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Abstract

The presence of myelin is a powerful structural factor that controls the conduction speed of
mammalian axons. It is the combination of local synaptic activity and non-local delayed axonal
interactions within the cortex that is believed to be the major source of large-scale brain signals
that can be readily observed with modern neuroimaging modalities. Here, we present perspec-
tives from neural mass and network modelling and develop a new set of mathematical tools able
to unravel the contributions of space-dependent axonal delays to large-scale spatiotemporal pat-
terning of brain activity. We first analyse a single neuronal population Wilson–Cowan neural
mass model with self-feedback and a single delay and show how to construct periodic orbits for
a Heaviside firing rate. For this nonsmooth model we perform linear stability analysis by aug-
menting Floquet theory with saltation operations. Building on this example, we then show how
to treat the synchronous oscillatory state in networks of nonsmooth neural masses with multiple
and heterogeneous delays. Theoretical predictions for the parameter variations that lead to insta-
bilities of the synchronous network state and the excitation of structured spatio-temporal activity
patterns are confirmed with direct numerical simulations.

Keywords: White matter networks, axonal delays, nonsmooth modelling, synchrony
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1. Introduction

The presence of myelin, a white fatty insulating substance, is a powerful structural factor that
controls the conduction speed of mammalian axons. These can extend over the scale of the whole
brain and provide the backbone of a communication system for transmitting spikes of electrical
activity (action potentials). This allows not only for local interactions, but long-range ones, often
between different areas and hemispheres. It is the combination of local synaptic activity and
non-local delayed axonal interactions within the cortex that is believed to be the major source
of large-scale brain signals that are seen in electro- and magneto-encephalography (EEG/MEG)
recordings [1]. Advances in non-invasive neuroimaging, and specifically diffusion magnetic res-
onance imaging, now give us a further means to track the locations of myelinated fibre bundles
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and build intricate white matter networks that characterise the brain’s large-scale topography [2].
This gives a modern view of the human cortex as a dense reciprocally interconnected network of
roughly 1010 cortico-cortical axonal pathways that make connections within the roughly 3 mm
outer layer of the cerebrum. The significance of cortical myeloarchitecture on patterns of func-
tional connectivity (temporal pair-wise correlations of activity) in the human brain is increasingly
being recognised, e.g., [3, 4, 5]. Given that axonal delays depend upon tract distances and the
speed of action potential propagation, which increases linearly with myelination [6] (and with
typical values in the 5 –10 m/s range), then we are faced with understanding a large network with
a correspondingly large set of heterogeneous delays. Over large distances, reciprocal coupling of
brain nodes generates a significant conduction time (of up to 30 ms in humans) and any variation
in the speed of an action potential can be detrimental, since it will disrupt the temporal precision
needed for oscillatory coupling and phase-locking [7]. Given the importance of axonal delays in
coupling and the potential difficulty in synchronising distant brain areas, it is natural to assume
that myelination can play a critical role in resolving this problem. Interestingly, loss of coherence
in brain networks is a hallmark of neuropsychiatric disorders such as schizophrenia, see e.g., [8].
One particular pattern of activity that is of fundamental importance in nervous system function
and in particular to cognition and the formation of transient functional assemblies is that of syn-
chrony [9]. Conduction speeds (and hence delays) in white matter are key to maintaining neural
communication and are highly relevant to the communication through coherence hypothesis for
cognition developed by Fries for brain rhythms in the gamma-band (30 – 90 Hz) [10]. White
matter pathways have also been suggested to play a coordinating role for alpha oscillations in the
resting visual cortex in a study combining MEG, diffusion tensor imaging, and modelling [11].
Indeed, the modelling of axonal delays in brain models can trace its roots back to the work of
Nunez in the 1970s and his development of a brain wave equation (for EEG activity) [12], and
recently revisited in [13] in a neural field context incorporating space-dependent axonal delays.
Neural fields, typically expressed as integro-differential equations posed on a cortical surface,
are simply the continuum counterpart of networks of neural mass models, and such systems are
increasingly being adopted to complement neuroimaging studies as exemplified by the activity of
the Virtual Brain project [14]. A proto-typical neural mass model is that of Wilson and Cowan,
which tracks the activity of an excitatory population of neurons coupled to an inhibitory popu-
lation [15]. Deco et al. have previously used a network of 38 Wilson–Cowan nodes connected
according to structural data from the macaque brain with delays determined by assuming a com-
mon axonal propagation speed along the connecting fibers based on the 3D Euclidean distance
between any 2 connected nodes to show that white matter can play a key role in generating pat-
terns of functional connectivity seen in “resting-state” (default-mode network) [16]. Similar con-
clusion have been drawn when using human connectome data (with 66 anatomical nodes), albeit
for a simplified phase-oscillator Kuramoto network [17, 18]. The latter delayed network model
is also able to generate structured amplitude envelopes of band-pass filtered oscillations similar
to real resting-state MEG data. More recently, numerical studies of Wilson–Cowan networks
with delayed interactions have been shown to be able to generate alpha-band (8 – 12 Hz) net-
works of phase synchronisation seen in MEG [19], with distant dependent delays (with common
axonal propagation speed) providing a best fit to data [20]. All of the above modelling studies
rely heavily on numerical simulations to gain insight into spatio-temporal network dynamics.
Although the mathematical analysis of steady states in delayed neural networks is relatively well
developed, see e.g., [21, 22, 23, 24], that of time periodic oscillations is far less developed with
the exception perhaps being the work of Otto et al. on synchrony (albeit still requiring the nu-
merical solution of modal differential delay equations) [25], and that of Budzinski et al. on the
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emergence of rotating waves in Kuramoto networks with distance-dependent delays [18]. In this
paper we begin to redress this balance by considering a tractable mathematical model of a white
matter neural network built from interacting Wilson–Cowan nodes with Heaviside firing rate
function. Using techniques from nonsmooth dynamical systems, recent progress in understand-
ing how synchrony can arise in such networks without delays has been made in [26]. To handle
the non-trivial extension of this work to include axonal delays we build on an approach previ-
ously developed to study single delay systems with a threshold nonlinearity [27]. By combining
techniques from network science, nonsmooth dynamics, and delayed systems we show how to
construct the synchronous oscillatory network state and determine its linear stability.

In section 2 we introduce the dynamics of choice for a single node, namely a Wilson–Cowan
model with a Heaviside firing rate and delays between excitatory and inhibitory sub-populations.
When all delays are equal, we show how to construct a periodic orbit with two different methods,
each with its own merits. The first relies on matrix exponentials (a formulation that proves useful
for linear stability) and the second adopts a Fourier series representation (that can accommodate
multiple delays). To determine the linear stability of a periodic orbit we augment Floquet the-
ory for smooth systems with a set of saltation operators to handle the nonsmooth behaviour at
switching points where the Heaviside firing rate function transitions discontinuously from zero
to one. In a regime of co-existing limit cycles we use this to determine that one orbit is stable and
the other unstable (with annihilation at a saddle-node of periodic orbits bifurcation). Building on
this we then consider circulant networks with a common delay between all nodes in section 3. A
modal decomposition in terms of the eigenvectors of the structural connectivity leads to a set of
linear stability problems each of which can be handled with the techniques developed in section
2. We use this to predict the onset of a synchronous instability under parameter variation. Direct
numerical simulations are used to confirm the bifurcation point and illustrate that the emergent
pattern just beyond an instability is well predicted by the unstable eigenvector. The treatment of
truly heterogeneous delays is more challenging and we restrict attention to the distant dependent
case. A suitable generalisation of the approach in 3 is developed in section 4, and once again the-
oretical predictions are found to be in excellent agreement with numerical simulations. Finally,
in section 5 we review the main results obtained, their relevance to large scale brain modelling,
and discuss natural extensions of the work presented.

