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next. However, this regular rhythm can be disturbed giving rise to a variety of cardiac
arrhythmias including cardiac alternans. Here, we focus on so-called microscopic
calcium alternans and show how their complex spatial patterns can be understood
with the help of the master stability function. Our work makes use of the fact that
cardiac muscle cells can be conceptualised as a network of networks, and that calcium
alternans correspond to an instability of the synchronous network state. In particular,
we demonstrate how small changes in the coupling strength between network nodes
can give rise to drastically different activity patterns in the network.
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Introduction

The heart consists of millions of muscle cells called cardiac myocytes (Bers 2002; Eisner
et al. 2017). Upon electrical stimulation, cardiac myocytes first contract and then relax.
What we perceive as a heartbeat is the coordinated contractile response of large numbers
of cardiac myocytes, initiated by an electrical signal that travels across the heart muscle.
The link between electrical stimulation and contraction lies in the dynamics of intracel-
lular calcium (Ca®*) (Bers 2002; Eisner et al. 2017). Essentially, electrical excitation leads
to a transient rise of the intracellular Ca?>" concentration, which in turn triggers con-
traction and subsequent relaxation of the cellular contractile machinery. Under healthy
conditions, these cycles of electrical activity and Ca?* transients remain almost identical
from heartbeat to heartbeat. However, molecular changes can induce irregular patterns
(Qu and Weiss 2014; Qu et al. 2014; Karma 2013; Krogh-Madsen and Christini 2012;
Landstrom et al. 2017). One of the earliest aberrations are so-called cardiac alternans,
where the duration of the electrical signal and the maxima of the intracellular Ca**
concentration alternate in a large-small-large-small fashion (Alvarez-Lacalle et al. 2015;
Weiss et al. 2006; Shiferaw et al. 2003; Cherry 2017; Tomek et al. 2018; Alvarez-Lacalle et
al. 2013; Groenendaal et al. 2014; Shiferaw et al. 2005; Restrepo et al. 2008; Kanaporis and
Blatter 2017; Edwards and Blatter 2014; Shkryl et al. 2012; Qu et al. 2016). While cardiac
alternans are not life-threatening per se, they often form precursors to more severe if not
fatal cardiac arrhythmias such as sudden cardiac death. Understanding the emergence
and progression of cardiac alternans has hence been the focus of intense research.
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Cardiac myocytes can be conceptualised as a network of networks (see Fig. 1). Each
node in the network corresponds to a so-called calcium release unit (CRU). The majority
of the molecular machinery that shapes the intracellular Ca?* transients is located here
(Bers 2002; 2008). CRUs are coupled via Ca?* diffusion through the cytosol and the
sarcoplasmic reticulum (SR), respectively, forming a large network. At the network level,
the rhythm of a healthy cardiac myocyte corresponds to a synchronous network state,
while Ca?" alternans emerge when a synchronous state loses stability.

In the present study, we investigate the linear stability of the synchronous network state
as the strength of Ca®" diffusion is varied. Due to different intracellular morphologies
and biochemical compositions, Ca>* generally diffuses more quickly in the cytosol than
in the SR (but see Petersen et al. (2017) for a different view). While diffusion of free Ca®t
in the cytosol has been estimated to be 223 um?s~! (Allbritton et al. 1992), Ca®* buffers
reduce this value substantially (Smith et al. 1996; Wagner and Keizer 1994). The strength
of Ca®* diffusion in the SR has been controversial for more than a decade, and the verdict
of whether it is fast or slow is still out (Swietach et al. 2008; 2010; Picht et al. 2011; Bers
and Shannon 2013).

Our particular interest is in the emergent network patterns just after the onset of a syn-
chronous instability. This corresponds to recently discovered microscopic Ca?* alternans
(Tian et al. 2012). Here, the global Ca?" signal, i.e. the Ca®* response averaged across an
entire cardiac myocyte, looks healthy, while the dynamics of single CRUs is irregular. This
interplay between macroscopic Ca?* signals that look physiologically healthy and patho-
logical local Ca" signals is interpreted as the earliest onset of Ca?T alternans and the first
sign that the healthy synchronous network behaviour has lost stability.

