivers, their 

hydrologic regimes, and their floodplains. The value of these names for understanding fluvial 

processes in the past is enhanced by the richness and variety of the descriptive vocabulary 

they contain, the possible precision with which particular terms were applied, and the 

locational tenacity they exhibit across time.  

In this article, and for the first time, place-names have been used to guide fluvial 

geoarchaeologists to specific parts of three English rivers in order to examine their 

depositional and flood histories. Using this new approach, the early medieval toponymic 

descriptions of certain localized river behaviours can be set against the broadly contemporary 

evidence of actual fluvial activity as revealed in the sedimentary records of these places. Here 

one Old English place-name element, *wæsse—a term toponomasts have interpreted as 

indicating a place prone to flooding—has been targeted. Three places with this descriptive 

term have been investigated: Broadwas (River Teme, Worcestershire), Buildwas (River 

Severn, Shropshire), and Rotherwas (River Wye, Herefordshire). Analysis of the sedimentary 

record of alluvial deposition at these *wæsse-sites, and careful consideration of the 

magnitude, frequency, and timing of their flood events throws light on key questions relating 

to when and why *wæsse-settlements may have acquired their names. It also offers greater 

precision regarding the nature of the fluvial and geomorphological processes witnessed by 

their place-namers and which they sought to describe through this term. The period 

investigated lies beyond that covered by historical flood data, which typically starts in the 

later medieval period (e.g. Macdonald, 2013) except in the Classical World (Brown, 1997). 

Here we use data from an analysis of overbank levee sedimentation proximal to stable 

channels as suggested by Jones et al. (2010) but extend their approach by over 1000 years. 

 



NAMES IN -*WÆSSE AND THE EARLY MEDIEVAL HISTORIES OF BROADWAS, BUILDWAS, 

AND ROTHERWAS 

The Old English word *wæsse is preserved only in place-names. Even as a naming element it 

is relatively rare, appearing in just ten settlement-names and a handful of names of lesser 

status referring to landscape features. Most of these *wæsse-names are found in the West 

Midlands. This restricted geographical distribution may indicate that, during the early 

medieval period, the term was exclusive to the Anglian varieties of English spoken in the 

Midlands and North, and may not have been available to place-namers beyond these 

linguistic communities (Gelling, 1984: 59–60). All these settlements in -*wæsse are located 

on significant rivers whose names, without exception, were formed in pre-English languages 

(Figure 1).  

 

Figure 1. Location of *wæsse place-names. 

 

The term *wæsse is closely related to Old English gewæsc ‘washing, flood’ and 

wæsce ‘place for washing’ but, because it is not on independent record, its precise meaning 

must be inferred. Since a low-lying riverine location is shared by all settlements taking this 

element, a general sense of wetness is fairly secure. Consequently, in early place-name 

dictionaries, the term was interpreted to mean ‘wet place, swamp, marsh’ (Smith, 1956, II: 

237–38). In some instances, support for the idea that *wæsse was originally intended to 

indicate wet ground is found in the terms used to qualify it. For example, Old English alor, 

the water-loving alder tree, is found in Alderwasley (Derbyshire), Allerwash 



(Northumberland), and Alrewas (Staffordshire) (Cameron, 1959: 515; Gelling & Cole, 2000: 

64; Horovitz, 2005: 83–84). Field observations made at Buildwas in the 1970s led Gelling to 

offer a more precise definition. She witnessed both the inundation of, and subsequent rapid 

retreat of water from, the floodplain of the River Severn over the space of 24 hours. She 

proposed the more precise meaning ‘land by a meandering river which floods and drains 

quickly’ (Gelling, 1984: 59–60; Gelling & Cole, 2000: 63–64). This definition is now widely 

accepted, although in some publications it is abridged to simply ‘alluvial land’ (Mills, 2011).  

The earliest secure date for the use of *wæsse is provided by a charter of AD 942 referring to 

Alrewas (Sawyer, 1968: Charter 479). A charter purporting to date from AD 789x790 for 

Broadwas is considered a later forgery (Sawyer, 1968: charter 126; Hooke, 1990: 87–90), but 

it is preserved in a manuscript of the late eleventh century. Two charters relating to 

Wasperton, dated AD 1043 (Sawyer 1968: charters 1000 & 1226; Hooke, 1999: 104–05), are 

also forgeries, preserved in manuscripts from the thirteenth century and later. It is in 

Domesday Book (AD 1086) that Buildwas, Hopwas (Staffordshire), Rotherwas, Sugwas 

(Herefordshire), as well as Wasperton are first attested (Thorn & Thorn, 1986: 1,7; Harkins & 

Rumble, 1976: 1,39; Thorn & Thorn, 1983, 25,1; Thorn & Thorn, 1983, 2,37; Plaister, 1976: 

6,18); while the name Bolas (Shropshire) is only found from 1198 and Alderwasley no earlier 

than 1251 (Watts, 2004: 7, 68). While it is entirely possible for these names to have existed 

long before they were formally recorded, the dates of attestation may suggest that *wæsse 

belongs to a relatively late stratum of place-naming. But the existence of the names of the 

three case-study sites examined here is, at least, confirmed by 1086. 

As a precursor to the sedimentological analysis that will follow, consideration must 

first be given to the situation and early histories of the three *wæsse-settlements selected for 

study. Broadwas stands on the River Teme (Figure 2). The river rises in the Kerry Hills of 

mid-Wales and drains south-eastwards for approximately 100 km to meet the River Severn 

just south of Worcester. Its drainage system is such that most of its tributary streams feed in 

from the north with five smaller catchments in the lower reaches the river predominantly on 

the southern slopes. Broadwas itself is situated at the start of the lower reach of the river, 

approximately 10 km upstream of its confluence with the Severn at a point where a change in 

geology has caused a distinctive widening of its floodplain. This valley profile is reflected in 

the first element of its name, Old English brād ‘broad’. The present village stands on a gravel 

terrace forming the edge of the floodplain on the north side of the river. There is 

archaeological evidence that the site was occupied in the Romano-British and possibly the 

immediate post-Roman periods, and that activity at that time may have extended down into 



the floodplain proper (Hancox pers. comm.). By 1086 Broadwas was already a sizable 

community and the importance of the Teme and its floodplain to the local economy is made 

clear from the 20 acres of meadow, two mills, and a fishery noted in the assessment (Thorn & 

Thorn, 1976: 2,68). 

Figure 2. Catchments, river gradients, local topography, and transect locations at 

Broadwas, Buildwas, and Rotherwas. 



Buildwas lies on the northern edge of the Severn floodplain at the point where it 

narrows to enter the Ironbridge gorge, where there is a bedrock sill over which a ford existed 

prior to the construction of the bridge (Figure 2). Here the morphology of the river channel 

changes from a highly sinuous, meandering form upstream to a straight channel downstream 

reflecting the significant change in the underlying solid geology and valley constriction. 

Water passing through the Severn at Buildwas derives from the river’s upper catchment of 

3717 km2, an area which supplies around half of all the water entering the river from its full 

catchment. Significant alterations to the floodplain at Buildwas are on record. From the 

twelfth century to the mid-sixteenth century, the floodplain was actively managed by the 

Savignac, later Cistercian, monks of the abbey founded to the south of the river in 1135. 

Well-defined earthworks show the presence of fishponds, leats, mill-sites, and fish weirs 

(Brown, 2002). Archaeological evidence for pre-Conquest activity, however, is entirely 

lacking. The village first appears in Domesday Book and was clearly a small place although a 

mill is recorded (Thorn & Thorn, 1986). The first element of the name is difficult. Gelling 

(1990: 65–66) has proposed an unattested adjective meaning ‘swelling, surging’, and related 

to Old English byldu ‘boldness, confidence’ and gebyld ‘courageous’. Coates (2010) has 

suggested an unattested Old English noun *bilde ‘exceptional, supernatural power’, 

ultimately related to High German Bild. For both, reference to the scale of local floods is 

assumed. 

