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Trapped ions provide a platform for quantum technologies that offers long coherence times and
high degrees of scalability and controllability. Here, we use this platform to develop a realistic model
of a thermal device consisting of two laser-driven, strongly coupled Rydberg ions in a harmonic trap.
We show that the translational degrees of freedom of this system can be utilized as a flywheel storing
the work output that is generated by a cyclic thermodynamic process applied to its electronic degrees
of freedom. Mimicking such a process through periodic variations of external control parameters, we
use a mean-field approach underpinned by numerical and analytical calculations to identify relevant
physical processes and to determine the charging rate of the flywheel. Our work paves the way for
the design of microscopic thermal machines based on Rydberg ions that can be equipped with both
many-body working media and universal work storages.

Developing new types of thermal machines that gener-
ate useful work at small length scales is a central topic in
stochastic and quantum thermodynamics [1–6]. Over the
last decade, this area has seen remarkable progress driven
by landmark experiments, in which thermodynamic en-
gine cycles were realized with microscopic objects such as
single ions [7–9], nuclear spins [10], nitrogen-vacancy cen-
ters in diamonds [11] or large quasi-spin states of ultra-
cold atoms [12]. Practical applications of such devices
are, however, still limited, with two problems currently
emerging as key challenges: first, scaling up the power
of microscopic thermal machines without losing access to
genuine features stemming from quantum effects [13–35];
second, identifying viable strategies to transfer the gen-
erated output to universal storage systems, which can be
accessed by other devices [7–9, 23, 36–38].

A promising approach to the first challenge is to re-
place working media with few degrees of freedom, such
as single spins, with many-body systems, where collec-
tive effects can arise from the co-action of large numbers
of constituents [13]. Recent theoretical and experimen-
tal studies have shown that the power of thermal devices
can be significantly enhanced by exploiting, for example,
many-body coherence in non-interacting systems, which
can give rise to super-radiance and related phenomena
[14–24], or interactions and quantum many-body statis-
tics in ultra-cold atomic systems [25–35]. Strongly in-
teracting Rydberg atoms and ions provide another, yet
relatively unexplored, platform to implement quantum
thermal machines with many degrees of freedom [39].
These systems show a rich phenomenology and can be
realized in experiments with a high degree of control and
access to internal state variables [40–42]. Rydberg ions,
in particular, offer state-dependent interaction together
with long-time stability [43–46].

In addition, interactions among Rydberg states give

rise to an accurately controllable coupling between
translational and internal electronic degrees of freedom
[47, 48]. This feature can be exploited to approach
the second challenge in the development of practically
applicable quantum thermal machines. Inspired by
earlier experiments with single-body systems [7, 8],
the key idea here is to perform an engine cycle with
the electronic subsystem, while the external degrees of
freedom act as a storage for mechanical work akin to
the flywheel of a macroscopic engine. In this article, we
take a first step towards exploring this idea. Using a
minimal model consisting of two harmonically trapped
Rydberg ions, whose realization was recently reported
in Ref. [49], we show that usable work in the form of
electronic excitations can be transferred to a vibrational
degree of freedom, which forms our flywheel. In lieu
of a thermodynamic engine cycle, our device is driven
by periodic modulations of the dynamical parameters
that control the effective Hamiltonian of the electronic
working medium. Our central aim is to demonstrate
that Rydberg ion systems, under realistic conditions,
provide a potent platform for thermal devices that have
access to quantum many-body effects and, at the same
time, are capable of delivering significant output to
externally accessible work storages.

Model.– We consider the setup of Fig. 1. Two Rydberg
ions with mass m and charge e are trapped in an isotropic
harmonic potential with strength ω. We focus on the
longitudinal motion of the ions along their connecting
axis, which is governed by the potential Vions(x1, x2) =
1
2mω2(x2

1 + x2
2) + Vel(xrel). Here, xk with k = 1, 2 are

the positions of the ions, xrel = |x1 − x2| and Vel(xrel) =
e2/4πϵ0xrel denotes the electrostatic potential, where ϵ0
is the vacuum permittivity [53, 54]. At low energies, the
ions oscillate around their equilibrium positions x0

