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Abstract: A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependent Tree
Theory (D?T2), accounts for dependencies between the basic events, making FTA more powerful. The
method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets
(SPN) and Markov models. Current algorithms enable the prediction of the system failure probability
and failure frequency. This paper proposes methods which extend the current capability of the D*T?
framework to calculate component importance measures. Birnbaum’s measure of importance, the
Criticality measure of importance, the Risk Achievement Worth (RAW) measure of importance and
the Risk Reduction Worth (RRW) measure of importance are considered. This adds a vital ability
to the framework, enabling the influence that components have on system failure to be determined
and the most effective means of improving system performance to be identified. The algorithms
for calculating each measure of importance are described and demonstrated using a pressure vessel
cooling system.

Keywords: system failure modelling; dependent failures; system unavailability assessment; dynamic
and dependent tree theory
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1. Introduction

Risk assessment is commonly performed on safety-critical systems to ensure that their
performance meets the required standard [1]. This involves calculating the likelihood or
frequency that systems fail in critical modes, which can kill or injure people. Fault tree
analysis is the most common method used in the industry to perform this task. Traditional
Fault Tree Analysis (FTA), known as Kinetic Tree Theory (KTT), was derived by Vesely [2]
in 1970 to assess the failure of engineering systems. The tree structure provides a clear
visual representation of the causes of system failure in terms of basic events such as
component failures, software failures and human errors. Engineers are familiar with this
form of causality diagram, which enables easy peer review and regulator assessment.
The subsequent two-stage analysis delivers the minimal cuts sets, i.e., the necessary and
sufficient combinations of basic events which cause system failure, along with the system
failure probability, the system failure frequency, and measures of importance. Importance
measures determine the contribution of each component or minimal cut set to system
failure and provide a means to identify weaknesses that can be targeted to improve overall
system performance [3-5]. Different importance measures consider different factors in
their definition and can account for the vulnerability of the system in terms of failure when
a component fails (the inclusion of redundancy that needs several components to fail to
cause system failure), the frequency by which a component fails and the speed at which a
repair back to functioning condition can be achieved.
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One limitation of KTT is its requirement to employ approximations. If the fault
tree structure produces a large number of minimal cut sets, it may not be possible to
obtain them all, in which case, a culling approach is adopted to obtain the most significant
combinations [6,7]. Approximations, such as the Rare Event Approximation or the Minimal
Cut Set Upper Bound, are also used during the quantification stage since full inclusion—
exclusion expansion cannot be evaluated [3]. The development of Binary Decision Diagram
(BDD) methods in the 1990s and the subsequent research to efficiently convert the fault tree
to BDDs overcame this limitation, enabling exact quantification to be performed [8-14].

There are, however, additional limitations of KTT, including the necessary assumption
of independence between the basic events and, in many computer implementations, the
requirement for constant component failure and repair rates. The models that calculate
component failure probabilities usually apply to components that are non-repairable or
experience revealed or unrevealed failures. These are also very limited in terms of their
ability to represent the maintenance strategies employed in a system. Increasing failure
rates are encountered when components experience wear-out. Furthermore, when failure
does occur, repair is not a random process and, thus, it could be questioned if repair rates
can ever be considered constant. The assumption of independence is extremely limiting
and not appropriate for most modern engineering systems. Dependencies can occur in
a variety of ways, for example, due to opportunistic maintenance, employing standby
redundancy or considering common cause failures.

These restrictions limit the ability of KTT to model modern engineering systems
effectively. Alternative approaches, such as Markov models [15] or Stochastic Petri Nets
(SPN) [16,17], can be employed to overcome the assumptions. Whilst these methods
can accommodate dependencies and, for SPNs, non-constant failure and repair rates are
possible, both can be computationally demanding for even relatively simple systems. This
is especially true for SPNs when modelling large systems whose failure events are rare.
The large simulation times required to achieve convergence in the results often make the
method impractical for real applications. Additionally, the tree structure is not retained, and
thus, all the advantages of this causality form are lost. Approaches that address these issues
and retain the tree structure have been developed, with the most advanced of these being
Dynamic Fault Trees [18,19]. This approach allows dependencies and complexities to be
incorporated into the model through the use of a SPARE (for spare or standby components)
or a SEQ (for a sequence of events) gate, which are then analysed using a Markov model,
and the results substituted back into the fault tree. However, the dependent events must all
appear below a single gate. As such, if the dependent events are not all below the same gate,
as for example when dependencies occur due to the maintenance process, this approach
cannot be used.