2. Wilson–Cowan model model with self delays

In the first instance we introduce the Wilson–Cowan model [28] of cortical activity that we
subsequently use to describe the dynamics at a node in a brain network model. The Wilson-
Cowan model is a ubiquitous model in mathematical neuroscience that has a long and established
history of success in describing neuronal population dynamics [29]. The model describes the
dynamics of two interacting populations of neurons, one of which is excitatory and the other
inhibitory. The equation of the model with the inclusion of fixed communication delay terms
between the sub-populations is given by

d
dt

u(t) = −u(t) + F (Iu + wuuu(t − τuu) − wvuv(t − τvu)) , (1)

κ
d
dt

v(t) = −v(t) + F (Iv + wuvu(t − τuv) − wvvv(t − τvv)) . (2)

Here, u(t) is a temporal coarse-grained variable describing the proportion of excitatory cells
firing per unit time at the instant t. Similarly the variable v represents the activity of an inhibitory
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population of cells. The constants wαβ, α, β ∈ {u, v}, describe the weight of all synapses from
the αth population to cells of the βth population, ταβ are time delays, Iα represent external inputs
(that could be time varying), and κ is a relative time-scale. The nonlinear function F describes
the expected proportion of neurons in population α receiving at least threshold excitation per
unit time, and is often taken to have a sigmoidal form. Delay differential equations (DDEs), as
exemplified by (1)–(2), define a dynamical system with an infinite dimensional phase-space [30]
because the history over the delay interval ([−max{ταβ}, 0] for this example) must be specified.
Due to this infinite dimensionality, DDEs are difficult to analyse analytically and much is still
unknown about their dynamics [30, 31]. A linear stability analysis of fixed points of (1)–(2) can
be found in [23] for the case of two distinct delays (where τuu = τvv and τuv = τvu) and the choice
that F(z) = (1 + e−βz)−1, β > 0, showing the possibility of delay induced oscillations, and the
emergence of chaos with variation in the delays (by the numerical determination of the maximal
Lyapunov exponent). Even in the absence of delays, the nonlinearity of a sigmoidal firing rate
precludes further analytical progress, except in special cases including that of a Heaviside firing
rate function H(x) = 1 if x > 0 and is zero otherwise. This limiting case of a steep sigmoid has
been explored in the Wilson-Cowan model (no delays), e.g., in the work of Harris and Ermentrout
[32] for determining formulas for bifurcations of equilibria and that of Coombes et al. for the
construction and stability of periodic orbits [26]. Indeed, in recent years there has been a growing
interest in gaining insight into the behaviour of nonlinear systems with delays. Encouraged by
these results, and previous work showing that the treatment of delays and piecewise nonlinearities
can oftentimes be tractable [33, 34, 35, 31, 36, 37, 38, 39, 40], we adopt the Heaviside choice
throughout the rest of this paper and set F = H.

In the absence of delays stable periodic orbits in the Wilson–Cowan model (Heaviside firing
rate function) can appear from a (nonsmooth) Hopf bifurcation for κ > κHopf [32]. With the
inclusion of delays it is possible for delay induced oscillations to occur for κ < κHopf, as illustrated
in Fig. 1.

Figure 1: Phase plane for the Wilson-Cowan model with a Heaviside firing rate, showing a delay induced stable periodic
orbit. Parameters: κ = 0.5, Iu = −0.05, Iv = −0.3, wuu = 1, wvu = 2, wuv = 1, wvv = 0.25, with delays τuu = 0.01,
τvu = 0.018, τuv = 0.012, and τvv = 0.015. The switching events occur when Iu + wuuu(t − τuu) − wvuv(t − τvu) = 0 and
Iv + wuvu(t − τuv) − wvvv(t − τvv) = 0.
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To simplify the analysis and exposition of delay induced oscillations we first consider ταβ =

τ, namely we reduce the system to one with a single delay model. We also introduce new vari-
ables (U,V) such that U(t) = Iu + wuuu(t) − wvuv(t) and V(t) = Iv + wuvu(t) − wvvv(t) (recognised
as the arguments to the firing rate functions in (1)–(2)), as well as the matrices

W =

[
wuu −wvu

wuv −wvv

]
, J =

[
1 0
0 1/κ

]
A = −WJW−1. (3)

With these choices (1)-(2) transforms to

d
dt

[
U(t)
V(t)

]
= A

[
U(t) − Iu

V(t) − Iv

]
+ WJ

[
H(U(t − τ))
H(V(t − τ))

]
. (4)

In this representation, switching events occur when the conditions U(t − τ) = 0 or V(t − τ) = 0
hold. In the next subsections we show how to construct periodic solutions of this system and
determine their stability.

2.1. Construction of periodic orbits
Away from the switching conditions the dynamics governing the evolution of trajectories is

linear, and may be constructed using matrix exponentials. This is because the source term on the
right hand side of (4) is piecewise constant, as determined by

[
H(U(t − τ))
H(V(t − τ))

]
=


[0, 0]> if U(t − τ) < 0 and V(t − τ) < 0
[1, 0]> if U(t − τ) > 0 and V(t − τ) < 0
[1, 1]> if U(t − τ) > 0 and V(t − τ) > 0
[0, 1]> if U(t − τ) < 0 and V(t − τ) > 0

. (5)

The periodic orbit shown in Fig. 2 undertakes each of the switching conditions U(t − τ) = 0
or V(t − τ) = 0 twice, so that the periodic trajectory is naturally decomposed into four separate
pieces. On each piece we shall denote the time-of-flight for a trajectory to travel from one switch-
ing event to another by Ti, i = 1, . . . , 4, so that the period of the orbit is given by ∆ =

∑4
i=1 Ti. As

an explicit example of how to construct a trajectory between two switching conditions, consider
the region where U(t − τ) > 0 and V(t − τ) < 0. In this case the solution of (4) is given by[

U(t)
V(t)

]
= eAt

[
U(0)
V(0)

]
+ (I2 − eAt)

[[
Iu

Iv

]
− A−1WJ

[
1
0

]]
, t ≥ 0. (6)

It is a simple matter to write down the trajectories in each of the remaining regions of phase
space visited by a periodic orbit. We may then use these matrix exponential formulas to patch
together solutions, setting the origin of time in each region such that initial data in one region
comes from final data from a trajectory in a neighbouring region. We shall denote the periodic
orbit by (U,V) such that (U(t),V(t)) = (U(t + ∆),V(t + ∆)). If we consider initial data with
(U(0),V(0)) = (U0,V0) then the four times-of-flight and the unknown (U0,V0) are determined
self-consistently by the six equations V(T1−τ) = 0, U(T2−τ) = 0, V(T3−τ) = 0, U(T4−τ) = 0,
U(T4) = U0, and V(T4) = V0. The numerical solution of this nonlinear algebraic system of
equations can be used to construct periodic orbits such as the one shown in Fig. 2, with a fixed
pattern of switching consistent with time of flights of the orbit that are larger than the delay
durations (Ti > ταβ) .
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Figure 2: A stable periodic orbit of the model described by (4). Parameters: κ = 0.5, Iu = −0.05, Iv = −0.3, wuu = 1,
wvu = 2, wuv = 1, wvv = 0.25, and delay term τ = 0.02. Switching events are prescribed by U(t − τ) = 0 (when the
delayed state crosses the red line) and V(t − τ) = 0 (when the delayed state crosses the blue line).

The formulation of trajectories using matrix exponentials is also very useful when consider-
ing solutions of the linearised model, as will shall do so shortly for the determination of linear
stability of periodic orbits. However, as regards the construction of orbits this approach increases
in computational complexity as the number of distinct delays increases, as one now needs to
compute state values at more delayed times. Instead it can be more useful to use an alternative
Fourier series approach, which is agnostic to the number of delays. To explain this, let us now
consider four distinct delays in the Wilson–Cowan model (1)–(2). First we denote unknown
times-of-flight of the trajectory by: T1 in the region Iu + wuuu(t − τuu) − wvuv(t − τvu) > 0 and
Iv + wuvu(t − τuv) − wvvv(t − τvv) > 0, T2 in the region Iu + wuuu(t − τuu) − wvuv(t − τvu) < 0 and
Iv + wuvu(t − τuv) − wvvv(t − τvv) > 0, T3 in the region Iu + wuuu(t − τuu) − wvuv(t − τvu) < 0 and
Iv + wuvu(t − τuv) − wvvv(t − τvv) < 0, and T4 in the region Iu + wuuu(t − τuu) − wvuv(t − τvu) > 0
and Iv + wuvu(t − τuv) − wvvv(t − τvv) < 0. We denote the event times of a periodic orbit by
∆1 = T1, ∆2 = T1 + T2, ∆3 = T1 + T2 + T3 and ∆4 = ∆. For a ∆-periodic orbit, the
source terms in (1)–(2) are also ∆-periodic and piecewise constant. They can be written as
Fourier series such that H (Iu + wuuu(t − τuu) − wvuv(t − τvu)) ≡ Hu(t) =