We have recently shown that changing Ca®* diffusion in a network of CRUs leads to two
kinds of network instabilities (Veasy et al. 2019). If cytosolic Ca>* diffusion dominates, the
network undergoes the traditional period doubling bifurcation where each node follows
a period-2 orbit with an alternating pattern of large-small-large peak Ca?* amplitudes.
At the same time, neighbouring CRUs are out-of-phase with one another: when the Ca?*
transient is large at one CRU, the adjacent CRU displays a small amplitude Ca?* transient.
On the other hand, if luminal Ca?* diffusion dominates, i.e. Ca?* diffusion in the SR is
faster than in the cytosol, we find a saddle-node bifurcation at the network level. In this
case, each CRU follows a period-1 orbit, but the peak amplitudes of neighbouring CRUs
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Fig. 1 Schematic of 3 coupled CRUs with network labels i — 1, w and u + 1 showing the regions of the the
different Ca?* concentrations: subsarcolemmal space (ct'), bulk cytsosol (c!*), unrecruited SR (cl}) and total
Ca?*t concentration in the SR (cj"). The orange bidirectional arrows represent Ca2* diffusion though the bulk
cytosol with time constant z. and through the SR with time constant y;, respectively
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alternate. This means that the global Ca?* signal is almost identical for Ca®* alternans
emerging through either bifurcation, but the local dynamics is distinct. Consequently,
microscopic Ca®* alternans may possess a much richer pattern space than previously
thought.

To further unravel the complexity of microscopic Ca?" alternans, we here compute
the master stability function (MSF) for the network (Pecora and Carroll 1998). This
approach has been instrumental in understanding instabilities of synchronous network
states and has recently been generalised to more structured network dynamics such as
cluster states and to the case of nearly-identical oscillators (Lai et al. 2018; Coombes et
al. 2018; Coombes and Thul 2016; Ladenbauer et al. 2013; Sun et al. 2009; Pecora et al.
2000). A key input for the computation of the MSF is the synchronous network state and
its Jacobian. Since for diffusively coupled nodes, the synchronous network state corre-
sponds to the periodic solution of a single CRU, the mathematical tractability of the MSF
significantly depends on the mathematical structure of the ordinary differential equations
(ODEs) that describe the behaviour of a CRU. Traditionally, the dynamics of CRUs is gov-
erned by coupled nonlinear ODEs, which can only be solved numerically. This precludes
any explicit construction of the MSF. To make progress here, we employ a piecewise lin-
ear (PWL) caricature (Thul and Coombes 2010) of a well established Ca?* cycling model
(Shiferaw et al. 2003) for a single CRU. This allows for the explicit construction of the MSF,
which is key for the results presented here. In particular, we employ the MSF to explain
non-intuitive abrupt changes in the patterns of microscopic Ca?* alternans. The results
from our theory are in excellent agreement with direct numerical simulations, illustrating
the predictive power of our approach and the benefits of PWL models. Our findings also
highlight that Ca?* diffusion exerts a different effect on the network dynamics of cardiac
myocytes depending on whether it occurs predominantly in the cytosol or the SR.

Model description

Figure 1 shows a schematic of 3 nodes in the network. For each node, indexed by the label
u, we distinguish between 4 different Ca?>* concentrations: the Ca?* concentration in the
subsarcolemmal space (ct'), the bulk Ca?* concentration (ch ), the Ca%t concentration in
the unrecruited SR (ci) and the total Ca?t concentration (cJ” ).

The ODE:s for a single CRU read as
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The last ODE captures the Ca?>" release current from the SR into the subscarolem-

mal space and depends on the Ca?t concentration in the unrecruited SR, cf. We model
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the currents IgaL’ ]Il\LICX and Iffp as PWL functions, which renders Eq. (1) a PWL model
(see Appendix). For a detailed discussion of Eq. (1) together with its biological interpreta-
tion, we refer the reader to (Shiferaw et al. 2003; Thul and Coombes 2010). For the current
study, the key terms are the coupling functions in Egs. (1b) and (1c), which correspond to
the sums over € in each ODE. The set Z,, indexes the nearest neighbours of the uth node.
The linear differences in the coupling terms represent a discrete form of diffusion with
time scales t. and 7, in the cytosol and SR, respectively.