Like our other sites, Rotherwas is recorded in Domesday Book as a small settlement 

(Thorn & Thorn, 1983, 25,1). The first element of the name is considered to be Old English 

hrȳðer ‘ox, cattle’ (Coplestone-Crow, 1989: 82). It is located to the south-east of Hereford in 

an area of wide floodplain of the River Wye (Figure 2). The morphology of the river channel 

in the middle Wye reach is typically sinuous, with numerous large meanders and a relatively 

shallow gradient. The Wye has fifteen major tributaries, the largest of which, the River Lugg, 

meets the Wye 6 km downstream of Rotherwas. Prehistoric and Romano-British settlement 

has been identified 500 m south-west of Rotherwas at the edge of the floodplain (Duncan & 

Jones, 2003; Sworn & Jackson, 2014). Much of this early activity appears to have been 

located close to large palaeochannels on the floodplain, the sedimentation of which continued 

into the medieval period (Sworn & Jackson, 2014: 30). To the south of the village, a 

curvilinear boundary ditch and posthole dated to the sixth or seventh century AD, associated 

with a rectilinear feature possibly of the same date, provides the first evidence for early 

medieval activity (Miller, 2011). Rotherwas lay within the medieval ecclesiastical parish of 

neighbouring Dinedor and appears to have been dependent on it. Although no mill is 



recorded at Rotherwas in Domesday, one is returned for Dinedor manor (Thorn & Thorn, 

1983, 8,7). The location of a small islet on the northern edge of the manor, which has a form 

typical of islands associated with mills, strongly suggests that a mill and/or weir occupied this 

site at an early date (Atkinson & Cadbury-Simmons, 2013). 

 

SITE GEOMORPHOLOGY AND CHANNEL STABILITY 

The geology of the three site catchments is similar, dominated by Mesozoic lithologies of 

sandstone, mudstones, and clays in their lowlands with Palaeozoic sedimentary lithologies in 

their headwaters. This is important for two reasons: first, it allows a full range of sedimentary 

size-fractions to be available for transport and deposition—allowing grain-size variation to be 

used as a measure of flood velocities rather than simply reflecting availability; and second, 

the quartz content has similar and rather predictable (stable) qualities for sediment dating of 

all three sequences. 

Whilst detailed geomorphological studies are not included here (see Pears et al., 

forthcoming), all three sites have stratigraphic and archaeological evidence that shows that 

the channel has remained fixed at, or very close to, its current location for the last 2000 years. 

Coring and long bank exposures provide the confidence that the stratigraphy sampled was 

representative of the reach and could be traced along and away from the channel. At 

Buildwas, the channel location has been fixed by the gorge, its sill, and the terrace upon 

which the abbey and its associated outworks sit. Essentially, it is confined to this location and 

the large meander to the north has no scroll bars or palaeochannels and is inherited from an 

earlier meandering planform. At Broadwas, again the channel immediately to the north is 

confined by a bedrock gorge section. The dated sample site is located immediately 

downstream, before significant meandering could have occurred. At Rotherwas, the channel 

is also in a confined reach, with the village (which includes Romano-British archaeological 

remains, see Rouse, 2009) on a terrace separating it from the tributary brook (Figure 3).  

At all three sites, the upper unit (the buff-red silty clay sensu Shotton, 1978) that was 

deposited over the last 2000–3000 years contains no channel deposits and was vertically 

accreted, with the channel in approximately its present location. This is a phenomenon well 

known for the lower Severn and its lowland tributaries (Shotton, 1978; Brown, 1983, 1995; 

Marriott, 1992; Brown et al., 2013) that has been caused by a combination of low gradients 

(reaches under 0.001 m/m-1) and high rates of levee and overbank sedimentation. This is the 

basis of the Stable Bank relative incision model under which rapid rates of vertical accretion 

over the last 2–3 millennia have confined the river channel (Brown, 1997; Brown et al.,  



 

Figure 3. Floodplain sedimentary profiles from Broadwas, Buildwas, and Rotherwas. 



 

2018); although, before the deposition of the superficial unit, channels were mobile and 

multiple. This has been demonstrated by the identification of buried palaeochannels and, even 

more dramatically, by the discovery of a Neolithic–Bronze Age monumental landscape 

preserved under the upper silty clay at Ripple downstream of the Teme-Severn junction 

(Jackson, 2008). As discussed by Brown et al. (2018), the situation here is a meandering 

pattern that has been preserved by rapid levee/overbank deposition which has created incised 

stable channels with width:depth ratios (α) below α =7. This is characteristic of bedrock 

rather than alluvial channels (Finnegan et al., 2005). The similar but relatively uncommon 

geomorphological position of the three sites investigated here, all demonstrating confined 

stability, may be one reason for the relative rarity of the *wæsse place-name element and may 

offer clues to its specificity, given that all alluvial floodplains flood regularly in this region. 

 

METHODOLOGY 

At all three sites, river sections between 3 and 3.5 m of undisturbed alluvium were identified. 

After cleaning back, sediment colour, texture, consistency, inclusions, and depositional 

boundaries were recorded, and in-situ sediment samples were taken using u-channels for 

high-resolution laboratory analyses. Summaries of laboratory methods are given here with 

full details given in the Supplementary Material. All physical analyses were conducted at 1–

2 cm resolution and included Loss on Ignition (LOI) to determine the percentage moisture, 

organics, and carbonate essential to determine micro-variations in sediment texture. 

Percentage moisture has an inverse relationship to particle size and can thus be used to 

differentiate between high- and low-energy depositional conditions. Organic content offers a 

measure of the potential development of soils during non-flood periods and their later burial, 

alongside possible deposition from flood events. Carbonate content can be used to indicate 

the rapidity of sediment burial and thus frequency of flood events since, if left exposed, 

carbonate content in the deposited alluvium will reduce through the processes of dissolution, 

leaching, and soil formation. 

The magnetic susceptibility (MS) of the alluvial sediments was established using a 

Bartington MS analyser. Peaks in MS are created by high levels of Fe and other metallic 

compounds in the sediment. Since these are present in higher quantity in finer rather than 

coarser sediments, spikes in the MS graphs can be used as indicators of low-energy 

depositional conditions or extended periods of waterlogging. 



Particle size analysis was conducted to determine the micro-variation in sediment 

texture throughout the sequences by sieving for the coarse fraction above 2 mm, and a 

DigiSizer Laser Granulometer for the <2 mm fraction. Since the size of particles within 

suspended sedimentary loads is positively correlated with flow velocity (the higher the flow 

velocity, the larger the sediments that can be transported), relative differences in particle size 

enable interpretations to be made regarding the depositional energies responsible for the 

creation of each sedimentary lamination. Alongside the physical analyses, high-resolution 

multi-element analysis was also undertaken using ITRAX XRF spectrometry. A total of 39 

elements were analysed at a resolution of 2 mm and the results were used to conduct 

mineragenic ratio analyses providing additional information on grain-size, depositional 

conditions, waterlogging, elevated water tables, and heavy metals.  

Each sequence was dated by OSL to determine the time that has elapsed between the 

burial of mineragenic sediments and their exposure to solar radiation. A total of 15 dates were 

obtained from the three sites. These were carefully located at specific points in the 

sedimentary sequence which were representative of the stratigraphy but contained higher 

sand concentrations in order to increase the quality of potential dateable material. An even 

spread of dates throughout each section was maintained to improve the quality of the 

chronostratigraphic modelling of the calculated OSL dates (Table 1).   

 

 

Figure 4. Age-Depth models from Broadwas, Buildwas, and Rotherwas modelled using 

OxCal (4.3). Outliers in red, date ranges in white, and statistical calibration in dark grey. 

 

From these dates, Bayesian age-depth models have been calculated to determine the 

vertical accretion rates of the alluvial deposits as well as the likely date of major flood events, 



with the period AD 300-1150 illustrated as the grey shaded area (Figure 4). The accumulation 

rates at all three locations investigated are curvilinear, as would be expected from near-

channel overbank sedimentation. This is typical of rapidly accreting overbank sedimentation 

near stable channels (Brown, 1997). Bayesian modelling also enabled the identification of 

possible age reversals and outliers within the sequences (highlighted red in Table 1), and the 

resultant ‘acceptance’ or ‘rejection’ of those dates. The accepted dates were subsequently 

converted into calendrical chronostratigraphic Bayesian models using OxCal, version 4.3 

with IntCal13 program (Bronk Ramsey, 2008, 2009). The statistical precision of these 

calendrical dates can be calculated to, on average, 340 years at 2δ (95.4 per cent confidence) 

and 169 years at 1δ (68.2 per cent confidence). The dates that are quoted in the discussion of 

the results have been estimated to 100 years at 52–55 per cent confidence. 

 

DEPOSITIONAL AND FLOOD CHRONOLOGIES 

The stratigraphy at all three sites showed laminations to variable degrees indicating that the 

sedimentary flux exceeded the bioturbation flux. It is therefore possible to derive flood 

histories at all three locations that extend back to the prehistoric period and forward to the 

present day. Here only those parts of each sedimentary record relevant to understanding the 

behaviour of these rivers during the early medieval period, and of potential relevance to the 

interpretation of the place-name element *wæsse, are presented and discussed. Each 

chronology begins with a brief discussion of Late Roman depositional conditions to provide 

context for the early medieval flooding and floodplain development witnessed at these sites 

from c. AD 400 to c.1150. 