∑
n∈Z Hu

ne2πint/∆ and
H (Iv + wuvu(t − τuv) − wvvv(t − τvv)) ≡ Hv(t) =

∑
n∈Z Hv

ne2πint/∆. In detail, Hu(t) has the value 1
when 0 < t < ∆1 and ∆3 < t < ∆, and 0 when ∆1 < t < ∆3, whilst Hv(t) has the value 1 when
0 < t < ∆2, and 0 when ∆2 < t < ∆. The Fourier coefficients Hu,v can be computed as

Hu
n =

1
2πin

[
1 − e−2πin∆1/∆ + e−2πin∆3/∆(1 − e−2πinT4/∆)

]
, (7)

Hv
n =

1
2πin

[
1 − e−2πin∆2/∆

]
. (8)

The ∆-periodic solutions of (1)–(2) can then also be written as Fourier series (u(t), v(t)) =
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∑
n∈Z(un, vn)e2πint/∆, with

un =
Hu

n

1 + 2πin/∆
, vn =

Hv
n

1 + κ2πin/∆
. (9)

Thus, the coefficients un and vn are expressed in terms of the yet unknowns ∆i, i = 1, . . . , 4, and
these in turn can be found by the numerical solution of the four nonlinear algebraic equations
Iu + wuuu(∆1,3 − τuu) − wvuv(∆1,3 − τvu) = 0, and Iv + wuvu(∆2,4 − τuv) − wvvv(∆2,4 − τvv) = 0.
Necessarily, in the numerical approach we must truncate the Fourier series and we do so with the
approximation

∑
n∈Z →

∑N
n=−N with N = 200. This method of solution construction is illustrated

in Fig. 3, and gives seemingly identical results to that of the matrix exponential approach and
does not show any obvious Gibbs phenomenon. Let us emphasise that the Fourier approach is
far more practical when considering systems with multiple delays.

Figure 3: Periodic solution to the Wilson–Cowan model with four distinct delays. The matrix exponential approach is
plotted in red and the Fourier series approach in dashed blue (and the two approaches give seemingly identical results).
Parameters and delay terms are the same as in Fig. 1. Left: u(t) component. Right: v(t) component.

2.2. Stability of periodic orbits

To determine the stability of periodic orbits constructed in section 2.1 we are confronted
with analysing perturbations to a nonsmooth and delayed system. In the absence of delays, the
extension of Floquet theory to nonsmooth systems with a switching manifold is naturally accom-
modated with the use of saltation operators. In essence these allow for a proper description of
how perturbations should be propagated through a switching manifold. For a recent survey of
this approach (no delays) we recommend the article by Kong et al. [41]. Here, we develop a fur-
ther extension to treat delays, basing our methodology on ideas developed in [27] for describing
instabilities in threshold-diffusion equations with delay. Here, we shall only consider a single
delay (with the generalisation to multiple delays to follow later in the paper).

It is convenient to introduce two indicator functions h1(U,V) = U and h2(U,V) = V , re-
spectively, so that the time of events, T , can be defined by hi(U(T − τ),V(T − τ)) = 0. Let us
introduce the vectors x(t) = (U(t),V(t)), x(t) = (U(t),V(t)), to represent a perturbed and unper-
turbed trajectory, and linearise the equations of motion (4) by considering x(t) = x(t) + δx(t), for
small perturbations δx(t) = (δU, δV). In this case (away from switching) we have simply that

d
dt
δx = A δx. (10)
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Moreover, let us consider the unperturbed trajectory has an event at time t = T , prescribed
by hi(x(T − τ)) = 0. Similarly we shall consider the perturbed trajectory to switch at a time
T̃ = T + δT , defined by hi(x̃(T̃ − τ)) = 0. The indicator function for the perturbed trajectory may
be Taylor expanded as:

hi(x̃(T̃ − τ)) ' hi(x(T − τ)) + ∇x(T−τ)hi(x(T − τ)) ·
[
δx(T − τ) + x′(T− − τ)δT

]
. (11)

Here we have introduced the notation x(T±) = limε↘0 x(T ± ε), to make sure that derivatives are
well defined. Using the fact that hi(x(T − τ)) = 0 = hi(x̃(T̃ − τ)) we obtain

∇x(T−τ)hi(x(T − τ)) ·
[
δx(T − τ) + x′(T− − τ)δT

]
= 0. (12)

Using the result that ∂hi(x(t − τ))/∂x j(t − τ) = ∂xi(t − τ)/∂x j(t − τ) = δi, j (and δi, j is a Kronecker
delta function), where (x1, x2) = (U,V), the above can be re-arranged to give the perturbation in
the switching time in terms of the difference between the perturbed and unperturbed trajectories.
If the switch occurs at t = T when V(T − τ) = 0 then

δT = −
δV(T − τ)

V
′
(T− − τ)

, (13)

and if the switch occurs at t = T when U(T − τ) = 0 then

δT = −
δU(T − τ)

U
′
(T− − τ)

. (14)

We now construct the deviation between the two trajectories at the perturbed switching time as

δx(T + δT ) = x̃(T + δT ) − x(T + δT ) ' δx(T ) + [x̃′(T ) − x′(T )]δT. (15)

If δT > 0 then the unperturbed trajectory will already have switched, in which case the two
trajectories are on either side of the switching manifold. A similar argument holds for δT < 0.
Thus we may write

δx(T + δT ) ' δx(T ) +
[
x′(T−) − x′(T +)

]
δT. (16)

Let us first consider the switch to occur at t = T when V(T − τ) = 0 holds, so that δT is given
by (13). In this case (16) gives δx(T + δT ) = δx(T ) + Ka(T )δx(T − τ) with

Ka(T ) =

0 (U
′
(T +) − U

′
(T−))/V

′
(T− − τ)

0 (V
′
(T +) − V

′
(T−))/V

′
(T− − τ)

 . (17)

If the switch occurs at t = T when U(T − τ) = 0 holds, then a similar calculation gives δx(T +

δT ) = δx(T ) + Kb(T )δx(T − τ), with

Kb(T ) =

(U′(T +) − U
′
(T−))/U

′
(T− − τ) 0

(V
′
(T +) − V

′
(T−))/U

′
(T− − τ) 0

 . (18)

Hence due to the discontinuous change in the vector fields there are discontinuous changes during
the evolution of perturbation at the switching times, i.e., δx(T +) = δx(T−) + Ka,b(T )δx(T − τ).
Here Ka,b(T )δx(T − τ) describe the sudden changes (jumps) in the perturbation at an event time
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t = T . Note that this jump depends upon the value of the perturbation in the delayed past. In
Appendix A we show that the saltation operators Ka,b(∆i) ≡ Ki can be written explicitly as

K1 =
1

V
′
(∆−1 − τ)

WJ
[
0 0
0 1

]
, K2 =

−1

U
′
(∆−2 − τ)

WJ
[
1 0
0 0

]
,

K3 =
−1

V
′
(∆−3 − τ)

WJ
[
0 0
0 1

]
, K4 =

1

U
′
(∆−4 − τ)

WJ
[
1 0
0 0

]
. (19)

Returning to equation (10), and following standard practice for Floquet theory, we write the
solution away from the switches in the form δx(t) = eλtz(t), where λ ∈ C are Floquet exponents
and z(t) is ∆−periodic. Thus, away from switches z(t) satisfies z′ = (A − λI2)z, with matrix
exponential solution z(t) = e(A−λI2)tz(0) for t > 0. Remembering that at switching times t = ∆ j,
j = 1, . . . , 4, z(t) will undergo sudden changes, as described above, then we may write z(∆+

j ) =

z(∆−j ) + e−λτK jz(∆ j − τ). By combining the linear evolution between events and jump conditions
(at the switches), we can compute z(t) over one period [0,∆] as

z(t) =



z(0−), t = 0,
ζ(t)[z(0−) + S 4(0)], 0 < t ≤ ∆1,

ζ(t − ∆1)[S 1(∆1) + ζ(∆1)[z(0−) + S 4(0)]], ∆1 < t ≤ ∆2,

ζ(t − ∆2)[S 2(∆2) + ζ(T2)[S 1(∆1) + ζ(∆1)[z(0−) + S 4(0)]]], ∆2 < t ≤ ∆3,

ζ(t − ∆3)[S 3(∆3) + ζ(T3)[S 2(∆2) + ζ(T2)[S 1(∆1) + ζ(∆1)[z(0−) + S 4(0)]]]],∆3 < t ≤ ∆,
(20)