k. The
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FIG. 1. Rydberg ion flywheel. (a) Setup. Two ions with a doubly charged core and one bound Rydberg electron are
confined in a harmonic trap that gives rise to a typical separation of xrel ≃ 5µm. (b) Electronic degrees of freedom (working
medium). Each ion is modelled by two electronic states (ground state |↓⟩, Rydberg state |↑⟩). The figure shows the energy level
scheme and transitions associated with the electronic states of two Rydberg ions. A laser drives the transition between ground
and Rydberg states with Rabi frequency Ω and detuning ∆; spontaneous decay of the Rydberg states occurs with rate γ. If
both ions are excited, the electrostatic interaction among Rydberg states, V0, shifts the energy of the doubly excited state |↑↑⟩
[50–52], cf. Eq. (2). Cyclically changing Ω or ∆ (period τd) makes it possible to modulate the population of the double excited
state periodically and thus the force between the ions. This process excites the vibrational degree of freedom and thereby
charges the flywheel. For concreteness, we consider a two-stroke protocol with period τd, where the control parameter switches
between two fixed values. (c) Vibrational degree of freedom (flywheel). At low energies E, the vibrational mode, where the
output of the working medium is stored, can be described as a harmonic oscillator with frequency ωrel. (d) Two-ion microwave
(MW) dressed potential Vint(xrel) as a function of the distance xrel. Around the ions’ equilibrium positions the potential is
characterized by its gradient and curvature, which are proportional to the parameters κ1 and κ2. The figure is based on the
setup of Ref. [46], using dressed Rydberg states of 88Sr+.

potential Vions(x1, x2) can then be expanded to second
order in the displacements δxk = xk − x0

k [47, 55–57].
After separating the center of mass and relative motion
and quantizing the relative displacement by making the
replacement

δxrel/ℓ0 = (δx1 − δx2)/ℓ0 → x = (a† + a)/
√
2, (1)

we obtain the Hamiltonian Hph = ℏωrel

(
a†a+ 1/2

)
for

the vibrational dynamics. Here, ωrel =
√
3ω is the re-

duced frequency, ℓ0 =
√
2ℏ/mωrel denotes the charac-

teristic length scale of the oscillator and a and a† are
the usual annihilation and creation operators; for de-
tails, see Ref. [58]. The internal degrees of freedom of
the ions are modeled as two-level systems with excited
Rydberg state |↑⟩ and ground state |↓⟩ [59, 60]. The
transition between these states is driven by a laser with
Rabi frequency Ω and detuning ∆. In the rotating frame
of the laser, the free electronic dynamics are described
by the Hamiltonian Hel = ℏ

∑2
k=1(∆nk + Ωσx

k), where
σx
k = |↑k⟩ ⟨↓k|+ |↓k⟩ ⟨↑k| and nk = |↑k⟩ ⟨↑k|.
When excited to Rydberg states, the ions are subject

to the interaction Hint = Vint(xrel)n1n2 [59, 61, 62]. This
interaction represents a correction to the potential Vions,
since its magnitude is small compared to the electrostatic
repulsion [63]. This Hamiltonian leads to a shift of the ef-
fective energy levels of the ions, see Fig. 1(b), and a state-
dependent force that couples their external and internal
degrees of freedom. The interaction potential between
Rydberg ions is typically of dipolar or van-der-Waals type
[44, 53, 63, 64]. This interaction is, however, generally
weaker than that between neutral Rydberg atoms due to
a scaling of the electric dipole with the inverse nuclear

charge, Z−1 = 1/2. Strong interactions can neverthe-
less be realized through microwave (MW) dressing. The
gradient and curvature of the resulting potentials can be
accurately controlled in experiments [49, 53, 65], see Fig.
1(d). Upon expanding the such a potential to second or-
der in the relative displacement δxrel and quantizing the
vibrational degree of freedom as before, we obtain the
effective interaction Hamiltonian

Hint =
(
V0 + ℏκ1x+ ℏκ2x

2
)
n1n2 = ℏW (x)n1n2. (2)

In this Hamiltonian, V0 = Vint(x
0
rel) sets the baseline for

the interaction strength, with x0
rel = |x0

1 − x0
2| being the

equilibrium distance between the ions; ℏκ1 = ℓ0V
′
int(x

0
rel)

and ℏκ2 = ℓ20V
′′
int(x

0
rel)/2 are proportional to the gradient

and the curvature of the potential.
To account for the spontaneous decay of excited Ry-

dberg ions, we complete our model by including a
Lindblad-type dissipation super-operator with the form
L[•] = γ

∑2
k=1(σ

−
k •σ+

k − 1
2{nk, •}), where σ−

k = |↓k⟩ ⟨↑k|
and σ+

k = |↑k⟩ ⟨↓k| are local jump operators, curly brack-
ets denote the anti-commutator and γ is a decay rate,
see Fig.1(b). Hence, the state ϱ of the system follows the
quantum master equation