 

The Teme at Broadwas 

During the late Romano-British period (BRD-1 to 3, 275–258 cm), the physical 

characteristics of alluvial deposition at Broadwas indicate gradually changing conditions 

(Figure 5). Subtle decreases in moisture, organic, and carbonate accompanied by increases in 

grain size, total sand, and elemental particle size proxies suggest a shift from frequent low-

energy floods to higher energy events.  

By the start of the early medieval period (BRD-4 to 5, from 258 cm), these higher 

energy depositional conditions increased further. A distinct coarsening of the alluvium and 

much higher sand content and a shift in elemental particle size proxies point to an extended 

phase of higher energy flooding lasting until the latter end of the sixth century AD (233 cm). 

During this phase there is evidence for a short but marked change in depositional character. 



Between 241 and 238 cm, there is a very sharp increase in magnetic susceptibility and 

paralleled decreases in sediment texture and coarse inclusions. This record potentially 

corresponds with the AD 536 climatic event, and certainly bears witness, irrespective of the 

precise trigger, to a distinct episode of flooding and floodplain waterlogging around this time.  

Throughout most of the seventh century (BRD-6, 232–218 cm), fluvial activity at Broadwas 

appears to have calmed somewhat, but nevertheless remained more pronounced than that 

seen during the Romano-British period. Increased variability in the elemental indicators 

prove that the Teme flooded regularly and with varying magnitude. After c. AD 630 (226 cm), 

an increase in average alluvium accumulation rate from 1.3 to 1.7 mm/yr indicates a more 

rapid build-up of sediments. An accompanying gradual increase in carbonate, the indicator of 

less dissolution in the alluvium, points to clear flooding events, and the retention of water on 

the floodplain for extended periods. 

 

Figure 5. Chronostratigraphic model for the Teme at Broadwas, c. AD 300–1150. 



Throughout the first half of the eighth century AD (BRD-7 and 8, 218–207 cm) 

evidence of high-energy deposition is apparent, with clear increases in alluvial texture and 

most significantly in the sediment power index. This distinctive phase of deposition appears 

to have abated by the latter half of the eighth century (BRD-9, 206–194 cm), but occasional 

higher energy flash flooding continued throughout most of the ninth century (BRD-10, 194–

179 cm).   

From the late ninth to mid-tenth century (BRD-11, 178–165 cm), further coarsening 

of the alluvial texture, alongside a significant rise in elemental indicators, suggests an 

increase in fluvial activity and depositional conditions. These higher-energy flood signatures 

may represent the Teme’s response to overarching climatic variations brought on by the start 

of the Medieval Climate Anomaly.  

After c. AD 950, the sedimentological record reveals a reduction in depositional 

energy which continued for an extended time up to c. AD 1150 (BRD-12 to 14, 167–130 cm). 

During this period, there is a gradual decrease in coarse-grained components, a decrease in 

the elemental indicators, and, after c. AD 1035, a clear decrease in average sediment 

accumulation rate to 1.6 mm/yr. Together this evidence demonstrates a calming of riverine 

depositionary conditions in the Teme by the end of the early medieval period and the start of 

the medieval period. Flooding at this time would have been less frequent and of lesser 

magnitude.  

 

The Severn at Buildwas 

Initially river activity in the late Romano-British period at Buildwas appears to have been 

dominated by low-energy deposition, with the nature of the alluvium betraying relatively low 

energy fluvial conditions (BUI-1, 215–211 cm) (Figure 6). During the fourth century (BUI-2, 

211–197 cm), however, depositional conditions changed rapidly so that by the end of the 

Romano-British period the alluvial texture was dominated by a coarse silt fine fraction with a 

major increase in coarse components. Together these indicate an increase in the magnitude 

and intensity of flooding at this point on the Severn. The sedimentological evidence suggests 

that throughout the fifth century AD (BUI-3, 197–182 cm) this high-energy flooding persisted 

and indeed increased further, leading to a century of coarse alluvial deposition with 

significant levels of coarse components.  

The depositional characteristics of the river began to change from the start of the sixth 

century and lasted until the mid-eighth century (BUI-4 to 6, 182–145 cm). During this 

prolonged period there was a significant decrease in alluvial texture and coarse inclusions, 



alongside increases in other fine-grained sediment proxies. Together, these suggest a marked 

reduction in flooding intensity and magnitude, and generally more benign river conditions 

characterized by low-energy, long duration floods. 

 

Figure 6. Chronostratigraphic models for the Severn at Buildwas, c. AD 300–1150. 

 

After c. AD 750, the sedimentary characteristics suggest that the Severn rapidly 

reverted back to higher energy deposition (BUI-7, 145–137 cm) which intensified throughout 

the ninth century (BUI-8,137–127 cm). During the latter part of this phase, the significant 

change to the alluvial texture suggests a major intensification in frequency and magnitude of 

flooding on the Severn.  From the late ninth to the mid-twelfth century (BUI-9 to 13, 127–

90 cm), the sediment character is typically composed of coarse silts with steadily increasing 

sand inclusions suggesting an extended period of high-energy deposition. Distinctive 



increases in Zr:Rb and Zr:Fe reveal ever-increasing flood magnitude, with the Severn at its 

most energetic since the fifth and sixth centuries.   

Despite the general high-energy deposition at this time, evidence of very short lower 

energy floods can still be determined in the sediment sequence. The enhanced magnetic 

susceptibility and decrease in grain size at the end of the eleventh century possibly reflects a 

very brief change in depositionary conditions associated with extended waterlogging, 

possibly linked to climatic deterioration brought on by the Oort Minimum (c. AD 1040–

1080).  

 

The Wye at Rotherwas  

During the late Romano-British period (ROT-1 to 2, 210–194 cm), analytical results from the 

sedimentary record for the Wye at Rotherwas indicate a period of decreasing flood intensity 

and magnitude (Figure 7). The presence of a significant peak in magnetic susceptibility and 

drop in Zr:Rb suggests a clear phase of lower energy fluvial conditions in the late fourth 

century. At the beginning of the early medieval period, fluvial conditions appear to have 

continued as before. Through the fifth to the late sixth century (ROT-3 to 5, 195–170 cm,) the 

general texture of the alluvium continued to decrease alongside the coarse components, 

suggesting a further reduction in fluvial conditions and flood intensity.  

After the late sixth century, the Wye demonstrates a significant change in 

depositionary characteristics marked by a clear change in the sedimentology. Between c. AD 

580–640 (ROT-6, 170–162 cm), a distinctive coarse silty sand with fine gravels dominates 

the sequence, the physical signature left by a period of very intensive, high-energy flooding. 

This must have had a significant impact on the floodplain landscape given the relatively 

benign conditions of the previous three centuries. No historical records exist which describe 

the extent and effect that this period of flooding had on the local populations but it is clear 

from the sedimentological record that the sudden change in river dynamics would have 

dramatically altered how people occupied and used the floodplain for many years.  

This episode of extreme deposition, however, was short-lived. From the mid-seventh 

to the late ninth century (ROT-7 to 10, 162–130 cm), the river returned to much lower-energy 

depositional conditions. Throughout this period, medium to fine silt alluvium dominates the 

sequence with considerably fewer coarse inclusions, suggesting lower energy flood events. 

Within this phase, however, several coarser-grained horizons point to very occasional higher 

energy floods between c. AD 750–850, but, on the whole, these appear to have been rare 

events.  



 

Figure 7. Chronostratigraphic models for the Wye at Rotherwas, c. AD 300–1150. 

 

From the tenth to the mid-twelfth century (ROT-11 to 14, 130–70 cm), the 

heterogeneous sedimentary characteristics of the alluvium suggest regular alternation 

between high- and low-energy depositional conditions. More generally, the gradual shift to 

coarser alluvium with greater concentrations of coarse inclusions and a distinctive increase in 

average accumulation rate (from 1.7 to 2.3 mm/yr) indicate increasingly higher-energy 

deposition over time associated with more frequent and greater intensity floods. Occasional 

shorter phases of low-energy deposition do occur at this time, marked by clear increases in 

magnetic susceptibility and carbonate, but, on the whole, these events are rare. 

 

DISCUSSION 

These new chronostratigraphic sequences serve to extend significantly our understanding of 

the fluvial dynamics of the Severn, Teme, and Wye during the early medieval period. When 



compared against each other, these rivers display a degree of synchronous behaviour, but not 

uniformity, perhaps reflecting the individual traits of their respective catchments’ 

characteristics and histories (Figure 8). There are broad similarities in the patterns of 

sedimentation across the three sites. All three sequences show, for instance, more frequent 

and more energetic flooding in the earlier part of their sequences than in later periods. More 

specifically each of the sites shows a higher degree of riverine activity in the immediate post-

Romano-British period between the fifth to the seventh centuries. After c. AD 650, all the 

records demonstrate a decline in flood intensity; this is most apparent at Broadwas and 

Rotherwas, but at Buildwas only to a lesser extent perhaps due to its larger catchment. 