Here, ζ(t) = e(A−λI2)tH(t) and S 1,...,4(∆i) denote the various jumps in z(t) illustrated in Fig. 4 given
by:

S 1(∆1) = e−λτK1z(∆1 − τ), S 2(∆2) = e−λτK2z(∆2 − τ),

S 3(∆3) = e−λτK3z(∆3 − τ), S 4(∆4) = e−λτK4z(∆4 − τ).
(21)

t1=𝝙1-𝜏

t2=𝝙2-𝜏

t3=𝝙3-𝜏

t4=𝝙-𝜏

z(0-)

S4(0)

S1(𝝙1)

S2(𝝙2)

S3(𝝙3)

Figure 4: An illustration of the shape of the ∆−periodic z(t) and the dependence of jumps at times ∆i on the delayed state
z(∆i − τ).
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The formula for z(t) given by (20) is only implicit in the sense that it depends on the as
yet unknowns z(∆i − τ) occurring in the terms S i. However, these can be determined self
consistently by considering the times t = ti, where ti = ∆i − τ, and remembering that peri-
odicity of z(t) requires z(0−) = z(∆). The evaluation of z(t) at the these four times results in
four equations for the unknown planar amplitudes (z(t1) z(t2) z(t3) z(t4)) which takes the form
U (λ)[z(t1) z(t2) z(t3) z(t4)]> = 0 where U (λ) is given by

U (λ) =


V1(t1, λ) − I2 V3(t1, λ) V5(t1, λ) V7(t1, λ)

V2(t2, λ) + V1(t2, λ) V3(t2, λ) − I2 V5(t2, λ) V7(t2, λ)
V2(t3, λ) + V1(t3, λ) V4(t3, λ) + V3(t3, λ) V5(t3, λ) − I2 V7(t3, λ)
V2(t4, λ) + V1(t4, λ) V4(t4, λ) + V3(t4, λ) V6(t4, λ) + V5(t4, λ) V7(t4, λ) − I2

 , (22)

with
V1(t, λ) = p(t)ζ(∆ − ∆1)K1, V2(t, λ) = p(t)(I2 − ζ(∆))ζ(∆1)−1K1,

V3(t, λ) = p(t)ζ(∆ − ∆2)K2, V5(t, λ) = p(t)ζ(∆ − ∆3)K3,

V4(t, λ) = p(t)(I2 − ζ(∆))ζ(∆1)−1ζ(∆2 − ∆1)−1K2, V7(t, λ) = p(t)K4,

V6(t, λ) = p(t)(I2 − ζ(∆))ζ(∆1)−1ζ(∆2 − ∆1)−1ζ(∆3 − ∆2)−1K3,

(23)

and p(t) = ζ(t)e−λτ[I2 − ζ(∆)]−1.
Demanding a non-trivial solution of this system gives an equation for the Floquet exponents λ

in the form ε(λ) ≡ det(Uλ) = 0. Solutions will be linearly stable provided Re λ < 0. To compute
the zeros of ε(λ) it is practical to first decompose λ as λ ≡ ν + iω. The pair (ν, ω) may then be
found by the simultaneous solution of εR(ν, ω) ≡ 0 and εI(ν, ω) ≡ 0, where εR(ν, ω) = Re ε(ν+iω)
and εI(ν, ω) = Im ε(ν+iω). Hence an examination of a plot of the zero contours of εI,R can be used
to reveal the point spectrum with Floquet exponents occurring where the two contours intersect.
For the periodic orbits shown in Fig. 5, plots obtained in this fashion are shown in Fig. 6. For
the perturbation in the same direction with the periodic orbit, we see one exponent with λ = 0 as
expected (from time translation invariance), and some others just slightly to the left or right of
the imaginary axis. For the green solution shown in Fig. 5, no exponents are ever found in the
right hand complex plane, and so this periodic orbits is stable but for the black dotted orbit there
are exponents on the right hand complex plane, therefore it is unstable.

3. Nonsmooth Wilson-Cowan networks with homogeneous delay

The machinery of section 2, for the construction and stability of periodic orbits, can be readily
extended to treat networks of N interacting Wilson–Cowan nodes in larger networks. Before
describing how to do this for heterogeneous delays, we first given an exposé for networks with a
common delay to set the scene for dealing with the more general case of heterogeneous delays.
Thus, we consider a network of Wilson-Cowan nodes given by

d
dt

ui(t) = −ui(t) + H

Iu +

N∑
j=1

Wuu
i j u j(t − τ) −

N∑
j=1

Wvu
i j v j(t − τ)

 , (24)

κ
d
dt

vi(t) = −vi(t) + H

Iv +

N∑
j=1

Wuv
i j u j(t − τ) −

N∑
j=1

Wvv
i j v j(t − τ)

 , i = 1, . . . ,N, (25)

where τ represents a homogeneous delay. It is convenient to introduce a vector notation with
X = (u1, v1, u2, v2, . . . , uN , vN) ∈ R2N and consider a change of variables Y(t) = WX(t) + C,

10



Figure 5: Stable (green) and unstable (dotted black) periodic orbits of the model described by (4). Parameters: κ = 0.6,
Iu = −0.05, Iv = −0.3, wuu = 1, wvu = 2, wuv = 1, wvv = 0.25, and delay term τ = 0.001.
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Figure 6: Floquet exponents as zeros of a complex analytic function ε(λ). Floquet exponents occur where the zero
contours of εR and εI (red and blue lines) intersect. Note the presence of a zero exponent, as expected for perturbations
tangential to the periodic orbit. Left: spectrum for the orbit coloured in green in Fig. 5. Since there are no zeros of ε(λ)
in the right hand complex plane, the solution is linearly stable. Right: spectrum for the orbit coloured in black (dotted)
in Fig. 5. The presence of zeros of ε(λ) in the right hand complex plane show that the solution is linearly unstable.

where C = 1N ⊗ (Iu, Iv), and

W =Wuu ⊗

[
1 0
0 0

]
−Wvu ⊗

[
0 1
0 0

]
+Wuv ⊗

[
0 0
1 0

]
−Wvv ⊗

[
0 0
0 1

]
. (26)

Here, ⊗ denotes the tensor (Kronecker) product and 1N is an N-dimensional vector with all
entries equal to 1. This means that the switching manifolds can be succinctly described by
hi(Y(t − τ)) = Yi(t − τ) = 0 and the dynamics takes the form

d
dt

Y(t) = A(Y(t) −C) +WJH(Y(t − τ)), (27)

11



where
J = IN ⊗ J, A = −WJW−1. (28)

For the rest of the paper we shall focus on synchronous solutions (and the methodologies we
develop here can be further adapted to treat other phase-locked and cluster states). By synchrony,
we mean periodic solutions of the form (ui(t), vi(t)) = (u(t), v(t)) for all i = 1, . . . ,N. These are
guaranteed to exist for certain forms of coupling, including ones with the row sum constraints∑N

j=1W
uu
i j = wuu,

∑N
j=1W

vu
i j = wvu,

∑N
j=1W

uv
i j = wuv, and

∑N
j=1W

vv
i j = wvv for all i. In this case

the network supports a periodic solution (ui(t), vi(t)) = (u(t), v(t)) if the dynamics for a single
Wilson–Cowan node also admits a periodic solution such that (u(t), v(t) is a periodic solution of
(1)–(2). If we denote the synchronous solution by Y(t) = (U(t),V(t),U(t),V(t), . . . ,U(t),V(t))
and consider small perturbations such that Y = Y + δY , then these evolve according to

d
dt
δY(t) = AδY(t) +WJDH(Y(t − τ))δY(t − τ), (29)

where DH(Y(t − τ)) represents the Jacobian obtained along the orbit. (Remembering that H is
not differentiable, we shall use the distributional approach and write H′(x) = δ(x) where δ(x) is
a Dirac delta function).

