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a b s t r a c t 

Hyper-heuristics have emerged as a way to raise the level of generality of search techniques for compu- 

tational search problems. This is in contrast to many approaches, which represent customised methods 

for a single problem domain or a narrow class of problem instances. The term hyper-heuristic was de- 

fined in the early 20 0 0s as a heuristic to choose heuristics , but the idea of designing high-level heuristic 

methodologies can be traced back to the early 1960s. The current state-of-the-art in hyper-heuristic re- 

search comprises a set of methods that are broadly concerned with intelligently selecting or generating 

a suitable heuristic for a given situation. Hyper-heuristics can be considered as search methods that op- 

erate on lower-level heuristics or heuristic components, and can be categorised into two main classes: 

heuristic selection and heuristic generation. Here we will focus on the first of these two categories, se- 

lection hyper-heuristics. This paper gives a brief history of this emerging area, reviews contemporary se- 

lection hyper-heuristic literature, and discusses recent selection hyper-heuristic frameworks. In addition, 

the existing classification of selection hyper-heuristics is extended, in order to reflect the nature of the 

challenges faced in contemporary research. Unlike the survey on hyper-heuristics published in 2013, this 

paper focuses only on selection hyper-heuristics and presents critical discussion, current research trends 

and directions for future research. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

There is significant research interest in offering bespoke heuris-

ic solutions to difficult real-world optimisation problems. Such

ethods rely on problem-specific knowledge to operate, and of-

en produce computationally efficient solutions in reasonable time.

owever, specific heuristic methods do not always perform well

hen applied to other problem domains without significant mod-

fication. This is a primary motivation for the development of

eneral-purpose problem-independent heuristic search methodolo- 

ies, known as hyper-heuristics. Hyper-heuristics have received in-

reased attention in the scientific research community over the

ast decade or so, with significant progress made in developing

igh-level methods which are applicable to a range of different

roblems. A key goal of hyper-heuristic research is not only to

ompete with state-of-the-art problem-specific approaches, but to

ffer generalised techniques able to deliver good quality solutions
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or a variety of computational optimisation problems. Another mo-

ivation for the development of hyper-heuristics comes from the

tudy of Fisher and Thompson (1963) , who concluded that the per-

ormance when mixing and combining different low-level heuris-

ics produced better quality solutions than if they were applied

eparately. Their study showed that individual heuristics may be

articularly effective at certain stages of the search process, but

erform poorly at others. Therefore, it is reasonable to expect that

everal heuristics combined in an appropriate way may produce

etter solutions. 

The term “hyper-heuristic” can be defined as a high-level au-

omated search methodology which explores a search space of

ow-level heuristics (neighbourhood or move operators, or meta-

euristics) or heuristic components, to solve computationally hard

roblems. There are two main types of hyper-heuristics: hyper-

euristics to generate heuristics and hyper-heuristics to select

euristics. In this study, we focus on the selection hyper-heuristics

lass, which control a set of low-level heuristics during an iterative

earch process. 

An iterative selection hyper-heuristic applies a chosen low-level

euristic to the current solution at each step of a search, before

eciding whether to accept or reject the newly created solution.
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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If the search stagnates, i.e. a locally optimal solution is found, a

good selection hyper-heuristic will select an appropriate low-level

heuristic to diversify the search to another area of the solu-

tion space. Note that traditional hyper-heuristics based on the

framework initially proposed by Cowling, Kendall, and Soubeiga

(2001) only require limited information to operate, such as the

number of low-level heuristics, the direction of the optimisation

process (maximising or minimising) and the objective function

value of a given solution. This modular design, and the utilisation

of the domain barrier concept, which prevents a hyper-heuristic

from retrieving any problem domain specific information, enables

them to offer a more general approach to computational search.

The idea is that a selection hyper-heuristic or its components can

be reused on other problems without needing major modifications.

Low-level heuristics often implement simple neighbourhood moves

such as swap or shift, or basic local search operations. However,

more complex heuristics such as metaheuristics can also be con-

sidered at the lower level. 

Over the past few years, a number of review papers and articles

on hyper-heuristics have been published ( Burke et al., 2003; 2010;

2009 ). Burke et al. (2013) provided an overview of the scientific

literature on hyper-heuristics up until the end of 2012, also dis-

cussing the history of hyper-heuristics and the intellectual roots of

hyper-heuristic methods. The authors introduced some related ar-

eas and discussed directions for future research, encouraging more

interaction between related communities, especially those working

in the fields of metaheuristics and machine learning. A tutorial

article, by Ross (2014) , gave useful guidelines for implementing

hyper-heuristics in addition to discussing a number of relevant

research issues and identifying promising application domains.

The article also presented a brief history of the area and discussed

selected examples in detail. A more recent publication by Branke,

Nguyen, Pickardt, and Zhang (2016) provided a comprehensive

review of recent developments in generation hyper-heuristics,

with an emphasis on the design of construction heuristics in pro-

duction scheduling optimisation problems. This paper presented

three useful components in the design of hyper-heuristics for

the generation of heuristics: (i) the representation of what they

call candidate heuristics , which define the search space, (ii) the

optimisation algorithm used to explore this search space, and (iii)

the fitness function used to determine the quality of candidate

heuristics. The authors classified hyper-heuristics according to the

learning method they adopt (supervised or unsupervised). Another

recent publication by Pillay (2016) presented an overview of

hyper-heuristics for university examination timetabling, university

course timetabling and school timetabling problems. The author

emphasised one of the key objectives; namely, to produce reusable

technologies to solve difficult real-world educational timetabling

problems in a more general manner. 

General purpose heuristic search and optimisation methods

have been studied in various fields, from Operational Research to

Computer Science and Artificial Intelligence. Although this study

focuses on selection hyper-heuristic approaches in particular, there

are other strands of independent ongoing research using related

approaches. A survey on ‘Algorithm Selection’ was presented by

Kotthoff (2014) . The key goal of the algorithm selection problem

is to select the most suitable algorithm to solve a given prob-

lem instance, instead of developing new algorithms. This paper

presented an overview of previous categorisations of algorithm

selection approaches, providing a unified classification and def-

inition for current work. The author also described the concept

of ‘Algorithm Portfolios’, where the decision of which algorithm

to use is decided on a case-by-case basis for each problem in-

stance individually. The author distinguished two main classes of

portfolios: Static Portfolios which are constructed offline before

any problem instances are solved; and Dynamic Portfolios which
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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hange the composition and/or configuration of the constituent

lgorithms in an online manner, while solving a given instance

roblem. Pappa et al. (2014) provided a historical perspective on

utomated algorithm design, discussing similarities and differ-

nces between meta-learning for supervised machine learning

nd general-purpose hyper-heuristics. This discussion focused on

he dimensions of the space of possible problem instances, the

earch space of algorithms (or heuristics) that a high-level search

ethod is operating over, and the performance measure used to

valuate the performance of a given algorithm to a given problem.

here are other well established fields of research where studies

elated to hyper-heuristics have been carried out, such as adaptive

emetic Algorithms ( Ong, Lim, Zhu, & Wong, 2006 ), Adaptive

perator Selection ( Fialho, Da Costa, Schoenauer, & Sebag, 2008;

i, Fialho, Kwong, & Zhang, 2014 ), Variable Neighbourhood Search

 Hansen, Mladenovi ́c, & Pérez, 2010 ), Reactive Search ( Battiti &

runato, 2017 ), algorithm configuration ( López-Ibáñez, Dubois-

acoste, Cáceres, Birattari, & Stützle, 2016; López-Ibáñez & Stützle,

014 ) and hybrid metaheuristics ( Raidl, 2015 ). 

In this paper, we will provide a review of the selection hyper-

euristic literature, capturing the recent advances in this rapidly

rowing area of research, extending the existing categorisation of

election hyper-heuristics and identifying issues to be addressed

or future research. The relevant studies covered in this paper in-

lude only the full papers that appeared after the survey of Burke

t al. (2013) . 

The remainder of this paper is structured as follows,

ection 2 discusses some extensions to the existing classification

f selection hyper-heuristics, building on the previous classifica-

ion provided by Burke et al. (2010) . Section 3 describes frame-

orks introduced to facilitate selection hyper-heuristic research,

roviding a detailed overview the popular HyFlex framework and

he CHeSC competitions it was designed to support. Section 4 out-

ines the details of the selection hyper-heuristics submitted to

he CHeSC 2011 competition, and other methods that have been

sed in the context of cross-domain optimisation subsequently. In

ection 5 , a survey of selection hyper-heuristics applied to other

roblem domains, not included in the HyFlex framework, is pro-

ided. Section 6 focuses on selection hyper-heuristics for multi-

bjective optimisation, distinguishing between methods which se-

ect from different low-level operators and those which select from

ifferent metaheuristics. An overview of recent selection hyper-

euristics that construct solutions, rather than perturb complete

olutions, is given in Section 7 . Section 8 considers generative

yper-heuristic methods which either automatically generate or

onfigure selection hyper-heuristics. Finally, Section 9 discusses

ome of the limitations of contemporary hyper-heuristic research

nd proposes a number of avenues for future research. 

. Extending the classification of selection hyper-heuristics 

This section provides an extended classification of selection

yper-heuristics, based on the original classification of Burke et al.

2010) . The proposed extended classification is illustrated in Fig. 1 ,

ith each component discussed in detail in the subsequent sub-

ections. 

.1. Nature of feedback received 

Selection hyper-heuristics iteratively modify the solutions(s) at

and, controlling a set of perturbative low-level (meta)heuristics

ntil the given termination criterion is satisfied. The low-level

euristics in the context of selection hyper-heuristic methods can

e simple operators, metaheuristics or even potentially hyper-

euristics. They were originally classified based on the nature of

he feedback received during the search process. Hence, selection
cent advances in selection hyper-heuristics, European Journal of 
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Fig. 1. An extended classification of selection hyper-heuristics. 
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yper-heuristics embed either no learning mechanism or online

earning methods to process feedback during the search process,

nfluencing the subsequent decisions made at the hyper-heuristic

evel ( Burke et al., 2010 ). There are also offline learning hyper-

euristics, which are often used as generation hyper-heuristics.

ethods of this type are trained on sample problem instances, re-

eiving feedback prior to the search to create new heuristics appli-

able to unseen problem instances. There are examples of recently

roposed selection hyper-heuristics incorporating mixed learning

ethods, combining both offline and online learning (e.g., Asta and

zcan (2015) ; Uluda ̆g, Kiraz, Etaner-Uyar, and Özcan (2013) ). 

.2. Low-level heuristics 

.2.1. Nature of the search structure 

Within selection hyper-heuristics Burke et al. (2010) delineated

wo types of low-level heuristics based on the search structure

mployed: construction and perturbation heuristics. Constructive 

euristics gradually build a solution from scratch, selecting be-

ween a set of pre-defined low-level heuristics to apply at each

tep, incrementally building a complete solution. Perturbation

euristics operate on complete solutions, performing local search

perations using pre-defined neighbourhood structures. Typically

his is an iterative process, continuing until some termination

riterion is met. 

.2.2. Nature of the low-level heuristic set 

Selection hyper-heuristics control a fixed set of low-level

euristics, each of a particular type, such as, mutational, ruin-

ecreate, local search (hill climbing), crossover or metaheuristics.

y design, a selection hyper-heuristic can be allowed to manage

he whole set of predefined (e.g. unary, binary, n -ary) low-level

euristics, a reduced set of heuristics excluding a (some) particular

ype(s) of heuristics (e.g. crossover operators), or an increased set of

euristics produced based on the whole set (e.g. via relay hybridi-

ation, creating new heuristics by pairing up existing heuristics).

n many previous studies, if the low-level heuristic set consists of

etaheuristics, then the whole set is utilised. Recent approaches

sing an increased set of low-level heuristics often control the size

f the heuristic set, attempting to adaptively identify the best per-
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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orming low-level heuristics with an online learning mechanism or

xclude poor performing heuristics using tabu based methods. 

.2.3. Nature of how heuristics are grouped, chosen and applied 

The nature of how a heuristic is selected and applied changes

rom one hyper-heuristic to another. A standard selection hyper-

euristic does not group the low-level heuristics, selecting and ap-

lying a single heuristic one at a time without distinction . There

re other hyper-heuristic methods which group low-level heuris-

ics together and use them separately based on their grouping.

ach group of low-level heuristics can be fixed and a predefined

equence of heuristic groups can be employed. Özcan, Bilgin, and

orkmaz (2008) identified four different selection hyper-heuristic

rameworks utilising a given set of mutational and hill climbing

euristics. It is possible to use the same or multiple selection

yper-heuristics to control heuristic types during the search. There

re other hyper-heuristic methods which operate in a stage-based

anner, deciding on the subset (group) of low-level heuristics to

se at each stage, either prior to or during the search. The over-

ll approach can use a fixed number of stages until termination,

r perform the search adaptively, switching between stages in an

terated manner. 

.3. Nature of solutions and objective functions 

The standard classification of metaheuristics ( Birattari, Paquete,

tützle, & Varrentrapp, 2001; Blum & Roli, 2003 ) also applies

o selection hyper-heuristics. Population ( multi-point ) based hyper-

euristics use multiple current solutions as they perform a search,

hile single-point based hyper-heuristics use one active current so-

ution. The majority of selection hyper-heuristics are single-point

earch methods, although there are some population based meth-

ds. However, there are also a few studies using a mixed approach,

ombining both single and multi-point based search in phased

anner ( Hsiao, Chiang, & Fu, 2012; Lehrbaum & Musliu, 2012 ).

 selection hyper-heuristic often consists of a heuristic selection

ethod and a move acceptance mechanism ( Özcan et al., 2008 ),

nd can be designed to solve single-objective or multiobjective prob-

ems. Multiobjective selection hyper-heuristics tend to focus on

ne of two approaches, either controlling components of a single
cent advances in selection hyper-heuristics, European Journal of 
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multiobjective optimisation algorithm such as the mutation oper-

ators, or controlling multiple multiobjective metaheuristics within a

single search process. It is worth noting that the move acceptance

component often becomes a replacement strategy, if a population

based approach is used. 

2.4. Nature of move acceptance 

Assuming a single point based search framework, the nature

of move acceptance depends on the nature of accept/reject deci-

sions, as well as the parameter setting method used by the move

acceptance method ( Jackson, Özcan, & John, 2018 ). The move ac-

ceptance mechanism in selection hyper-heuristics can be classi-

fied as stochastic if a probabilistic framework is considered while

making the accept/reject decision (e.g. Simulated Annealing), or

non-stochastic , otherwise. Non-stochastic move acceptance meth-

ods can be further classified into basic methods, such as accepting

All Moves (AM), accepting Improving or Equal moves (IE), accept-

ing Only Improving moves (OI), and threshold acceptance methods

(e.g. Great Deluge, Late Acceptance Strategy etc.). 

2.5. Nature of parameter setting 

Heuristic selection, move acceptance or low-level heuristics of-

ten carry parameters that need to be determined or controlled. The

algorithmic parameters for the heuristic selection and move ac-

ceptance methods need to be handled at the hyper-heuristic level,

while the setting of low-level heuristic parameters can be handled

by either the hyper-heuristic or low-level heuristic itself. Eiben,

Hinterding, and Michalewicz (1999) provided three categories

of parameter control for evolutionary algorithms: deterministic,

adaptive and self-adaptive. This categorisation based on the nature

of parameter setting can be extended to other metaheuristics and

hyper-heuristics which embed a move acceptance method. 

The parameters can be set statically to a fixed value prior to

the search process, dynamically , allowing the value to change in a

predefined manner, or adaptively allowing the value to change in

a reactive manner during the search process. An algorithm can ad-

just its behaviour, and hence parameter setting, self-adaptively by

searching for the best solution and parameter setting simultane-

ously. 

3. Selection hyper-heuristic frameworks 

In this section we introduce recent selection hyper-heuristic

frameworks, developed to support researchers designing hyper-

heuristic methods and to facilitate performance comparison be-

tween different hyper-heuristic approaches. The core of this section

describes the HyFlex framework, which has become the standard

benchmark for comparing cross-domain search methods. A large

number of approaches in the literature make use of this frame-

work, and are discussed in detail in Section 4 . 

3.1. HyFlex v1.0 and CHeSC 2011 

HyFlex ( Hy per-heuristics Flex ible framework) is a software tool

written in Java, developed for designing and comparing the perfor-

mance of selection hyper-heuristics ( Ochoa et al., 2012 ). A signif-

icant feature of HyFlex is that it implements all of the problem-

specific components of optimisation problems, including solu-

tion representation, initialisation routines, evaluation functions and

low-level heuristics. This allows researchers to focus solely on im-

plementing the high-level strategy to manage the low-level heuris-

tics available. Ross (2014) argued that the enforcement of an ex-

plicit separation between the hyper-heuristic and domain-specific

aspects, through strict enforcement of the domain barrier, makes
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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yFlex undesirable for use in large real-world applications, which

equire far more domain-specific information than it can offer. 

In each HyFlex problem domain, a number of benchmark prob-

em instances is supplied, and four different types of low-level

euristics (move operators) are defined. The internal workings of

ach low-level heuristic are not available to the user. These heuris-

ics can be mutational, ruin-recreate, local search (hill climbing)

r crossover. Mutational heuristics modify a solution by randomly

erturbing it. Ruin-recreate heuristics make large-scale changes by

estroying some parts of a candidate solution, before rebuilding

hose parts to form a feasible solution, with no guarantee of so-

ution quality. Local search heuristics incorporate an iterative im-

rovement process, guaranteeing that a non-worsening solution

ill be returned. Crossover heuristics generate a new solution by

ecombining two existing solutions. Each low-level heuristic in

yFlex is associated with a parameter which can modify its be-

aviour to a limited extent. Two parameters are used, α and β (0

 = [ α, β] < = 1), representing the intensity of mutation and depth

f search respectively, to control the behaviour of certain low-level

euristics. How these parameters affect the search depends on the

ow-level heuristic in question. For example, the depth of search pa-

ameter could specify an iteration or time limit for a particular

ocal search heuristic, while the intensity of mutation could indi-

ate how many elements are changed when invoking a mutational

euristic or the percentage of the solution that is destroyed and

ebuilt by a ruin-recreate heuristic. 

The vast majority of the problem instances within HyFlex are

aken from well-known benchmark suites. HyFlex initially provided

our optimisation problem domains: 

• Boolean satisfiability problem (SAT). This problem requires de-

termining whether an assignment of the variables of a boolean

formula exists such that the formula evaluates to true. Given

an objective function that calculates the number of clauses that

are satisfied, the goal is to minimise the number of unsatisfied

clauses. The problem instances for this domain were taken from

SATLIB and international SAT competitions (SAT 20 07/20 09 and

Max-SAT 2010) and contain between 200 and 800 variables,

and 10 0 0 and 350 0 clauses ( Hyde, Ochoa, Vázquez-Rodríguez,

& Curtois, 2010b ). 
• One-dimensional bin-packing problem (BP). This problem con-

sists of a set of items, each with a given weight, which must be

packed into as few limited capacity bins as possible. The BP in-

stances in HyFlex were randomly generated using distributions

taken from well-known sources in the literature ( Hyde, Ochoa,

Curtois, & Vázquez-Rodríguez, 2010a ). 
• Personnel scheduling problem (PS). This problem involves de-

termining at which times and on which days a set of employ-

ees should work over a specific planning period, with the goal

of minimising a weighted sum of several objectives. The major-

ity of problem instances are taken from real-world employee

shift scheduling problems ( Curtois, Ochoa, Hyde, & Vázquez-

Rodríguez, 2010 ). 
• Permutation flow shop problem (PFS). In this problem, there are

n jobs to be completed on m consecutive machines, visiting ma-

chine 1 then machine 2 and so on. Jobs can be processed by

only one machine at a time and machines can only process one

job at a time. The goal is to find a permutation of the n jobs

that minimises the total time to complete all jobs (i.e. minimis-

ing the makespan). All problem instances are from the Taillard

set of permutation flow shop benchmark problems ( Vázquez-

Rodrıguez, Ochoa, Curtois, & Hyde, 2010 ). 

A set of 10 instances for each of these four problem domains

ere the training benchmark that supported an international com-

etition in 2010/2011, known as the Cross-Domain Heuristic Search

hallenge (CHeSC 2011): http://www.asap.cs.nott.ac.uk/chesc2011/ .
cent advances in selection hyper-heuristics, European Journal of 
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Table 1 

The number of heuristics provided in HyFlex for each supported heuristic type. 