ϱ̇ = − i

ℏ
[H, ϱ] + L[ϱ] (3)

with the full Hamiltonian H = Hph +Hel +Hint.
Mean-field dynamics.– To explore the dynamics of
our model, we proceed with a mean-field approximation,
where correlations between internal and external degrees
are neglected. The validity of such an approximation
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is discussed in the Supplemental Material [58], where
we compare mean-field results with numerical ones ob-
tained by truncating the Fock space. We assume that
ϱ = ϱph ⊗ ϱel, where ϱph and ϱel describe the vibrational
and electronic dynamics, respectively. These states fol-
low the mean-field equations

ϱ̇ph = − i

ℏ
[H̃ph, ϱph], ϱ̇el = − i

ℏ
[H̃el, ϱel] + L[ϱel] (4)

with H̃ph = Hph+ℏW (x)snn, H̃el = Hel+ℏn1n2⟨W (x)⟩.
Here, the operator W (x) was defined in Eq. (2) and the
variable snn = ⟨n1n2⟩, which corresponds to the popula-
tion of the double excited state |↑↑⟩, encodes the driven-
dissipative dynamics of the electronic sub-system, see
Fig. 1(b). Throughout this article, we use the short-hand
notation ⟨•⟩ = Tr[•ϱph ⊗ ϱel].

In the mean-field picture, the average relative displace-
ment follows the equation of motion

⟨ẍ⟩+ ωrel(ωrel + κ2snn) ⟨x⟩ = −ωrelκ1snn . (5)

This resembles the equation of motion for a driven har-
monic oscillator. However, we note that here the vari-
able snn is time-dependent and even depends on the po-
sition ⟨x⟩ itself; for the complete set of mean-field equa-
tions, see Ref. [58]. This observation suggests that, in or-
der to inject maximal power into the flywheel, the driv-
ing protocol for the working medium should be chosen
such that snn oscillates with the eigenfrequency ωph =√

ωrel(ωrel + κ2snn) of the oscillator (5). To meet this
condition, we focus on the regime, where κ2/ωrel ≪ 1 and
ωph ≈ ωrel becomes nearly independent of the electronic
state variable snn. This situation can be realized by tun-
ing the MW-dressed potential and the trap strength ω
so that the equilibrium distance between the ions x0

rel

comes close to the distance x∗
rel, where the curvature of

the interaction potential vanishes [45, 46]. For the pa-
rameters used in Fig. 1(d), we have x∗

rel ≃ 3.94 µm for
ω ≃ 2π × 145 kHz, which is a realistic value in typical
experiments with Rydberg ions [40, 41, 49]. The base-
line interaction strength, the gradient of the interaction
potential, the Rydberg state decay rate, and the charac-
teristic length of the vibrational sub-system then become
V0/ℏ ≃ −1.8 MHz, κ1 = γ ≃ 0.1 MHz and ℓ0 ≃ 0.1 µm.
In the following analysis, we use these values as a refer-
ence.
Results.– To charge our flywheel, we vary either the
Rabi frequency Ω or the detuning ∆ of the laser accord-
ing to the periodic two-stroke protocol shown in Fig. 1(b);
the switching occurs at t = τd/2 and the period is set
to τd = 2π/ωrel; the detuning can be controlled, for in-
stance, through external fields affecting the energy levels
of the ions. The level scheme in Fig. 1(b) shows that
the alignment between the effective energy levels of the
working medium and the transitions driven by the laser
depends on both Ω and ∆. As a result, both parameters

0 200 400

0 5 10

0 200 400
-10

0

10

0 5 10

-0.1

0

0.1

FIG. 2. Charging the flywheel. (a) Average distance be-
tween the Rydberg ions in units of ℓ0 as a function of time for
two different values of the curvature parameter κ2; the detun-
ing ∆ switches cyclically between ∆min = 0 and ∆max = 9γ,
while the Rabi frequency Ω = 8γ is fixed. (b) Same plot as in
(a) with Ω switching between Ωmin = 2γ and Ωmax = 8γ
and ∆ = 9γ fixed. The blue curves were obtained with
V0 = −18ℏγ and κ2 = 0; the red ones with V0 = −17ℏγ
and κ2 = −0.1γ. Figures (c) and (d) show the oscillatory
short-time dynamics of the flywheel. For all plots, we have
chosen ω = 9γ, κ1 = γ and initially set ϱph = |0⟩ ⟨0| and
ϱel = |↓↓⟩ ⟨↓↓|, where |0⟩ is the ground state of the oscillator.