Given the constraints on the matrices Wαβ, with α, β ∈ {u, v} it is natural to take these to
be circulant matrices withWαβ

i j = W
αβ
|i− j|. In this case the normalised eigenvectors ofWαβ are

given by eq = (1, ωq, ω
2
q, . . . ,w

N−1
q )/

√
N, where q = 0, . . . ,N − 1, and ωq = exp(2πiq/N) are the

Nth roots of unity. The corresponding eigenvalues are given by ναβ = ναβ(q) where

ναβ(q) =

N−1∑
j=0

W
αβ
j ω

j
q. (30)

If we introduce the matrix of eigenvectors P = [e0 e1 . . . eN−1], then we have that

(P ⊗ I2)−1W(P ⊗ I2) = diag(Λ(0),Λ(1), . . . ,Λ(N − 1)) ≡ Λ, (31)

where Λαβ = diag(ναβ(0), ναβ(0), . . . , ναβ(N − 1)), and

Λ(q) =

[
νuu(q) −νvu(q)
νuv(q) −νvv(q)

]
, q = 0, 1, . . . ,N − 1. (32)

Moreover, in the above notation (P ⊗ I2)−1A(P ⊗ I2) = Λ(IN ⊗ J)Λ−1.
If we now consider perturbations of the form δZ(t) = (P ⊗ I2)−1δY(t) then from (29) we find

that
d
dt
δZ(t) = −Λ(IN ⊗ J)Λ−1δZ(t) + Λ(IN ⊗ JDH)δZ(t − τ), (33)

where DH ∈ R2×2 now represents the Jacobian of (H(U(t − τ)),H(V(t − τ))). We see that (33)
has block structure where the dynamics in each of N 2 × 2 block is given by

d
dt
ξq(t) = A(q)ξq(t) + Λ(q)JDHξq(t − τ), q = 0, 1, . . . ,N − 1, (34)

where ξq ∈ C2 and A(q) = −Λ(q)JΛ−1(q). We note that between the events DH ≡ 0 therefore
this system evolves according to ξ

′

q(t) = A(q)ξq(t). More generally, the formal solution to the
12



system (34) can be written as

ξq(t) = eA(q)(t−t0)ξq(t0) +

∫ t

t0
eA(q)(t−s)Λ(q)J

[
δ(U(s − τ)) 0

0 δ(V(s − τ))

]
ξq(s − τ)ds, (35)

for t > t0. We note that an event occurs at t = T whenever U(T − τ) = 0 or V(T − τ) = 0, and
that the only contributions from the delta functions in (35) are from switching events. Let us first
consider the switching event defined by U(T − τ) = 0. In this case, across the time of an event
we have that

ξq(T +) = ξq(T−) + lim
ε↘0

∫ T+ε

T−ε
eA(q)(T−s)Λ(q)J

[
δ(U(s − τ)) 0

0 0

]
ξq(s − τ)ds. (36)

Using a change of variable we can transform (36) to

ξq(T +) = ξq(T−)

+ lim
ε↘0

∫ U(T−τ+ε)

U(T−τ−ε)
eA(q)(T−(U

−1
(z)+τ))Λ(q)J

[
δ(z) 0

0 0

]
ξq(U

−1
(z))

dz

|U
′
(U
−1

(z))|
,

(37)

to obtain

ξq(T +) = ξq(T−) + Λ(q)J
 1
|U
′
(T−τ)|

0
0 0

 ξq(T − τ). (38)

Similarly, for a switching event defined by V(T − τ) = 0, we have that

ξq(T +) = ξq(T−) + Λ(q)J
0 0
0 1

|V
′
(T−τ)|

 ξq(T − τ). (39)

Hence, the forms of (38) and (39) capture the jumps in perturbations around a synchronous orbit,
and in turn these can be represented using saltation operators indexed by q. These are the natural
generalisations of (19) to networks, and take the explicit form

K1(q) =
1

V
′
(∆1 − τ)

Λ(q)J
[
0 0
0 1

]
, K2(q) =

−1

U
′
(∆2 − τ)

Λ(q)J
[
1 0
0 0

]
,

K3(q) =
−1

V
′
(∆3 − τ)

Λ(q)J
[
0 0
0 1

]
, K4(q) =

1

U
′
(∆4 − τ)

Λ(q)J
[
1 0
0 0

]
. (40)

We note that for q = 0 the variational problem is identical to that for an isolated node since
Λ(0) = W (using ναβ(0) =

∑N−1
j=0 W

αβ
j = wαβ), and A(0) = A. In addition to this, when q = 0 one

can check that Ki(0) = Ki as given by (19).
In summary, we see that the variational equations for the network are identical to that for

a single Wilson-Cowan unit with W replaced by Λ(q) subject to block dependent saltation (de-
scribed using Ki(q)). Thus, to determine the stability of the synchronous state we only have to
consider a set of N two dimensional variational problems. Each of these can be solved using
the method described in Section 2.2, originally developed for the study of a single isolated node.
Explicitly, for each q, we introduce ξq(t) = eλtzq(t), where λ ∈ C (Floquet exponents) and zq(t)
are ∆−periodic. Then away from the switches, each ∆-periodic zq(t) evolves according to

z′q = (A(q) − λI2)zq. (41)
13



Across a switch
zq(∆+

j ) = zq(∆−j ) + e−λτK j(q)z(∆ j − τ). (42)

Generalising the treatment in section 2.2 gives rise to a set of Floquet problems indexed by
q = 0, . . . ,N − 1, with the Floquet exponents satisfying εq(λ) = 0, where εq(λ) is obtained from
ε(λ) under the replacement K j → K j(q), ζ(t) → ζq(t) = e(A(q)−λI2)tH(t) and p(t) → pq(t) =

ζq(t)e−λτ[I2 − ζq(∆)]−1.
Thus if a periodic orbit of an isolated Wilson-Cowan node is linearly stable (corresponding

to q = 0) then the synchronous network solution will be linearly stable provided all solutions of
εq(λ) = 0 have Re λ < 0 for all q = 1, . . . ,N − 1.

Figure 7: Dynamics of a Wilson–Cowan ring network with N = 31 nodes and homogeneous delays in a parameter regime
where the synchronous solution is predicted to be linearly stable. (a) Space time plot of the network activity of Vi(t) from
direct simulation. (b) A representation of Vi at a fixed time across the network. (c) The Floquet exponents coincide with
the intersections of the zero contours of εI,R

q (λ) (red and blue lines). These have maximum real part for q = 0 (and the
remaining zeros of εq(λ) for q = 1, . . . , 30 occur in the left hand complex plane). Since εq(λ) has no zeros in the right
hand complex plane the synchronous solution is linearly stable. (d) Shape of the eigenvector e0 associated with q = 0.
Parameters: µ = 0.239, τ = 0.02, and other parameters as in Fig. 2.

3.1. Instabilities in a ring network: homogeneous delays

By way of illustration of the above theory let us consider a network of Wilson–Cowan nodes
arranged on a ring with an odd number of nodes. Introducing a distance between nodes indexed
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Figure 8: Dynamics of a Wilson–Cowan ring network with N = 31 nodes and homogeneous delays in a parameter regime
where the synchronous solution is predicted to be linearly unstable. (a) Space time plot of the network activity of Vi(t)
from direct simulation. (b) A representation of Vi at a fixed time across the network. (c) The Floquet exponents coincide
with the intersections of the zero contours of εI,R

q (λ) (red and blue lines). Here q = 15, and for all other values of q the
zeros of εq(λ) occurs in the left hand complex plane. The presence of zeros of ε15(λ) in the right hand complex plane
show that the synchronous solution is linearly unstable. (d) A plot of the shape of the corresponding eigenvector e15
associated with q = 15. The spatial pattern of the network state is well predicted by shape of e15. Parameters: µ = 0.241,
τ = 0.02, and other parameters as in Fig. 2.

by i and j as dist(i, j) = min(|i − j|,N − |i − j|), we can define a set of exponentially decaying
connectivity matrices, with spatial scale µ, according to

W
αβ
i j = wαβ e− dist(i, j)/µ∑N−1

j=0 e− dist(0, j)/µ
. (43)

In the following we use the preceding theoretical work to determine network instabilities of
the synchronous state under variation in µ, and confirm the predictions of patterning beyond
an instability against direct numerical simulations. Analogous to the method in section 2.2 we
introduce the functions εR

q (ν, ω) = Re εq(ν + iω) and εI
q(ν, ω) = Im εq(ν + iω), and find Floquet

exponents as intersections of the zero contours of εI,R
q .