The period between the mid-seventh to the mid-ninth century exhibits the most variability in 

fluvial activity across the three sites. The Severn and Teme appear to have been much more 

active than the Wye, but at all the sites rhythmical extremes between larger and smaller flood 

events can clearly be seen implying greater flood variability. In short, these rivers appear to 

have been behaving in a more erratic manner. Those living close to these rivers would have 

been only too aware of their unpredictable nature and the challenges they then posed to the 

full exploitation of both the rivers themselves and their rich floodplains. In contrast, there is 

broad synchronicity between the tenth and mid-eleventh centuries when there is a distinct 

increase in riverine activity and flood magnitude on all three rivers, albeit at different scales. 

The Teme and Wye demonstrate further continuity into the mid-twelfth century, whereas on 

the Severn there is a marked decrease in activity.   

Some correspondence in the behaviour of these three rivers would be expected. All 

are adjacent, and their catchments fall predominantly within the southwest England 

precipitation area defined by Gregory et al. (1991); but the flood histories of basins will 

always vary due to a combination of topographic, geological, and land use variables. The 

flood histories of the *wæsse-sites that have been presented here appear to correspond to 

Macklin et al.’s (2005) study of major riverine flood probability within this precipitation 

zone. They isolated two phases of elevated flood activity, between c. AD 250-500 and c. AD 

750-1100, and the results from the *wæsse-sites broadly follow this model. Both they and 

others (Jones et al., 2010, 2012) have correlated these periods with wetter climatic phases 

identified, for example, in the Irish bog oak record between c. AD 750-850 (Leuscher et al., 

2002) and in the coterminous evidence for very elevated water-levels in northern British 

peatlands (Charman et al., 2006). These wet phases have also been correlated with solar 

minima (Larsen et al., 2008). Nevertheless, it would appear that specific fluvial responses at 

Broadwas, Buildwas, and Rotherwas to these climatic episodes varied. This is perhaps best 



explained by the different scales of their respective river catchments: the Teme at 1640 km2, 

Wye 4136 km2, and Severn (excluding the Wye) 11,420 km2. During wetter periods, the 

carrying capacity of the Severn was much more likely to be exceeded than along the Teme 

and Wye as a result of the collection of greater quantities of water from its more extensive 

catchment with a greater area of upland. This is borne out in the sedimentary record which 

reveals the Severn to have been more prone to higher magnitude and more frequent flooding 

than the others. 

 

Figure 8. Estimated flood magnitude models for Broadwas, Buildwas, and Rotherwas. 

 

For the most part, it is now accepted that while the flood behaviours of British rivers 

are principally driven by climate (Macklin et al., 2010, 2012), their sedimentary flux is also a 

product of land-use history (Brown et al., 2013). In general, anthropogenic landscape change 

appears to have been a less significant factor in flood records, at least until c.950AD, after 

which the rates of accumulation of fine silts rise rapidly nationwide. This is considered to 



represent the signature of the expansion of arable farming and the delivery of greater 

sedimentary loads to rivers through the erosion of exposed soils (Macklin et al., 2010; Brown 

et al., 2013). Across the whole period covered by the new sequences, however, overbank 

rates of alluvial accumulation at all three sites appear to vary very little but remain high (see 

below). This appears to indicate a relatively stable catchment environment, and this 

interpretation is supported by palynological and archaeological evidence. Aggregated data 

from upland Wales, where all three of these rivers originate, indicate a consistent if small 

increase in woodland across the early medieval period. Arboreal pollen also indicate that in 

the western lowlands, relevant for an understanding of the middle and lower courses of all 

three rivers, woodland cover was again largely preserved for most of the period and may have 

actually increased in the immediate post-Roman period before declining after AD 850 (Rippon 

et al., 2015). Signs of any expansion of arable cultivation are negligible in both regions. Such 

landscape continuity may help to explain the relatively constant rates of flood sedimentation 

at the *wæsse-sites which remained, over the whole of the early medieval period, between 

1.19-2.31 mm/yr. That said, for English lowland rivers, such rates are relatively high. 

Certainly, on the three sites examined here, the accumulation of alluvium was sufficiently 

rapid not to allow bioturbation and reworking of flood laminations, explaining why sediment 

preservation is so good in these places.  

The material deposited was generally relatively coarse, being dominated by silts and 

sand. This reflects the regional geology and nature of the floodplain, particularly the fixed 

location of the river channels. Of course, the nature of flooding at *wæsse-sites need not 

necessarily mirror what was happening elsewhere in these river catchments. Indeed, the 

adoption of a unique term to describe the phenomenon may point to the fact that flooding in 

these locations was recognised as being substantively different from that observed in other 

places. What each of the sequences unequivocally demonstrates is that all three *wæsse-sites 

were located on reaches with high-unit stream power but also with channel stability. Such 

river reaches were of fundamental importance to the early medieval economy, providing 

excellent conditions for the placement of mills as well as weirs and fords.  

The sedimentary sequences at these *wæsse-sites provide new data that help to refine 

previous models developed for river behaviours and floodplain development across the early 

medieval period, both in terms of flood chronology and sediment accumulation. These have 

previously been difficult to build securely from radiocarbon-dated sequences (Brown et al., 

2018). Beyond their general value, however, the results are of particular relevance for the 



interpretation of the unique conditions which might have been being described by the term 

*wæsse in riparian settlement-names. 

It is sensible to assume that, wherever deployed, *wæsse was intended to describe the 

same natural process or set of characteristics. However, if we also assume that the three west 

midland names—Broadwas, Buildwas, and Rotherwas—came into existence at about the 

same time, it is difficult to identify a period when all three sites were subject to the same 

specific riverine behaviours. It is tempting to assign the names to the period before the mid-

seventh century AD, when all three rivers flooded regularly. It is, however, extremely unlikely 

that Old English was sufficiently well established at that date, this far west, for *wæsse-

names to have arisen then (Bassett, 2000).  

The degree of fluvial variability in river behaviours evident after the eighth century 

thus presents a challenge to the interpretation of the name and the fluvial phenomenon it 

describes. Yet despite the variability in their later detailed flood chronologies it is the case 

that certain types of flooding event were shared in common at each *wæsse-site. They all 

underwent both higher-energy, shorter-duration events and smaller, more prolonged flooding 

during the centuries when we might expect the names to have arisen (perhaps from c.AD650-

950). In these circumstances, it is difficult to be confident that Gelling’s (2012: 103) 

definition of *wæsse as a highly specialised term for land by a river which floods and drains 

with dramatic swiftness is the one that specifically applies, even if the sedimentary data does 

broadly support this interpretation. If the term were indeed linked to high-energy flood 

events, then we might note the extended period of the most intense fluvial activity at 

Buildwas during the late-eighth century as one likely context in which the name might have 

been adopted. Similarly, the intensification of flood activity on the Teme from the mid-ninth 

century might account for the Broadwas name. However, comparable conditions on the Wye 

which might explain Rotherwas are entirely lacking before the eleventh century AD. These 

non-synchronous chronologies do not, in themselves, pose a problem since the names and the 

places to which they were attached need not have been necessarily or strictly 

contemporaneous with one another. 

Rather than trying to identify a shared chronology for the naming of *wæsse-sites, it 

is perhaps better to consider how individual flood events may have physically manifested 

themselves on the ground during the latter part of the early medieval period, since an equally 

likely origin of *wæsse might lie in the precise fluvial dynamics of floods common to all 

locations taking this name. In all instances examined here, downstream obstacles to the free 

flow of water exist. At Buildwas, it is the constriction of the Severn’s floodplain as it enters 



the Ironbridge Gorge. When heavy rains occur in the upper catchment, the Severn’s flood 

pulse is able to move downstream unhindered until it reaches the Gorge. If this pulse exceeds 

the capacity of the Gorge, then water backs up causing floods at Buildwas. At Broadwas, the 

same effect is observed when water travelling down the Teme is unable to enter the Severn. 

This is particularly true when the Severn is in flood, an event which last occurred in 2007. 

The same phenomenon occurs on the Wye at Rotherwas when the River Lugg is in spate. The 

effect of this pooling is a rapid rise in river levels at all three *wæsse-sites leading to 

extensive overbank flooding as downstream flows meet the blockage. Equally, once the 

obstruction clears, there comes a moment when water previously standing on the floodplain is 

syphoned off, causing the floodplain to drain rapidly too. 