For a single node, the PWL nature of Eq. (1) means that there are m switching manifolds,
between which the dynamics can be written as

dxt

— =Ax" @), 2

& i f@® (2)
where x* = (cﬁ,cf‘,cf‘,cﬁ,l#),Ai e R>5i=1,...,m, is constant and f(¢) € R collects

all explicitly time-dependent functions that describe the electrical activity in the model.
For the analysis presented here, we assume that f is periodic with a period of T),. This
reflects a common practice in cardiac research whereby cardiac myocytes are paced by
an external stimulus with period T, while recording the intracellular Ca?* concentration,
see e.g. Shiferaw et al. (2003). At the network level with N nodes, Eq. (1) takes the compact
form

d
di;:Ax+F(t)+aG®Hx, 3)

wherex = (x1,42,...,4N) e ROV, A € RON*N gnd F(¢) = 1n ®f (¢). Here, ® denotes the
standard tensor product and 1y € RN is a column vector containing only 1s. Note that
A is always constant between switching events and is block diagonal with entries taken
from the set of A;. G € NV*N refers to the graph Laplacian of the network, and H € R>*>
encodes through which variables the coupling occurs. For instance, for cytosolic coupling
only, Hy» = 1, while all other components of H vanish. The overall coupling strength is
given by o, which e.g. in the case of pure cytosolic coupling is 7.1

To ascertain the linear stability of the synchronous network state s(¢£) where s(t) =
21 (t) = ... = xN(t), we introduce small network perturbations 8x via X(£) = s(t) +
8x(t), where %(¢) corresponds to the perturbed network state. Since we perturb off the
synchronous network state, we can assume that for the majority of time, all CRUs are
described by the same matrix A;. Therefore, linearising Eq. (3) and block-diagonalising it
with the linear transformation £ = (P ® I5) '8, where P is the matrix of eigenvectors
that diagonalises G and I, is the n-dimensional identity matrix, we obtain

d.
® o ivea-oreme ()

Here A is diagonal holding the eigenvalues A; of G, i.e. GP = PA. Because both Iy and
A are diagonal, Eq. (4) is block diagonal in £* € R® via
dem
% = [Ai —or H]E". (5)
In other words, the linear stability problem for the full 5N-dimensional network can
be decomposed into N 5-dimensional problems parametrised by the eigenvalue A . If
the Floquet multipliers for the solutions of each £ lie in the unit disk, the synchronous
network state is stable, otherwise, synchrony is unstable.
Because the dynamics is PWL and the vector field is continuous at the switching mani-
folds, we can immediately solve Eq. (5) using matrix exponentials. Let A denote the period
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of the synchronous state, A; the time-of-flight during which the dynamics is governed by
A le. A = Zi A;, and £(0) some initial perturbation. Then the perturbation after one
period is given by §*(A) = I' (0 A,,)§"(0) with

['(ohy) = exp [(AN — oA H)AN] - -exp [(A1 — oA H)A] . (6)

Since the above derivation holds for any graph Laplacian, it is instructive to replace o A,
with n € C in Eq. (6), noting that the eigenvalues of the graph Laplacian are generally
complex. The MSF is then the function that maps 7 to the largest real part of the Floquet
exponents associated with I"(). Put differently, if g(n) is an eigenvalue of I'(n), then the
MSF returns k() = max, Re {log(q(n)} /A If k(oA;) < O for all A, then synchrony is
stable, otherwise it is unstable. Therefore, the MSF can be computed independently of
the choice of network and then used to assess linear stability of the synchronous network
state for a particular network.