For a fixed network size, fixed delay, and all other parameters fixed it is possible for an in-
stability of the synchronous state to occur with an increase in µ through a critical value µc. For
the parameters of Fig. 7 and Fig. 8 we find µc ' 0.24. The former figure illustrates network
behaviour for µ < µc and the latter for µ > µc. In both cases the theoretical predictions for
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stability/instability of the synchronous solution agree with the results from direct numerical sim-
ulations. Moreover, just beyond an instability the shape of the unstable eigenmode is shown to
be an excellent predictor for the spatial pattern of activity. For larger values of µ (so that we are
further beyond the bifurcation point) it is possible for many different modes (multiple distinct
values of q) to become unstable, as illustrated in Fig. 9. In this case, the predictions of network
pattern states from linear stability will break down (as modes may mix nonlinearly), though direct
numerical simulations can be useful for probing emergent behaviour. Doing so shows the possi-
bility of complex locked patterns, as illustrated in Fig. 10. The correlations between time-series
at distinct nodes will then give rise to non-trivial patterns of functional connectivity.

Figure 9: The Floquet exponents for a Wilson–Cowan ring network with N = 31 nodes and homogeneous delays (as
intersections of the zero contours of εI,R

q (λ), given by the red and blue lines). Far from bifurcation it is possible that many
different modes (multiple distinct values of q) can become unstable. Here, we see that modes with q = 4 and q = 9 are
simultaneously unstable. Parameters: µ = 0.45, and other parameters as in Fig. 8.

Figure 10: Dynamics of a Wilson–Cowan ring network with N = 31 nodes and homogeneous delays in a parameter
regime far beyond bifurcation where multiple Floquet exponents have positive real part. Left: Direct numerical sim-
ulations of the network components (Ui,Vi), showing the emergence of a complex locked pattern. The black curve is
the unstable synchronous orbit and coloured dots show a snapshot of solution components for an arbitrary time instant.
Right: Representation of the simulations via a plot of Vi(t). Parameters as in Fig. 9.

In the next section we extend the analysis here to treat heterogeneous delays.
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4. A nonsmooth Wilson-Cowan network with heterogeneous delays

We now consider a network of N Wilson–Cowan nodes with heterogeneous delays given by

d
dt

ui(t) = −ui(t) + H

Iu +

N∑
j=1

Wuu
i j u j(t − τi j) −

N∑
j=1

Wvu
i j v j(t − τi j)

 , (44)

κ
d
dt

vi(t) = −vi(t) + H

Iv +

N∑
j=1

Wuv
i j u j(t − τi j) −

N∑
j=1

Wvv
i j v j(t − τi j)

 , i = 1, . . . ,N. (45)

Unlike the generalisation of results from a single node to a network with homogeneous delays,
we shall see here that the treatment of heterogeneous delays is more involved and requires some
new ideas. Indeed, even for smooth systems the treatment of systems with multiple (and many)
delays is not well developed, though see [42, 43] for some restricted applications, and Szalai and
Orosz [44] and Otto et al. [45] for more general treatments based on an adjacency lag operator
that describes the topology of the network as well as the corresponding coupling delays. Given
the challenge of treating truly heterogeneous delays and with a desire to restrict attention to the
most informative cases we once again focus on the synchronous network solution. To facilitate
this we consider only ring networks with distance dependent interactions, both in strength and
delay. Namely, we choose Wαβ

i j = wαβε
dist(i, j)
c and τi j = τ + dist(i, j)εd, and an odd number of

nodes N = 2M + 1, for M ∈ N0. Here, εc and εd are used to determine distance dependent
coupling strengths and delays, respectively and τ is a fixed common delay. The assumption that
communication time delays increase with distance is a natural one, and for further simplicity we
shall restrict attention to the case that εd is such that max{τi j} is less than any time-of-flight for a
trajectory between switches.

Substituting a synchronous solution of the form (ui(t), vi(t)) = (u(t), v(t)), for all i = 1, . . . ,N,
into the ring network version of (44)-(45), shows that, if it exists, then a synchronous network
state is a periodic solution of

d
dt

u(t) = −u(t) + H

Iu +

M∑
m=0

σ0,m
(
wuuu(t − τm) − wvuv(t − τm)

) , (46)

κ
d
dt

v(t) = −v(t) + H

Iv +

M∑
m=0

σ0,m
(
wuvu(t − τm) − wvvv(t − τm)

) , (47)

where
σ0,m = (2 − δ0,m)εm

c , τm = τ + mεd, (48)

and δn,m is a Kronecker delta function. Given the potentially large numbers of delays in (46)-(47),
the Fourier series approach developed in section 2.1 is an efficient way to construct a periodic so-
lution and we adopt this approach here. For ease of exposition we denote arguments of functions
H in (46) and (47) by χu(t) and χv(t) respectively, Then we denote unknown times-of-flight of the
orbit by: T1 in the region χu > 0 and χv > 0, T2 in the region χu < 0 and χv > 0, T3 in the region
χu < 0 and χv < 0, and T4 in the region χu > 0 and χv < 0. The period of the orbit is ∆ =

∑4
i=1 Ti.

By following the method shown in section 2.1 we can compute Fourier coefficients of ∆-periodic
solutions in terms of the unknown time of flights, and then determine these self-consistently. See
Appendix B for explicit formulas. An illustration of an orbit constructed in this way is given
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Figure 11: A synchronous periodic orbit constructed for a Wilson–Cowan ring network with distance dependent interac-
tions. The Fourier approach is used to construct the orbit depicted in dashed blue, and the less computationally efficient
matrix exponential method in red. Parameters: κ = 0.5, Iu = −0.05, Iv = −0.3, wuu = 1, wvu = 2, wuv = 1, wvv = 0.25,
τ = 0.018, εd = 0.002, and εc = 0.1.

in Fig. 11 (which also shows the same orbit constructed with the computationally less efficient
matrix exponential approach).

In order to analyse stability of synchronous orbit let us consider perturbed solutions in the
form (ui(t), vi(t)) = (u(t) + δui(t), v(t) + δvi(t)). Then perturbations evolve according to

d
dt
δui(t) = −δui(t) + δ(χu)

 N∑
j=1

Wuu
i j δu j(t − τi j) −

N∑
j=1

Wvu
i j δv j(t − τi j)

 , (49)

κ
d
dt
δvi(t) = −δvi(t) + δ(χv)

 N∑
j=1

Wuv
i j δu j(t − τi j) −

N∑
j=1

Wvv
i j δv j(t − τi j)

 , (50)

where δ(χu) and δ(χv) are Dirac delta functions. Here for m = 0, . . . ,M, we introduce a 2 × 2
block notation using:

W̃m =

[
δ(χu)Wuu

m −δ(χu)Wvu
m

δ(χv)Wuv
m −δ(χv)Wvv

m

]
. (51)
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We can then rewrite (49)-(50) in the vector form for i = 1, . . . ,N as:

d
dt



δu1(t)
κδv1(t)

...
δuN(t)
κδvN(t)


= −



δu1(t)
δv1(t)
...

δuN(t)
δvN(t)


+



W̃0 0 0 . . . 0
0 W̃0 0 . . . 0
... . . .

. . . . . .
...

0 0 . . . W̃0 0
0 . . . 0 0 W̃0





δu1(t − τ0)
δv1(t − τ0)

...
δuN(t − τ0)
δvN(t − τ0)



+


0 W̃1 0 . . . W̃1

W̃1 0 W̃1 . . . 0
. . . . . . . . . . . . . . .

0 . . . W̃1 0 W̃1

W̃1 . . . 0 W̃1 0





δu1(t − τ1)
δv1(t − τ1)

...
δuN(t − τ1)
δvN(t − τ1)


+ . . .