All of which brings us back to Gelling’s observations and her extended meaning of 

*wæsse as ‘land by a meandering river which floods and drains quickly’. Implicit in her 

model is that individual flood events were of short duration (from her field observations, 24-

hour events). The sedimentological record, however, suggests that, in reality, some flood 

events might be of long duration and the geoarchaeology explains why. What is clear is that, 

in all three locations, it is both the onset of flooding and its conclusion that occur rapidly even 

if water might cover their floodplains for considerable periods between times. It would 

appear, then, that it was not only the tendency of these places to flood and the frequency with 

which this happened that place-namers sought to communicate by using the *wæsse element 

in place-names, but also the alarming speed at which these floods might rise and the 

comforting speed at which they receded. If these specific riverine characteristics might, from 

time to time, threaten the communities who lived and worked in these locations, they might 

also be exploited, thus explaining, perhaps counter-intuitively, why permanent settlements 

might be established in such places. River reaches with high stream powers and fixed 

channels, as found at these *wæsse-sites, provided the most effective locations for the 

construction of on-stream watermills as well as weirs (e.g. fish weirs) and fords. Given such 

economic potential, it may be significant that two, and possibly all three, of these *wæsse-

sites possessed watermills by the late eleventh century. 

 

CONCLUSION AND WIDER IMPLICATIONS 

This paper has offered a new methodology for conducting fluvial geoarchaeological research 

and the first OSL-based early medieval flood chronology in the UK. It has demonstrated the 

value of using place-names to target particular river sections where the fluvial processes 

described in these names can be tested against the physical evidence of sedimentary records. 



Here, only one place-name element, Old English*wæsse, has been examined in detail. It is 

suggested that Old English speakers recognised *wæsse-sites as unusually high-energy 

locations: prone to flooding, yet still suitable for permanent settlement, river crossings, and 

the development of economic assets such as mills (Brown et al., 2018). There is great 

potential to extend this methodology further. Other English place-name elements that 

potentially describe locations where distinctive signatures of fluvial activity may have been 

left include: botm ‘flat alluvial area, restricted in size, moist and often easily flooded’ (Cole, 

1987–88); flēot ‘shallow water coming and going’ (Cole, 1997); halh, variously seen to refer 

to ‘low-lying land higher than its surroundings but still liable to occasional flooding’ or ‘low-

lying land liable to (infrequent) flooding’ (Stiles, 1997; Kitson, forthcoming); hamm, with 

potentially multiple senses including ‘land in a river bend; river-meadow’, ‘piece of valley-

bottom land hemmed in by higher ground’ and the more general implicit sense ‘land liable to 

flooding’ (Gelling & Cole, 2000: 46–49); and wisce/wixe ‘a piece of land in the bend of a 

river liable to floods’ (Smith, 1956, II: 270). The method might also profitably be used to 

examine the behaviour of rivers based on the names they carry. It might be expected, for 

instance, that the River Tove ‘slow, dilatory, laggardly one’ will have left a different 

sedimentological profile than the River Swale ‘whirling, rushing river’ (Ekwall, 1928; Watts, 

2004). Finally, since the two dominant languages, Old English and Old Norse, from which 

English place-names and to a lesser extent its river-names were formed are both Germanic 

branches of the wider family of Indo-European languages, this is a methodology that should 

find potential application beyond the British Isles in the examination of the geomorphological 

and geoarchaeological character of rivers across Europe, including Scandinavia.   
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Toponymes et inondations fluviales au haut moyen âge : une nouvelle approche et 

données chronostratigraphiques provenant de trois rivières anglaises 

 

Les informations environmentales obtenues à l'aide de la toponymie ont largement 

été négligées par les géoarchéologues et géomorphologues dans leurs analyses de la 

sédimentation fluviale et des zones inondables. En Angleterre, presque 2000 noms de lieux 

peuplés sont liés aux charactéristiques du cours d'eau au près duquel ils se sont 

établis.  L’origine de la plupart de ces noms remonte au début du Moyen Âge (environ 500–

1100 apr. J.-C.) et certains rappellent des endroits sujets à inondation. Les indicateurs 

indirects de haute précision fournis par les sciences naturelles ainsi que les nouvelles 

techniques de datation de sédiments permettent de nos jours de confronter cette information 

toponymique à la séquence des dépôts fluviaux obtenus par carottage. Les auteurs présentent 

ici trois nouvelles séquences chronologiques d’inondations affectant les rivières Teme, Severn 

et Wye, élaborées à partir de tronçons de rivière stables, échantillonnées à Broadwas, 

Buildwas et Rotherwas ; ces noms de lieux contiennent le terme *wæsse en vieil anglais, qui 

signifierait « terrain bordant une rivière à méandres facilement inondable et à drainage 

rapide ». Il en ressort que l’époque entre 350 et 700 apr. J.-C. est caractérisée par des 

inondations plus fréquentes qu’entre 700 et 1100 apr. J.-C mais que cette dernière phase se 

distingue par plus de variation sédimentaire. Ceci indiquerait un régime de crues plus 

complexe, y compris des évènements ponctuels de grande ampleur. Les auteurs proposent en 

conclusion que la toponymie peut se révéler utile à la reconstruction de l’histoire des rivières 

sur le long terme et nous permet de mieux comprendre la conception que l’on se faisait des 

milieux fluviaux. Translation by Pauline Delorme 
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Mots-clés : chronostratigraphie, haut moyen âge, Angleterre, inondations, toponymie, rivières, 

OSL 

 

Frühmittelalterliche Ortsnamen und die Geschichte von Flussüberschwemmungen: ein 

neuer Ansatz und neue chron stratigrafische Angaben über drei englische Flüsse  

 

Angaben über die Umwelt, die in den Ortsnamen überliefert sind, sind von den 

Geoarchäologen und Flussgeomorphologen weitgehend in ihren Untersuchungen der 

Ablagerungsgeschichte von Flüssen und Auen übersehen worden. In England gibt es fast 2000 

Ortsnamen, die einen oder anderen Aspekt der Eigenschaften ihrer Lage an einem Fluss 

beschreiben. Die meisten erschienen im Frühmittelalter (ca. 500–1100 n. Chr.), darunter 

einige, die Orte, welche bekanntlich von Überschwemmungen bedroht waren, beschreiben. 

Hochpräzise wissenschaftliche Proxydaten und neue Datierungsmethoden für Sedimente 

ermöglichen es jetzt, die toponymischen Angaben mit der Ablagerungsgeschichte von Flüssen, 

die auf der Basis von Bohrkernen rekonstruiert werden konnte, zu vergleichen. Neue 

chronologische Abfolgen für die Flüsse Teme, Severn und Wye werden hier aufgrund 

ausgegrabener Flussstrecken in Broadwas, Buildwas, und Rotherwas vorgestellt; diese Orte 

sind mit dem altenglischen Begriff *wæsse, verknüpft, was mit „Land bei einem mäandernden 

Fluss, das schnell überflutet und entwässert“. Es ergibt sich, dass es häufiger Überflutungen 

zwischen 350 und 700 n. Chr. als zwischen 700 und 1100 n. Chr. gab aber, dass der letztere 

Zeitabschnitt von größeren Schwankungen in der Sedimentabfolge geprägt war. Dies deutet 

auf ein komplexeres Hochwasserregime, inklusiv einzelne schwere Ereignisse. Diese 

Untersuchung zeigt, dass die Ortsnamenkunde bei der langfristigen Rekonstruktion der 

historischen Flussaktivität hilfreich sein kann und zum Verständnis der menschlichen 

Vorstellungen von Flusslandschaften beitragen kann. Translation by Madeleine Hummler 

Stichworte: Chronostratigrafie, Frühmittelalter, England, Überschwemmungen, Ortsnamen, 

Flüsse, OSL 
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Table 1. Summary table of OSL dates obtained from the sequences at Broadwas, Buildwas, and Rotherwas (outliers in red). (Full detailed table in 

supplementary material). 