In 2023, Andrews and Tolo [20] published the D*T? methodology, which is designed
specifically to address these limitations. The methodology retains the tree structure and
combines the use of BDDs, along with Markov and SPN models, to analyse engineering
systems featuring non-constant failure and repair rates, component dependencies, and
complex maintenance strategies as efficiently as possible. The methodology ensures that
no matter how far apart the dependent events are in the tree structure, the dependency
model features only these components. As such, the dependency models are minimal,
maximising efficiency. The methodology enables the calculation of both the system failure
probability and the system failure frequency. However, in order to obtain the full range
of outputs, the methodology needs to be extended to calculate commonly used measures
of importance. This paper considers measures of component importance relating to the
top event probability, including Birnbaum’s measure of importance [21], the Criticality
Measure of Importance [22], the Risk Achievement Worth (RAW) and the Risk Reduction
Worth (RRW) [23].
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Input Data

2. D*T? Methodology

In 2023, Andrews and Tolo proposed the D>T? methodology. It provides a holistic
generalised approach to model systems with complexities, including components with
non-constant failure/repair rates, dependencies between component failures, complex
maintenance processes, and event sequences. The methodology retains the fault tree
structure to provide a clear representation of the system failure causality and combines the
use of the BDD analysis with Markov and SPNs to model dependencies and complexities
as efficiently as possible.

The methodology begins by manipulating the fault tree such that it can be reduced
to a series of independent modules each of which can be solved using the appropriate
approach. The results obtained are then integrated to obtain the top event probability and
system failure frequency. D?T? employs modified versions of two of the most effective
modularisation approaches: the reduction algorithm used in FAUNET [24,25] and the
Linear Time algorithm of Dutuit and Rauzy [26]. Due to the different philosophies taken
by the two methods, they can be applied sequentially to achieve an improved degree of
modularisation than either can achieve in isolation. These methods identify independent
sub-trees to enable the efficient solution of conventional FTA. In their original form, they
account for dependencies introduced through basic events that occur more than once in the
fault tree structure. The changes incorporated in these approaches extend their capability,
enabling dependencies to exist between different basic events. When the modularization
process is complete, the fault tree will be represented as a number of concise independent
modules, which will be solved separately. The algorithm then utilises Markov or Petri
net models to solve each dynamic, dependent, or complex part of the problem. Those
modules which retain the fault tree form are converted to a BDD for analysis using an
effective variable ordering scheme. Finally, the results from the analysis of the independent
Markov, Petri net, complex factors, and components are used to quantify the BDD models,
calculating the top event probability and the system failure frequency. Figure 1 summarises
this process. The objective of the work contained in this paper is to extend the analysis
framework to include component importance measures.
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Figure 1. The D?>T? solution process.
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3. Pressure Vessel Cooling System Case Study

To illustrate the calculation processes needed to deliver the importance measures for
fault trees evaluated using the D*°T? methodology, a pressure vessel cooling system will
be used. The details of this example and its analysis are given in [20]. A schematic of the
system is shown in Figure 2. The system features four sub-systems: a primary cooling
system, a temperature detection system, a fan cooling system and a secondary cooling
system. If the primary cooling system fails, then the vessel temperature will increase. An
increase in vessel temperature will be detected by the sensing system, which will close
relays, activating both the fan cooling system and the secondary cooling system. The
component failure events considered in the analysis are given in Table 1. The fault tree has
then been constructed for causes of the cooling system failure that will require the primary
cooling system to fail along with any of the temperature sensing systems: the fan cooling
system and the secondary cooling system.