SAT BP PS PFS TSP VRP KP QAP MAC 

Mutational 6 3 1 5 5 3 5 2 2 

Ruin-recreate 1 2 3 2 1 2 2 3 3 

Local search 2 2 5 4 3 3 6 2 2 

Crossover 2 1 3 4 4 2 3 2 2 

Total 11 8 12 15 13 10 17 10 11 

 

 

 

 

 

 

 

 

 

 

 

 

h  

A  

t  

c  

p  

p  

V  

b

3

 

e  

t  

f  

i  

w  

s  

c  

m  

s  

l  

h  

l  

A  

c  

t  

C  

o  

h  

h  

i  

d  

b  

f  

1 http://dimacs.rutgers.edu/Challenges/Seventh/Instances/ 
2 https://web.stanford.edu/ ∼yyye/yyye/Gset/ 
he competition attracted significant international attention with

0 teams participating. To evaluate each of the competing hyper-

euristics the organisers of the challenge conducted 31 indepen-

ent runs on three of the ten instances from each of these four

roblem domains, plus two hidden instances from each problem

omain. In addition, another five instances from each of two addi-

ional unseen problem domains were also tested, again performing

1 independent runs for each instance. The two additional ‘hidden’

roblem domains were: 

• Travelling salesman problem (TSP). Given a list of n cities and

the pairwise distances between them, the task is to find the

shortest possible tour that visits each city exactly once and re-

turns to the starting city. All instances were taken from the

well-known TSPLIB. 
• Capacitated vehicle routing problem with time windows (VRP).

This problem involves meeting the service demand of a set of

customers, using as few vehicles as possible, whilst satisfying

a set of constraints, such as adhering to time windows within

which a customer must be visited. The VRP instances are from

the widely used existing benchmarks provided by Solomon and

Gehring-Homberger. 

A time limit was imposed for each run to 600 seconds on a

ypical standard desktop machine. A benchmarking tool was de-

eloped by the organisers to report the time another machine

hould take, equivalent to 600 seconds on the standard machine.

he competing hyper-heuristics were ranked using a methodology

nspired by the Formula 1 scoring system. The median objective

alues found during the 31 independent runs of each method were

alculated for each problem instance. The eight methods with the

est median score for each instance were awarded a score of 10,

, 6, 5, 4, 3, 2 and 1 points respectively, with the remaining meth-

ds awarded 0 points for that instance. These points were totalled

cross the 30 instances (6 problems, 5 instances) for each algo-

ithm, yielding a potential maximum score of 300 points. The ap-

roach that achieved the highest total score was deemed the win-

er of the challenge. The methods submitted to CHeSC 2011 and

he competition results are discussed in detail in Section 4 . 

An analysis of the set of instances used in the HyFlex bench-

ark set was performed by Mısır (2017) . This study focused on

ssessing the quality of the benchmark set, in terms of its ability

o measure and compare the results of different algorithms. Using

atrix factorisation, a number of features characterising different

ypes of problem instances were extracted to form a number of

roblem instance ‘clusters’. Rather than each cluster containing in-

tances from a single problem domain, a level of diversity between

lusters was observed, with some clusters consisting of instances

rom a variety of problem domains. Despite this, one large clus-

er was identified, containing all of the PFS and TSP instances and

ome of the BP and PS instances. Due to the size of this cluster,

ny hyper-heuristics that were able to perform well on this type

f instance would have an advantage when being compared using

he competition criteria. 

Adriaensen, Ochoa, and Nowé (2015) implemented three more

roblem domains, each with ten problem instances, to ex-

end the HyFlex benchmark set. The extended benchmark set

an be downloaded from: https://github.com/Steven-Adriaensen/

yflext and contains the following problem domains: 

• 0-1 knapsack problem (KP). Given a set of items, each with

associated weight and profit, the goal is to select a subset of

items that maximises the total profit gained whilst satisfying

capacity constraints, that is, the maximum total weight that can

be accommodated by the knapsack. These instances were cre-

ated using the generator of Martello, Pisinger, and Toth (1999) . 
• Quadratic assignment problem (QAP). This problem consists of

a set of facilities and locations, with a defined distance between
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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each pair of locations, and flow between each pair of facilities.

The objective is to find an assignment of facilities to distinct

locations that minimises the sum of the distances between each

location multiplied by the corresponding flows between each

facility. All instances were taken from the well-known QAPLIB

and contain between 100 and 256 locations. 
• Maximum-cut problem (MAC). Let G = (V, E) be a graph with n

vertices and m edges, and each edge has an associated weight.

This problem requires determining a cut that maximises the to-

tal weight of the edges that have an end point in each set. The

ten instances provided in this problem domain are from either

the 7th DIMACS Implementation Challenge 1 or generated using

Rudy by Giovanni Rinaldi 2 . 

A summary of the number of each different type of low-level

euristic for each of the nine problem domains is given in Table 1 .

lthough the four categories of low-level heuristic are simple,

he low-level heuristics themselves vary significantly in terms of

omplexity. The details of the low-level heuristics for the original

roblem domains can be found in the corresponding technical re-

orts ( Curtois et al., 2010; Hyde et al., 2010a; Hyde et al., 2010b;

ázquez-Rodrıguez et al., 2010 ), while the details for the extended

enchmark set are provided by Adriaensen et al. (2015) . 

.2. HyFlex v1.1 and CHeSC 2014 

Following the study of Asta, Özcan, and Parkes (2013a) , an

xtended version of HyFlex, namely HyFlex v1.1, was developed

o accommodate the concept of batch mode hyper-heuristics. This

eature allows hyper-heuristics to deal with the HyFlex problem

nstances collectively as a batch, rather than individually. The idea

as motivated by the observation that some of the problem in-

tances are easier than others, and good hyper-heuristics may allo-

ate more time to difficult instances (effort balancing). The batched

ode concept also allows hyper-heuristics to learn from earlier in-

tances if they belong to the same problem domain (inter-instance

earning). The newer version of HyFlex also gives the hyper-

euristic access to some instance-specific information as a prob-

em instance feature, such as, the size of the instance being solved.

nother significant feature of HyFlex v1.1 is that it supports multi-

ore mode of operation, and allows solution exchange through

he use of external memory. HyFlex v1.1 was used in the second

ross-domain Heuristic Search Challenge (CHeSC 2014) which was

rganised in two tracks. In the first track, the problem instances

ad to be solved sequentially. However, in the second track,

yper-heuristics were allowed to work with multiple problem

nstances simultaneously. HyFlex v1.1 supports the same problem

omains as the original HyFlex (v1.0). The challenge results and

rief extended abstracts describing the competing methods can be

ound on the challenge website: http://www.hyflex.org/chesc2014/ .
cent advances in selection hyper-heuristics, European Journal of 
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3.3. Other Selection Hyper-heuristic Frameworks 

There are many software frameworks implemented in a range

of programming languages for rapid development of metaheuris-

tics with reusable components. Parejo, Ruiz-Cortés, Lozano, and

Fernandez (2012) reviews some commonly used libraries, mostly

for evolutionary computation. We provide an overview of hyper-

heuristic frameworks other than HyFlex in this section. 

3.3.1. Hyperion 

Hyperion ( Swan, Özcan, & Kendall, 2011 ) provides a gen-

eral recursive object-oriented framework for the development of

meta/hyper-heuristics, incorporating the selection hyper-heuristic

frameworks described by Özcan et al. (2008) . Its main goal is

to decompose the domain into collections of policy components,

yielding a generative algorithm framework that facilitates the iden-

tification of the components that contribute to an algorithm’s suc-

cess in a procedural way. The Hyperion framework has been ex-

tended to Hyperion 

2 ( Brownlee, Swan, Özcan, & Parkes, 2014 ), al-

lowing the analysis of the trace taken through the search space by

algorithms and their constituent components, and promoting inter-

operability through component interfaces. 

3.3.2. ParHyFlex 

Inspired by HyFlex, ParHyFlex ( Van Onsem & Demoen, 2013 )

was built to support the development of hyper-heuristics in a par-

allel environment. The framework is implemented using Java, and

the Message Passing Interface (MPI) protocol is used to handle the

communication between different processes. One of its interesting

features is the way the search trajectory of a process is influenced

by experience learned in other processes, which could potentially

reduce the chance of becoming trapped in similar regions of the

search space. 

3.3.3. hMod 

Urra, Cabrera-Paniagua, and Cubillos (2013) proposed a con-

crete object-oriented design pattern referred to as the flowchart

pattern , which allows one to construct an objectual representa-

tion of an algorithm flowchart for dynamic heuristic environments

that can be modified or reused at runtime. The hMod framework

supports the development of selection hyper-heuristics by offer-

ing specialised semantics, through different techniques for facili-

tating the algorithm building capabilities offered by the flowchart

pattern. hMod allows the developer to define the components of

selection hyper-heuristics through XML definition files. The two

main components of an iterative selection hyper-heuristic, heuris-

tic selection and move acceptance, are defined in separate XML

files. 

3.3.4. HH-DSL 

Cora, Uyar, and Etaner-Uyar (2013) introduced a domain spe-

cific language (DSL) to facilitate rapid implementation of selection

hyper-heuristics by non-experts in HyFlex. The proposed HH-DSL

eliminates the need to develop hyper-heuristics in Java directly,

providing a high-level language to define hyper-heuristics using

HyFlex, allowing researchers to focus solely on hyper-heuristic de-

velopment rather than Java programming. The source code of HH-

DSL is available online at: https://bitbucket.org/hcora/hh-dsl . 

3.3.5. EvoHyp 

EvoHyp is a Java framework recently introduced by Pillay and

Beckedahl (2017) , targeting researchers with limited experience

in hyper-heuristic development, with a focus on hyper-heuristics

based on evolutionary algorithms. This framework provides a
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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oolkit from which evolutionary selection and generation hyper-

euristics, both constructive and perturbative, can be built, includ-

ng distributed variants. The Java source and documentation for

voHyp is available online: http://titancs.ukzn.ac.za/EvoHyp.aspx . 

.3.6. Multiobjective hyper-heuristic frameworks 

There are a growing number of multiobjective hyper-heuristic

tudies in the literature which use existing software libraries

or multiobjective optimisation, such as, PISA accessible at

ttp://www.tik.ee.ethz.ch/pisa/ ( Bleuler, Laumanns, Thiele, & Zit-

ler, 2003 ) and jMetal accessible at http://jmetal.sourceforge.net/

 Durillo & Nebro, 2011 ). 

. Selection hyper-heuristics for cross-domain search 

Here we discuss the literature of selection hyper-heuristics that

ere developed and tested using the HyFlex framework. This sec-

ion is split into four subsections. The first subsection covers the

ethods which were participants in the CHeSC 2011 competition.

he second discusses methods which were applied to the original

ix benchmark problem domains following the competition. Meth-

ds which were applied to only a subset of the problem domains

n HyFlex are reported in the third subsection, and finally, the pa-

ers which include the additional three problem domains from the

xtended benchmark set ( Adriaensen et al., 2015 ) are covered in

he last subsection. 

.1. Applied to all six HyFlex problem domains - CHeSC 2011 

yper-heuristics 

The results of the twenty participants in the CHeSC 2011 chal-

enge using the Formula 1 scoring system are given in Table 2 . 

The winning algorithm, AdapHH (a.k.a. GIHH), was proposed

y Mısır, Verbeeck, De Causmaecker, and Vanden Berghe (2012b) .

dapHH adaptively maintains subsets of low-level heuristics for

ifferent phases of the search process. A number of performance

etrics are used to determine which heuristics are in the ac-

ive subset, including the number of new best solutions found

y the heuristic, the total solution improvement and deteriora-

ion over the search, the total solution improvement and dete-

ioration during the current phase, and the remaining execution

ime. These measures, each with a given weight, are used to

alculate a quality index for each low-level heuristic. A heuris-

ic with a quality index value lower than that of the average

f the full set of heuristics is excluded from the active subset

or the corresponding phase. The length of time that the heuris-

ic is excluded from the subset is referred to as the tabu dura-

ion. However, if a particular heuristic is consecutively excluded

or a given number of phases, it is permanently excluded from

he low-level heuristic set. The phase length is set to a prede-

ermined constant value. AdapHH selects a heuristic from within

he active subset based on a set of associated probability values

or each heuristic. These probabilities are dynamically modified

uring the search, based on the number of best improvements

ound with respect to execution time taken. During part of the

earch process, AdapHH employs a relay hybridisation technique

o discover pairs of low-level heuristics that are effective when

pplied consecutively. The user controlled parameter values of each

ow-level heuristic, intensity of mutation and depth of search, are

daptively maintained by AdapHH using a Reinforcement Learning

ethod. The move acceptance criterion accepts solutions below a

ertain threshold, defined by the fitness values of previous best so-

utions. This threshold is dynamically adjusted after a certain num-

er of iterations of non-improvement. The acceptance strategy is

eferred to as Adaptive Iteration Limited List-based Threshold Ac-

epting. Finally, to prevent the search from stagnating, the solu-
cent advances in selection hyper-heuristics, European Journal of 
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Table 2 

The results of the CHeSC 2011 competing approaches. 

Rank Method label (reference if available) Total Score SAT BP PS PFS TSP VRP 

1 AdapHH ( Mısır et al., 2012b ) 181.00 34.75 45.00 9.00 37.00 40.25 15.00 

2 VNS-TW ( Hsiao et al., 2012 ) 134.00 34.25 3.00 39.50 34.00 17.25 6.00 

3 ML 131.50 14.50 12.00 31.00 39.00 13.00 22.00 

4 PHUNTER ( Chan et al., 2012 ) 93.25 10.50 3.00 11.50 9.00 26.25 33.00 

5 EPH 89.75 0.00 10.00 10.50 39.00 36.25 12.00 

6 HAHA ( Lehrbaum & Musliu, 2012 ) 75.75 32.75 0.00 25.50 3.50 0.00 14.00 

7 NAHH ( Mascia & Stützle, 2012 ) 75.00 14.00 19.00 2.00 22.00 12.00 6.00 

8 ISEA ( Kubalík, 2012 ) 71.00 6.00 30.00 14.50 3.50 12.00 5.00 

9 KSATS-HH 66.50 24.00 11.00 9.50 0.00 0.00 22.00 

10 HAEA 53.50 0.50 3.00 2.00 10.00 11.00 27.00 

11 ACO-HH 39.00 0.00 20.00 0.00 9.00 8.00 2.00 

12 GenHive ( Cichowicz et al., 2012 ) 36.50 0.00 14.00 6.50 7.00 3.00 6.00 

13 DynILS 27.00 0.00 13.00 0.00 0.00 13.00 1.00 

14 SA-ILS 24.25 0.75 0.00 19.50 0.00 0.00 4.00 

15 XCJ 22.50 5.50 12.00 0.00 0.00 0.00 5.00 

16 AVEG-Nep ( Di Gaspero & Urli, 2012 ) 21.00 12.00 0.00 0.00 0.00 0.00 9.00 

17 GISS 16.75 0.75 0.00 10.00 0.00 0.00 6.00 

18 SelfSearch 7.00 0.00 0.00 4.00 0.00 3.00 0.00 

19 MCHH-S 4.75 4.75 0.00 0.00 0.00 0.00 0.00 

20 Ant-Q 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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ion is reinitialised if a certain number of iterations are executed

ithout an improvement in solution quality. Many of the compo-

ents of AdapHH were introduced in a later paper by the same au-

hors ( Mısır, Verbeeck, De Causmaecker, & Vanden Berghe, 2013b ).

n CHeSC 2011, AdapHH was the best hyper-heuristic in the SAT, BP

nd TSP problem domains and ranked second in the PFS problem

omain. It delivered poor performance in the PS problem domain

ompared to the other competitors. Despite the fact that the nature

f the combination of many adaptive components seems to be key

o the performance of AdapHH, Adriaensen & Nowe (2016) have

emonstrated that some of these elements do not necessarily con-

ribute to the success of the approach. This paper is discussed in

ore detail in Section 4.4 . 

The second place hyper-heuristic was that of Hsiao et al. (2012) .

heir method is based on Variable Neighborhood Search (VNS), it-

rating over a predefined sequence of two phases, first with a pop-

lation of solutions, before moving on to a second phase using

nly a single solution. The two phases consist of a ‘shaking’ stage,

o promote diversification of the search, and a local search stage

or intensification. The shaking stage applies mutational and ruin-

ecreate low-level heuristics, with a tabu mechanism employed to

revent frequent application of poor performing low-level heuris-

ics. The local search stage is applied until a local optimum is

eached, incorporating an adaptive technique to adjust the strength

f the hill climbing heuristics over time. The authors argued that

he population based search phase could potentially eliminate poor

uality solutions by tournament selection. A second phase is initi-

ted when the search stagnates or half of the allowed computa-

ional budget is spent. In this phase, the hyper-heuristic reduces

he population size to a single solution. This approach was ranked

rst in the PS problem domain, second in SAT, third in PFS, fourth

n TSP and produced relatively poor performance on BP and VRP

roblem instances when compared to the other nineteen compet-

ng methods. 

The ML hyper-heuristic finished third in the CHeSC 2011

ompetition. This method, proposed by Mathieu Larose and de-

cribed briefly in Ochoa et al. (2012) , is based on a self-adaptive

etaheuristic using multi-cooperative agents and a Reinforcement

earning technique. The method comprises of three main stages:

iversification (using mutational, ruin-recreate and no-op heuris-

ics), intensification (using local search heuristics) and move ac-

eptance. The move acceptance mechanism accepts moves in the

ase that the current solution is improved, or if the candidate so-

ution has not been improved for a given number of iterations. ML
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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anked first in PFS, second in PS, third in VRP and produced aver-

ge performance on the remaining HyFlex problem domains. 

The fourth ranking hyper-heuristic, PHunter ( Chan, Xue, Ip, &

heung, 2012 ). The method can be described as a type of Iterated

ocal Search, as it involves a process of diversification and inten-

ification. The authors distinguished two forms of intensification

y controlling the depth of search parameter in HyFlex. Further-

ore, a tabu list to prevent revisiting poor quality solutions is em-

loyed. For a given problem domain PHunter determines a mode,

onsisting of a portfolio of grouped heuristics and a mechanism

or diving. In a preliminary run, the algorithm counts the num-

er of suboptimal solutions found by each group of heuristics and

ifferent dive mechanisms. An offline learning mechanism is used

o decide the final mode. Interestingly, PHunter placed first in the

RP problem domain and third in the TSP, both of which were hid-

en domains. This indicates that the method is able to adapt well

o new, unseen problem domains. Despite the fact that HyFlex was

hiefly designed to evaluate the generality level of selection hyper-

euristics, Chan et al. (2012) discovered new best-known solutions

or three well-known personnel scheduling problem instances us-

ng HyFlex. 

The Evolutionary Programming Hyper-heuristic (EPH) hyper-

euristic ( Meignan, 2011 ) finished fifth in the CHeSC 2011 compe-

ition. EPH is based on an evolutionary programming methodology

nd co-evolution, simultaneously maintaining a population of solu-

ions and a population of low-level heuristic sequences to apply to

he solutions. A heuristic sequence consists of a set of one or two

erturbation heuristics (mutational, ruin-recreate or crossover) fol-

owed by a set of all available local search heuristics. Values for

he depth of search and intensity of mutation parameters of each

ow-level heuristic in the sequence are also evolved as part of each

equence. If the perturbation stage consists of two heuristics, then

hey must be of different types, and if one is a crossover opera-

or it must be invoked first. Local search heuristics are either ap-

lied once, or using a Variable Neighbourhood Descent strategy.

he population of low-level heuristic sequences is initialised ran-

omly. At each generation, mutation is applied to each low-level

euristic sequence, doubling the size of the population. Following

his, the best individuals are selected using tournament selection.

PH uses four mutation strategies each with an equal probability

f being applied: (i) modify the intensity of mutation parameter

alues for the perturbation heuristics; (ii) add, change or delete a

erturbation heuristic at random, whilst limiting the sequence to a

aximum of two perturbation heuristics; (iii) modify the depth of
cent advances in selection hyper-heuristics, European Journal of 
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3 https://github.com/Steven- Adriaensen/FS- ILS 
4 http://ahmedkheiri.netlify.com/publications/SSHH.zip 
5 http://ahmedkheiri.netlify.com/publications/MSHHs.zip 
search parameter values for the local search heuristics; (iv) change

the order of local search heuristics randomly. The parameters of

this hyper-heuristic (such as the population size of the solution

and low-level heuristic sequence populations, and the choice of lo-

cal search strategy) are either fixed or determined during a prelim-

inary phase at the start of each run. 