Site, County Location 

NGR 

River Depth (cm) OSL date & error 

(ka) 

Code cal. BC/AD date (δ95.4%) cal. BC/AD date (δ68.2%) Age estimate 

Broadwas, 

Worcestershire 

SO 375466, 

254599 

Teme  90 0.67±0.06 GL17008 cal. AD 1278–1535 cal. AD 1353–1497 Accepted 

150 1.25±0.16 GL17007 cal. AD 610–930 cal. AD 687–847 Accepted 

195 1.09±0.11 GL17006 cal. AD 743–1041 cal. AD 814–961 Accepted 

225 1.29±0.13 GL17005 cal. AD 563–907 cal. AD 645–814 Accepted 

270 1.95±0.14 GL17004 73 cal. BC–cal. AD 207 3 cal. BC–cal. AD 137 Accepted 

360 1.89±0.19 GL17003 287 cal. BC–cal. AD 355 158 cal. BC–cal. AD 166 Accepted 

Buildwas, 

Shropshire 

SJ 363945, 

304508 

Severn 80 1.00±0.20 GL16094 cal. AD 826–1494 cal. AD 1082–1424 Accepted 

140 1.40±0.20 GL16093 cal. AD 420–1074 cal. AD 624–944 Accepted 

216 3.10±0.50 GL16092 1584–590 cal. BC 830–334 cal. BC Rejected 

287 1.90±0.30 GL16091 780 cal. BC–cal. AD 431 492 cal. BC–cal. AD 107 Accepted 

Rotherwas, 

Herefordshire 

SO 353864, 

238488 

Wye 80 1.23±0.18 GL16042 cal. AD 606–966 cal. AD 696–876 Accepted 

125 1.07±0.08 GL16141 cal. AD 834–1094 cal. AD 902–1030 Accepted 

215 1.59±0.17 GL16140 cal. AD 6–501 cal. AD 117–346 Accepted 

270 3.20±0.29 GL16139 1474–894 cal. BC 1329–1039 cal. BC Accepted 

300 2.77±0.26 GL16138 912–184 cal. BC 680–345 cal. BC Accepted 
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SUPPLEMENTARY MATERIAL 

 

 

FLOW REGIMES 

Flow regimes for the three rivers have been taken from the National River Flow Archive 

(https://nrfa.ceh.ac.uk) created by the Centre for Ecology and Hydrology, using the nearest 

station upstream of the sample sites: Knightsford Bridge Station (54029) for Broadwas and 

the Teme; Buildwas Station (54095) for Buildwas and the Severn; and Belmont Station 

(55002) for Rotherwas and the Wye. Mean flows are quoted, together with Q95 (5 percentile 

flow)—the flow in m3/s equalled or exceeded for 95 per cent of the flow record—and Q10 

(90 percentile flow) equalled or exceeded for 10 per cent of the flow record, which, when 

compared, provide an index of the variability or flashiness of the flow regime. 

Teme: mean flow: 18.163m3/s. Q95 2.02 m3/s. Q10 42.2 m3/s. The Teme is 

considered a natural catchment. 

Severn: mean flow: 59.74 m3/s. Q95 11.6 m3/s. Q10 146 m3/s. The modern flow 

regime of the Severn has been significantly modified as a result of upstream reservoir 

construction. 

Wye: mean flow: 48.344 m3/s. Q95 6.428 m3/s. Q10 115.6 m3/s. The current flow 

regime is moderately affected by high levels of water abstraction for agriculture. 

 

TOPOGRAPHIC, GRADIENT & SEDIMENTOLOGICAL MODELLING 

Topographic modelling at each site was conducted using high-resolution LiDAR datasets 

available from the Environment Agency. Initially a Digital Terrain Model (DTM) at 50m 

resolution was created for the UK and central England and overlain by major rivers (Figure 

1). Detailed DTMs at 1m resolution were then created for c. 2.5–3km2 areas across each of 

https://nrfa.ceh.ac.uk/


the floodplains at the three sites and overlain by a colour-shaded elevation model with major 

watercourses. River gradient models were calculated using the raw elevation data combined 

along the lengths of the Teme, Severn, and Wye at 50m intervals (Figure 2). In order to 

contextualize the sequence stratigraphies at each site across the wider floodplain landscape, 

existing core data held by the British Geological Survey 

(https://www.bgs.ac.uk/data/bmd.html) was gathered and remodelled with the new data in 

cross sections. At Broadwas, where no existing core data were forthcoming, a programme of 

coring at 100m intervals using a mechanical percussion auger was undertaken to record the 

sediment sequence and collect samples from the settlement to the river section (Figure 4). 

The ground surface topography across each transect was extracted from the raw LiDAR data 

at 10cm resolution. 

 

FIELD SAMPLING 

In order to analyse the sedimentary sequences at Broadwas, Buildwas, and Rotherwas, river 

sections were excavated at strategic locations along the banks of the rivers Teme, Severn, and 

Wye. The sample areas were cleaned, photographed, and recorded, revealing between 3 and 

3.75m of alluvium down to the present river level, with terrace gravels identified at the base 

of each. From each section in-situ sediment samples were collected using 30–50-cm-long u-

channels with 5-10cm cross-over to enable <1cm to 1cm resolution analysis; these were 

complemented by larger bulk sediment samples (c. 20–50g) collected every 5cm.  

 

OPTICALLY STIMULATED LUMINESCENCE (OSL) SAMPLING 

Sample Preparation 

Fifteen sediment samples were collected in opaque plastic tubing from excavated sections 

and submitted for optical dating at the University of Gloucestershire Luminescence dating 

laboratory (Toms, 2017; Toms & Wood, 2018a, 2018b) (Table 1 [main article] and Table S1 

[Supplementary Material]). To preclude optical erosion of the datable signal prior to 

measurement, all samples were opened and prepared under controlled laboratory illumination 

provided by Encapsulite RB-10 (red) filters. To isolate material potentially exposed to 

daylight during sampling, sediment located within 20mm of each tube-end was removed. The 

remaining sample was dried and then sieved. Depending on each sample’s modal grain size, 

quartz within the fine sand or fine silt fraction was segregated. 

Samples were then segregated and subjected to acid and alkaline digestion (10 per 

cent HCl, 15 per cent H2O2) to attain removal of carbonate and organic components 

https://www.bgs.ac.uk/data/bmd.html


respectively. For fine sand fractions, a further acid digestion in HF (40 per cent, 60 minutes) 

was used to etch the outer 10–15µm layer affected by α radiation and degrade each sample’s 

feldspar content. During HF treatment, continuous magnetic stirring was used to effect 

isotropic etching of grains. To remove acid soluble fluorides, 10 per cent HCl was then 

added. Each sample was dried, re-sieved and quartz isolated from the remaining heavy 

mineral fraction using a sodium polytungstate density separation at 2.68 g.cm-3. Twelve 8mm 

multi-grain aliquots (c. 3–6mg) of quartz from each sample were then mounted on aluminium 

discs for determination of De values. Fine silt sized quartz, along with other mineral grains of 

varying density and size, was extracted by sample sedimentation in acetone (<15µm in 2 min 

20s, >5µm in 21 mins at 20C). Feldspars and amorphous silica were then removed from this 

fraction through acid digestion (35 per cent H2SiF6 for 2 weeks, Jackson et al., 1976; Berger 

et al., 1980). Following addition of 10 per cent HCl to remove acid soluble fluorides, grains 

degraded to <5µm as a result of acid treatment were removed by acetone sedimentation. 

Twelve multi-grain aliquots (c. 1.5mg) were then mounted on aluminium discs for De 

evaluation. All drying was conducted at 40°C to prevent thermal erosion of the signal.  

 

De Measurements 

All minerals naturally exhibit marked inter-sample variability in luminescence per unit dose 

(sensitivity). Therefore, the estimation of De acquired since burial requires calibration of the 

natural signal using known amounts of laboratory dose. De values were quantified using a 

single-aliquot regenerative-dose (SAR) protocol (Murray & Wintle, 2000, 2003) facilitated 

by a Risø TL-DA-15 irradiation-stimulation-detection system (Markey et al., 1997; Bøtter-

Jensen et al., 1999). Within this apparatus, optical signal stimulation is provided by an 

assembly of blue diodes (5 packs of 6 Nichia NSPB500S), filtered to 47080nm conveying 

15mW.cm-2 using a 3mm Schott GG420 positioned in front of each diode pack. Infrared (IR) 

stimulation, provided by 6 IR diodes (Telefunken TSHA 6203) stimulating at 87580nm 

delivering ~5mW.cm-2, was used to indicate the presence of contaminant feldspars (Hütt et 

al., 1988). Stimulated photon emissions from quartz aliquots are in the ultraviolet (UV) range 

and were filtered from stimulating photons by 7.5mm HOYA U-340 glass and detected by an 

EMI 9235QA photomultiplier fitted with a blue-green sensitive bialkali photocathode. 

Aliquot irradiation was conducted using a 1.48 GBq 90Sr/90Y  source calibrated for multi-

grain aliquots of 5–15m, 125–180m and 180–250m quartz against the ‘Hotspot 800’ 60Co 

 source located at the National Physical Laboratory (NPL), UK.  