+



0 . . . 0 W̃M W̃M 0 0 . . . 0
0 . . . 0 0 W̃M W̃M 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

W̃M W̃M 0 . . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . W̃M W̃M 0 . . . 0 0 0





δu1(t − τM)
δv1(t − τM)

...
δuN(t − τM)
δvN(t − τM)


. (52)

Then using the coupling strength definitionWαβ
m = wαβεm

c , we obtain the relation W̃m = εm
c W̃,

with

W̃ =

[
δ(χu)wuu −δ(χu)wvu

δ(χv)wuv −δ(χv)wvv

]
. (53)

Using the above notation we can write the above in a more compact form. First we introduce
a vector notation with Y = (u1, v1, u2, v2, . . . , uN , vN) ∈ R2N . If we denote the synchronous
solution by Y(t) = (u(t), v(t), u(t), v(t), . . . , u(t), v(t)) and consider small perturbations such that
Y = Y + δY , then (52) can be written in the vector notation

d
dt
δY(t) = (IN ⊗ A)δY(t) +

M∑
m=0

(Am ⊗ JW̃)δY(t − τm), (54)

where A = −J (J is given in (3)) and Am are circulant matrices produced by using vectors of the
form

εm
c (a0, a1, . . . , am, . . . , aN−m, . . . , aN−1), (55)

such that entries am = aN−m = 1 and the other entries are zero (they only take the value 1 at the
mth and N − mth entries and the rest are zero). Some examples of Am are

A0 = Circulant([ε0
c , 0, . . . , 0]) ≡ ε0

c IN , (56)

A1 = Circulant([0, ε1
c , 0, . . . , 0, ε

1
c ]), (57)

A2 = Circulant([0, 0, ε2
c , 0 . . . , 0, ε

2
c , 0]). (58)

It is now convenient to introduce the lag operator L(τ) [44, 45] defined by

L(τ)y(t) = y(t − τ), (59)
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and write the linearized dynamics (54) as

d
dt
δY(t) =

[
IN ⊗ A + B ⊗ JW̃

]
δY(t), (60)

where the so-called adjacency lag operator B is defined by

B =

M∑
m=0

AmL(τm). (61)

The adjacency lag operator contains all the information about the network topology (given by the
matrices Am) and the coupling delays (specified by the lag operators L(τm)). Since the circulant
matrices Am share the same eigenvectors, the ‘eigenvalues’ of B are operators Dq, given by

Dq =

M∑
m=0

σq,mL(τm), (62)

where σq,m are the eigenvalues of the matrices Am belonging to the eigenvector
eq = (1, ωq, ω

2
q, . . . , ω

N−1
q )/

√
N, where q = 0, . . . ,N − 1, and ωq = exp(2πiq/N) are the Nth

roots of unity. Hence, the operators Dq are linear combination of the lag operators. Note that we
may construct the values σq,m from the elements of the row generator of the circulant matrix Am,
denoted by A j

m for j = 0, . . . ,N − 1, as σq,m =
∑N−1

j=0 A j
mω

j
q.

If we introduce the matrix of eigenvectors P = [e0 e1 . . . eN−1], then we have that

P−1BP = diag(D0,D1, . . . ,DN−1) ≡ Λ. (63)

Using a change of variable δZ = (P ⊗ I2)−1δY and applying (P ⊗ I2)−1 to the both sides of the
system (60) we obtain

d
dt
δZ(t) = (IN ⊗ A)δZ(t) + (Λ ⊗ JW̃)δZ(t). (64)

This has a 2 × 2, N−block structure with the dynamics in each block given by

d
dt
ξq(t) =

[
A + JW̃Dq

]
ξq(t), q = 0, . . . ,N − 1, ξq ∈ C2. (65)

Thus to determine the stability of the synchronous state we only have to consider a set of N
two dimensional variational problems. Each of these can be solved using the method described in
Section 3. That is between the events we have W̃ = 0 and system evolves according to ξ′q = Aξq.
Moreover across the switching times we have

ξq(∆+
j ) = ξq(∆−j ) + K j

M∑
m=0

σq,mξq(∆ j − τm), (66)

where

K1 =
1

χ′u(∆1)
J
[
1 0
0 0

]
W, K2 =

−1
χ′v(∆2)

[
0 0
0 1

]
W,

K3 =
−1

χ′u(∆3)
J
[
1 0
0 0

]
W, K4 =

1
χ′v(∆4)

J
[
0 0
0 1

]
W. (67)
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Here we have

χ′u(t) =

M∑
m=0

σ0,m(wuuu′(t − τm) − wvuv′(t − τm)), (68)

χ′v(t) =

M∑
m=0

σ0,m(wuvu′(t − τm) − wvvv′(t − τm)). (69)

The formulation above now puts us in an ideal situation to develop the relevant Floquet theory
by using exactly those techniques developed in section 3. Namely, we write ξq(t) = eλtzq(t), for
λ ∈ C (Floquet exponents) with zq(t) a ∆−periodic function. Then away from switches these
evolve according to z′q =

(
A − λI2

)
z′q and across switching events, we have

zq(∆+
j ) = zq(∆−j ) + K j

M∑
m=0

σq,me−λτm zq(∆ j − τm). (70)

To compute zq(t) on [0,∆] we can proceed analogously to the formulation of (20). However, we
now have to determine the amplitude of zq at a larger set of 4(M + 1) times given by t = ∆i − τm

for i = 1, . . . , 4 and m = 0, . . . ,M. Following the earlier self-consistent approach, as described
in section 2.2, the Floquet exponents can be found as the zeros of a complex function εq(λ) ≡
det(Uq(λ)) = 0, where Uq(λ) has the block form

Uq(λ) =


G1(∆1, λ, q) G2(∆1, λ, q) G3(∆1, λ, q) G4(∆1, λ, q)
F1(∆2, λ, q) G5(∆2, λ, q) G3(∆2, λ, q) G4(∆2, λ, q)
F1(∆3, λ, q) F2(∆3, λ, q) G6(∆3, λ, q) G4(∆3, λ, q)
F1(∆4, λ, q) F2(∆4, λ, q) F3(∆4, λ, q) G7(∆4, λ, q)

 . (71)

The detailed forms of the block entries of Uq(λ) are given in Appendix C. The synchronous
network state will be linearly stable provided all solutions of εq(λ) = 0 have Re λ < 0 for
all q = 0, . . . ,N − 1 (excluding a parameter independent zero eigenvalue arising from time-
translation invariance).

4.1. Instabilities in a ring network: heterogeneous delays
Similarly to the presentation in section 3.1 we now illustrate the theory developed above for

heterogeneous delays with some direct numerical simulations, as well as the determination of

Figure 12: The Floquet exponents for a Wilson–Cowan ring network with N = 31 nodes and heterogeneous delays (as
intersections of the zero contours of εI,R

q (λ), given by the red and blue lines). Here we see that the mode with q = 8 is
unstable (and for this example many other modes are also unstable). Parameters: µ = 0.45, τ = 0.02, εd = 0.00295, and
other parameters as in Fig. 11.
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Floquet exponents using numerical plots like that of Fig. 12. We adopt the same coupling matrix
as in (43) by choosing

ε
dist(i, j)
c =

e− dist(i, j)/µ∑N−1
j=0 e− dist(0, j)/µ

, (72)

with Wαβ
i j = wαβε

dist(i, j)
c . For small values of εd, remembering that τi j = τ + dist(i, j)εd, then

we expect to uncover similar behaviour as for the case of homogeneous delays (recovered with
εd = 0). Indeed, in this limit, bifurcation points (for the synchronous network state) are very
close to that of the homogeneous delay case, and simulations of behaviours far from bifurcation
are also similar. However, when we introduce more heterogeneity to the system by increasing εd,
the network bifurcation point can shift somewhat. For example, when using µ as a bifurcation
parameter this can lower the value of µc to decrease the overall window of µ where synchrony is
stable. This is consistent with the behaviour of networks built from smooth systems with multiple
delays [46, 47]. Moreover, and as expected (for a supercritical bifurcation) the unstable eigen-
vector at the bifurcation point is a good predictor of the emergent network pattern. Further from
the bifurcation point (where the linear predictions break down) we find that, in comparison to the
case with homogeneous delays, the emergent network dynamics becomes far more irregular with
an increase in εd. We observe that synchronous network activity can destabilise to phase-locked
or cluster-like solutions, as well as seemingly chaotic behaviour (not observed with εd = 0).
Examples of such behaviour are shown in Fig. 13. Moreover, qualitatively similar behaviour is
found in simulations where the Heaviside firing rate is replaced by a smooth sigmoidal of the
type described in section 2 in the high gain limit (large β).