The remaining competing hyper-heuristics employ a variety of

interesting concepts. The HAHA algorithm ( Lehrbaum & Musliu,

2012 ), which was sixth, splits the search into a single-point based

strategy and a population based strategy and repeatedly switches

between the two. A dedicated initial phase is used to assign scores

to the local search heuristics based on performance. The algorithm

embeds an adaptive move acceptance mechanism, a tabu search

technique and a method to reinitialise the search if no improve-

ment is observed for a certain amount of time. The NAHH hyper-

heuristic, proposed by Mascia and Stützle (2012) , uses a stochastic

local search search method and selects one of several algorithm

schemata (ranging from well-established metaheuristic techniques

such as Iterated Local Search, Variable Neighbourhood Descent, and

Simulated Annealing, to well-known heuristic selection methods

such as Greedy and Simple Random) that have been tuned to solve

each of the HyFlex four public problem domains in an offline man-

ner. A preliminary phase is used to discard dominated heuristics,

followed by an iterated racing procedure to decide which of the

available schemata methods to apply for a given problem instance.

This non-adaptive algorithm finished seventh overall in the chal-

lenge, generally performing better in the four original domains it

was trained on than the two hidden problem domains, but still

outperforming many online methods in the hidden domains. The

authors subsequently improved their methodology through care-

ful tuning and a different set of schemata. The improved version

would have ranked fourth in the CHeSC 2011 challenge ( Mascia &

Stützle, 2012 ). Kubalík (2012) developed the ISEA algorithm, which

uses an evolutionary based algorithm to evolve a population of

sequences of heuristics through add, delete and change mutation

moves. The first and last heuristic in a given sequence of low-level

heuristics must be a local search heuristic. The constructed se-

quence of heuristics is applied to the candidate solution, with the

current solution reinitialised if no improvements are observed for a

certain period of time. This algorithm finished eighth in the chal-

lenge. However, a modified version of the method that employs

an adaptive reinitialisation scheme would have taken second place

in CHeSC 2011 ( Kubalík, 2012 ). Cichowicz et al. (2012) proposed

two hyper-heuristics, a Five Phase hyper-heuristic and a Genetic

Hive hyper-heuristic. The former performs five different phases

including intensification, stagnation, diversification, mutation and

crossover using a number of working solutions. The latter uses a

population based approach, inspired by an evolutionary algorithm

which imitates the behaviour of bees searching for food. The Ge-

netic Hive method evolves a population of sequences of heuristics,

each to apply to a selected solution. The authors performed exten-

sive experiments and compared several variants of the two hyper-

heuristics, each with different parameter settings. The results re-

vealed that the Five Phase hyper-heuristic performs better than the

Genetic Hive hyper-heuristic on average, however the Genetic Hive

method receives a better score when using the Formula 1 scor-

ing system from the competition. The Genetic Hive hyper-heuristic

was submitted to CHeSC 2011 and finished twelfth. Di Gaspero

and Urli (2012) introduced the AVEG-Nep hyper-heuristic that

finished sixteenth out of the twenty competition entries. This

approach uses Reinforcement Learning as a heuristic selection

method. Several variants of Reinforcement Learning were investi-

gated, with a variant that controls the parameters using a multi-

layer perceptron neural network shown to be the most promis-

ing. This method would have finshed thirteenth in the CHeSC 2011

competition. 
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The decision of which mechanism to use for performance eval-

ation when comparing the results obtained by empirical test-

ng can often affect the conclusions that can be drawn from

uch experiments. Although the CHeSC 2011 competition results

ere decided using the Formula 1 scoring system described in

ection 3.1 above, many alternative mechanisms could be used for

erformance comparison. The Formula 1 system was designed with

he intention of rewarding methods which perform well across a

et of problem domains, rather than those that show strong perfor-

ance in only one or two domains. Di Gaspero and Urli (2012) in-

roduced the idea of comparing the performance of the CHeSC

011 entrants using normalised cost function values of the median

esults of each method for each instance. This concept has been

sed in a variety of subsequent papers to compare performance to

he CHeSC 2011 competition, examples of this metric can be seen

n the box plot comparisons presented by Drake (2014) for exam-

le. Adriaensen et al. (2015) used six different metrics for perfor-

ance comparison, including the normalised objective function as

uggested by Di Gaspero and Urli (2012) . When using these differ-

nt metrics, AdapHH ( Mısır et al., 2012b ) was still shown to per-

orm best among the CHeSC 2011 competition entrants. 

.2. Applied to all six HyFlex problem domains - non-CHeSC 2011 

yper-heuristics 

After the CHeSC 2011 challenge, the hyper-heuristics commu-

ity recognised the results of the competition as a benchmark to

valuate the quality and generality level of newly developed selec-

ion hyper-heuristics. A number of papers have presented methods

hich claim to outperform AdapHH and all of the other hyper-

euristics submitted to CHeSC 2011. However, not all have provided

heir full results and source code for independent verification. We

ontacted the authors of all methods claiming to outperform all of

he competition entrants and received responses and links to the

ollowing resources: Adriaensen, Brys, and Nowé (2014b) 3 , Kheiri

nd Keedwell (2015) 4 and Kheiri and Özcan (2016) 5 . 

A relatively simple hyper-heuristic, based on Iterated Local

earch (ILS), was presented by Adriaensen et al. (2014b) . Their

air-Share ILS hyper-heuristic applied a mutation or ruin-recreate

euristic, selected proportionally based on previous performance,

efore performing an improvement phase using local search

euristics. This method was shown to outperform AdapHH based

n the Formula 1 scores from the competition, obtaining better re-

ults than all twenty CHeSC entrants for SAT, PFS and VRP. Addi-

ional analysis showed that each design decision made when de-

eloping this method was contributing directly to the overall per-

ormance of the algorithm. ILS based hyper-heuristics were also

onsidered by Meignan, Schwarze, and Voß (2016) , who incorpo-

ated look-ahead mechanisms in order to help guide the search

rocess. The proposed methods were shown to outperform tradi-

ional ILS on the CHeSC 2011 benchmarks, with additional com-

arisons performed using instances from the International Nurse

ostering Competition (INRC2010). 

Drake, Özcan, and Burke (2012) tested an improved Choice

unction selection hyper-heuristic over the CHeSC 2011 bench-

ark. The proposed method introduced an adaptive mechanism

nspired by Reinforcement Learning to control the parameter val-

es of the classic Choice Function heuristic selection method. This

ork argued that the traditional Choice Function as described by

owling et al. (2001) can potentially suffer from excessive diversifi-

ation when the search is trapped in a local optimum. To overcome
cent advances in selection hyper-heuristics, European Journal of 
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his, the Modified Choice Function method rewards the intensifica-

ion component and heavily punishes the diversification element

ach time an improvement in solution quality is made. This rela-

ively simple and easy-to-implement approach statistically signif-

cantly outperformed the traditional Choice Function in the SAT,

FS and VRP problem domains. The results of the classic Choice

unction and the Modified Choice Function when compared to the

HeSC 2011 competitors show that the former ranks twentieth out

f twenty-one approaches, and the latter ranks twelfth overall. The

esults provide evidence to highlight the importance of parameter

uning. 

Asta and Özcan (2015) used tensor analysis to identify the la-

ent relationships between low-level heuristics, combining Sim-

le Random heuristic selection with two simple move acceptance

ethods: Naive Acceptance with a probability of 0.5, and Improv-

ng and Equal. Firstly, the hyper-heuristic is run using Naive Ac-

eptance with all low-level heuristics for a short period on a given

nstance and the search trajectory is saved as a third-order ten-

or. Based on the analyses of results from tensor factorisation, low-

evel heuristics are partitioned into two, where each partition is

ssociated with a move acceptance method. Then, a multi-stage

yper-heuristic is run iteratively for the remaining time. Each move

cceptance method is used in turn with the associated low-level

euristics at each stage. The results on the CHeSC 2011 problem

omains indicate the success of this simple yet effective method,

hich ranks second against the hyper-heuristics submitted to the

ompetition. 

The HyFlex framework includes several low-level heuristic

ypes, including crossover heuristics. Unlike other low-level heuris-

ics, crossover heuristics require more than one solution as in-

ut, so a method to select and manage the input for crossover

euristics needs to be defined. Drake (2014) investigated the use

f crossover control schemes within two existing selection hyper-

euristics, analysing the difference in performance when modi-

ying the strategy for managing potential solutions for crossover.

erreira, Gonçalves, and Pozo (2017) maintained an auxiliary set

f solutions explicitly for crossover, made up of previously found

est-so-far solutions. The proposed framework used a Multi-armed

andit selection mechanism with a number of different acceptance

riteria, and adaptively changed the depth of search and intensity

f mutation parameters using Reinforcement Learning. 

Jackson, Özcan, and Drake (2013) introduced a number of fit-

ess proportional heuristic selection methods based on the For-

ula 1 ranking used in the CHeSC 2011 competition. Rather than

sing this ranking to compare methods, this selection method

anked the individual low-level heuristics under consideration for

election at each step. Using Late Acceptance Strategy ( Burke &

ykov, 2017 ) as an acceptance criterion, good results were ob-

erved in the PS and SAT problem domains. Perhaps counter-

ntuitively, reversing the scores assigned to a heuristic (i.e. pun-

shing the best performing heuristic and rewarding the worst) was

hown to improve performance, promoting diversity within the

earch in order to prevent stagnation and avoid getting stuck in

ocal optima. 

Kheiri and Özcan (2016) presented an iterated multi-stage se-

ection hyper-heuristic framework, enabling the use of several

nteracting hyper-heuristics at different stages during the optimisa-

ion process. The authors argued that an additional upper heuristic

evel, referred to as the multi-stage level, is required to manage

he transition and information exchange between multiple hyper-

euristics. A selection hyper-heuristic consisting of two stages was

ntroduced, referred to as MSHH. The first stage applies a greedy

trategy using the given low-level heuristics provided by HyFlex

nd ‘new’ heuristics generated via relay hybridisation (pairing up

f heuristics) for a number of steps. Then a dominance based ap-

roach is used to decide which heuristics perform equally well, de-
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re

Operational Research, https://doi.org/10.1016/j.ejor.2019.07.073 
ermining the low-level heuristic set and associated selection prob-

bilities for the following stage. In the second stage, a low-level

euristic is selected and applied using a roulette wheel strategy

ased on the selection probability of each heuristic. In both stages,

n adaptive threshold move acceptance method is used. The em-

irical results showed that MSHH performs better than five other

ulti-stage hyper-heuristics across the HyFlex problem domains. 

A train and test approach was used by Yates and Keedwell

2017) , with sequences of low-level heuristics and objective func-

ion values yielded from applying a simple hyper-heuristic used

o train a recurrent neural network. Following training, the neu-

al network is used to generate new sequences of heuristics that

re then applied to unseen problem instances. The generated se-

uences were observed to be capable of producing better results

han the sequences used for training. Perhaps unsurprisingly, se-

uences that are trained and tested on a single problem domain

erform better than those trained on multiple problem domains.

lthough this method was developed and tested using the original

our HyFlex problem domains (SAT, BP, PS, PFS), no comparison to

ny previous methods was provided. 

Kheiri and Keedwell (2015) investigated the use of hidden

arkov models (HMM) to produce sequences of heuristics. The

esulting method, referred to as a sequence-based selection hyper-

euristic (SSHH), replaces the hidden states of the HMM with low-

evel heuristics and uses a matrix of transition probabilities to

etermine the movement between these hidden states. Another set

f observation probabilities determine whether a given heuristic

ill be applied alone, or will be coupled with another low-level

euristic to form a sequence of heuristics. 

.2.1. Performance of low-level heuristics and heuristic types in 

pecific problem domains 

Here we highlight the comments made by different authors on

he performance of individual low-level heuristics and heuristic

ypes for each of the six CHeSC 2011 problem domains. 

oolean satisfiability problem (SAT) 

The work of Mısır et al. (2013b) demonstrated that the effec-

iveness of using a relay hybridisation technique, pairing up heuris-

ics to be applied consecutively, is very limited in this problem

omain. Kheiri and Özcan (2016) discovered that most improving

oves are a result of applying mutational heuristics. Asta and Öz-

an (2015) indicated that the ruin and recreate heuristic (LLH6) is

seful when deployed as a hill climber (i.e. with Improving and

qual move acceptance). They also confirmed the usefulness of all

f the mutational heuristics (LLH0, LLH1, LLH2, LLH3, LLH4, LLH5)

n addition to the hill climbers (LLH7, LLH8). Although Adriaensen

nd Nowé (2016) indicated that including crossover heuristics is

eneficial in general, Drake (2014) argued that explicitly removing

rossover low-level heuristics from the set of available heuristics

as the potential to improve performance in this problem domain.

ne-dimensional bin-packing problem (BP) 

Mısır et al. (2013b) showed that relay hybridisation is very

ffective for finding pairs of heuristics that intensify the search

rocess. Both hill climbers (LLH4, LLH6) perform as the most ef-

ective second heuristics in an identified pair. Mutational (LLH0,

LH3), ruin-recreate (LLH2) and crossover (LLH7) low-level heuris-

ics help to diversify the search. Their work also observed that

LH3, LLH2, LLH7 and LLH6 were mostly maintained in the avail-

ble heuristic set over time. On the other hand, mutational heuris-

ics (LLH0, LLH5), and the ruin-recreate heuristic (LLH1) and hill

limber (LLH4) were mostly excluded despite their effective per-

ormance during certain phases of the search. Some of these find-

ngs were confirmed by other studies. Drake (2014) also found that

rossover (i.e. LLH7) was able to greatly improve solution quality.
cent advances in selection hyper-heuristics, European Journal of 
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6 Available online at: https://github.com/Steven- Adriaensen/Lean- GIHH 
Asta and Özcan (2015) commented on the usefulness of LLH3 and

LLH6, and Kheiri and Özcan (2016) noted that LLH5 can actually be

detrimental to the performance of the hyper-heuristic. 

Personnel scheduling problem (PS) 

Mısır et al. (2013b) demonstrated that relay hybridisation iden-

tified some effective heuristic pairs, composed of a mutational

heuristic (LLH11) and ruin-recreate heuristics (LLH6, LLH7) as

the first heuristics, and hill climbers (LLH3, LLH4) as the sec-

ond heuristics. Due to the slow speed of execution of the low-

level heuristics associated with this problem domain, in partic-

ular the hill climbers, Mısır et al. (2013b) were not able to re-

duce the heuristic set by eliminating ineffective heuristics within

the available computation time. However, Mascia and Stützle

(2012) performed a pre-processing phase to eliminate poor per-

forming heuristics, revealing that the hill climbers LLH2, LLH3 and

LLH4 are non-dominated heuristics, and therefore the remaining

low-level heuristics could be excluded. Kheiri and Özcan (2016) ar-

gued that LLH0 and LLH1, which are provided as hill climbers,

do not yield any improvement either individually or in combina-

tion with another low-level heuristic. Asta and Özcan (2015) indi-

cated that, in most of their experiments, ruin and recreate heuris-

tics are identified as a source of ‘noise’ and are excluded from the

search space, where a noisy heuristic is one that generates solu-

tions with a significant deterioration in quality with high proba-

bility. In the remaining cases, mutational heuristics are excluded

as noise. Jackson et al. (2013) observed that reducing the heuris-

tic search space in this problem domain can be detrimental to the

overall performance. 

Permutation flow shop problem (PFS) 

Mısır et al. (2013b) showed that the hill climbers (LLH7, LLH8,

LLH9, LLH10) were used effectively as second heuristics in heuris-

tic pairs identified by relay hybridisation, with LLH7 and LLH8

performing particularly well. The ruin-recreate heuristics (LLH5,

LLH6) and mutational heuristics (LLH0, LLH1) were used as the

first heuristics generally. Drake (2014) commented that the use of

crossover low-level heuristics greatly improves the solution qual-

ity in this domain. Kheiri and Özcan (2016) note that the use of

a combination of a mutational heuristic followed by a hill climb-

ing heuristic (i.e. using the same basic structure of Iterated Local

Search), was favoured by their approach on this domain and the

TSP. 

Travelling salesman problem (TSP) 

Mısır et al. (2013b) demonstrated that for the TSP the effect

of relay hybridisation is useful during certain points of the search

process. Again an Iterated Local Search structure was automatically

identified as an effective search strategy by their hyper-heuristic.

The mutational heuristics (LLH0, LLH1, LLH3, LLH4) and the only

ruin-recreate heuristic (LLH5) were used as the first heuristic in

a pair, with hill climbers (LLH7, LLH8) most frequently used as

second heuristics. Drake (2014) noted that the performance of

crossover heuristics can vary significantly depending on the in-

stance being solved. Kheiri and Keedwell (2015) observed that

LLH0, LLH1 and LLH5 do not make any improvement when ap-

plied on their own, but the majority of the improvements made

in this domain were due to combining these heuristics with LLH8

(hill climber). Moreover, LLH8 does not improve the best-of-run so-

lutions unless combined with these heuristics. 

Capacitated vehicle routing problem with time windows (VRP) 

Mısır et al. (2013b) highlighted that their method took advan-

tage of relay hybridisation during the early stages of the search

in the VRP domain. The hill climbers (LLH4, LLH8) were effective
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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econd heuristics. Drake (2014) provided evidence that in this do-

ain that the performance of crossover heuristics also varies sig-

ificantly depending on the instance being solved, and that the

hoice of crossover control scheme is crucial in determining perfor-

ance. Asta and Özcan (2015) employed a pre-processing phase to

liminate poor performing heuristics. Ruin and recreate heuristics

ere identified as a source of noise when solving VRP instances.

heiri and Özcan (2016) noted that no generated heuristic pairs

ontribute towards the improvement of the best solutions found. 

.3. Applied to some HyFlex problems (2-5 domains) 

Alanazi and Lehre (2016) provided a theoretical analysis of the

erformance limits when using Reinforcement Learning as a learn-

ng mechanism within selection hyper-heuristics. The authors ar-

ue that, given the probability of improving a solution at each

tep is less than 50%, the performance of using additive Reinforce-

ent Learning is asymptotically similar to simple uniform random

euristic selection, suggesting that additive Reinforcement Learn-

ng cannot necessarily capture differences in performance of indi-

idual low-level heuristics. The results of their analysis were cor-

oborated by a set of empirical experiments using the BP and PFS

omains within HyFlex. 

Four of the domains from HyFlex were used as a benchmark by

huang and Smith (2017) when studying ‘chains’ of solutions, sam-

led through random heuristic selection. This method is based on

 Simple Random - Only Improving framework. However, a certain

umber of non-improving moves are permitted. If no improving

oves are found after a specified number of steps, i.e. the length

f the solution chain, the solution returns to the last accepted so-

ution. Empirical studies using different strategies to manage the

ength of solution chains sampled were presented using SAT, BP,

FS and TSP. No comparison to the CHeSC 2011 entrants or other

ork in the literature using the HyFlex framework was given. 

.4. Applied to CHeSC 2011 problems and extended benchmark sets 

9 domains) 

As mentioned in Section 3.1 , Adriaensen et al. (2015) introduced

n extension to the original benchmark set, providing implemen-

ations in HyFlex for the quadratic assignment problem, the 0-1

napsack problem and the maximum-cut problem. Since then, a

umber of papers have used the extended set for cross-domain

erformance comparison of selection hyper-heuristics. 

An ‘Accidental Complexity Analysis’ of the CHeSC 2011 win-

ing AdapHH hyper-heuristic, was presented by Adriaensen and

owé (2016) . In this work, the authors argued that it is possible

o reduce the complexity of AdapHH, by removing a number of

echanisms, without loss of performance. A total of 39 simplifi-

ations were proposed, with a number of these providing statisti-

ally significant performance improvements compared to the orig-

nal hyper-heuristic. A ‘lean’ version of the original method, which

ombines multiple simplifications (reducing the overall program

ize from 2324 to 288 lines of code in the process 6 ), performed

etter over all 98 instances from the nine problem domains. 