The propensity of feldspar signals to fade and underestimate age, coupled with their 

higher sensitivity relative to quartz, makes it imperative to quantify feldspar contamination. 

At room temperature, feldspars generate a signal (Infrared Stimulated Luminescence; IRSL) 

upon exposure to IR whereas quartz does not. The signal from feldspars contributing to OSL 

can be depleted by prior exposure to IR. For all aliquots the contribution of any remaining 

feldspars was estimated from the OSL IR depletion ratio (Duller, 2003). If the addition to 

OSL by feldspars is insignificant, then the repeat-dose ratio of OSL to post-IR OSL should be 

statistically consistent with unity, as is the case in this study for the majority of the samples. 

The exception is sample GL16138, which returns a post-IR OSL ratio of 0.78±0.03 and, thus, 

the associated age should be treated as a minimum estimate. 

Preheating aliquots between irradiation and optical stimulation is necessary to ensure 

comparability between natural and laboratory-induced signals. However, the multiple 

irradiation and preheating steps that are required to define single-aliquot regenerative-dose 

response leads to signal sensitisation, rendering calibration of the natural signal inaccurate. 

The SAR protocol (Murray & Wintle, 2000, 2003) enables this sensitisation to be monitored 

and corrected using a test dose, here set at 5 Gy preheated to 220C for 10s, to track signal 

sensitivity between irradiation-preheat steps. However, the accuracy of sensitisation 

correction for both natural and laboratory signals can be preheat dependent.  

The Dose Recovery test was used to assess the optimal preheat temperature for 

accurate correction and calibration of the time dependent signal. Dose Recovery attempts to 

quantify the combined effects of thermal transfer and sensitisation on the natural signal, using 

a precise lab dose to simulate natural dose. The preheat chosen for each sample was that 

where the ratio between the applied dose and recovered De value was consistent with unity. 

Further thermal treatments, prescribed by Murray and Wintle (2000, 2003), were applied to 

optimize accuracy and precision. Optical stimulation occurred at 125C in order to minimize 

effects associated with photo-transferred thermoluminescence and maximize signal to noise 

ratios. Inter-cycle optical stimulation was conducted at 280C to minimize recuperation. 

Murray and Wintle (2000, 2003) suggest that ratios from repeat-dose measurements 

indicate the success of sensitivity correction, whereby ratios ranging across 0.9–1.1 are 

acceptable. However, this variation of repeat-dose ratios in the high-dose region can have a 

significant impact on De interpolation. In this study, these ratios are based on repeats of low 

and high dose measurements. Most repeat-dose ratios are consistent with the range 0.9–1.1, 

though some data are relatively scattered owing to poor signal to noise ratios. However, the 



recycling ratios for sample GL16092 from Buildwas are not consistent with the range 0.9–

1.1; the corresponding age estimate is therefore rejected. 

 

Dr Measurements 

Lithogenic Dr values were defined through measurement of U, Th and K radionuclide 

concentration and conversion of these quantities into ,  and  Dr values (Table S1). 

Contributions of  and  were estimated from sub-samples by laboratory-based  

spectrometry using an Ortec GEM-S high purity Ge coaxial detector system, calibrated using 

certified reference materials supplied by CANMET. Rates of  dose were estimated in situ 

with an EG&G Nomad portable NaI gamma spectrometer (calibrated using the block 

standards at RLAHA, University of Oxford); these reduce uncertainty relating to potential 

heterogeneity in the  dose field surrounding each sample. The level of U disequilibrium was 

estimated by laboratory-based Ge  spectrometry. Estimates of radionuclide concentration 

were converted into Dr values (Adamiec & Aitken, 1998), accounting for Dr modulation 

forced by grain size (Mejdahl, 1979), present moisture content (Zimmerman, 1971) and, 

where De values were generated from 5–15 m quartz, reduced signal sensitivity to  

radiation (a-value 0.050  0.002). Cosmogenic Dr values were calculated on the basis of 

sample depth, geographical position, and matrix density (Prescott & Hutton, 1994). No 

samples exhibited pronounced (226Ra/238U>50 per cent) U disequilibrium.  

 

AGE-DEPTH MODELLING 

The determination of the OSL dates allowed detailed age-depth modelling of the alluvial 

sequence (Figure 3). This was conducted using OxCal, version 4.3 with IntCal13 program 

(Bronk Ramsey, 2008, 2009). Outliers were identified by running statistical analyses on all 

the dates, including reversals, and analysed against a run without reversals (Figure 3, in red). 

This demonstrated that all but one of the dates (GL16092) were statistically viable for the 

calculation of precise calendrical dates at 2δ (95.4 per cent confidence) and 1δ (68.2 per cent 

confidence). The development of a sequence chronology then enabled the calculation of the 

average sediment accumulation rate at each of the sites.  

 

LOSS ON IGNITION 

Alongside the chronological determination, samples were also subjected to a range of 

sedimentological analyses to interpret the depositional history of the sequence (Figures 5, 6, 



and 7). Loss on Ignition (LOI) at 1cm resolution was conducted by combusting samples at 

105oC for 12 hours to determine moisture content, an additional particle size proxy. A second 

burn at 550oC for a further 2 hours provided the percentage organics, conducted to determine 

the presence of in-situ soil horizons and/or sudden deposition from flood events. A final burn 

at 950oC for 4 hours determined the calcium carbonate (CaCO₃) content, essential for further 

elucidation of the fine-sediment fraction through the preservation of flocculated structure, and 

the binding of organics to the fine particulate in alluvium (e.g. Bullinger-Weber et al., 2007).   

 

MAGNETIC SUSCEPTIBILITY 

Magnetic susceptibility (MS) was measured in order to identify high-resolution variations in 

texture, and changes in depositional conditions, possibly as a result of flooding events 

(Figures 5, 6, and 7). The process was also used to determine variations in landuse on the 

floodplain. This has previously been shown to demonstrate changes in anthropogenic activity 

on archaeological sites (Tite & Mullins, 1971). MS was undertaken with a Bartington MS2 

meter using the MS2B dual sensor equipment at 1cm resolution. Volume magnetic 

susceptibility in SI unit (κ) was determined using a fixed frequency of 3.41kHz and a 

periodicity of 15 seconds, and precision was determined with randomly selected repeatability 

of samples. The methodology and interpretation of results followed Dearing (1999).  

 

PARTICLE SIZE ANALYSIS 

Further analysis of micro-variant sediment texture was conducted using particle size analysis 

(Figures 5, 6, and7), following the methodology set out by Konert and Vandenberghe (1997). 

To remove organic material, 2–5g of sediment was heated to 550oC for 2 hours in a furnace 

and the remaining sediment sieved through a <2-mm sieve and then mixed with a deionized 

water and Calgon solution to disaggregate remaining components. A subsample of this was 

then placed in a petrie dish with more Calgon and gently agitated with a pestle before being 

added to a Malvern Digisizer until an optimal obscuration of 5–20 per cent had been 

achieved. Background and sample measurement time was set to 90 seconds and each sample 

was analysed five times in order to get a good statistical dataset as determined by the 

international standard ISO-13320-1. All samples analysed had a standard deviation lower 

than 2 per cent for the fine-grained percentile (<Dx10), less than 3 per cent for the median 

percentile (<Dx50) and less than 5 per cent for the coarsest percentile (<Dx90). 

 

MULTI-ELEMENT ITRAX ANALYSIS 



Multi-element determination was calculated using an ITRAX XRF scanner (Croudace et al., 

2006). In-situ sediment samples were collected in 30–50cm-long ‘u channels’ from the river 

section and scanned at 0.2cm resolution using 30kV, 30mA settings and a 15-second count 

time at the British Ocean Sediment Core Research Facility (BOSCORF) at the National 

Oceanography Centre, Southampton (NOCS). In total, 39 elements were identified including 

lithogenic indicators (Si, Al, K, Ti, Zr, Rb) and anthropogenic and heavy metal indicators. 

The resultant elemental intensities, measured in counts per second (cps), were vetted to 

remove unreliable results which occurred at the boundaries of samples, in particular within 

exceptionally coarse sediment horizons. The resultant dataset was then scrutinized and 

specific combinations of elemental ratios created in order to determine proxy coarse-grained 

indicators (Zr:Rb) (Thompson & Oldfield, 1986; Jones et al., 2010, 2012), flood events and 

depositional conditions (Zr:Fe) (Wilhelm et al., 2013), redox conditions, waterlogging and/or 

elevated water tables (Fe:Mn) (Vepraskas, 2002), and combined heavy metals (Cu, Zn, As, 

Sr, Cd, Sb, Ba, Pb) in the fine and coarse sediment fraction (Croudace & Rothwell, 2015). 