Results

We first compute the MSF for pure cytosolic coupling. In this case, 07! = 7, ;! = 0
and the only non-vanishing component of H is Hj . Figure 2a shows the zero-contour
of the MSF, where we observe that the MSF is negative inside the ellipse and positive in
the remainder of the complex plane. Hence, if every o 1; falls inside the ellipse, the syn-
chronous network state is stable, otherwise, it is unstable. Because diffusive coupling is
symmetric and the coupling strength is positive, the eigenvalues A; of the graph Laplacian
are real and negative including a zero eigenvalue. The latter corresponds to the periodic
orbit of an uncoupled node, which entails that a necessary condition for the existence
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Fig. 2 a Zero-contour of the MSF for cytosolic coupling and 7, = 0.9. The MSF is negative inside the ellipse,
labeled by S, and positive outside, denoted by U. The colour represents the value of cos (arg (g (n))). b, €
Peak Ca’* concentration in the bulk on successive beats. d Eigenvector corresponding to the single
eigenvalue A, for which n = oA lies outside the ellipse. Here, o = 0.225
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of a stable synchronous network state is that the periodic orbit of an uncoupled node is
linearly stable. By taking the limit c — O, all o}; can be contained within the ellipse,
indicating that the synchronous network state is linearly stable for weak coupling. By
increasing the coupling strength, the eigenvalue with the most negative real part exits the
ellipse on the left, rendering synchrony unstable. The emergent network state is depicted
in Fig. 2b and c, which show the peak Ca?* concentration in the bulk cytosol on suc-
cessive pacing periods. The alternations of yellow and blue in each figure indicate that
neighbouring CRUs exhibit alternating values of the Ca?* amplitudes. When compar-
ing Fig. 2b and c, we find that when the Ca?* transient is small during the first pacing
period it is larger during the second pacing period, and vice versa. This pattern of net-
work activity is consistent with the MSF where the critical eigenvalue g, leaves the ellipse
with cos(argg.) = —1, indicating a period-doubling bifurcation at the network level. The
eigenvector corresponding to the eigenvalue that has crossed the stability boundary is
plotted in Fig. 2d and agrees very well with the results shown in Fig. 2b and c.

We now contrast the results for cytosolic coupling with those for purely luminal
coupling. Here, 0 ! = 74, 77! = 0 and the only non-zero component of H is H3 3. As
Fig. 3a illustrates, the topology of the MSF has changed significantly. There are now two
regions of stability in the complex plane separated by a region of instability. Because insta-
bilities can only occur when eigenvalues ¢ move along the negative part of the real axis,
we can characterise Fig. 3a by taking a cut along the negative real axis. Figure 3b sum-
marises the resultant regions of stability and instability for different values of T),. As we
increase T, the region of instability shrinks, up to a point when synchrony is always sta-
ble. This is consistent with experimental findings that show that cardiac myocytes do not
undergo instabilities when stimulated at sufficiently low frequencies. While the network
instability for pure cytosolic coupling occurs via a period-doubling bifurcation, the colour
map in Fig. 3a reveals that the network loses stability through a saddle-node bifurcation
where the critical eigenvalue leaves the unit disk through +1.

In Fig. 3b, we plotted the stability regions as a function of the general MSF parame-
ter n and the pacing period T),. In a practical application, where the network structure
is fixed, it is more natural to examine stability as a function of the coupling strength o
and the the pacing period T,. Figure 4 provides an illustration of this. The green line at
bottom indicates the critical pacing period when the period-1 orbit of an isolated CRU
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Fig. 3 a Zero-contours of the MSF for luminal coupling and T, = 0.9. The MSF is negative in regions denoted
by S and positive in regions labeled U. The colour represents the value of cos (arg (g (1))). b Zero values of
the MSF for real values of n as pacing periods vary
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Fig. 4 a Stability region of the synchronous network state as a function of the luminal coupling strength 05?
and the pacing period T, for a network of 4 CRUs. The synchronous state is unstable in the region labeled U
and stable in the region denoted by S. The green line indicates the pacing period at which the period-1 orbit
of a single CRU loses stability. b Stability regions of individual eigenvectors. The corresponding eigenvectors
are shown in blue, and the corresponding eigenvalues are listed. The green line is the same as in (a)

goes unstable. For periods faster than this, an isolated CRU displays Ca’* alternans, which
then feed forward to the network level. Since we are interested in how coupling between
CRUs induces instabilities, we restrict our attention to pacing periods above the green
line. Note that we plot o' on the x-axis, so that weak coupling corresponds to the left
part and strong coupling to the right part of the figure, respectively. For constant T),, the
synchronous network state is stable for very small and large coupling, while it is unstable

for intermediate coupling strengths. For fixed values of o !

o » faster pacing periods gen-

erally destabilise solutions, which mirrors experimentally observed behaviour. The most
prominent feature of Fig. 4a is a series of small bumps in the stability line for larger values
of T,. When we fix T, and vary o' we observe that the spatial patterns of the emer-
gent network solutions vary drastically as we cross from one ‘instability bump’ to the next,
see Fig. 5. While for weaker coupling, i.e. smaller values of o1, the Ca>* concentration
exhibits a multi-modal distribution with peaks in the corner on one side and in the mid-
dle on the opposite side, respectively (Fig. 5a), stronger coupling leads to stripes of the
intracellular Ca®* concentration (Fig. 5b)