Almutairi, Özcan, Kheiri, and Jackson (2016) compared the per-

ormance of various selection hyper-heuristics including AdapHH,

SHH (Kheiri and Keedwell, 2015) , two methods from Adriaensen

t al. (2015) and three other previously proposed algorithms on the

xtended HyFlex benchmark. The results showed that AdapHH per-

orms the best across the extended domains based on raw ranking.

owever, SSHH was the best method based on normalised fitness

easure. 
cent advances in selection hyper-heuristics, European Journal of 
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Table 3 

A sample of selection hyper-heuristics for single objective optimisation belonging to various categories based on the extended classification. 

Source Search points Feedback LLH set Grouping of LLHs Accept/reject Parameter setting 

in move acceptance 

( Chan et al., 2012 ) Single Mixed Whole Predefined Basic, threshold Static, adaptive 

( Di Gaspero & Urli, 2012 ) Single Online Whole Predefined Basic None 

( Drake et al., 2012 ) Single Online Reduced Without distinction Basic None 

( Hsiao et al., 2012 ) Mixed Online Reduced Predefined – –

( Kubalík, 2012 ) Population Mixed Reduced Predefined – –

( Lehrbaum & Musliu, 2012 ) Mixed Online Reduced Predefined – –

( Mascia & Stützle, 2012 ) Single Offline Reduced Predefined Stochastic Static 

( Mısır et al., 2012b ) Single Online Whole Without distinction Threshold Adaptive 

( Jackson et al., 2013 ) Single Online Whole Without distinction Threshold Static 

( Adriaensen et al., 2014b ) Single Online Whole Predefined Stochastic Adaptive 

( Kheiri et al., 2016 ) Single Online Reduced Predefined Threshold Adaptive 

( Asta & Özcan, 2015 ) Single Offline Reduced Stage-based Basic Static 

( Drake, 2014 ) Single Online Whole Without distinction Basic None 

( Kheiri & Keedwell, 2015 ) Single Online Reduced Without distinction Threshold Adaptive 

( Asta et al., 2016a ) Single Online Reduced Stage-based Threshold Adaptive 

( Kheiri & Özcan, 2016 ) Single Online Increased Stage-based Threshold Adaptive 

( Meignan et al., 2016 ) Single Online Reduced Predefined Basic None 

( Chuang & Smith, 2017 ) Single No learning Reduced Predefined Basic None 

( Ferreira et al., 2017 ) Single Online Whole Without distinction Threshold Dynamic 

( Yates and Keedwell 2017 ) Single Offline Whole Without distinction Stochastic Static 

Table 4 

Application domains of selection hyper-heuristics. 

Application Domain References 

Design problems ( Allen et al., 2013 ) 

Dynamic environments ( Baykaso ̆glu & Ozsoydan, 2017; Kiraz et al., 2013; van der Stockt & Engelbrecht, 2014; Topcuoglu et al., 2014; Uluda ̆g et al., 2013 ) 

Knapsack ( Drake et al., 2016; Lassouaoui & Boughaci, 2014; Soria-Alcaraz et al., 2014a ) 

Puzzles and games ( Li & Kendall, 2017; Wauters et al., 2012 ) 

Real-valued blackbox 

optimisation 

( Caraffini et al., 2019; Damaševi ̌cius & Wo ́zniak, 2017; Grobler et al., 2015; Tinoco & Coello, 2013 ) 

Scheduling ( Aron et al., 2015; Asta et al., 2016a; Asta et al., 2016b; Bilgin et al., 2012; Chen et al., 2016a; Chen et al., 2017; Koulinas & 

Anagnostopoulos, 2013; Koulinas et al., 2014; Lin et al., 2017; Mısır et al., 2015; Mısır et al., 2012a; 2013a; Monemi et al., 2015; Pour 

et al., 2018; Rahimian et al., 2017; Rajni & Chana, 2013; Tsai et al., 2014; Wu et al., 2016; Zheng et al., 2015 ) 

Search-based software 

engineering 

( Henard et al., 2014; Jia et al., 2015; Zamli et al., 2016 ) 

Shelf allocation ( Bai et al., 2013; Zhao et al., 2016 ) 

Telecommunications ( Tsai et al., 2017; Yang et al., 2014 ) 

Timetabling ( Burke et al., 2014; da Fonseca et al., 2016; Kheiri & Keedwell, 2017; Kheiri et al., 2016; Soria-Alcaraz et al., 2017; Soria-Alcaraz et al., 

2014b ) 

Traveling salesman ( Choong et al., 2017; El Yafrani et al., 2018; Martins et al., 2017; Qu et al., 2015; Smith & Imeson, 2017; Swiercz et al., 2014 ) 

Vehicle routing ( Akar et al., 2014; Chen et al., 2016b; Marshall et al., 2015; Mourdjis et al., 2016; Sabar et al., 2015c; Sim & Hart, 2016; Soria-Alcaraz 

et al., 2017; Tyasnurita et al., 2017; Yin et al., 2016 ) 
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Gümüş , Ozcan, and Atkin (2016) tuned the parameters of a

eneric steady state Memetic Algorithm using the Taguchi method

n two arbitrarily selected instances from each of the original four

roblems in HyFlex. The tuned approach was applied to forty-five

nstances from nine domains. Each crossover, mutation and local

earch heuristic is selected at random during the search. The tuned

emetic Algorithm turns out to be competitive, outperforming two

ther Memetic Algorithm variants, ranking fourth in the CHeSC

011 competition compared to the competition entrants, and sec-

nd in the additional domains compared to the same six hyper-

euristics that were compared by Adriaensen et al. (2015) . 

A sample of selection hyper-heuristics using HyFlex, belonging

o various categories based on the extended classification discussed

n Section 2 , are listed in Table 3 . 

. Selection hyper-heuristics for different problem domains 

In addition to the HyFlex problem domains, a large number

f other problem domains have been addressed by different re-

earchers as illustrated in Table 4 . Here we have tried to group

ethods solving the same or similar problems together, with a fi-

al subsection containing the problems that do not fit into any of

hese categories. 
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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.1. Dynamic environments 

There is a range of dynamic environment optimisation prob-

ems in which problem components, such as, objective function,

onstraints etc., may change over time, and as a result move

he associated optima for a given instance. The majority of so-

ution techniques for dynamic environment problems are evo-

utionary approaches ( Jin & Branke, 2005 ). There are some re-

ent studies investigating hyper-heuristics and their hybrids in this

rea. 

Topcuoglu, Ucar, and Altin (2014) tested a number of selec-

ion hyper-heuristics on both the discrete generalised assignment

roblem, and the continuous moving peaks benchmark, a multidi-

ensional dynamic function generator. The authors used a set of

arameterised Gaussian mutation operators as low-level heuristics

or the moving peaks benchmark. Choice Function combined with

ccepting Only Improving moves performed better than the major-

ty of the other selection hyper-heuristics tested and a reference

emory based evolutionary algorithm. Kiraz, Etaner-Uyar, and Öz-

an (2013) compared the performance of selection hyper-heuristics

sing the moving peaks benchmark. The results in this study also

ndicated the success of Choice Function based hyper-heuristics in

olving a range of dynamic environment problems. 
cent advances in selection hyper-heuristics, European Journal of 
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Uluda ̆g et al. (2013) investigated a dual population framework,

enabling exploitation of online and offline learning methods using

other selection hyper-heuristics. Representative examples captur-

ing the change dynamics are sampled to learn probability vectors

for an Estimation of Distribution Algorithm in an offline learning

phase. During the online learning phase, the probability vectors are

used as low-level heuristics controlled by hyper-heuristics. Over-

all, a Greedy heuristic selection method combined with All Moves

acceptance performed best across a large range of Decomposable

Unitation-Based Functions with various change dynamics, includ-

ing cyclic changes. Additionally, it was observed that the proposed

approach outperforms other well-known techniques in almost all

scenarios, except some deceptive functions. 

van der Stockt and Engelbrecht (2014) implemented a sim-

ple hyper-heuristic by mixing a set of low-level population based

metaheuristics, including two variants of Particle Swarm Optimisa-

tion, a Genetic Algorithm, and Differential Evolution to the mov-

ing peaks benchmark. Each selected metaheuristic is applied for

a fixed number of steps and then another is chosen randomly.

Baykaso ̆glu and Ozsoydan (2017) proposed a greedy randomised

adaptive search procedure (GRASP) for solving the dynamic multi-

dimensional knapsack problem. The results across the chosen prob-

lem instances with various change dynamics show that GRASP per-

forms reasonably well when compared to a Memetic Algorithm,

Differential Evolution, a swarm intelligence approach and a Rein-

forcement Learning based hyper-heuristic managing all of those al-

gorithms. 

5.2. Knapsack problems 

Drake, Özcan, and Burke (2016) presented the idea of crossover

control at two different conceptual levels, using the multidimen-

sional knapsack problem as a testbed. This paper investigated

giving responsibility to either the high-level search methodology,

or the low-level heuristic operators below the domain barrier

at the problem-level. Although improved performance was ob-

served for this problem domain by controlling crossover below

the domain barrier, in the case of the HyFlex framework where

the domain barrier is strictly enforced, this feature needs to be

incorporated into the implementation of the high-level heuristic

search methodology. This issue was considered in detail in further

work by Drake (2014) , discussed in Section 4.1 above. 

Soria-Alcaraz, Ochoa, Carpio, and Puga (2014a) used ‘evolvabil-

ity metrics’, a measure of quality potential for low-level heuristic-

solution pairs, to inform the adaptive selection of operators for

a number of problems including the multiple knapsack problem.

Lassouaoui and Boughaci (2014) solved the related winner de-

termination problem, using a Choice Function - Only Improving

hyper-heuristic. Given a set of bids for different subsets of items,

this problem involves finding a set of winning bids that maximise

the revenue of an auctioneer in a combinatorial auction. Operating

over a set of five low-level heuristics, including a Stochastic Local

Search operator, combining heuristics outperformed Stochastic Lo-

cal Search alone on a well-known set of benchmark instances from

the literature. 

5.3. Puzzles and games 

Puzzles and games have long been a favoured domain for re-

searchers in artificial intelligence, so it is unsurprising that some

have caught the attention of researchers working with selection

hyper-heuristics. The Eternity II Puzzle is an edge-matching puzzle,

which requires a set of patterned tiles to be placed on a grid, such

that the edges of adjacent tiles share a common pattern. Wauters,

Vancroonenburg, and Vanden Berghe (2012) presented the win-

ning entrant for an international competition to solve this puz-
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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le, where the optimisation goal is to maximise the number of

atched edges. Using a set of low-level heuristics that swap and

otate tiles, Simple Random heuristic selection was combined with

 number of different acceptance criteria, with secondary objective

unctions also used to help guide the search. 

Li and Kendall (2017) introduced hyper-heuristic players for a

umber of games, defining high-level strategies using a variety of

ow-level heuristics, including iterated prisoners dilemma and re-

eated Goofspiel . The hyper-heuristic game players were shown to

utperform their constituent low-level heuristics, using dynamic

trategies over time. A constructive hyper-heuristic for the com-

etitive TSP was also presented. This problem is discussed in more

etail in Section 7 . 

.4. Real-valued black-box benchmark function optimisation 

Real parameter function optimisation has been an area of in-

erest for swarm and evolutionary computation researchers for

ecades, and still maintains an active research community today. A

ide range of algorithms have been developed to solve problems

f this type, such as Evolution Strategies, Particle Swarm Optimisa-

ion and Differential Evolution. Recently, selection hyper-heuristics

ave caught the attention of researchers in this area, with meth-

ds utilising multiple low-level heuristics, in the form of either

ndividual operators or entire metaheuristics, appearing increas-

ngly often. Grobler, Engelbrecht, Kendall, and Yadavalli (2015) pre-

ented a set of selection hyper-heuristics operating over a set of

opular metaheuristics using a shared population, each employ-

ng different strategies to adaptively change the search space of

ow-level heuristics during the search. Effectively balancing in-

ensification and diversification within the heuristic search space

as shown to outperform using a static set of low-level heuris-

ics. Damaševi ̌cius and Wo ́zniak (2017) proposed a ‘state flip-

ing’ hyper-heuristic, which oscillates between two nature-inspired

etaheuristics for benchmark function optimisation during a run,

nd applied it to eight classic benchmark functions. Hybridising

he two metaheuristics offered better performance than apply-

ng each individually. Caraffini, Neri, and Epitropakis (2019) com-

ared four Adaptive Operator Selection strategies selecting memes

ithin a Memetic Algorithm for real parameter single-objective op-

imisation. Three of these were success-based adaptation strate-

ies, rewarding memes that generate good solutions, increasing the

hance of selecting those memes during the search. Results were

resented using well-known benchmark sets, with significantly im-

roved performance reported when compared to a number of ex-

sting methods from the literature. 

Whereas the methods above solve unconstrained optimisation

roblems, Tinoco and Coello (2013) proposed a hyper-heuristic

ased on Differential Evolution for constrained function opti-

isation. Using variants of roulette wheel selection, choosing

rom one of twelve Differential Evolution variants at each step,

heir approach was demonstrated to outperform state-of-the-art

onstrained Differential Evolution on a set of well-known bench-

ark functions. 

.5. Scheduling 

In their short history, selection hyper-heuristics have been ap-

lied widely to problems in scheduling. One of the most frequently

tudied contexts for scheduling problems is healthcare scheduling.

ısır, Verbeeck, De Causmaecker, and Vanden Berghe

2013a) tested fourteen hyper-heuristics with different charac-

eristics under various settings on home care scheduling, nurse

ostering and patient admission scheduling problems. Further

ork ( Mısır, Verbeeck, De Causmaecker, & Vanden Berghe, 2012a )
cent advances in selection hyper-heuristics, European Journal of 
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u  
nvestigated the influence of the set of low-level heuristics avail-

ble to a selection hyper-heuristic on solution quality for patient

dmission scheduling. Bilgin, Demeester, Misir, Vancroonenburg,

nd Vanden Berghe (2012) considered two of these problems,

atient admission scheduling and nurse rostering, with hyper-

euristics using Great Deluge as an acceptance criterion shown to

ork well on well-known benchmark sets for both problems. 

Asta, Özcan, and Curtois (2016b) applied a life-long learn-

ng multi-stage hyper-heuristic to personnel scheduling. This ap-

roach employs two selection hyper-heuristics, both embedding

imple Random heuristic selection but with different move ac-

eptance methods. The algorithm consists of four phases overall

hich are cycled through periodically, performing tensor analysis

n the first three phases to configure the algorithm to be used

n the final phase. Tensor analysis is used to discover which low-

evel heuristics perform well with which parameter settings and

ove acceptance method. In the last phase, an iterated multi-

tage algorithm randomly chooses between Simple Random - Im-

roving and Equal or Simple Random - Naive Acceptance and

uns that hyper-heuristic using the previously learned configu-

ation for a fixed duration. This process is repeated until the

ime allocated for the final phase ends. Two variants of the ap-

roach with different memory settings for learning are tested on

urse rostering benchmarks. The results showed that including

 ‘forgetting’ mechanism performs slightly better than remem-

ering everything from the start of the search process, improv-

ng upon the best known results for four instances. Nurse ros-

ering was also considered by Rahimian, Akartunalı, and Levine

2017) . Their work presented a hybrid approach, combining a so-

ution construction stage with variable neighbourhood descent op-

rating over a search space of five low-level heuristics, before a

nal Integer Programming-based ruin-and-recreate phase. The pro-

osed approach was shown to outperform two state-of-the-art ap-

roaches from the literature in many cases on well-known existing

enchmarks. 

The winning entrant to the CHeSC 2011 competition, AdapHH,

as been discussed in detail already in Section 4.1 above. Mısır,

met, and Vanden Berghe (2015) applied this hyper-heuristic

called Generic Intelligent Hyper-heuristic (GIHH) in their paper)

o three scheduling problems operating in a unified framework:

ome care scheduling, routing and rostering of security guards,

nd maintenance personnel scheduling. This hyper-heuristic was

lso used by Monemi et al. (2015) for workover rig scheduling, a

roblem in the oil industry which requires scheduling large pieces

f mobile equipment required for oil well maintenance. Here, two

ersions of GIHH using different learning mechanisms were com-

ared. The solutions found were then used to ‘warm start’ a

ranch, price and cut algorithm for further optimisation. Where

he optimal solutions are known, the solutions found by GIHH ini-

ially are noted to already be very close to optimality. Selection

yper-heuristics for maintenance scheduling in a number of differ-

nt contexts have also been studied elsewhere. A Choice Function

yper-heuristic was used by Pour, Drake, and Burke (2018) to de-

ne the working areas of engineers performing maintenance tasks

n the Danish rail network. Tasks are re-allocated from one area to

nother at each step using one of five low-level heuristics, selected

ased on Choice Function scores. Chen, Cowling, Polack, Remde,

nd Mourdjis (2017) used binary exponential back off, a tabu based

reedy method, to manage a set of six low-level heuristics to gen-

rate maintenance schedules for preventive and corrective mainte-

ance of an urban water drainage system over a rolling time hori-

on. 

A hyper-heuristic Genetic Algorithm, which selects from mul-

iple crossover and mutation operators at each generation, was

sed by Wu, Consoli, Minku, Ochoa, and Yao (2016) to solve soft-

are project scheduling problems. Koulinas, Kotsikas, and Anag-
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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ostopoulos (2014) used a Particle Swarm Optimisation based

yper-heuristic operating over eight low-level heuristics to solve

ell-known benchmarks for resource constrained project schedul-

ng. A tabu search based hyper-heuristic algorithm was presented

y Koulinas and Anagnostopoulos (2013) to solve special cases of

he resource constrained project scheduling problem in the context

f the construction industry. The ‘Dominance-based and Roulette

heel with an Adaptive Threshold Acceptance’ ( Asta, Karapetyan,

heiri, Özcan, & Parkes, 2016a ) hyper-heuristic was used as a part

f a hybrid approach which won the MISTA 2013 challenge on

multi-mode resource-constrained multi-project scheduling prob- 

ems. This multi-stage selection hyper-heuristic method combines

wo different stages. The first stage evaluates all low-level heuris-

ics and maintains an active subset of the best performing heuris-

ics, using a dominance based mechanism which keeps heuristics

hat are not dominated by any other low-level heuristics in the

ubset. The heuristic dominance strategy measures the improve-

ent in objective function value and the number of steps required

o achieve that improvement. This stage also assigns a score to

ach low-level heuristic. The subsequent hyper-heuristic stage is

nvoked, using the active subset of heuristics with their associated

cores. The proposed multi-stage hyper-heuristic is used as a local

earch method for improvement as a part of a population based

ybrid approach. 

Many of the scheduling problems discussed in this section so

ar operate over heuristics applied to discrete search spaces. There

re also examples in the literature where hyper-heuristic search

as been used in continuous solution space. Zheng, Zhang, Ling,

nd Chen (2015) considered the problem of emergency railway

ransportation planning, for managing evacuation in the event of

isaster relief. A hyper-heuristic selecting between multiple evolu-

ionary operators from state-of-the-art methods at each step was

hown to outperform each of the constituent methods applied in-

ependently. 

Selection hyper-heuristics have been applied to a wide range

f scheduling problems in addition to those discussed already.

sai, Huang, Chiang, Chiang, and Yang (2014) considered the

roblem of cloud scheduling, using multiple metaheuristics in a

o-operative manner. Operating on a shared population, a num-

er of existing metaheuristics (Simulated Annealing, Genetic Al-

orithm, Ant Colony Optimisation and Particle Swarm Optimi-

ation) are applied to the problem in turn, with a new meta-

euristic selected when the search stagnates according to one

f two given measures. Combining metaheuristics was shown to

utperform using each of the metaheuristics individually, in ad-

ition to outperforming other traditional rule based algorithms.

hen, Li, Yang, and Rudolph (2016a) applied an adaptive Reinforce-

ent Learning method, inspired by quantum computing theory,

o task scheduling in cluster computing to optimise performance

nd power consumption. Rajni and Chana (2013) used a nature-

nspired population based numerical optimisation algorithm, and

ron, Chana, and Abraham (2015) employed a Particle Swarm Op-

imisation based hyper-heuristic, for resource provisioning in the

ontext of grid computing. Both of these methods operated on a

olution space that included both complete and partial solutions.

in, Wang, and Li (2017) applied an evolutionary method to evolve

equences of low-level heuristics, with their approach tested on

 distributed variant of the permutation flow-shop scheduling

roblem. 