Results from the multi-element ITRAX analysis are presented in Figures 5, 6, and 7 as log-

ratios following the work of Aitchison (1981), Weltje and Tjallingii (2008), and Weltje et al. 

(2015).  

 

SEDIMENT POWER INDEX 

In order to further understand the variations in sediment concentration, size, distribution, and 

presence/absence of void space within the alluvium at the three sites, a Sediment Power 

Index was calculated (Figures 5, 6, 7). This was achieved by dividing the coarse sediment 

fraction (Dx90) by the finest sediment fraction (Dx10) to the power 3. The organic fraction 

was initially removed from the calculation; however, the LOI@550 results were so negligible 

that in the end this was not calculated in the equation.  

 

AGGLOMERATE HIERARCHICAL CLUSTERING (AHC) 

To analyse statistically sedimentological variations within the alluvial sequences from the 

three sites, a programme of Agglomerative Hierarchical Clustering (AHC) analysis was 

conducted using the XLStat, which enabled the detailed zonation of horizons (Figures 5, 6, 

7). For each site, series dissimilarity was determined of data z-scores at 1cm resolution using 

the Euclidean distance between six variables, percentage organics, percentage carbonate, 

magnetic susceptibility, fine particulate, percentage sand, and Zr:Rb. Agglomeration was 

calculated using Ward’s Method (Ward, 1963). The results were presented in horizontal 



dendrograms demonstrating cophenetic distance between variables and horizons, with major 

classes defined by class colour variation and individual horizon zonation defined by changes 

at the most similar level.  

 

FLOOD MAGNITUDE MODELS 

Flood magnitude models were created for each of the sites using the coarse-grained sediment 

indicators Zr:Rb determined during the ITRAX multi-element analysis, detailed by Jones et 

al. (2012: 91 & 93). This methodology was chosen because the original work had also been 

conducted in the River Severn catchment where comparable basal geologies exist. The 

original ITRAX data were statistically tested using polynomial regression, which enabled the 

determination of a flood threshold value, and remodelled where there was threshold 

exceedance above average LogZr:Rb (Figure 8). The filtering out of ‘noise’ from the original 

dataset and addition of a 50-year moving average, enabled the identification and refinement 

of flood-rich phases of deposition at each site between AD 300 and 1150.  
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Table 1 Dr, De and Age data. Age estimates expressed relative to 2016 for Buildwas and Rotherwas and 2017 for Broadwas. Uncertainties in age are quoted at 1 confidence  

and reflect combined systematic and experimental variability. Blue text denotes rejected age estimate, owing to poor repeat dose ratios. Red text indicates sample age  

should be considered a minimum estimate, owing to significant feldspar contamination. 
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(C for 10s) 
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Repeat Ratio 
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Repeat Ratio 
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OSL Ratio 

De 

(Gy) 
Age (ka) 

cal. BC/AD date 

(1, 68.2%) 

 
 

 
  

 K (%) Th (ppm) U (ppm)      
 

      

Broadwas, 

Worcestershire, 

SO 375466, 

254599, Teme 

 

GL17008 0.90 125-180 13  3 0.90  0.11 1.61  0.10 9.32  0.57 1.88  0.14 - 1.39  0.14 0.18  0.02 1.01 ± 0.14 2.47 ± 0.17 260 0.97  0.02 1.00  0.01 0.96  0.02 1.6  0.1 0.67  0.06  cal. AD 1290 – 1410 

GL17007 1.50 125-180 14  4 0.88  0.11 1.63  0.10 9.39  0.57 1.77  0.14 - 1.36  0.15 0.16  0.02 0.88 ± 0.13 2.40 ± 0.18 220 0.97  0.03 1.03  0.02 0.94  0.03 3.0  0.3 1.25  0.16  cal. AD 610 – 930 

GL17006 1.95 125-180 16  4 0.86  0.11 1.67  0.10 9.35  0.57 1.77  0.14 - 1.35  0.15 0.15  0.01 1.23 ± 0.19 2.36 ± 0.19 260 0.98  0.03 1.00  0.02 0.97  0.03 2.6  0.1 1.09  0.11  cal. AD 820 – 1030 

GL17005 2.28 125-180 16  4 0.81  0.10 1.36  0.09 9.22  0.56 1.83  0.14 - 1.17  0.13 0.14  0.01 0.84 ± 0.11 2.12 ± 0.17 280 0.95  0.04 1.00  0.03 0.93  0.04 2.7  0.2 1.29  0.13  cal. AD 590  – 860 

GL17004 2.70 5-15 20  5 0.85  0.08 1.56  0.10 10.16  0.60 2.01  0.15 0.39  0.04 1.37  0.14 0.13  0.01 1.13 ± 0.17 2.75 ± 0.17 240 0.99  0.08 0.99  0.06 0.95  0.08 5.4  0.2 1.95  0.14  80 cal. BC – cal. AD 200. 

GL17003 3.55 125-180 19  5 0.85  0.11 1.67  0.11 9.40  0.59 1.96  0.14 - 1.32  0.16 0.12  0.01 0.95 ± 0.12 2.28 ± 0.21 260 1.02  0.02 1.02  0.01 1.00  0.02 4.3  0.2 1.89  0.19  50 cal. BC – cal. AD 320 

                     

Buildwas, 

Shropshire, 

SJ 363945, 

238488, Severn 

GL16094 0.82 180-250 15  4 0.60  0.09 1.35  0.09 5.78  0.44 1.03  0.12 - 1.01  0.12 0.18  0.02 0.64 ± 0.11 1.80 ± 0.14 220 0.95  0.05 1.00  0.04 0.93  0.05 1.8  0.4 1.0  0.2 cal. AD 800 – 1250 

GL16093 1.40 180-250 19  5 0.72  0.10 1.63  0.10 7.72  0.50 1.37  0.13 - 1.16  0.14 0.17  0.02 0.71 ± 0.11 2.05 ± 0.19 240 1.02  0.07 1.00  0.04 0.95  0.06 2.8  0.4 1.4  0.2 cal. AD 400 – 890. 

GL16092 2.16 180-250 20  5 0.84  0.11 1.79  0.11 9.19  0.57 1.77  0.14 - 1.31  0.16 0.15  0.01 1.10 ± 0.16 2.29 ± 0.21 260 1.13  0.06 1.07  0.04 1.10  0.06 7.0  0.8 3.1  0.5 1510 – 610 cal. BC 

GL16091 2.85 180-250 18  4 0.74  0.11 1.67  0.11 7.27  0.50 1.50  0.13 - 1.22  0.14 0.13  0.01 0.83 ± 0.12 2.09 ± 0.18 240 1.01  0.04 0.98  0.03 0.97  0.04 3.9  0.4 1.9  0.3 120 cal. BC – cal. AD 380 

                     

Retherwas, 

Herefordshire, 

SO 353864, 

238488, Wye 

GL16142 0.80 125-180 19  5 0.86  0.11 1.48  0.10 10.54  0.61 2.03  0.14 - 0.86  0.11 0.18  0.02 0.93 ± 0.12 2.27 ± 0.20 260 0.96  0.02 1.01  0.01 0.96  0.02 2.8  0.3 1.23  0.18 cal. AD 610 - 970 

GL16141 1.25 5-15 22  5 0.91  0.09 1.74  0.11 10.96  0.63 2.29  0.15 0.41  0.05 1.47  0.16 0.17  0.02 0.87 ± 0.11 2.96 ± 0.19 260 0.97  0.06 1.01  0.05 0.96  0.06 3.2  0.1 1.07  0.08 cal. AD 860 – 1030 

GL16140 2.15 180-250 15  4 0.94  0.11 1.49  0.10 11.66  0.64 1.90  0.14 - 0.94  0.11 0.15  0.01 0.95 ± 0.14 2.37 ± 0.18 260 0.96  0.03 1.02  0.02 0.95  0.03 3.8  0.3 1.59  0.17 cal. AD 250 – 600 

GL16139 2.70 180-250 17  4 0.88  0.11 1.57  0.10 9.87  0.59 2.00  0.14 - 0.88  0.11 0.13  0.01 1.01 ± 0.13 2.28 ± 0.19 240 0.98  0.02 0.99  0.02 0.97  0.02 7.3  0.3 3.20  0.29 1470 – 890 cal. BC 

GL16138 3.00 180-250 17  4 0.83  0.10 1.38  0.09 9.99  0.60 1.89  0.14 - 0.83  0.10 0.13  0.01 0.73 ± 0.10 2.11 ± 0.18 260 0.98  0.03 1.00  0.03 0.78  0.03 5.8  0.2 2.77  0.26 1010 – 490 cal. BC 