We can explain these sudden changes in the activity patterns of the intracellular Ca%*
concentration by starting with Fig. 4b. This figure shows that the central region of instabil-
ity seen in Fig. 4a is in fact a superposition of instability regions associated with different
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Fig. 5 Peak values of the bulk Ca?™ concentration during one pacing period for osg = 3.2 (@), osg = 4.1 (b)
ina 10 x 25 network of CRUs at T, = 1.05
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eigenvalues. For illustrative purposes, we computed Fig. 4b for a network of only 4 nodes.
However, the main features of the diagram remain unchanged as we increase the num-
ber of nodes in the network. Since one of the eigenvalues always vanishes (see above), the
three non-trivial eigenvalues are shown. Associated with each of these is a distinct region
of instability. For instance, the region furthest to the left belongs to 11, while the region to
the right is controlled by A3.

To compute these regions, we make use of the MSF as shown in Fig. 3a with zooms
provided in Fig. 6a and b. Note that these correspond to a fixed pacing period and hence
map onto one horizontal line in Fig. 4b. Figure 6a shows the case when the instability
is driven by a single eigenvalue, say At. The corresponding argument for the MSF, i.e.
n = oAk is indicated by the red circle. As we change o, 71 traces the space between
the two instability lines. By computing the critical values of o such that 7 intersects
with the instability lines, we determine the left and right boundaries of the instabil-
ity regions for a fixed eigenvalue in Fig. 4b. Figure 6b illustrates that upon changing
o, a different eigenvalue compared to the one in Fig. 6a shapes the instability. Note
that there is again only one eigenvalue that is responsible for the instability. This cor-
responds exactly to the case when we increase o in Fig. 4b for larger values of T, and
move from the ‘bump’ for 1; to the ‘bump’ for A,. Because each eigenvalue is associ-
ated with a specific eigenvector, the abrupt changes in the emergent network patterns
reflect the often considerable variations among eigenvectors. In Fig. 4b, this can be seen
by inspecting the eigenvectors that correspond to the respective eigenvalues. For a much
larger network, this is confirmed by comparing the eigenvectors plotted in Fig. 6¢ and d
with the simulation results in Fig. 5. There is excellent agreement between them. In
Fig. 6e, we summarise the mechanism that gives rise to the different Ca?T activity pat-
terns in the network. For weak coupling, only one eigenvalue (1;) drives the instability.
Upon increasing the coupling, both 011 and o, move towards the left (recall that all
eigenvalues are negative). Therefore, for some values of o, synchrony is stable again.
However, a further increase in the coupling strength causes oiy to move into the
instability region, giving rise to a different emergent network state compared to the one
for weak coupling.

Figure 3b already suggests that the regions where the MSF is negative strongly depends
on the pacing period T,. There, we focussed on the negative real axis for the MSF param-
eter 7 since 7 cannot be complex or positive for diffusive coupling. For a more detailed
view, we now plot the zero-contours of the MSF in the complex plane as a function of T,
in Fig. 7a. This three-dimensional plot highlights that the topology of the zero-contour
changes significantly as a function of T,. For larger pacing periods (Fig. 7b), we find a con-
nected region where the MSF is negative, which resembles half a bowtie on the right. As
we decrease T), the narrow part of the bowtie contracts, until two disconnected regions
emerge as exemplified by Fig. 3a. When we lower T, even further, the stable central
regions contracts along the real axis, but expands along the imaginary axis (see Fig. 7c).
Here, the synchronous network state can lose stability via a saddle-node bifurcation, indi-
cated by the yellow colour of one of the stability boundaries. For larger pacing periods as
shown in Fig. 7b, we note that there is a period doubling bifurcation towards the right side
of the central stable region. A similar line exists towards the right of the unstable region in
Fig. 7c. However, in both cases, these period doubling bifurcations occur for Re(n) > 0,
which is not permissible for diffusive coupling.
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Fig. 6 a,b Zoom of the MSF for dominant luminal coupling around the the real axis with values of n = o A¢
(crosses) superimposed for osg = 3.2 (a), osg = 4.1 (b) ina 10 x 25 network of CRUs paced at T, = 1.05. The
value of n for which the MSF is positive is circled in red. (¢,d) Eigenvectors corresponding to the critical values
of nin (@) and (b), respectively. e Schematic of how changing the coupling strength o can give rise to
different patterns of the network activity. See text for details