.6. Search-based Software Engineering 

Search-based Software Engineering (SBSE) is a field attracting

ncreasing attention, where search and optimisation techniques are

sed to solve problems in software engineering. Some examples
cent advances in selection hyper-heuristics, European Journal of 
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of selection hyper-heuristics being applied to SBSE problems have

emerged in the literature. 

The goal of combinatorial interaction testing is to find a set

of test cases that cover all possible combinations of values be-

tween a set of t parameters, for some small fixed value t . A

Reinforcement Learning - Simulated Annealing selection hyper-

heuristic to solve this problem, operating over six low-level heuris-

tics of varying complexity, was presented by Jia, Cohen, Harman,

and Petke (2015) . Over a set of synthetic and real-world problem

instances, with 2- and 3-way interactions, comparable performance

was shown to existing methods, with particularly good results

observed for real-world instances. Zamli, Alkazemi, and Kendall

(2016) used a Tabu Search hyper-heuristic for the same problem,

selecting from four low-level metaheuristics for t -way test suite

generation, demonstrating good results for problems considering

up to 6-way interactions. 

Henard, Papadakis, and Le Traon (2014) used a Simple Random

- Only Improving selection hyper-heuristic to select from four low-

level heuristics to generate test configurations for mutation testing

of software product lines. Mutation testing seeks to find a suite

of test configurations that correctly identify a set of ‘mutant’ vari-

ants of a particular system. Combining low-level heuristics was

observed to outperform random generation of test configurations,

reducing the size of the test suite required and increasing the

number of mutants identified. 

In addition to the formulation of single-objective software en-

gineering problems, SBSE also covers a variety of problems that

are multiobjective by nature. Selection hyper-heuristics for multi-

objective SBSE problems ( El Kateb, Fouquet, Bourcier, & Le Traon,

2014; Guizzo, Bazargani, Paixao, & Drake, 2017a; Guizzo, Fritsche,

Vergilio, & Pozo, 2015; Guizzo, Vergilio, Pozo, & Fritsche, 2017b;

Kumari & Srinivas, 2016 ) are covered in Section 6.1 . 

5.7. Timetabling 

Timetabling problems are a type of scheduling problem.

They have also frequently been addressed using selection hyper-

heuristics. Pillay (2016) provides a survey of all hyper-heuristic

approaches applied to various educational timetabling problems.

Here we present the recent applications of selection hyper-

heuristics for educational timetabling. 

Burke, Qu, and Soghier (2014) studied two-stage approaches

for examination timetabling, which first construct a feasible solu-

tion, then use a hyper-heuristic to sequence perturbative low-level

heuristics for improvement. The tested methods apply each heuris-

tic one at a time in turn from an evolved sequence. An approach

which adjusts the length and contents of the sequences adaptively

performs particularly well on the Toronto benchmarks, but poorly

on the ITC2007 dataset. 

Soria-Alcaraz et al. (2014b) tested a variant of Iterated Lo-

cal Search strengthened by a hyper-heuristic for post-enrollment

course timetabling. The hyper-heuristic uses an Adaptive Opera-

tor Selection method based on credit assignment to control nine

low-level heuristics during the improvement phase. The proposed

approach did not, on the whole, perform as well as the state-of-

the-art methods for the problem instances tested. However, it ob-

tained the new best solution to one of the ITC2007 problem in-

stances. Soria-Alcaraz, Ochoa, Sotelo-Figeroa, and Burke (2017) im-

proved their approach by using a subset of low-level heuristics

identified by performing non-parametric statistical tests and fitness

landscape probing techniques. They also applied this approach to

vehicle routing. However, it does not outperform the state-of-the-

art methods. 

da Fonseca, Santos, Toffolo, Brito, and Souza (2016) pro-

posed a three-stage approach referred to as GOAL (Group of Op-

timization and Algorithms) which won the third international
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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imetabling competition (ITC2011), based on a real-world high

chool timetabling problem. The first stage of the approach con-

tructs an initial solution which is then fed into a hyper-heuristic

ontrolling six low-level heuristics for improvement. The heuris-

ic selection component of this hyper-heuristic chooses a heuris-

ic with a prefixed probability. Simulated Annealing with reheat-

ng is used for move acceptance. In the last stage, an Iterated

ocal Search algorithm is used, employing two low-level heuristics,

ach selected at random during the search and accepting improv-

ng moves only. Hyper-heuristic Search Strategies and Timetabling

HySST) ( Kheiri, Özcan, & Parkes, 2016 ) is a multi-stage hyper-

euristic approach, which also competed at ITC2011. This method

ombines two selection hyper-heuristics, one operates on a set

f mutational low-level heuristics and the other on hill climbing

euristics. The proposed method switches between diversification

nd intensification stages if the candidate solution cannot be im-

roved after a certain duration. The method employs an adaptive

hreshold move acceptance which accepts solutions that are a fac-

or (1 + ε) worse, where ε is a threshold that changes adaptively

uring the search. This solver generated the all-time-best solutions

or three instances in round 1 of the ITC2011 competition, and

ame second in rounds 2 and 3. Kheiri and Keedwell (2017) pro-

osed a sequence-based selection hyper-heuristic utilising a hidden

arkov model, which keeps scores to represent the probability of

electing a low-level heuristic based upon the previously invoked

euristic. The scores are updated using Reinforcement Learning.

he proposed hyper-heuristic outperforms GOAL, obtaining new

est results for seven instances, matching the best-known results

or four instances from the the ITC2011 benchmark. 

A number of selection hyper-heuristics that construct solutions

o timetabling problems are also present in the literature ( Qu,

ham, Bai, & Kendall, 2015; Soghier & Qu, 2013 ). These methods

re discussed in detail in Section 7 , which is dedicated to construc-

ive selection hyper-heuristics. 

.8. Traveling salesman 

The traveling salesman problem (TSP) is arguably the most

ell-known combinatorial optimisation problem, with a number of

ariants which consider different constraints or objectives. A uni-

ed framework which is able to represent a number of TSP vari-

nts, in addition to a DNA sequencing problem found in bioinfor-

atics and a knapsack problem, was presented by Swiercz et al.

2014) . Using a set of representation specific low-level heuris-

ics, rather than problem specific low-level heuristics, good per-

ormance was still observed despite the relative simplicity of the

ow-level heuristic set. 

Smith and Imeson (2017) presented a large neighborhood

earch heuristic for the generalised traveling salesman problem,

ased on the highly successful method of Pisinger and Ropke

2007) for the vehicle routing problem. This framework is based

n an iterative ruin-and-recreate structure, adaptively selecting

euristics to add and remove elements of a solution. Their ap-

roach was shown to outperform a number of state-of-the-

rt methods on several benchmark libraries, including finding

ew best solutions for some instances. Choong, Wong, and Lim

2017) used a Modified Choice Function to select between low-

evel heuristics within a swarm based evolutionary algorithm,

pplying their method to the TSP benchmarks within HyFlex. No

irect performance comparison to other CHeSC entrants, or other

ethods in the literature was given. 

The traveling thief problem (TTP) is a recently proposed combi-

atorial optimisation problem which combines the classical trav-

ling salesman problem with a knapsack problem. A selection

yper-heuristic based on the existing Estimation of Distribution

lgorithm hyper-heuristic of Qu et al. (2015) was presented by
cent advances in selection hyper-heuristics, European Journal of 
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artins et al. (2017) . The proposed framework sampled sequences

f low-level heuristics to apply to small and medium-sized in-

tances of the TTP. Another hyper-heuristic approach was intro-

uced by El Yafrani et al. (2018) , using Genetic Programming to

volve selection hyper-heuristics to address the TTP. This paper is

iscussed in detail in Section 8 . 

.9. Vehicle Routing 

Vehicle routing problems (VRPs) are an area in which selection

yper-heuristic methods have been particularly successful, with

he Adaptive Very Large Neighbourhood Search (AVLNS) approach

f Pisinger and Ropke (2007) achieving state-of-the-art results for

ultiple VRP variants back in 2007. 

Sim and Hart (2016) combined the two paradigms of selection

nd generation heuristics, using Genetic Programming to generate

nitialisation and perturbation low-level heuristics for the VRP, be-

ore employing the generated low-level heuristics within a selec-

ion hyper-heuristic framework. After initialising a population of

olutions using the set of constructive low-level heuristics gener-

ted with Genetic Programming, a Simple Random selection hyper-

euristic operating within a Memetic Algorithm framework was

pplied. Using the set of perturbation low-level heuristics gener-

ted by Genetic Programming, at each step one crossover heuristic,

ne mutation heuristic and one hill climbing heuristic are selected

t random. The low-level heuristics are then applied in that order

ith a given probability for each. The proposed method was able

o outperform a previous method based on Grammatical Evolution

n some instances of the well-known Solomon benchmark VRP in-

tances. 

Marshall, Johnston, and Zhang (2015) compared forty-eight

ifferent selection method-acceptance criteria combinations, con-

isting of six selection methods and eight move acceptance

riteria, over randomly generated instances of the Capacitated Ve-

icle Routing Problem (CVRP). In this problem domain, using a set

f twelve low-level heuristics, selection methods which considered

xecution time, penalising low-level heuristics which took longer

o execute, were more successful than those that didn’t. Exponen-

ial Monte Carlo and Improving or Equal acceptance performed

articularly poorly, with Simulated Annealing and a Naïve move

cceptance method which accepts all improving solutions and non-

mproving solutions 50% of the time showing good performance. 

Yin, Lyu, and Chuang (2016) presented a coevolutionary ap-

roach to solve an integrated vehicle routing and scheduling prob-

em for cross-dock buffering in warehouses. Whilst the scheduling

omponent was tackled using a population based Ant Colony Opti-

isation method, a hyper-heuristic using rule-based selection with

imulated Annealing move acceptance was employed to co-evolve

 solution to the routing component. The rules for the behaviour

f the selection hyper-heuristic depend on the current state of the

olution, with certain low-level heuristics selected if the solution

s infeasible. 

The periodic vehicle routing problem, for which daily routes

re required based on customer behaviour, was studied by Chen,

ourdjis, Polack, Cowling, and Remde (2016b) . This work tested a

umber of different hyper-heuristic frameworks, similar to the F A 
nd F C frameworks presented by Özcan et al. (2008) , using Simple

andom, Random Descent, Reinforcement Learning, Choice Func-

ion and Binary Exponential Backoff heuristic selection with Only

mproving move acceptance. In line with the observations made by

zcan et al. (2008) , the inclusion of a dedicated local search phase

mproved the performance of the hyper-heuristics tested. 

Sabar, Zhang, and Song (2015c) presented a ‘math-hyper-

euristic’, combining an exact approach based on column genera-

ion, with a Multi-armed Bandit selection, Exponential Monte Carlo

ove acceptance selection hyper-heuristic, for the VRP with time
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re

Operational Research, https://doi.org/10.1016/j.ejor.2019.07.073 
indows (VRPTW). Using the solutions to a set of subproblems

olved by column generation, the hyper-heuristic selects from a set

f low-level heuristics to combine them into a single solution to

he complete problem. Using the exact method to ‘warm start’ the

yper-heuristic was shown to outperform an existing constructive

euristic from the literature. The combined math-hyper-heuristic

as shown to outperform state-of-the-art metaheuristics from the

iterature on large-scale VRPTW instances. 

A supermarket resupply problem was modelled as a dynamic

ickup and delivery problem with ‘soft’ time windows (PDPSTW)

y Mourdjis, Chen, Polack, Cowling, and Robinson (2016) . Four

yper-heuristics were used to select from a set of local search

perators within an Iterated Local Search framework. Using both

enchmark data-sets and real-world data, an approach using Vari-

ble Neighbourhood Descent with memory was shown to outper-

orm a Choice Function variant, Tabu Search and Random Descent

euristic selection. 

Tyasnurita, Özcan, and John (2017) presented an apprentice-

hip learning hyper-heuristic framework for the open vehicle rout-

ng problem (OVRP). In this framework, an ‘expert’ hyper-heuristic

s trained on a subset of instances, whilst an ‘apprentice’ hyper-

euristic learns by observing the search process and is then ap-

lied to a set of unseen instances. Their results showed that it

s possible to produce an apprentice hyper-heuristic that performs

etter than the original expert, using the distance between solu-

ions as additional information to guide the apprentice. 

Ahmed, Mumford, and Kheiri (2019) evaluated the perfor-

ance of a range of selection hyper-heuristics combining different

eusable components for the urban transit routing problem. The re-

ults over a set of benchmark instances demonstrate the strength

f an approach which combines sequence-based heuristic selec-

ion with Great Deluge move acceptance. This method is very suc-

essful, outperforming the current known state-of-the art results

ithin much shorter execution times. 

.10. Other application domains 

In the previous sub-sections, we have collected together selec-

ion hyper-heuristic methods applied to a number of well-known

roblem domains. However, the variety of problem domains

ackled across the literature is far greater than this. Here we will

iscuss other papers that do not fit into the categories outlined

bove, highlighting the diversity of problems that have been solved

y selection hyper-heuristics in recent times. 

Shelf space allocation, where the goal is to maximise the util-

sation of search space according to some quality measure, is

n important problem in retail. Bai, Van Woensel, Kendall, and

urke (2013) investigated a two-dimensional shelf space alloca-

ion model, using Simple Random and Reinforcement Learning

euristic selection with Simulated Annealing acceptance. Inspired

y this work, Zhao, Zhou, and Wahab (2016) presented an ex-

ended model, designed to better reflect the practicalities of the

eal-world problem. They used a Simple Random - Simulated An-

ealing hyper-heuristic operating over a set of low-level heuristics

estricted to feasible regions of the search space to solve this prob-

em. 

Telecommunications is another high impact field. Yang,

eng, Jiang, Wang, and Li (2014) introduced a hyper-heuristic

enetic Algorithm to solve the frequency assignment problem

FAP). This approach evolves sequences of low-level heuristics to

e applied to the current solution during the search. Tsai, Chang,

u, and Chiang (2017) used multiple metaheuristics, randomly se-

ected and applied for a fixed number of iterations, to address the

roblem of selecting a cluster head in wireless sensor networks. 

Selection hyper-heuristics have been applied to a number of

roblems in industrial design, many of which are continuous rather
cent advances in selection hyper-heuristics, European Journal of 
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Table 5 

Application domains of multiobjective selection hyper-heuristics. 

Application domain Reference(s) 

Benchmark function optimisation ( de Carvalho & Sichman, 2017; Castro Jr & Pozo, 2015; Gómez & Coello, 2017; Maashi et al., 2015; Maashi et al., 2014; 

Segura et al., 2012; Vazquez-Rodriguez & Petrovic, 2013; Walker & Keedwell, 2016 ) 

Engineering design ( Hitomi & Selva, 2016; McClymont et al., 2013 ) 

Graph colouring ( Elhag & Özcan, 2015 ) 

Job shop scheduling ( Grobler & Engelbrecht, 2016 ) 

Packing ( Segredo et al., 2014 ) 

Search-based software engineering ( El Kateb et al., 2014; Gonçalves et al., 2015; Guizzo et al., 2017a; Guizzo et al., 2015; Guizzo et al., 2017b; Kumari & 

Srinivas, 2016 ) 

Timetabling ( Elhag & Özcan, 2015; Muklason et al., 2017 ) 

Vehicle crashworthiness ( Maashi et al., 2015; Maashi et al., 2014 ) 

Windfarm layout optimisation ( Li et al., 2017 ) 
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than discrete optimisation problems. Allen, Coates, and Trevelyan

(2013) applied a variety of selection hyper-heuristics to aircraft

structural design optimisation. 

Splines are piecewise polynomial functions which can be con-

structed from a set of control points. Using a set of low-level

heuristics operating over a space of control points, represent-

ing unmanned aerial vehicle routes, Akar, Topcuoglu, and Ermis

(2014) compared a number of well-known selection hyper-

heuristics and a Genetic Algorithm. Using the OneMax and Gap-

Path functions as examples, Lehre and Özcan (2013) analysed the

expected runtime of a simple selection hyper-heuristic. This work

concluded that in the case of some problem domains, mixing low-

level heuristics can be more effective than using a single low-level

heuristic. Alanazi and Lehre (2014) also analysed the runtime of se-

lection hyper-heuristics, comparing different learning mechanisms

commonly used in the literature. Using the simple LeadingOnes

function as an example, similar performance was observed for all

four learning mechanisms tested. Sabar, Turky, Song, and Sattar

(2017) tuned deep belief networks for image recognition using a

Multi-armed Bandit - Monte Carlo selection hyper-heuristic, out-

performing the results reported by existing metaheuristic meth-

ods in the literature. Kampouridis, Alsheddy, and Tsang (2013) pre-

sented a framework which applied low-level heuristics to Genetic

Programming trees for financial forecasting. This framework se-

lects from a set of up to fourteen low-level heuristics to modify

decision trees, using a roulette wheel based Reinforcement Learn-

ing scheme, and demonstrated improved performance over a well-

known existing tool. 

6. Selection hyper-heuristics for multiobjective optimisation 

Most of the hyper-heuristics used for multiobjective optimisa-

tion are generative, often based on Genetic Programming, and par-

ticularly applied to scheduling problems ( Branke et al., 2016 ). How-

ever there are a growing number of studies on multiobjective selec-

tion hyper-heuristics focusing on two separate approaches: (i) se-

lection hyper-heuristics managing components, such as, low-level

heuristics/operators of a particular multiobjective optimisation al-

gorithm, and (ii) selection hyper-heuristics managing and mixing

a set of low-level multiobjective metaheuristics under an iterated

cooperative search framework. Multiobjective Evolutionary Algo-

rithms (MOEAs) are the most commonly used metaheuristics in

the field. Table 5 provides a summary of the application domains

where multiobjective hyper-heuristics are utilised. 

6.1. Controlling multiple components of a multiobjective algorithm 

Segura, Segredo, and León (2012) studied a parallel hyper-

heuristic approach based on an island model, converting single-

objective large-scale continuous optimisation benchmark functions

into multiobjective problems through multiobjectivisation. The au-
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re

Operational Research, https://doi.org/10.1016/j.ejor.2019.07.073 
hors applied multiple variations of NSGA-II executed in parallel.

hose variations included twenty-four configurations of NSGA-II

ombining three crossover operators, two mutation operators, and

our different multiobjectivisations. The selection hyper-heuristic

cores each configuration considering the improvement on the best

olution achieved so far. It is run on the master island, mapping

he promising configurations with higher scores to worker islands

ith higher probabilities during the search. The results show that

uperlinear speedups can be achieved in some cases, and that mul-

iobjectivisation works well overall. 

Elhag and Özcan (2015) presented a general two-objective se-

ection hyper-heuristic approach for grouping problems, requiring

he partitioning of a given set of items, while minimising the num-

er of groups and optimising another objective simultaneously.

his study investigated the performance of combinations of various

euristic selection and move acceptance methods applied to nine-

een graph colouring and five examination timetabling benchmark

roblem instances. The results indicate the effectiveness of a selec-

ion hyper-heuristic consisting of Reinforcement Learning heuristic

election and the move acceptance method of AdapHH ( Mısır et al.,

012b ) on both domains. 

McClymont, Keedwell, Savi ́c, and Randall-Smith (2013) pre-

ented a heuristic selection mechanism based on Markov chains

nd Reinforcement Learning, embedded into the well-known

SGA-II and SPEA2 MOEAs, applied to the optimisation of water

istribution network design. Adding a set of four mutational low-

evel heuristics improved performance over the original MOEAs.

n this work, the ratio of dominating solutions produced by each

euristic was used to measure performance. 