HEAT EXCHANGER HEAT EXCHANGER
(HX1) (HX2)

—

PRESSURE VESSEL

@sz

| | |

| comp Pl V(L\\/leE P3|
- o e @
» Aol
I o | woron

P TANK 1 ‘

T RELAY (12)
RELAY
(R1) L i

Figure 2. Pressure vessel cooling system.

Table 1. Basic event definitions.

Event Code Description Initiator/Enabler
T1 Water Supply failure I
P1 Pump fails when running I
P2 Pump fails when running I

PoW Power supply failure I
S1,S2 Sensor fails to detect a high temperature E
Comp Computer fails to process sensor signals E
R1/R2 Relay contacts fail to close E
Motor Motor fails E
Fan Fan fails E
T2 Water Supply failure E
V1 Valve fails to open E
P3 Pumps fails when running (P3R) or when activated (P35) E
Hx1 Heat exchanger fails I

Hx2 Heat exchanger fails E
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The essential details of the system analysis to be used in the importance measures
calculations are given in the following sections. The fault tree for the failure of this cooling
system is shown in Figure 3. The form of the fault tree presented has been contracted into
an alternating sequence of AND and OR gates. The complexity and dependency details,
which are the reasons that solutions cannot be achieved through traditional FTA, are given

in Table 2.
Pressure Vessel
Cooling Fails
AND
Primary Cooling Auxiliary Cooling
System Fails System Fails

OR
OR

AND Comp R1 Fan Motor POW R2 P3S P3R Hx2 T2 V1
AND pow T1 Hxl

P1 P2 > >2

Figure 3. Pressure vessel cooling system failure fault tree.

Table 2. Complexity and dependency group details.

Group Components Details

Experiences a Weibull failure time distribution W(1.2,

3600) and Lognormal repair time distribution Ln(2300,

120). The motor failure remains independent from the
state of the other components

C1 Motor

Pumps P1 and P2 usually both operate to share the load of
delivering the coolant to the vessel. When either fails the
other experiences an increased load and an increased
failure rate.

D1 P1,P2

Heat Exchangers Hx1 and Hx2 experience an
D2 Hx1, Hx2 opportunistic maintenance dependency. When one fails,
both are replaced and returned to the new condition.

D3 P3S P3R P3 can fail to start (P3S) or fail once running (P3R).

3.1. Fault Tree Modularisation

As shown in Figure 1, the data input to the D°T? methodology take the form of a fault
tree structure file (defining the fault tree in Figure 3), the component failure and repair
data, and the dependency models (Petri net and Markov models for the dependencies
defined in Table 3). In order to show how the importance measures are calculated, it is
necessary to describe some aspects of the D*T? methodology. The modularisation process
is essential for the importance measures calculation and so will be explained in detail in
this section. The first task of the DT? methodology is to reduce the problem to a sequence
of independent sub-problems, which is accomplished by the modularisation algorithms. It
is these modules that are to be used to then calculate the importance measures, as such,
they will be developed stage by stage.
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Table 3. Details of the complex factors.

Complex Factor Composition Details

Ccf1 P1.P2 Depenfignt ANDs

Initiators

Independent ANDs

Cf2 51:52 Enablers
Ccf3 Comp + R1 + Fan + Motor + Independent ORs

f R2+T2+V1 Enablers

Complexity

Cf4 P3S + P3R Enablers
Independent ORs

Cf5 Cfl+T1 Enablers
Independent ORs

Cfé Cf2+Cf3+4+Cf4 Enablers

Application of Modified FAUNET Reduction Algorithm

The original reduction algorithm [24,25] repeatedly applies three processes to the fault
tree known as: contraction, factorisation and extraction.

Contraction: compresses the structure into an alternating sequence of AND and
OR gates.

Factorisation: defines factors in the tree where the events always appear together
entering the same gate type. For analyses performed using D?T?, it is necessary to modify
this requirement to account for the dependencies between the basic events, and so the fac-
tors additionally need to contain only independent initiating events, independent enabling
events, or all of the events that belong to a dependency group.