So far, we have studied purely cytosolic and luminal coupling, respectively. Under phys-
iologically realistic conditions, however, Ca>* diffuses through both the cytosol and the
SR. We therefore computed the bifurcation lines in the (., sr) plane. For this, we replace
oH in Eq. (3) with a single matrix H whose entries are all zero except for Hyp = 7!
and H33 = 7, ' To compute the MSE, we further introduce the general MSF parame-
ters 1. and 7ne, which run along the axis in Fig. 8. Note that we can restrict the values of
nc and ngr to negative real values since diffusion does not lead to complex eigenvalues of

the graph Laplacian. For the computation of the MSF, we replace the matrices (Ay — nH),

Page 9 of 16
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Fig. 7 a Zero-contour of the MSF for purely luminal coupling as a function of T,,. Zero-contour of the MSF for
Tp = 1.075s (b) and T, = 0.55s (c). The MSF is negative in regions labeled S and positive in regions denoted
by U. The colour represents the value of cos (arg (g (n)))

k =1,...,N, in Eq. (6) with (A — H(nc, nsr)). Here, H(n¢, ;) is a matrix whose non-
zero elements are Hyy = 1. and Hs3 = ng. As Fig. 8 shows, the MSF is negative for
large ranges of 1. and ns,. When luminal coupling is weak, i.e. when the absolute value of
nsr is small, we only observe a period-doubling bifurcation upon variation of .. This is
indicated by the (—1) line. In contrast, when cytosolic coupling is negligible, the network
instability occurs via a saddle-node bifurcation upon variation of 5g,, which we mark by
the (+1) line. These findings illustrate that the network is generally stable when coupling
is balanced, i.e. when 7. and ns are of similar magnitude. However, when one coupling
dominates, we find either a period-doubling or a saddle-node bifurcation.

Discussion
Networks are ubiquitous in biology, and intracellular signalling cascades constitute a
prime example. In the present study, we investigated the Ca?>" dynamics in cardiac
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Fig. 8 Zero-contour of the MSF in the (1, ns) plane for T, = 0.6. Note that both n¢ and 5 are real since we
focus on diffusive couling. The MSF is negative in the region labeled S and positive in regions denoted by U.
The green curve corresponds to saddle-node bifurcations (4-1), while the blue curve refers to
period-doubling bifurcations (—1)

myocytes. On the one hand, this is highly relevant for our general well-being as distur-
bances in these networks are associated with numerous pathologies. On the other hand,
Ca?* signalling in cardiac myocytes exemplifies a network of networks. Each node in the
network corresponds to a CRU, whose dynamics in turn is governed by its own reaction
network. A key aspect is that CRUs are coupled through two different channels: Ca>*
diffusion in the cytosol and Ca®* diffusion in the SR.

Our particular interest is in understanding how different coupling strengths shape the
synchronous network state. The reason for this is that loss of synchrony in a cardiac Ca>*
network is associated with the emergence of cardiac Ca>* alternans. These constitute one
of the earliest cardiac arrhythmias and act as precursors to more severe cardiac abnor-
malities including sudden cardiac death. Until recently, Ca?* alternans could only be
observed at an advanced stage, i.e. when the Ca®* concentration oscillates out-of-phase
in mesoscopic parts of a myocyte. However, improved imaging techniques now allow the
recording of microscopic Ca?" alternans (Tian et al. 2012). Here, the Ca®* concentration
averaged across the cell suggests a healthy cardiac myocyte, while in fact single CRUs may
already display pathological Ca®* alternans. From a conceptual point of view, microscopic
Ca’* alternans correspond to the pattern that emerges when the synchronous network
state has just lost stability.

We recently reported that microscopic Ca*" alternans can emerge via two different
mechanisms: a traditional period-doubling bifurcation and a novel saddle-node bifurca-
tion (Veasy et al. 2019). Strikingly, the emergent network patterns of Ca’* activity vary
substantially as we move along the stability boundaries. To understand this, we here
computed the MSF for the CRU network.