El Kateb et al. (2014) introduced a framework to select from

ultiple mutation operators within MOEAs when optimising soft-

are deployment in a cloud environment. At each generation, a

core is calculated for each mutation operator, applying the op-

rator with the best score for that generation. Score-based se-

ection was shown to outperform Simple Random selection of

he mutation operator. Kumari and Srinivas (2016) proposed a mul-

iobjective hyper-heuristic (MHypEA) to solve the multiobjective

oftware module clustering problem. Operating a set of twelve

ow-level heuristics, consisting of different combinations of selec-

ion, crossover and mutation operators, applied to a population

f solutions, MHypEA uses a roulette wheel based Reinforcement

earning strategy to select a low-level heuristic at each step. Com-

ared to NSGA-II, MHypEA was shown to achieve better per-

ormance in fewer evaluations on the problem instances tested.

uizzo et al. (2017a , 2015) used two heuristic selection meth-

ds, Choice Function and Multi-armed Bandit, within an NSGA-

I framework to solve the multiobjective integration and test or-

er problem. The hyper-heuristics operated over a set of nine

ow-level heuristics consisting of combinations of a crossover and

 mutation operator. Using seven Java-based systems with two

bjectives, experiments showed that hyper-heuristic selection of
cent advances in selection hyper-heuristics, European Journal of 
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rossover and mutation operators within NSGA-II outperformed

 traditional NSGA-II implementation. An extension was provided

y Guizzo et al. (2017b) , formulating the problem as a many-

bjective problem and comparing to a number of state-of-the-art

OEAs. Strickler, Lima, Vergilio, and Pozo (2016) investigated a

imilar framework to the original paper of Guizzo et al. (2015) ,

erforming either Simple Random or Multi-armed Bandit selection

f twelve low-level heuristics within NSGA-II, when optimising the

roducts derived from a feature model to test software product

ines with multiple objectives. Their hyper-heuristic outperformed

 number of well-known MOEAs, including traditional NSGA-II and

PEA2. 

Gonçalves, Kuk, Almeida, and Venske (2015) incorporated a

ariant of Choice Function heuristic selection to control five

ifferential Evolution operators at the lower level within MOEA/D.

he multiobjective hyper-heuristic improves upon the performance

f the generic MOEA/D using a single operator, when applied to

en unconstrained benchmark functions with two and three ob-

ectives. Walker and Keedwell (2016) used a previous selection

yper-heuristic ( Kheiri & Keedwell, 2015 ) controlling seven low-

evel heuristics within an MOEA for many-objective optimisation.

he analyses using three different comparison operators as alter-

atives to dominance on a subset of the DTLZ test suite show that

he favour relation and hyper-volume indicators are the best choices.

Hitomi and Selva (2016) considered a multiobjective design

roblem for an Earth observation satellite system, where a num-

er of instruments must be assigned to an orbit, with the goal

f minimising cost whilst maximising the scientific benefit of the

ssignment. Based within the framework of ε-MOEA, using five

omain-specific heuristics, an Adaptive Pursuit strategy was used

o assign probabilities of selecting different operators. Low-level

euristic performance was measured by the number of solutions

enerated by it that are added to the ε-MOEA archive. 

Muklason, Parkes, Özcan, McCollum, and McMullan (2017) ap-

lied a three-stage multiobjective approach for examination

imetabling, optimising the standard objective along with fairness

ithin a cohort of students. In the first stage, a set of feasible ini-

ial solutions is generated by employing a squeaky wheel method.

n the second and third stages, a search is performed using Re-

nforcement Learning heuristic selection and Great Deluge move

cceptance controlling fourteen low-level heuristics. In the second

tage, the standard objective is optimised while in the third stage

oth of the objectives are optimised simultaneously. The experi-

ental results on three well-known benchmarks indicate the effec-

iveness of the proposed approach for multiobjective examination

imetabling. 

Gómez and Coello (2017) presented a many objective approach

sing a hyper-heuristic which extends an elitist Genetic Algorithm,

enoted as MOMBI-II using the R2 performance indicator. The se-

ection hyper-heuristic chooses from seven scalarising functions

uring the search. The proposed approach performs significantly

etter than NSGA-III, MOEA/D and MOMBI-II across the ZDT, DTLZ

nd WFG benchmark functions. 

.2. Controlling multiple metaheuristics 

Vazquez-Rodriguez and Petrovic (2013) proposed variants of

ultiobjective genetic algorithms combining the rank indicators of

SGA-II, SPEA2 and two variants of IBEA for selection. Each indi-

ator is associated with a probability which is set based on mix-

ure experiments. At each iteration, the individuals are subdivided

nto four subpopulations, one per indicator, in a random manner

ased on their probabilities. The mating pool is formed using bi-

ary tournament applied to the individuals from the same subpop-

lation. Then, the remaining evolutionary processes of crossover

nd mutation follow. The results on a set of DTLZ, LZ07F and ZDT
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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enchmark functions show that dynamically updating the prob-

bilities via mixture experiments is the best approach, outper-

orming all of the other variants as well as NSGA-II, SPEA2 and

BEA. 

Segredo, Segura, and León (2014) extended the work of Segura

t al. (2012) and investigated parallel hyper-heuristics adaptively

pplying various configurations of a choice of multiobjective meta-

euristics, including NSGA-II and SPEA2. The results on two in-

tances of a 2D packing problem show that multiobjectivisation

ields improved performance. 

Maashi, Özcan, and Kendall (2014) employed a Choice Function

ased hyper-heuristic (CF-HH) selecting from three low-level

OEAs, namely NSGA-II, SPEA2, and MOGA, at each decision point

uring the search, and then applying the selected MOEA for a fixed

uration. The resultant population is accepted as a whole at each

ecision point and fed into the next stage as the initial population.

he proposed methodology outperforms each MOEA when run

n its own as well as the AMALGAM (a multialgorithm, geneti-

ally adaptive multiobjective) approach ( Vrugt & Robinson, 2007 )

n the WFG test suite. AMALGAM enables the use of multiple

ultiobjective approaches simultaneously and forms an offspring

ool where each constituent algorithm contributes in proportion

o its individual past performance. CF-HH was also tested on the

eal-world vehicle crashworthiness design problem. Although the

erformance of CF-HH is still superior to all individual MOEAs,

MALGAM delivers a slightly better better performance on the

hree-objective vehicle crashworthiness problem. Maashi, Kendall,

nd Özcan (2015) extended the previous study introducing an

cceptance method into the hyper-heuristic approach. Choice

unction metaheuristic selection is tested in combination with

reat Deluge and Late Acceptance methods. The results show the

ffectiveness of the Choice Function - Great Deluge hyper-heuristic,

hich outperformed all previously tested approaches for multi-

bjective optimisation on the WFG and vehicle crashworthiness

roblems, including its bi-objective variants. 

Grobler and Engelbrecht (2016) applied multiple continuous op-

imisation metaheuristics, including variants of Particle Swarm Op-

imisation and Differential Evolution, to a shared population of so-

utions for a multiobjective job shop scheduling problem. Li, Öz-

an, and John (2017) explored and showed the effectiveness of nine

ifferent selection hyper-heuristics controlling NSGA-II, SPEA2 and

BEA, deciding which one to invoke at each decision point for a

xed number of generations for various multiobjective wind farm

ptimisation problems. 

Castro Jr and Pozo (2015) tested a multiobjective Particle Swarm

ptimisation method, embedding a variant of a Choice Function

yper-heuristic on a set of DTLZ benchmark functions with di-

ensions varying from 2 to 20. The hyper-heuristic chooses from

wo archiving strategies in combination with three leader selec-

ion methods during the search process based on the R2 per-

ormance indicator. The results indicate the success of the pro-

osed approach, even outperforming the state-of-the-art method-

logy MOEA/D-DRA for many objective optimisation in selected

ases. 

de Carvalho and Sichman (2017) presented an agent-based

yper-heuristic mixing NSGA-II, SPEA2 and IBEA based on

opeland voting, considering five performance indicators: hyper-

olume, spread, generational distance, inverted generational dis-

ance, and ratio of non-dominated solutions. The approach splits

he whole population using Copeland voting scores into three

ubpopulations on which each MOEA operates. The number of in-

ividuals in a subpopulation is aligned with the Copeland ranking

f each MOEA. The results on the WFG suite with two and three

bjectives show that the proposed agent-based hyper-heuristic is

apable of identifying the best MOEA for a given instance, perform-

ng competitively. 
cent advances in selection hyper-heuristics, European Journal of 
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Table 6 

Application domains of constructive selection hyper-heuristics. 

Application domain Reference(s) 

Bin packing ( Gomez & Terashima-Marín, 2018; López-Camacho et al., 2014; Pillay, 2012; Thomas & Chaudhari, 2014 ) 

Constraint satisfaction ( Crawford et al., 2013; Gutierrez-Rodríguez et al., 2017; Ortiz-Bayliss et al., 2013; 2016; Rosales-Pérez et al., 2017 ) 

Competitive travelling salesman ( Kendall & Li, 2013 ) 

Exam timetabling ( Qu et al., 2015; Soghier & Qu, 2013 ) 

Flow shop scheduling ( Salhi & Rodríguez, 2014 ) 

Neural network construction ( Gascón-Moreno et al., 2013 ) 

Production scheduling ( Li et al., 2015; Li et al., 2016 ) 

Puzzles and games ( Salcedo-Sanz et al., 2014 ) 
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7. Constructive selection hyper-heuristics 

The vast majority of the selection hyper-heuristics discussed in

this paper to this point, operate over sets of perturbative low-level

heuristics exploring a space of complete solutions to optimisation

problems. There are also a small number of papers in the literature

which present selection hyper-heuristics choosing from a set of

constructive low-level heuristics to build solutions from empty or

partial solutions. Many methods of this type utilise an evolution-

ary algorithm to evolve sequences of low-level heuristics to apply

during solution construction. The application domains that meth-

ods of this nature have been applied to recently are summarised

in Table 6 . 

Constructive selection hyper-heuristics have been used to solve

educational timetabling problems for over a decade ( Burke, Mc-

Collum, Meisels, Petrovic, & Qu, 2007 ). More recently, Soghier and

Qu (2013) presented a hybrid approach for exam timetabling, us-

ing classical graph colouring heuristics to select an exam to add

to the timetable, before using bin packing heuristics to allocate

a time slot and room. Combining low-level heuristics in this way

was shown to offer improved performance over applying individual

heuristics on the International Timetabling Competition (ITC 2007)

benchmark instances. Qu et al. (2015) used a simple Estimation

of Distribution Algorithm, a Univariate Marginal Distribution Al-

gorithm (UMDA), to generate probability distributions from which

to derive sequences of low-level heuristics at different stages of a

search. Using five well-known graph colouring low-level heuristics,

each low-level heuristic in a sequence is applied consecutively to

assign an exam to a time slot. The quality of solutions found was

shown to be competitive with existing hyper-heuristic approaches

to construct timetables for the Carter benchmark set. 

Another area that has previously seen a high-level of research

interest for constructive selection hyper-heuristics is constraint sat-

isfaction problems (CSPs). The order in which variables are selected

to be instantiated can have a significant impact on the cost of com-

puting the solution of a CSP. However, although many variable or-

dering heuristics exist, predicting the performance of a heuristic

for a particular problem in advance can be difficult. Ortiz-Bayliss,

Terashima-Marín, and Conant-Pablos (2013) used learning vector

quantization (LVQ), a type of supervised neural network, to learn

a series of rules mapping between the features of the region of

search space currently being explored and an appropriate heuris-

tic action to take at that point. Based on the constraint density

and constraint tightness of the current problem state, one of four

low-level heuristics for variable ordering is used. Based on a sim-

ilar overall framework, Ortiz-Bayliss et al. (2016) used a variable

length Genetic Algorithm, encoding more complex rules using a

greater number of features and heuristic actions. Each chromo-

some in the Genetic Algorithm consists of ten values, nine per-

taining to landscape features and a tenth indicating which one

of seven low-level heuristics for variable ordering should be used

when these landscape features are encountered. When solving a

CSP, the chromosome in the Genetic Algorithm with landscape

features closest to the current solution state is found, and the
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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orresponding low-level heuristic used. Gutierrez-Rodríguez et al.

2017) extended this work by reducing the size of the low-level

euristic set by heuristic filtering. Their experimentation identified

wo particularly strong heuristics, able to significantly outperform

he other heuristics tested, either individually or combined within

 hyper-heuristic framework. Rosales-Pérez, Gutiérrez-Rodríguez,

rtiz-Bayliss, Terashima-Marín, and Coello (2017) presented a co-

volutionary approach for heuristic selection, which identifies sub-

ets of heuristics that perform well for certain instances, using su-

ervised multilabel classification. This approach was shown to out-

erform the previous work of Ortiz-Bayliss et al. (2016) , signifi-

antly reducing the time taken to solve a set of known CSP bench-

arks. 

Crawford et al. (2013) used Choice Function variants to adap-

ively rank eight enumeration strategies during the process of solv-

ng CSPs, where the set of enumeration strategies consists of com-

inations of variable and value selection heuristics. Each Choice

unction variant is composed of a number of weighted indicators

such as number of visited nodes, number of backtracks, number of

teps etc.), used to assess the performance at intermediate stages

f the search process. The weighting for each of these indicators is

ontrolled by Particle Swarm Optimisation. The proposed method

s able to find good solutions on average across different problems

N-queens, Magic Square and Latin Square). 

López-Camacho, Terashima-Marin, Ross, and Ochoa (2014) pre-

ented a unified framework for solving one and two-dimensional,

egular and irregular bin packing problems. A set of six low-level

euristics, to decide which object to place next, and where to

lace it, were used to iteratively construct solutions. A Genetic

lgorithm was used at the high-level, evolving a set of rules to

overn which heuristic to apply in a given solution state. The

ramework was able to generalise well across a variety of prob-

em instances without additional parameter tuning, outperform-

ng the constituent low-level heuristics. Thomas and Chaudhari

2014) also considered two-dimensional bin packing, using a Ge-

etic Algorithm to select a subset of items forming a sub-problem,

hen selecting a placement strategy from three low-level heuristics

ia a greedy method. Pillay (2012) evolved disposable heuristics

or bin packing problems, consisting of sequences of known low-

evel heuristics. Again the evolved hyper-heuristics were observed

o be superior to applying a single low-level heuristic repeatedly.

equences of low-level heuristics were also evolved using a Genetic

lgorithm by Salhi and Rodríguez (2014) , this time for constructing

olutions for a flow show scheduling problem variant. This method

as shown to perform very well, outperforming a large number of

xisting strategies from the literature. Gomez and Terashima-Marín

2018) evolved rules for low-level heuristic selection when solving

ultiobjective two-dimensional bin packing problems. Based on a

imilar framework to the one used by Ortiz-Bayliss et al. (2016) for

onstructing solutions to CSPs, a set of rules are evolved, mapping

ifferent regions of the search space with particular properties to

euristic actions. Depending on the state of the current solution,

ne of forty operators, consisting of an ordering heuristic in com-

ination with a packing heuristic, is selected and used to pack the
cent advances in selection hyper-heuristics, European Journal of 
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Table 7 

Application domains of generation of selection hyper-heuristics. 

Application domain Reference(s) 

Bin packing ( Asta et al., 2013b ) 

CHeSC/HyFlex ( Adriaensen et al., 2014a; 2014b; Choong et al., 2018; Sabar et al., 2015a; Sabar & Kendall, 2015 ) 

Exam timetabling ( Sabar et al., 2013; 2015b ) 

Protein structure prediction ( Fontoura et al., 2017 ) 

Traveling thief problem ( El Yafrani et al., 2018 ) 

Vehicle routing ( Sabar et al., 2013; 2015b; Tyasnurita et al., 2017 ) 
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ext item. Significantly improved performance over using single

euristics was observed. 

A novel variant of the TSP, the competitive TSP (CTSP) was in-

roduced by Kendall and Li (2013) , where a number of salesmen

ttempt to visit a number of cities in a non-cooperative manner.

f they are the first to visit a city they receive a payoff, so must

onsider the tours of other salesman when devising their route.

gents take turns selecting from a set of five low-level heuristics to

onstruct a tour, one city at a time. The hyper-heuristic approach

resented was shown to be able to quickly generate good ap-

roximate solutions for the problem. Jawbreaker is a puzzle game

onsisting of a grid of colored balls, the objective is to clear the

rid, by eliminating connected balls of the same colour. The evolu-

ionary hyper-heuristic framework of Salcedo-Sanz, Matías-Román,

iménez-Fernández, Portilla-Figueras, and Cuadra (2014) could be

onsidered to be constructive in nature, as it exhibits many of

he same characteristics of other hyper-heuristic methods of this

ype. This work used a set of nineteen low-level heuristics to make

oves in Jawbreaker, evolving sequences of low-level heuristics to

e applied sequentially to the current game state. 

An Ant Colony Optimisation based hyper-heuristic was pre-

ented by Li, Li, Meng, and Tian (2015) . Their method searched a

pace of assignment and sequencing low-level heuristics for con-

tructing solutions to a production scheduling problem in cellu-

ar manufacturing systems requiring ‘intercell’ transfers. The per-

ormance of the hyper-heuristic method was shown to scale con-

iderably better than CPLEX as the size of problem instance in-

reased. A similar problem was tackled by Li, Zhan, Zheng, Li, and

aku (2016) , who presented a bi-level approach to generate and

elect combinations of heuristic rules. Genetic Programming was

sed to evolve candidate rules to form a search space for a Ge-

etic Algorithm based selection hyper-heuristic to operate over.

he evolved system exhibited strong performance in terms of both

olution quality and execution time. Gascón-Moreno, Salcedo-Sanz,

aavedra-Moreno, Carro-Calvo, and Portilla-Figueras (2013) used

n evolutionary-based hyper-heuristic to evolve sequences of low-

evel rules to construct each layer of Group Method of Data Han-

ling (GMDH) neural networks. Improved performance was shown

ver a classical GMDH approach applied to real-world prediction

roblems. 

. Automated design of selection hyper-heuristics 

In previous classifications hyper-heuristic methods have typi-

ally been broadly separated into two categories, selection hyper-

euristics and generation hyper-heuristics ( Burke et al., 2013;

010 ). Although we focus on selection hyper-heuristics within this

aper, this section is dedicated to heuristic generation methods,

urveying recent work that has sought to generate selection hyper-

euristics or components. A summary of the application areas for

uch methods is given in Table 7 . 

Genetic Programming (GP) has been associated with genera-

ion hyper-heuristics for a number of years ( Burke et al., 2009 )

o it is no surprise that work exists using GP to generate se-

ection hyper-heuristics. El Yafrani et al. (2018) used GP to gen-

rate selection hyper-heuristics for the traveling thief problem, a
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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ombination of the travelling salesman problem and the knapsack

roblem. Hyper-heuristics were evolved in both an offline man-

er, using a train-and-test approach, and an online manner, evolv-

ng ‘disposable’ hyper-heuristics for a single instance. The tailored

disposable’ hyper-heuristics were shown to achieve better results

han the offline-tuned hyper-heuristics, and a baseline Genetic Al-

orithm. Strong performance was observed compared to existing

tate-of-the-art methods on some larger benchmark problem in-

tances. Fontoura, Pozo, and Santana (2017) used Grammatical Evo-

ution to evolve, and co-evolve, heuristic selection and move accep-

ance criteria forming selection hyper-heuristics for protein struc-

ure prediction. The hyper-heuristics were evolved using a search

pace of heuristic components and six low-level heuristics, and

ere trained on three instances from a benchmark set of eleven

roblems. Best results were observed by evolving a heuristic se-

ection method, using a fixed Improving and Equal move accep-

ance strategy. Poor performance was observed when co-evolving

election method and move acceptance criteria concurrently. How-

ver, the search space when doing so is much larger in this case

han with a fixed move acceptance strategy. Despite being evolved

pecifically for this problem domain, the proposed method was

utperformed on average by the AdapHH hyper-heuristic of Mısır

t al. (2012b) over the eleven problem instances tested. 