affect the rate at which excitations are created in the
electronic system and can therefore be used to imprint a
periodic modulation on the double-excitation probability
snn, which controls the repulsion force between the ions.
This mechanism enables a continuous transfer of energy
from the working medium to the flywheel, which leads
to the gradual increase of its oscillation amplitude seen
in Fig. 2. In line with our physical picture, the charging
process is suppressed, and even reversed, at long times for
κ2 ̸= 0, as the flywheel is shifted out of resonance with
the driving. We note that the runtime of the flywheel is
limited since the width of the ion wave-packages must be
much smaller than their equilibrium distance to ensure
the validity of the approximated interaction potential.
For the parameters used in Fig. 2, this condition is met
for t ≤ 400/γ. In experiments also the phononic modes
experience some dissipation. However, as we show in the
Supplemental Material [58], parameter regimes can be
identified in which this is negligible.

The qualitative behavior of the mean distance ⟨x⟩ can
be further understood from the high-frequency limit. To
this end, we first observe that the mean-field equations
(4) decouple for κ1 = κ2 = 0. After some relaxation time
τ0, which is essentially determined by γ, the electronic
state ϱel then settles to a unique limit cycle, which satis-
fies ϱlcel(t) = ϱlcel(t+τd) [66]. Hence, snn acquires the same
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periodicity as the driving. For 0 < |κ1| ≪ ωrel, the oscil-
lator (5) is affected by driving only over a large number
of periods. Thus, ⟨x⟩ remains τd-periodic on short time
scales and develops modulations on some longer scale
τmod = 1/ϵ. That is, ⟨x⟩ = ⟨x⟩(ϵt, ωrelt) can be writ-
ten as a Fourier series with slowly drifting coefficients,

⟨x⟩ =
∑

n∈Z
cn(ϵt)e

inωrelt = ϵt · ⟨x⟩1(ωrelt)+O(ϵ2). (6)

Here, we have expanded in ϵ and used that ⟨x⟩ = ⟨ẋ⟩ = 0
at t = 0 so that ⟨x⟩ → 0 for ϵ → 0; note that we
understand any function of ωrelt to be 2π-periodic in
this argument. The time-dependence of ⟨x⟩ now carries
over to the mean-field Hamiltonian H̃el, which is thus no
longer strictly periodic. However, if ϵτ0 ≪ 1, the working
medium still follows its instantaneous limit-cycle on the
long time scale. Thus, we have ϱel ≈ ϱlcel(ϵt, ωrelt) and
snn ≈ snn(ϵt, ωrelt) = 1

2

∑
n∈Z dn(ϵt)e

inωrelt for t > τ0.
The scale of the modulation rate ϵ can now be determined
self-consistently. Inserting the ansatz ⟨x⟩ = ⟨x⟩(ϵt, ωrelt)
into Eq. (5) and setting κ2 = 0 gives

⟨x⟩ = −κ1

∫ t

0

dt′|d1(ϵt′)| cos[ωrelt+ φ1(ϵt
′)] +O(κ1/ωrel)

= −κ1|d1(0)|t · cos[ωrelt+ φ1(0)] +O(κ1/ωrel, ϵ),

where φ1 is a phase shift. Comparing this results with
Eq. (6) shows that ϵ must be of the same order of mag-
nitude as |κ1d1(0)|. Finally, for γ ≪ ωrel, the electronic
system is barely able to follow the driving protocol and
the unperturbed oscillation amplitude d1(0) of snn is of
order γ/ωrel. We then have ϵτ0 ∼ ϵ/γ ∼ |κ1|/ωrel ≪ 1,
which shows that our estimate is self-consistent in the
high-frequency regime.

The above argument still holds for κ2 ̸= 0 as long as
|κ2|/ωrel ≪ 1. Quite intuitively, it shows that the charg-
ing rate ϵ of our flywheel is essentially determined by the
strength of its interaction with the working medium and
frequency of the external harmonic trap, ω = ωrel/

√
3.

However, the specific choice of the driving protocol does
not play a dominant role. We note that the estimate
ϵ ∼ γ|κ1|/ωrel is also in good agreement with our numer-
ical simulations; for the parameters chosen in Fig. 2, the
charging rate is ϵ ≈ γ/40, while γ|κ1|/ωrel ≈ γ/16.