A comparison of Figs. 2a and 3a reveals that the MSF differs significantly between
purely cytosolic and luminal coupling. While the zero-contour takes on the shape of an
ellipse in the former, there are multiple zero-contours in the latter, delineating distinct
regions where the MSF is negative. This has direct implications for the stability of the
synchronous network state. As Fig. 6 illustrates, we can understand changes in stability
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when the MSF parameter oA moves along the real line. By increasing o, the value of o A
becomes more negative for all k. Hence, for purely cytosolic coupling, once one eigen-
value leads to a value of 1 outside the ellipse, synchrony is unstable. On the contrary, for
luminal coupling, the small region where the MSF is positive means that increasing o
induces a sequence in which the synchronous network states alternates between stable
and unstable. These alternations are responsible for the ‘stability bumps’ in Fig. 4.

Because each of these bumps are linked to a different eigenvalue — and correspondingly
with a different eigenvector — we observe the abrupt changes in the emergent network
activity when the synchronous network state loses stability. Figure 4b shows the explicit
sequence of eigenvectors for a network of 4 nodes. Similar behaviour is seen in much
larger networks, too. Figure 5 illustrates this for a bigger network. As the network size
grows, the pattern space of the eigenvectors becomes richer, which also means that the
patterns that can occur in the network exhibit more features. The above argument rests
on the assumption that eigenvectors are good predictors of the emergent network state.
This is generally true when only one eigenvector gives rise to the instability as is the case
for Fig. 6a and b. Then, the associated eigenvectors (Fig. 6¢ and d) match very well with the
results from direct numerical simulations shown in Fig. 5. Once o1 is positive for more
than one eigenvalue, the direct predictive power of eigenvectors is reduced, as now the
emergent network state is a linear superposition of several eigenvectors, but the weights
are not known a priori.

As our results demonstrate, knowledge of the MSF is key for understanding the non-
intuitive behaviour of the CRU network. Unfortunately, the MSF can often only be
obtained numerically, which can be computationally expensive. We here make progress
in this direction by employing a PWL model for the dynamics of a single CRU, which
allows us to explicitly construct the synchronous network state and the map that propa-
gates network perturbations. We can then compute the MSF in a semi-analytical manner,
which makes it possible to produce three-dimensional visualisations as those depicted
in Fig. 7. Based on plots like this, we can infer how the stability of synchrony in the
CRU network varies as the pacing period is altered (which is a common experimental
practice).

Since the computation of the MSF rests on the PWL nature of the CRU model, it is
worth asking how well this approximation describes the dynamics of the full nonlin-
ear model. As shown in Lai et al. (2019), the PWL model captures the core dynamics
of the nonlinear model very well. Of course, there are parameter regimes of the nonlin-
ear model that cannot be captured with the current parametrisation of the PWL model
used here. For example, the L-type Ca?T current in the present study is either zero or
takes on a constant non-zero value icy. If the nonlinear shape of the L-type Ca?* cur-
rent is central to a study, it requires either the construction of a piecewise constant L-type
Ca’" current with multiple levels, or one needs to resort to the nonlinear model. Simi-
lar considerations apply to the closure of the L-type Ca?* channel. We currently include
voltage-dependent inactivation only. However, Ca?*-dependent inactivation also exists
(Josephson et al. 2010; Grandi et al. 2010). We can again amend the PWL model used here
with an additional switch for Ca?*-dependent inactivation, or if the interplay between the
timescales of the inactivation processes becomes important, one might have to consider
the nonlinear model. Furthermore, care needs to be taken when Ca’* buffers are the
focus of attention. The current model treats buffer contributions as constant, but given



Lai et al. Applied Network Science (2019) 4:90 Page 13 of 16

the dynamic nature of the intracellular Ca>* concentration, the fraction of Ca®*-bound
buffers changes over time. In this case, the PWL model cannot be amended and the non-
linear model is the only choice. In case the PWL model can be tailored to the question at
hand, the study in Rotstein et al. (2012) provides a conceptual blueprint for it. It shows an
extension of the classical 3-piece approximation of the Fitzugh-Nagumo model (FitzHugh
1961; Nagumo et al. 1962) to investigate canard-like solutions.

As the focus of this study lies on Ca?" alternans, we only consider diffusive, i.e.
nearest-neighbour coupling. Consequently, the MSF parameter 7 is always real and neg-
ative. This only leads to period-doubling or saddle-node bifurcations, respectively, where
cos(argg(n)) = =£1. However, the MSF provides information for arbitrary values of
n and hence arbitrary network topologies. The line colours in Figs. 3a and 7c show
that if n crosses the zero-contour of the MSF at positions different than the real axis,
cos(argq(n)) # =x1. This corresponds to a Neimark-Sacker bifurcation at the network
level, and it will be interesting to explore the emergent network patterns.