Adriaensen, Brys, and Nowé (2014a) performed a meta-level

earch over a set of potential design decisions that could be made

hen developing a simple selection hyper-heuristic for the HyFlex

ramework. An Iterated Local Search (ILS) procedure is used to ex-

lore the space of selection hyper-heuristics, with greater compu-

ational time given to evaluating higher-quality configurations. The

est method found, FS-ILS ( Adriaensen et al., 2014b ), has been dis-

ussed in detail in Section 4 . Choong, Wong, and Lim (2018) used

einforcement Learning, with a Q-learning based feedback mecha-

ism, to select components of ILS based selection hyper-heuristics

rom a set of thirty actions, consisting of five heuristic selec-

ion and six move acceptance criteria. The available computational

ime is split up into n equal ‘episodes’, with n decided via of-

ine parameter tuning directly on the competition instances from

HeSC 2011. Each episode consists of iteratively applying a se-

ected heuristic selection - move acceptance combination in an

LS framework, with Variable Neighborhood Descent applied af-

er a selected perturbative heuristic is applied. Good performance

as observed in three of the six CHeSC problem domains (SAT, FS,

SP). However, poor performance was reported in the remaining

hree domains. Sabar and Kendall (2015) used Monte Carlo Tree

earch (MCTS) to generate heuristic selection strategies, specif-

cally tuning their method for the CHeSC 2011 competition in-

tances using a parameter tuning method from the literature. Se-

uences of low-level heuristics are generated in an online man-

er during the search using MCTS and applied to a population

f solutions. At each step an Exponential Monte Carlo acceptance

riterion is used to decide whether to accept non-improving so-

utions. The authors made use of the intensity of mutation and

epth of search parameters included in HyFlex to generate dif-

erent low-level heuristics. However, how these parameters are

uned/controlled and how many low-level heuristics are gener-

ted is not specified. As this method performs extensive offline
cent advances in selection hyper-heuristics, European Journal of 
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tuning on a significant proportion of competition instances (the

training and test sets are not independent), a direct compari-

son to the CHeSC 2011 competitors cannot be made. However,

strong results are reported, particularly in the SAT and PS prob-

lem domains. A similar overall framework was used by Sabar, Ayob,

Kendall, and Qu (2015a) , also using a population of solutions. Gene

Expression Programming was employed to co-evolve a selection

method and acceptance criterion for each individual problem in-

stance, yielding disposable hyper-heuristics for particular problem

instances. Again, a direct comparison cannot be made to the CHeSC

2011 competitors due to the vast difference in computational ef-

fort used by this method and those in the competition. Gene Ex-

pression Programming was also used by Sabar, Ayob, Kendall, and

Qu (2015b) , this time to evolve the acceptance criteria of a se-

lection hyper-heuristic based on Multi-armed Bandit heuristic se-

lection. Results were presented for instances of exam timetabling

and dynamic vehicle routing problems, with strong performance

reported compared to existing methods in the literature. Sabar,

Ayob, Kendall, and Qu (2013) presented a Grammatical Evolu-

tion hyper-heuristic to generate selection hyper-heuristics from

existing high-level components for exam timetabling and capac-

itated vehicle routing problem benchmarks. Karapetyan, Punnen,

and Parkes (2017) introduced Conditional Markov Chain Search, a

method based on evolving transition matrices to configure com-

binations of metaheuristic components, applied to the bipartite

boolean quadratic programming problem. Although it is presented

as a general method, the evolved transition matrices can repre-

sent the probability of selecting different heuristics in a selection

hyper-heuristic. 

Apprenticeship learning embodying various machine learning

algorithms is a well-known technique in control and robotics,

used for generalising the demonstrations provided by an expert

( Abbeel & Ng, 2004 ). Initially, Asta, Özcan, Parkes, and Etaner-Uyar

(2013b) trained k-means classifiers as generation hyper-heuristics

using the data obtained from a Genetic Algorithm expert for

automatically creating online bin packing heuristics. The trained

method performed better than the expert in a few cases and out-

performed the human designed heuristic in all cases. This work led

to the study of Tyasnurita et al. (2017) who trained a time delay

neural network using two sets of data obtained from the Modified

Choice Function hyper-heuristic ( Drake, 2014 ) as an expert, gener-

ating two new selection hyper-heuristics for solving the open vehi-

cle routing problem. The first training dataset contains the changes

in the objective values between solutions after application of low-

level heuristics, while the second dataset includes the distance be-

tween those solutions as additional information. The empirical re-

sults show that the generated selection hyper-heuristics generalise

well and perform better than the expert overall. More importantly,

the inclusion of additional information during training yields an

improved performance in the ‘new’ selection hyper-heuristic. 

9. Conclusion and remarks 

In this section, we will discuss some of the challenges and limi-

tations of contemporary selection hyper-heuristics, with a focus on

the HyFlex framework. We will highlight some of the effort s made

to overcome these issues, as well as some potential avenues for

future research directions. 

An oft-cited criticism of selection hyper-heuristics is the lack of

flexibility when it comes to the domain barrier. In its purest sense,

as is the case with HyFlex, the domain barrier is opaque, with

only objective function values being allowed to pass to the high-

level search strategy and no inter-instance learning taking place.

Here, the challenge is to balance the trade-off between providing a

greater level of information exchange and maintaining a clear split

between the problem domain and high-level solution methodology,
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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hilst retaining the same level of plug-and-play modularity. Doing

o successfully will aid one of the original goals of hyper-heuristic

esearch: to develop powerful, more general, solver control mod-

les without losing domain-independence. Many suggestions for

xtensions to permit more information to be passed across the do-

ain barrier, without loss of domain independence, have been pro-

osed. Swan, De Causmaecker, Martin, and Özcan (2018) argued

hat maintaining the domain barrier in the strictest sense is not

ecessary for the sake of increased generality, and that it is pos-

ible to make use of a much richer set of problem independent

nformation than solely objective function value. XCSP , an XML-

ased format for representing constraint programming problems is

uggested as a potential means of exchanging cross-domain knowl-

dge in a domain independent manner. 

A variety of potential extensions to the HyFlex interface were

roposed by Parkes, Özcan, and Karapetyan (2015) , designed to en-

ble better support for applying data science techniques to opti-

isation. In line with the arguments made by Swan et al. (2018) ,

he core goal is to provide support for increased exchange of use-

ul information between the domain and search control layers by

emoving the barrier, imposing proper interfaces for re-usability

nd beyond. The suggestions include: • A richer set of annota-

ions . Extending the low-level heuristic annotations beyond the

xisting limited set of mutation, local search, ruin-recreate and

rossover operators, to provide more information regarding oper-

tor behaviour. • Providing solution features in a domain indepen-

ent manner. These could potentially be used as a surrogate for

bjective function value when this is expensive to compute, or to

ssess the characteristics of the region of search space being ex-

lored. • Improved distance metrics . Currently it is only possible to

ompare two solutions based on objective value. As there is not al-

ays a direct correlation between the locality of solutions in rep-

esentation space and objective space, a poor quality solution in

erms of objective function value may still be close to high-quality

olutions in the search space. This is not captured when compar-

ng solely on objective function values. • Exposing instance features .

roviding useful information about the features of the current in-

tance, such as size, density or number of constraints. This could

nform the high-level search method of the relative difficulty of

 problem or the nature of the search landscape. • Multiobjective

upport within an extended HyFlex interface. Given the previous

odifications, a hyper-heuristic with access to distance metrics for

 population of solutions and an objective function would be able

o measure the quality of the Pareto front, and adapt the search

rocess as required. As discussed previously, this could be at one

f two levels, either controlling multiple high-level multiobjective

etaheuristics or controlling multiple low-level operators within a

ingle multiobjective method. 

Pappa et al. (2014) previously explored the intersection of the

elds of machine meta-learning and hyper-heuristic optimisation,

redicting an increase in cross-fertilisation between these two ar-

as. However, this is potential is still as yet unfulfilled. Although

heir paper focused quite specifically on the roles of evolutionary

lgorithms and learning, the same logic can be applied to single-

oint search methods, such as the selection hyper-heuristics dis-

ussed here. Permitting a more extensive variety of information to

e passed across the domain barrier, such as those discussed here,

ould increase the scope for applying data science techniques and

achine learning dramatically. 

In addition, interest from other related areas, including

enerative hyper-heuristics and automated algorithm configura-

ion/tuning, is likely to increase as such methods would benefit

reatly from the improved feedback given during the search pro-

ess. Another aspect that is often overlooked is the information ob-

ained during the search process that is typically discarded imme-

iately. For example, one advantage of the Hyperion 

2 framework,
cent advances in selection hyper-heuristics, European Journal of 
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argely overlooked in the literature, is the possibility for analysis of

he trace taken through the search space by a hyper-heuristic. This

ould be of help to algorithm designers. Indeed, many potential op-

ortunities for utilising such state features to guide search methods

xist, particularly in the context of areas such as landscape-aware

euristic search . 

One of the limitations of current selection hyper-heuristic work

ot considered above is the lack of delta (incremental) evaluation.

n the context of heuristic search, when a new solution is produced

y performing a modification to an existing solution, delta evalua-

ion is the concept of computing the objective value based only on

he changes made, rather than fully re-evaluating the whole solu-

ion from scratch. This contributes somewhat to another challenge,

ealing with the variety of time and space requirements of oper-

tors across different domains and sometimes between operators

n the same domain. For example, under the CHeSC 2011 competi-

ion rules, limiting hyper-heuristics to 10 nominal minutes of CPU

ime, it is possible to perform many more low-level heuristic ap-

lications, searching many more states/solutions, in some domains

han others. Providing the high-level hyper-heuristic with some in-

ication of the computational effort required to invoke a particu-

ar low-level heuristic would go some way to rectifying this. Some

xisting hyper-heuristics have overcome this issue by empirically

ampling low-level heuristics at the start of a search. However, this

s not an ideal situation. 

In this review paper, we have discussed a small number of pa-

ers which perform theoretical analysis of hyper-heuristic methods

e.g. Alanazi and Lehre (2014, 2016) ; Lehre and Özcan (2013) ). The

onclusions of these papers were very much in line with previous

ork in the area, showing that strategies that mix multiple op-

rators are able to outperform pure strategies using only a single

perator. However, some of the limitations of traditional learning

echanisms used in hyper-heuristics were exposed, particularly

hen the performance of individual low-level heuristics is similar.

urther investigation into the theoretical underpinnings of selec-

ion hyper-heuristics in future will lead to improved understanding

f both the expectations that can be placed on such methods, and

he limitations that they operate within. 

Although our focus here has been on selection hyper-heuristics,

ection 8 briefly discussed some hyper-heuristics that generate

election hyper-heuristics or components of selection hyper-

euristics. Although the number of papers focusing on this

rea is relatively small, there is much scope for potential future

ork in this area. One of the barriers to developing generation

yper-heuristics to build selection hyper-heuristics is the sheer

omputational effort required to train and test such methods. This

s something that is decreasingly problematic with the rise in

arallel processing methods, driven by the wider availability of

ffordable general purpose GPUs. Another is the limited generality

evel currently achieved by generated selection hyper-heuristics

nd components. Many of the existing methods discussed pre-

iously generate disposable hyper-heuristics that are trained and

valuated on a per-instance basis, rather than reusable hyper-

euristics which are able to learn at a higher level. Whilst there

re some methods able to learn at a per-domain level, trained on

 subset of instances and then tested on another set drawn from

he same distribution, there has been some difficulty in effectively

chieving genuine cross-domain learning. Mısır (2017) raised some

nteresting and important questions about the nature of what is

eant by cross-domain search, particularly with respect to how

nter- and intra-domain learning are defined. This work identified

lusters of similar problem instances, using matrix factorisation to

dentify hidden features, containing instances from multiple prob-

em domains. Previous work has often approached cross-domain

earch under the assumption that problems of the same class

re taken from the same distribution. However, there are clearly
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re
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atent features of problem instances from which more nuanced,

nd potentially more useful, classifications could be derived. 

Many researchers and practitioners across a variety of dis-

iplines have been working towards the goal of building more

eneral solvers, investigating various perspectives from theory to

ractice, exploring how high the level of generality of search

lgorithms can be raised. In particular, the number of studies on

election hyper-heuristics for automatically solving single and mul-

iobjective optimisation problems has been growing rapidly in con-

emporary research. This paper provides a high-level snapshot of

he research landscape in selection hyper-heuristics, focusing on

ecent progress made in the area. 
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ümüş , D. B. , Ozcan, E. , & Atkin, J. (2016). An investigation of tuning a memetic
algorithm for cross-domain search. In IEEE congress on evolutionary computation

(CEC 2016) (pp. 135–142). IEEE . 
utierrez-Rodríguez, A. E. , Ortiz-Bayliss, J. C. , Rosales-Pérez, A. , Amaya–

Contreras, I. M. , Conant-Pablos, S. E. , Terashima-Marín, H. , &

Coello, C. A. C. (2017). Applying automatic heuristic-filtering to improve hyper-
heuristic performance. In Proceedings of the IEEE congress on evolutionary

computation (CEC 2017) (pp. 2638–2644). IEEE . 
ansen, P. , Mladenovi ́c, N. , & Pérez, J. A. M. (2010). Variable neighbourhood search:

Methods and applications. Annals of Operations Research, 175 (1), 367–407 . 
cent advances in selection hyper-heuristics, European Journal of 

http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0056
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0056
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0056
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0056
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0056
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0056
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0061
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0061
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0061
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0061
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0063
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0063
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0063
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0063
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0063
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0067
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0067
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0067
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0067
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0067
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0067
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0068
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0068
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0068
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0068
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0069
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0069
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0069
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0069
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0069
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0069
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0070
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0070
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0070
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0070
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0070
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0070
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0071
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0071
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0071
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0071
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0071
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0071
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0072
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0072
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0072
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0072
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0072
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0072
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0073
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0073
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0073
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0073
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0073
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0075
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0075
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0075
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0075
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0075
https://doi.org/10.1016/j.ejor.2019.07.073


J.H. Drake, A. Kheiri and E. Özcan et al. / European Journal of Operational Research xxx (xxxx) xxx 23 

ARTICLE IN PRESS 

JID: EOR [m5G; January 9, 2020;0:57 ] 

H  

 

H  

 

 

 

H  

 

H
H  

J  

 

J  

 

J  

 

 

J  

K  

 

K  

 

K  

K  

 

K  

 

K  

K  

 

K  

K  

K  

 

K  

 

K  

 

 

K  

L  

 

L  

 

 

L  

 

L  

 

L  

 

L  

 

L  

 

L  

 

L  

 

L  

 

L  

 

L  

 

M  

M  

M  

 

 

M  

M  

 

 

 

M  

 

 

M  

 

M  

 

M  

 

M  

 

M  

 

M  

 

 

M  

 

M  

 

M  

 

M  

 

M  

 

 

M  

 

O  

 

 

 

O  

 

 

O  

 

O  

 

Ö  
enard, C. , Papadakis, M. , & Le Traon, Y. (2014). Mutation-based generation of soft-
ware product line test configurations. In Proceedings of the International sympo-

sium on search based software engineering (pp. 92–106). Springer . 
itomi, N. , & Selva, D. (2016). A hyperheuristic approach to leveraging domain

knowledge in multi-objective evolutionary algorithms. In Proceedings of the
ASME 2016 international design engineering technical conferences and computers

and information in engineering conference . American Society of Mechanical Engi-
neers . V02BT03A030–V02BT03A030 

siao, P.-C. , Chiang, T.-C. , & Fu, L.-C. (2012). A vns-based hyper-heuristic with adap-

tive computational budget of local search. In Proceedings of the IEEE congress on
evolutionary computation (CEC 2012) (pp. 1–8). IEEE . 

yde, M. , Ochoa, G. , Curtois, T. , & Vázquez-Rodríguez, J. (2010a). Technical Report . 
yde, M. , Ochoa, G. , Vázquez-Rodríguez, J. A. , & Curtois, T. (2010b). A HyFlex module

for the MAX-SAT problem. Technical Report . 
ackson, W. , Özcan, E. , & John, R. I. (2018). Move acceptance in local search

metaheuristics for cross-domain search. Expert Systems with Applications, 109 ,

131–151 . 
ackson, W. G. , Özcan, E. , & Drake, J. H. (2013). Late acceptance-based selection hy-

per-heuristics for cross-domain heuristic search. In Proceedings of the 2013 13th
UK workshop on computational intelligence (UKCI) (pp. 228–235). IEEE . 

ia, Y. , Cohen, M. B. , Harman, M. , & Petke, J. (2015). Learning combinatorial inter-
action test generation strategies using hyperheuristic search. In Proceedings of

the 37th international conference on software engineering-volume 1 (pp. 540–550).

IEEE Press . 
in, Y. , & Branke, J. (2005). Evolutionary optimization in uncertain environments-a

survey. IEEE Transactions on Evolutionary Computation, 9 (3), 303–317 . 
ampouridis, M. , Alsheddy, A. , & Tsang, E. (2013). On the investigation of hyper-

-heuristics on a financial forecasting problem. Annals of Mathematics and Artifi-
cial Intelligence, 68 (4), 225–246 . 

arapetyan, D. , Punnen, A. P. , & Parkes, A. J. (2017). Markov chain methods for the

bipartite boolean quadratic programming problem. European Journal of Opera-
tional Research, 260 (2), 494–506 . 

endall, G. , & Li, J. (2013). Competitive travelling salesmen problem: A hyper-heuris-
tic approach. Journal of the Operational Research Society, 64 (2), 208–216 . 

heiri, A. , & Keedwell, E. (2015). A sequence-based selection hyper-heuristic util-
ising a hidden Markov model. In Proceedings of the 2015 annual conference on

genetic and evolutionary computation (pp. 417–424). ACM . 

heiri, A. , & Keedwell, E. (2017). A hidden Markov model approach to the prob-
lem of heuristic selection in hyper-heuristics with a case study in high school

timetabling problems. Evolutionary Computation, 25 (3), 473–501 . 
heiri, A. , & Özcan, E. (2016). An iterated multi-stage selection hyper-heuristic. Eu-

ropean Journal of Operational Research, 250 (1), 77–90 . 
heiri, A. , Özcan, E. , & Parkes, A. J. (2016). A stochastic local search algorithm with

adaptive acceptance for high-school timetabling. Annals of Operations Research,

239 (1), 135–151 . 
iraz, B. , Etaner-Uyar, A. , & Özcan, E. (2013). Selection hyper-heuristics in dynamic

environments. Journal of the Operational Research Society, 64 (12), 1753–1769 . 
otthoff, L. (2014). Algorithm selection for combinatorial search problems: A survey.

AI Magazine, 35 (3), 48–60 . 
oulinas, G. , & Anagnostopoulos, K. (2013). A new tabu search-based hyper-heuris-

tic algorithm for solving construction leveling problems with limited resource
availabilities. Automation in Construction, 31 , 169–175 . 

oulinas, G. , Kotsikas, L. , & Anagnostopoulos, K. (2014). A particle swarm optimiza-

tion based hyper-heuristic algorithm for the classic resource constrained project
scheduling problem. Information Sciences, 277 , 680–693 . 

ubalík, J. (2012). Hyper-heuristic based on iterated local search driven by evolu-
tionary algorithm. In J.-K. Hao, & M. Middendorf (Eds.), Evolutionary compu-

tation in combinatorial optimization . In Lecture Notes in Computer Science: 7245
(pp. 148–159). Berlin Heidelberg: Springer . 

umari, A. C. , & Srinivas, K. (2016). Hyper-heuristic approach for multi-objective

software module clustering. Journal of Systems and Software, 117 , 384–401 . 
assouaoui, M. , & Boughaci, D. (2014). A choice function hyper-heuristic for the

winner determination problem. In Proceedings of the nature inspired cooperative
strategies for optimization (NICSO 2013) (pp. 303–314). Springer . 

ehrbaum, A. , & Musliu, N. (2012). A new hyperheuristic algorithm for cross-do-
main search problems. In Y. Hamadi, & M. Schoenauer (Eds.), Proceedings of

the learning and intelligent optimization . In Lecture Notes in Computer Science

(pp. 437–442). Berlin Heidelberg: Springer . 
ehre, P. K. , & Özcan, E. (2013). A runtime analysis of simple hyper-heuristics: To

mix or not to mix operators. In Proceedings of the twelfth workshop on founda-
tions of genetic algorithms XII (pp. 97–104). ACM . 

i, D. , Li, M. , Meng, X. , & Tian, Y. (2015). A hyperheuristic approach for intercell
scheduling with single processing machines and batch processing machines.

IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45 (2), 315–325 . 

i, D. , Zhan, R. , Zheng, D. , Li, M. , & Kaku, I. (2016). A hybrid evolutionary hyper-
-heuristic approach for intercell scheduling considering transportation capacity.

IEEE Transactions on Automation Science and Engineering, 13 (2), 1072–1089 . 
i, J. , & Kendall, G. (2017). A hyperheuristic methodology to generate adaptive

strategies for games. IEEE Transactions on Computational Intelligence and AI in
Games, 9 (1), 1–10 . 

i, K. , Fialho , Kwong, S. , & Zhang, Q. (2014). Adaptive operator selection with ban-

dits for a multiobjective evolutionary algorithm based on decomposition. IEEE
Transactions on Evolutionary Computation, 18 (1), 114–130 . 

i, W. , Özcan, E. , & John, R. (2017). Multi-objective evolutionary algorithms and
hyper-heuristics for wind farm layout optimisation. Renewable Energy, 105 ,

473–482 . 
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re

Operational Research, https://doi.org/10.1016/j.ejor.2019.07.073 
in, J. , Wang, Z.-J. , & Li, X. (2017). A backtracking search hyper-heuristic for the dis-
tributed assembly flow-shop scheduling problem. Swarm and Evolutionary Com-

putation, 36 , 124–135 . 
ópez-Camacho, E. , Terashima-Marin, H. , Ross, P. , & Ochoa, G. (2014). A unified hy-

per-heuristic framework for solving bin packing problems. Expert Systems with
Applications, 41 (15), 6 876–6 889 . 