To further explore the phenomenology of our model, we
now analyze the energy content of our flywheel, which is
proportional to the mean excitation number nph =

⟨
a†a

⟩
.

This quantity is plotted in Fig. 3 as a function of the
laser parameters for both driving modes and a runtime
of t = 100/γ. The main features of these plots can be
understood as follows.

For periodically changing detuning, we observe a pro-
nounced maximum when ∆max meets the so-called anti-
blockade condition 2∆ + V0/ℏ = 0 [67–71]. The tran-
sition between ground and double excited state of the
working medium is then resonant with the laser during
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FIG. 3. Energy of the flywheel. The plots show the av-
erage excitation number nph after a runtime of t = 100/γ for
both driving modes as a function of (a) the Rabi frequency
and the maximal detuning and (b) the maximal Rabi fre-
quency and the fixed detuning. The insets show cuts through
the density plots along the horizontal dashed lines. The verti-
cal dashed lines indicate the anti-blockade condition, see main
text for details. For all plots, we have chosen the parameters
ω = 9γ, V0 = −18ℏγ, κ1 = γ and κ2 = 0.

the second stroke of the protocol, which leads to a strong
increase of snn, see Fig. 1(c). Leaving the anti-blockade
regime in the first stroke by changing the detuning so
that ∆ ≪ ∆max leads to a sharp decay in the double
excitation probability due to spontaneous decay. As a
result, snn develops a large oscillation amplitude, which
gives rise to a large charging rate.

By contrast, if the system is driven through the Rabi
frequency of the laser, the anti-blockade regime features
a dip in the energy of the flywheel. This observation
can be explained by considering the three relevant eigen-
states, |↓↓⟩, |↑↑⟩ and |S⟩ ∝ |↓↑⟩ + |↑↓⟩, of the reduced
mean-field Hamiltonian H̃0

el = ℏ∆
∑2

k=1 nk+V0n1n2; the
anti-symmetric superposition of the single excited states
does not couple to the laser due to the permutation sym-
metry of H̃el. If the anti-blockade condition is met, the
state |↓↓⟩ and the state |↑↑⟩ are both ground states of the
Hamiltonian H̃0

el. The superpositions |D⟩ ∝ |↓↓⟩ − |↑↑⟩
and |B⟩ ∝ |↓↓⟩ + |↑↑⟩ then correspond to a dark and a
bright state of the system, respectively [72]. Since nei-
ther of these states depends on Ω, the dark state becomes
a stable fixed point of the dynamics, in which the work-
ing medium is effectively trapped; note that such a fixed
point does not exist if the anti-blockade condition is pe-
riodically lifted by changing the detuning and the emer-
gence of this dark-state has no classical counterpart. This
mechanism suppresses the oscillation amplitude of snn,
and thus the charging rate. We note that the above ar-
gument, though covering the dominant physical process,
does not account for spontaneous decay or the modula-
tion of the electronic Hamiltonian through the position
of the flywheel. Therefore, we still expect the charging
rate to remain finite if the anti-blockade condition is met,
as our simulations show.
Concluding perspectives.– In this work, we have ana-
lyzed a minimal yet realistic model of an integrated ther-
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mal machine based on laser-driven Rydberg ions. The
electronic degrees of freedom of the ions provide a work-
ing medium for a thermodynamic cycle, here mimicked
through periodic variations of external control parame-
ters. Their translational degrees of freedom, on the other
hand, act as a flywheel storing the generated work out-
put. To what extent this output is accessible to sec-
ondary devices will depend on the specifics of the cou-
pling mechanism. If arbitrary unitary transformations
can be applied to extract work from the flywheel, the
maximal accessible energy is given by its ergotropy [73],
which, in the mean-field regime, is, up to a constant shift
[74], equivalent to the internal energy plotted in Fig. 3.

Our study demonstrates that Rydberg-ion systems are
a viable experimental platform for microscopic thermal
devices that feature genuine quantum effects and are ca-
pable of delivering output to an external storage system.
Furthermore, our model can, in principle, be scaled up
to a many-body device by replacing the pair of ions with
an ionic Wigner crystal [75–77], where selected phonon
modes play the role of the flywheel. This step, which
promises to reveal a rich phenomenology arising from
many-body effects, along with a complete thermody-
namic analysis of our model and the integration of proper
thermodynamic cycles driven by thermal rather than co-
herent energy sources rather are left to future research.
Our results here provide both a well-defined starting
point and a valuable benchmark for these investigations.
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