In conclusion, a combination of PWL modelling and MSF techniques facilitated a
detailed investigation of microscopic Ca?" alternans in a network of CRUs. Crucially,
our results explain the previously reported abrupt variations in network activity as the
coupling strength in the network changes (Veasy et al. 2019). Moreover, our findings
demonstrate that depending on whether Ca* diffusion is stronger in the cytosol or in the
SR, different microscopic Ca?* alternans emerge, with each mode of diffusion giving rise
to distinct network patterns of the intracellular Ca?>* concentration. While these find-
ings may have implications for cardiac health, they also highlight on a more fundamental
level that cell signalling more generally may be usefully conceptualised as a network of

networks.

Appendix

Here, we provide details of the currents, the load release function and the clamped voltage

used in Eq. (1). For a further discussion, we refer the reader to Thul and Coombes (2010).
The L-type Ca®t current is given by Ic,i, = © (V — VL) icar with the threshold voltage

VL = Vmax — 1 and a constant conductance

acaLFyoCa,
exp(2acar) — 1

7)

icaL = —4icaPca

where acyl, = ViaxF/RT. The current through the NCX is modelled as Inaca = ¢ (V) —
Y (V)ct, where

3
_ ngNa;Ca,
¢ =INaCa— L : ®)
(Kina + Nag) (Kmca + Cao)
- ¥NacaNaZ x 1073
Y = INaCa s (9)

(K3 \a + Nad) (Kinca + Cao)

Here, we introduce the piecewise constant function

045, V > VNaCa,
VYNaCa = o (10)
4'; V S VNaCa ’
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which switches at a threshold voltage of VNaca = —50 mV. The function 5, is given by
ng = 0.0501a? + 0.3816a + 0.9182 with « = FV/RT. Ca*" uptake takes the form I, =
VupCiM. The load-release function Q = Q(ck) is described by the PWL function

0, 0<cf <50,
Q) =103 3% —50, 50 <t <115, (11)

kel +s, i > 115,

where k measures the steep nonlinear dependence of Ca’* release on the SR Ca?"
concentration, and s is a constant that is chosen such that Q is continuous. We model the
clamped voltage for a pacing period T), as

Vi), kT, <t=<(k+xTp,
Vmin: (k+x)Tp§t<(k+ l)T ,

V() = (12)
where k € N counts the number of APs and x = a,/(ax + Tp) with a, = 2/3. The
resting potential is given by Vinin = —70mV, and V4 (£) captures the shape of the clamped
voltage, given by

t—kT,\?
V—b—(t) = Vmin + (Vmax — Vmin) 1—| ——— ) (13)
xTp
for kT, < t < (k + x)T), where the maximal AP is given by Vinax = 30mV. Note that
since V' is an explicit function of time, all variables that only depend on V are explicitly
time-dependent. We collect these time-dependent functions in the function f(¢) used in
Eq. (2). The standard set of parameter values used in this study are listed in Table 1

Table 1 Standard parameter values used in the study

Definition Value
T Temperature 308K

Faraday’s constant 96.4867 C/mmol
R Gas constant 8.314 J/Kmol
Nag External sodium concentration 140 mM
Cao External calcium concentration 1.8 mM
Vs /Vi Subsarcolemmal/cell volume 0.1
Vup Uptake strength 270 uM/s
TNaCa Strength of the NaCa exchanger 10° uM/s
KinNa Constant from the 1994 Luo-Rudy model 87.5mM
KinCa Constant from the 1994 Luo-Rudy model 1.38 mM
Pca Constant from the 1994 Luo-Rudy model 54 x 10~* cm/s
ica Flux constant 11000 wmol/Ccm
Yo Constant from the 1994 Luo-Rudy model 0.341
g Release current strength 3.5 x 10% sparks/uM
k Release slope 11357
7 Average spark life time 20 ms
Ta Relaxation time of ¢, to ¢ 50ms
Ts Submembrane diffusion time constant 10 ms
Bs Buffering constant for ¢, 0.5

Bi Buffering constant for ¢; 0.01
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