ópez-Ibáñez, M. , Dubois-Lacoste, J. , Cáceres, L. P. , Birattari, M. , & Stützle, T. (2016).
The irace package: Iterated racing for automatic algorithm configuration. Oper-

ations Research Perspectives, 3 , 43–58 . 

ópez-Ibáñez, M. , & Stützle, T. (2014). Automatically improving the anytime be-
haviour of optimisation algorithms. European Journal of Operational Research,

235 (3), 569–582 . 
aashi, M. , Kendall, G. , & Özcan, E. (2015). Choice function based hyper-heuristics

for multi-objective optimization. Applied Soft Computing, 28 , 312–326 . 
aashi, M. , Özcan, E. , & Kendall, G. (2014). A multi-objective hyper-heuristic based

on choice function. Expert Systems with Applications, 41 (9), 4 475–4 493 . 

arshall, R. J. , Johnston, M. , & Zhang, M. (2015). Hyper-heuristic operator selection
and acceptance criteria. In Proceedings of the European conference on evolutionary

computation in combinatorial optimization (EVOCOP) . In Lecture Notes in Computer
Science: 9026 (pp. 99–113). Springer . 

artello, S. , Pisinger, D. , & Toth, P. (1999). Dynamic programming and strong bounds
for the 0-1 knapsack problem. Management Science, 45 (3), 414–424 . 

artins, M. S. , El Yafrani, M. , Delgado, M. R. , Wagner, M. , Ahiod, B. , &

Lüders, R. (2017). HSEDA: A heuristic selection approach based on estimation of
distribution algorithm for the travelling thief problem. In Proceedings of the ge-

netic and evolutionary computation conference, (GECCO 2017) (pp. 361–368). ACM .
ascia, F. , & Stützle, T. (2012). A non-adaptive stochastic local search algorithm for

the CHeSC 2011 competition. In Y. Hamadi, & M. Schoenauer (Eds.), Learning and
intelligent optimization . In Lecture Notes in Computer Science (pp. 101–114). Berlin

Heidelberg: Springer . 

cClymont, K. , Keedwell, E. , Savi ́c, D. , & Randall-Smith, M. (2013). A general mul-
ti-objective hyper-heuristic for water distribution network design with dis-

colouration risk. Journal of Hydroinformatics, 15 (3), 700–716 . 
eignan, D. (2011). An evolutionary programming hyper-heuristic with co-evolution

for CHeSC’11. In Proceedings of the 53rd annual conference of the UK operational
research society (OR53) . 

eignan, D. , Schwarze, S. , & Voß, S. (2016). Improving local-search metaheuris-

tics through look-ahead policies. Annals of Mathematics and Artificial Intelligence,
76 (1-2), 59–82 . 

ısır, M. (2017). Matrix factorization based benchmark set analysis: A case study
on hyflex. In Proceedings of the Asia-pacific conference on simulated evolution and

learning (SEAL 2017) (pp. 184–195). Springer . 
ısır, M. , Smet, P. , & Vanden Berghe, G. (2015). An analysis of generalised heuristics

for vehicle routing and personnel rostering problems. Journal of the Operational

Research Society, 66 (5), 858–870 . 
ısır, M. , Verbeeck, K. , De Causmaecker, P. , & Vanden Berghe, G. (2012a). The effect

of the set of low-level heuristics on the performance of selection hyper-heuris-
tics. In Proceedings of the international conference on parallel problem solving from

nature (pp. 408–417). Springer . 
ısır, M. , Verbeeck, K. , De Causmaecker, P. , & Vanden Berghe, G. (2012b). An intel-

ligent hyper-heuristic framework for CHESC 2011. In Proceedings of the learning
and intelligent optimization (pp. 461–466). Springer . 

ısır, M. , Verbeeck, K. , De Causmaecker, P. , & Vanden Berghe, G. (2013a). An in-

vestigation on the generality level of selection hyper-heuristics under different
empirical conditions. Applied Soft Computing, 13 (7), 3335–3353 . 

ısır, M. , Verbeeck, K. , De Causmaecker, P. , & Vanden Berghe, G. (2013b). A new hy-
per-heuristic as a general problem solver: an implementation in hyflex. Journal

of Scheduling, 16 (3), 291–311 . 
onemi, R. N. , Danach, K. , Khalil, W. , Gelareh, S. , Lima, F. C. , & Aloise, D. J. (2015).

Solution methods for scheduling of heterogeneous parallel machines ap-

plied to the workover rig problem. Expert Systems with Applications, 42 (9), 
4493–4505 . 

ourdjis, P. , Chen, Y. , Polack, F. , Cowling, P. , & Robinson, M. (2016). Variable neigh-
bourhood descent with memory: A hybrid metaheuristic for supermarket re-

supply. In Proceedings of the international workshop on hybrid metaheuristics
(pp. 32–46). Springer . 

uklason, A . , Parkes, A . J. , Özcan, E. , McCollum, B. , & McMullan, P. (2017). Fair-

ness in examination timetabling: Student preferences and extended formula-
tions. Applied Soft Computing, 55 , 302–318 . 

choa, G. , Hyde, M. , Curtois, T. , Vazquez-Rodriguez, J. A. , Walker, J. , Gendreau, M. , . . .
Burke, E. K. (2012). HyFlex: a benchmark framework for cross-domain heuristic

search. In J.-K. Hao, & M. Middendorf (Eds.), Evolutionary computation in combi-
natorial optimization . In Lecture Notes in Computer Science: 7245 (pp. 136–147).

Berlin Heidelberg: Springer . 

ng, Y.-S., Lim, M.-H., Zhu, N., & Wong, K.-W. (2006). Classification of adaptive
memetic algorithms: a comparative study. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), 36 (1), 141–152. doi: 10.1109/TSMCB.2005.
856143 . 

rtiz-Bayliss, J. C. , Terashima-Marín, H. , & Conant-Pablos, S. E. (2013). Learning vec-
tor quantization for variable ordering in constraint satisfaction problems. Pat-

tern Recognition Letters, 34 (4), 423–432 . 

rtiz-Bayliss, J. C. , Terashima-Marín, H. , & Conant-Pablos, S. E. (2016). Combine and
conquer: An evolutionary hyper-heuristic approach for solving constraint satis-

faction problems. Artificial Intelligence Review, 46 (3), 327–349 . 
zcan, E. , Bilgin, B. , & Korkmaz, E. E. (2008). A comprehensive analysis of hyper-

-heuristics. Intelligent Data Analysis, 12 (1), 3–23 . 
cent advances in selection hyper-heuristics, European Journal of 

http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0076
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0076
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0076
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0076
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0076
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0077
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0077
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0077
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0077
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0077
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0078
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0078
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0078
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0078
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0078
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0079
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0079
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0079
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0079
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0079
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0079
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0080
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0080
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0080
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0080
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0080
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0080
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0081
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0081
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0081
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0081
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0081
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0082
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0082
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0082
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0082
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0082
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0083
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0083
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0083
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0083
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0083
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0083
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0084
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0084
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0084
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0084
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0085
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0085
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0085
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0085
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0085
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0086
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0086
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0086
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0086
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0086
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0087
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0087
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0087
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0087
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0088
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0088
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0088
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0088
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0089
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0089
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0089
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0089
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0090
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0090
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0090
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0090
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0091
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0091
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0091
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0091
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0091
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0092
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0092
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0092
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0092
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0092
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0093
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0093
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0094
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0094
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0094
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0094
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0095
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0095
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0095
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0095
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0095
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0096
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0096
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0097
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0097
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0097
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0097
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0098
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0098
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0098
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0098
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0099
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0099
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0099
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0099
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0100
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0100
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0100
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0100
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0101
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0101
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0101
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0101
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0101
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0101
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0102
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0102
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0102
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0102
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0102
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0102
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0102
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0103
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0103
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0103
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0103
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0104
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0104
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0104
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0104
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0104
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0104
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0105
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0105
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0105
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0105
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0105
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0106
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0106
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0106
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0106
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0106
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0107
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0107
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0107
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0107
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0107
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0107
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0108
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0108
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0108
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0108
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0108
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0108
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0108
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0109
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0109
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0109
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0109
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0110
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0110
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0110
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0110
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0110
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0111
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0111
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0111
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0111
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0111
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0112
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0112
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0112
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0112
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0112
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0113
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0113
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0113
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0113
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0113
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0114
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0114
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0114
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0114
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0114
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0114
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0114
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0114
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0115
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0115
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0115
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0115
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0116
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0116
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0116
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0116
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0116
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0116
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0117
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0117
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0118
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0118
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0118
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0118
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0118
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0119
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0119
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0120
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0120
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0120
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0120
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0120
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0121
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0121
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0121
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0121
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0121
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0121
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0122
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0122
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0122
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0122
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0122
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0122
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0123
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0123
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0123
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0123
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0123
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0123
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0124
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0124
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0124
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0124
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0124
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0124
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0125
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0125
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0125
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0125
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0125
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0125
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0125
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0125
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0126
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0126
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0126
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0126
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0126
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0126
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0126
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0127
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0127
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0127
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0127
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0127
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0127
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0127
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0128
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0128
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0128
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0128
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0128
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0128
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0128
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0128
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0128
https://doi.org/10.1109/TSMCB.2005.856143
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0130
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0130
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0130
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0130
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0130
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0131
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0131
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0131
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0131
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0131
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0132
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0132
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0132
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0132
http://refhub.elsevier.com/S0377-2217(19)30652-6/sbref0132
https://doi.org/10.1016/j.ejor.2019.07.073


24 J.H. Drake, A. Kheiri and E. Özcan et al. / European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; January 9, 2020;0:57 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S  

 

v  

 

 

S  

 

S  

S  

 

 

 

 

 

 

T  

 

 

 

T  

 

T  

 

T  

 

U  

 

U  

 

V  

 

 

V  

V  

V  

W  

 

 

W  

 

W  

 

 

Y  

 

 

Y  

 

Y  

 

Z  

Z  

 

Z  

 

Pappa, G. L. , Ochoa, G. , Hyde, M. R. , Freitas, A. A. , Woodward, J. , & Swan, J. (2014).
Contrasting meta-learning and hyper-heuristic research: The role of evolution-

ary algorithms. Genetic Programming and Evolvable Machines, 15 (1), 3–35 . 
Parejo, J. A. , Ruiz-Cortés, A. , Lozano, S. , & Fernandez, P. (2012). Metaheuristic op-

timization frameworks: a survey and benchmarking. Soft Computing, 16 (3),
527–561 . 

Parkes, A. J. , Özcan, E. , & Karapetyan, D. (2015). A software interface for supporting
the application of data science to optimisation. In Proceedings of the interna-

tional conference on learning and intelligent optimization (pp. 306–311). Springer .

Pillay, N. (2012). A study of evolutionary algorithm selection hyper-heuristics for
the one-dimensional bin-packing problem. South African Computer Journal, 48 (1),

31–40 . 
Pillay, N. (2016). A review of hyper-heuristics for educational timetabling. Annals of

Operations Research, 239 (1), 3–38 . 
Pillay, N. , & Beckedahl, D. (2017). EvoHyp - a java toolkit for evolutionary algorithm

hyper-heuristics. In Proceedings of the IEEE congress on evolutionary computation

(CEC 2017) (pp. 2706–2713). IEEE . 
Pisinger, D. , & Ropke, S. (2007). A general heuristic for vehicle routing problems.

Computers & operations research, 34 (8), 2403–2435 . 
Pour, S. M. , Drake, J. H. , & Burke, E. K. (2018). A choice function hyper-heuristic

framework for the allocation of maintenance tasks in danish railways. Comput-
ers & Operations Research, 93 , 15–26 . 

Qu, R. , Pham, N. , Bai, R. , & Kendall, G. (2015). Hybridising heuristics within an esti-

mation distribution algorithm for examination timetabling. Applied Intelligence,
42 (4), 679–693 . 

Rahimian, E. , Akartunalı, K. , & Levine, J. (2017). A hybrid integer programming and
variable neighbourhood search algorithm to solve nurse rostering problems. Eu-

ropean Journal of Operational Research, 258 (2), 411–423 . 
Raidl, G. R. (2015). Decomposition based hybrid metaheuristics. European Journal of

Operational Research, 244 (1), 66–76 . 

Rajni , & Chana, I. (2013). Bacterial foraging based hyper-heuristic for resource
scheduling in grid computing. Future Generation Computer Systems, 29 (3),

751–762 . 
Rosales-Pérez, A. , Gutiérrez-Rodríguez, A. E. , Ortiz-Bayliss, J. C. , Terashima-Marín, H. ,

& Coello, C. A. C. (2017). Evolutionary multilabel hyper-heuristic design.
In Proceedings of the IEEE congress on evolutionary computation (CEC 2017)

(pp. 2622–2629). IEEE . 

Ross, P. (2014). Hyper-heuristics. In E. K. Burke, & G. Kendall (Eds.), Search method-
ologies: Introductory tutorials in optimization and decision support techniques

(pp. 611–638)). Springer US . 
Sabar, N. R. , Ayob, M. , Kendall, G. , & Qu, R. (2013). Grammatical evolution hyper-

-heuristic for combinatorial optimization problems. IEEE Transactions on Evolu-
tionary Computation, 17 (6), 840–861 . 

Sabar, N. R. , Ayob, M. , Kendall, G. , & Qu, R. (2015a). Automatic design of a hy-

per-heuristic framework with gene expression programming for combinatorial
optimization problems. IEEE Transactions on Evolutionary Computation, 19 (3),

309–325 . 
Sabar, N. R. , Ayob, M. , Kendall, G. , & Qu, R. (2015b). A dynamic multiarmed ban-

dit-gene expression programming hyper-heuristic for combinatorial optimiza-
tion problems. IEEE Transactions on Cybernetics, 45 (2), 217–228 . 

Sabar, N. R. , & Kendall, G. (2015). Population based monte carlo tree search hy-
per-heuristic for combinatorial optimization problems. Information Sciences, 314 ,

225–239 . 

Sabar, N. R. , Turky, A. , Song, A. , & Sattar, A. (2017). Optimising deep belief networks
by hyper-heuristic approach. In Proceedings of the IEEE congress on evolutionary

computation (CEC 2017) (pp. 2738–2745). IEEE . 
Sabar, N. R. , Zhang, X. J. , & Song, A. (2015c). A math-hyper-heuristic approach for

large-scale vehicle routing problems with time windows. In Proceedings of the
IEEE congress on evolutionary computation (CEC 2015) (pp. 830–837). IEEE . 

Salcedo-Sanz, S. , Matías-Román, J. , Jiménez-Fernández, S. , Portilla-Figueras, A. , &

Cuadra, L. (2014). An evolutionary-based hyper-heuristic approach for the jaw-
breaker puzzle. Applied Intelligence, 40 (3), 404–414 . 

Salhi, A. , & Rodríguez, J. A. V. (2014). Tailoring hyper-heuristics to specific instances
of a scheduling problem using affinity and competence functions. Memetic Com-

puting, 6 (2), 77–84 . 
Segredo, E. , Segura, C. , & León, C. (2014). Memetic algorithms and hyperheuris-

tics applied to a multiobjectivised two-dimensional packing problem. Journal of

Global Optimization, 58 (4), 769–794 . 
Segura, C. , Segredo, E. , & León, C. (2012). Analysing the adaptation level of parallel

hyperheuristics applied to multiobjectivised benchmark problems. In Proceed-
ings of the 2012 20th Euromicro international conference on parallel, distributed

and network-based processing (pp. 138–145). IEEE . 
Sim, K. , & Hart, E. (2016). A combined generative and selective hyper-heuristic for

the vehicle routing problem. In Proceedings of the 2016 on genetic and evolution-

ary computation conference (pp. 1093–1100). ACM . 
Smith, S. L. , & Imeson, F. (2017). GLNS: An effective lar ge neighborhood search

heuristic for the generalized traveling salesman problem. Computers & Opera-
tions Research, 87 , 1–19 . 

Soghier, A. , & Qu, R. (2013). Adaptive selection of heuristics for assigning time slots
and rooms in exam timetables. Applied Intelligence, 39 (2), 438–450 . 

Soria-Alcaraz, J. A. , Ochoa, G. , Carpio, M. , & Puga, H. (2014a). Evolvability metrics

in adaptive operator selection. In Proceedings of the 2014 annual conference on
genetic and evolutionary computation (pp. 1327–1334). ACM . 

Soria-Alcaraz, J. A. , Ochoa, G. , Sotelo-Figeroa, M. A. , & Burke, E. K. (2017). A method-
ology for determining an effective subset of heuristics in selection hyper-heuris-

tics. European Journal of Operational Research, 260 (3), 972–983 . 
Please cite this article as: J.H. Drake, A. Kheiri and E. Özcan et al., Re

Operational Research, https://doi.org/10.1016/j.ejor.2019.07.073 
oria-Alcaraz, J. A. , Ochoa, G. , Swan, J. , Carpio, M. , Puga, H. , & Burke, E. K. (2014b).
Effective learning hyper-heuristics for the course timetabling problem. European

Journal of Operational Research, 238 (1), 77–86 . 
an der Stockt, S. , & Engelbrecht, A. P. (2014). Analysis of hyper-heuristic perfor-

mance in different dynamic environments. In Proceedings of the IEEE symposium
on computational intelligence in dynamic and uncertain environments (CIDUE),

2014 (pp. 1–8). IEEE . 
trickler, A. , Lima, J. A. P. , Vergilio, S. R. , & Pozo, A. T. (2016). Deriving products for

variability test of feature models with a hyper-heuristic approach. Applied Soft

Computing, 49 , 1232–1242 . 
wan, J. , De Causmaecker, P. , Martin, S. , & Özcan, E. (2018). A re-characterization of

hyper-heuristics. In Recent developments in metaheuristics (pp. 75–89). Springer . 
wan, J. , Özcan, E. , & Kendall, G. (2011). Hyperion- a recursive hyper-heuristic

framework. In C. A. C. Coello (Ed.), Proceedings of the fifth international confer-
ence on learning and intelligent optimization: (LION 5) . In Lecture Notes in Com-

puter Science: 6683 (pp. 616–630). Berlin Heidelberg: Springer . 

Swiercz, A. , Burke, E. K. , Cichenski, M. , Pawlak, G. , Petrovic, S. , Zurkowski, T. , &
Blazewicz, J. (2014). Unified encoding for hyper-heuristics with application to

bioinformatics. Central European Journal of Operations Research, 22 (3), 567–589 . 
Thomas, J. , & Chaudhari, N. S. (2014). Design of efficient packing system using ge-

netic algorithm based on hyper heuristic approach. Advances in Engineering Soft-
ware, 73 , 45–52 . 

inoco, J. C. V. , & Coello, C. A. C. (2013). hypDE: A hyper-heuristic based on dif-

ferential evolution for solving constrained optimization problems. In Evolve-a
bridge between probability, set oriented numerics, and evolutionary computation II

(pp. 267–282). Springer . 
Topcuoglu, H. R. , Ucar, A. , & Altin, L. (2014). A hyper-heuristic based framework for

dynamic optimization problems. Applied Soft Computing, 19 , 236–251 . 
sai, C.-W. , Chang, W.-L. , Hu, K.-C. , & Chiang, M.-C. (2017). An improved hyper-

-heuristic clustering algorithm for wireless sensor networks. Mobile Networks

and Applications, 22 , 943–958 . 
sai, C.-W. , Huang, W.-C. , Chiang, M.-H. , Chiang, M.-C. , & Yang, C.-S. (2014). A hyper-

-heuristic scheduling algorithm for cloud. IEEE Transactions on Cloud Computing,
2 (2), 236–250 . 

yasnurita, R. , Özcan, E. , & John, R. (2017). Learning heuristic selection using a
time delay neural network for open vehicle routing. In Proceedings of the IEEE

congress on evolutionary computation (CEC 2017) (pp. 1474–1481). IEEE . 
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