5. Discussion

The study of networks is a relatively new branch of applied nonlinear dynamics. Techniques
for the structural and functional analysis of networks include empirical methods, analysis, com-
puter simulation, and graph theory. Although many insights have now been obtained about the
behaviour of particular types of network solutions [48], and perhaps most notably the stability
of synchrony in networks of identical modes with graph Laplacian structural interactions using
the master stability function approach [49], it is fair to say that corresponding results for delayed
interactions are far fewer. Given that this is one of the defining features for a white matter brain
network, with synaptic interactions mediated by the propagation of finite speed action potentials,
there is a pressing need for the development of theoretical approaches in this area to help un-
derstand how patterns of functional connectivity, so readily observed in neuroimaging studies,
emerge from an interplay of local dynamics, axonal wiring, and the resultant delayed interactions
arising from communication along white matter fibre tracts.

In this paper, we have developed a set of mathematical tools to study the nonsmooth Wilson–
Cowan neural population activity model with delay terms at both the node and network level.
We began by showing how to construct a delay induced periodic orbit in a single node as well
as describing how to determine stability by augmenting Floquet theory for smooth systems with
saltation operators to cope with the evolution of jumps in the linearised equations. We boot-
strapped this approach, first to a ring network with a single homogeneous delay, and then to one
with distance-dependent heterogeneous delays. The latter analysis making use of an adjacency
lag operator, encoding the network topology and delay structure [44, 45], to best express the lin-
earised equations for determining the stability of the synchronous state. The resulting framework
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Figure 13: Dynamics of a Wilson–Cowan ring network with N = 31 nodes and heterogeneous delays in parameter
regimes where the synchronous network state is linearly unstable. Here, εd = 0.0028 for (a,b) and εd = 0.00295 for
(c,d). Other parameters as in Fig. 12. (a,c): Direct numerical simulations of the network components (ui, vi). The black
curve is the unstable synchronous orbit and coloured dots show a snapshot of system states at a fixed time instant. (b,d):
Representation of the simulations via a plot of vi(t) (with the same colouring as in the left panels). As εd increases more
irregular solutions are obtained.

was used to predict the onset of spatio-temporal patterning via an instability of the synchronous
network state and confirmed against direct numerical simulations.

A number of natural extensions of the work presented here are possible. One is to extend
the analysis to non-synchronous states, such as phase-locked ones with a constant phase lag be-
tween each pair of oscillatory nodes. Another would be to probe the phenomenon of complexity
collapse, whereby the effect of multiple delays in a high-dimensional chaotic neural network can
actually leads to a reduction in dynamical complexity [50]. Yet another is to address structural
networks and their concomitant delays as recorded in the Human Connectome Project for human
brains [51]. Moving beyond the assumption of identical nodes is a further worthy challenge, as
too is the consideration of excitable, rather than oscillatory, nodes. Indeed, the study of large
scale brain network models with delays is still in its infancy, at least with respect to theoreti-
cal investigations, although those based upon computational approaches (including with more
sophisticated neural mass models) are progressing rapidly, as exemplified by [52]. However, be-
fore pursuing these important extensions it is well to mention that white matter is now known to
be plastic, see e.g., [53, 54, 55]. This has recently begun to be explored from a modelling per-
spective by Lefebvre and colleagues [56, 57, 58, 59], with recent work by Fields and colleagues

23



emphasising the role of oligodendrocyte-mediated myelin plasticity in facilitating neural syn-
chronisation [60, 61]. In future work we plan to report on the extension of the analysis presented
here to model activity dependent myelination and develop the mathematical analysis of neural
mass networks with state-dependent delays.
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Appendix A. Saltation operators

The saltation operators given by (17) and (18) described in section 2.2 can be given in an
explicit form at the crossing times. We know that at t = ∆1 and t = ∆3, we have V(∆1 − τ) = 0
and V(∆3 − τ) = 0, and also at t = ∆2 and t = ∆4, we have U(∆2 − τ) = 0 and U(∆4 − τ) = 0,
respectively. Therefore we need to compute four saltation matrices for these four event times.
As an example let us consider at t = ∆1, where we have from (17) that

K1 =
1

V
′
(∆−1 − τ)

0 U
′
(∆+

1 ) − U
′
(∆−1 )

0 V
′
(∆+

1 ) − V
′
(∆−1 )

 . (A.1)

At t = ∆1, we can use equation (4) to compute derivatives U
′
, V
′

in (A.1), and hence we obtainU′(∆+
1 )

V
′
(∆+

1 )

 − U′(∆−1 )
V
′
(∆−1 )

 = WJ
([

1
1

]
−

[
1
0

])
=

[
−wvu/κ
−www/κ

]
. (A.2)

Using (A.1), (A.2), and W, J in (3), we find

K1 =
1

V
′
(∆−1 − τ)

[
0 −wvu/κ
0 −www/κ

]
=

1

V
′
(∆−1 − τ)

WJ
[
0 0
0 1

]
, (A.3)

Similarly we compute all saltation operators for each t = ∆ j, j = 1, . . . , 4, to yield (19).

Appendix B. Fourier approach for calculating the periodic orbit of a system with heteroge-
nous delays

Consider the equations given by (46)-(47). The zeros of the arguments to the Heaviside func-
tions H in these equations define the switching times. Adopting a Fourier series representation
(u(t), v(t)) =

∑
n∈Z(un, vn)e2πint/∆ then the four switching conditions for the four unknowns ∆i,

i = 1, . . . , 4 can be written

Iu +

M∑
m=0

σ0,m

wuu
∑

n

une
2πin(∆1−τm )

∆ − wvu
∑

n

vne
2πin(∆1−τm)

∆

 = 0, (B.1)

Iv +

M∑
m=0

σ0,m

wuv
∑

n

une
2πin(∆2−τm)

∆ − wvv
∑

n

vne
2πin(∆2−τm )

∆

 = 0, (B.2)

Iu +

M∑
m=1

σ0,m

wuu
∑

n

une
2πin(∆3−τm )

∆ − wvu
∑

n

vne
2πin(∆3−τm)

∆

 = 0, (B.3)

Iv +

M∑
m=1

σ0,m

wuv
∑

n

une
2πin(∆−τm)

∆ − wvv
∑

n

vne
2πin(∆−τm )

∆

 = 0. (B.4)

The coefficients (un, vn), in terms of (∆1,∆2,∆3,∆4) are given by (9). The simultaneous (numer-
ical) solution of the four equations above determines the set (∆1,∆2,∆3,∆4).
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Appendix C. Block entries

The block entries of (71) have the explicit forms:

[
G1(t, λ, q)

]
i j = g1(t − τi−1)σq, j−1e−λτ j−1 − [I2(M+1)]i j, (C.1)[

G2(t, λ, q)
]
i j = g2(t − τi−1)σq, j−1e−λτ j−1 , (C.2)[

G3(t, λ, q)
]
i j = g3(t − τi−1)σq, j−1e−λτ j−1 , (C.3)[

G4(t, λ, q)
]
i j = g4(t − τi−1)σq, j−1e−λτ j−1 , (C.4)[

G5(t, λ, q)
]
i j = g2(t − τi−1)σq, j−1e−λτ j−1 − [I2(M+1)]i j, (C.5)[

G6(t, λ, q)
]
i j = g3(t − τi−1)σq, j−1e−λτ j−1 − [I2(M+1)]i j, (C.6)[

G7(t, λ, q)
]
i j = g4(t − τi−1)σq, j−1e−λτ j−1 − [I2(M+1)]i j, (C.7)[

F1(t, λ, q)
]
i j = f1(t − τi−1)σq, j−1e−λτ j−1 , (C.8)[

F2(t, λ, q)
]
i j = f2(t − τi−1)σq, j−1e−λτ j−1 , (C.9)[

F3(t, λ, q)
]
i j = f3(t − τi−1)σq, j−1e−λτ j−1 , (C.10)

where i, j = 1, . . . ,M + 1, g1(t) = ρ(t)ζ(∆ − ∆1)K1, g2(t) = ρ(t)ζ(∆ − ∆2)K2, g3(t) = ρ(t)ζ(∆ −
∆3)K3, g4(t) = ρ(t)K4, f1(t) = ρ(t)[ρ(∆1)−1 + ζ(∆ − ∆1)]K1, f2(t) = ρ(t)[ρ(∆2)−1 + ζ(∆ − ∆2)]K2,
f3(t) = ρ(t)[ρ(∆3)−1 + ζ(∆ − ∆3)]K3, ρ(t) = ζ(t)[I2 − ζ(∆)]−1, and ζ(t) = e(A−λI2)tH(t).
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