Extraction: re-arranges the fault tree sub-structures where an AND (OR) gate develops
into OR (AND) gates that all have X as an input, to extract the factor, X, such that one of
the following mappings take place:

(A+X).(B+X) = X+ AB .
AX+BX — X.(A+B) @

For the pressure vessel cooling system fault tree shown in Figure 3, the first contraction
stage has already been applied so it exists as an alternating sequence of AND and OR gates.

The application of the first factorisation process identifies four factors Cf1-Cf4, as
shown in Figure 4.

The repeated event PoW then enables a restructuring of the fault tree using the first
mapping in Equation (1) to extract this event to a higher level. The result of this is shown
in Figure 5. Since it is already an alternating sequence of AND and OR gates, the execution
of contraction stage 2 produces no changes.

Applying the factorisation stage for a second time produces two new factors:
Cf5=CF1+T1 and CF6 = Cf2 + Cf3 + Cf4 (See Figure 6). Further use of the contrac-
tion, factorisation or extraction processes result in no changes to the fault tree, and its form
at the end of the reduction modularisation is shown on the left hand side of Figure 7.
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Figure 4. Factorisation Stage 1 application.
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Figure 5. Extraction Stage 1 application.
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Figure 6. Final factorisation phase.
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Figure 7. Application of the linear time algorithm.

The linear time algorithm [26] identifies independent gates in the fault tree structure
and can be applied to produce a further reduction in the size of the fault tree to be analysed.
Only a minor modification in the labelling is necessary for this to work for dependencies
between basic events. All events in any dependency group are labelled with the dependency
group label. Applying the algorithm to the final fault tree resulting from the reduction
modularisation, identifies that the TOP gate and the gate labelled G1 are both independent
of the rest of the structure and these two sections can be analysed separately to simplify the
quantification process (Figure 7). Both fault tree modules will be converted to BDDs using
the ordering Cf5 < Hx1 < Cf6 < Hx2 for the tree headed G1 and PoW < G1 for the tree
for the TOP event. It should be noted that the fault tree section headed G1 contains basic
events Hx1 and Hx2, which feature a dependency solved using a Petri Net and the results
are substituted into the analysis of this BDD. TOP contains only independent events and,
therefore, its solution proceeds as for BDDs of conventional fault trees.
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At the end of the modularisation process of the D*T? methodology, the problem
has been redefined to be the analysis of a series of smaller modules. Each module is
independent of the rest of the analysis and can be solved separately. This results in a
multi-layer analysis that culminates in the analysis of a final BDD model for the top gate
of the original fault tree. The analysis of other BDDs, complex factors, Petri nets, Markov
models and component failure probabilities all feed into this quantification process. The

analysis structure is illustrated in Figure 8, with a summary of the complex factors given in
Table 3.
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Figure 8. Hierarchical Analysis Structure.
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4. Importance Measures

When assessing a system, its performance is dependent upon that of its components.
Certain components will play a more significant role in causing or contributing to system
failure than others. The contribution that a component makes to system failure is known as
its importance. The concept of importance was first introduced by Birnbaum in 1969 [21];
since this time, numerous measures of importance have been developed to assess the differ-
ent roles that a component failure can play in the deterioration of system state. Measures of
importance can be categorised as either deterministic or probabilistic and assign a value
between 0 and 1 to each component, with 1 signifying the highest level of contribution.
Deterministic measures of importance, such as the structural measures of importance [3],
do not account for the reliability of the component(s). Probabilistic measures of importance
take component failure probabilities and intensities into account and are, therefore, more
useful than deterministic measures in practical reliability problems. Different measures are
also relevant to the predicted system unavailability or unreliability. This paper focuses on
those measures with relevance to the system unavailability: Birnbaum, Criticality [22], Risk
Assessment Worth and Risk Reduction Worth [23]. Interpreting these importance measures
enables weaknesses within the system to be identified and indicates where resources can
be focused to improve system performance. It should be noted that another measure of
importance relevant to the system unavailability is the Fussel-Vesely measure [27]. This
measure requires the minimal cut sets to be calculated and, as such, is considered beyond
the scope of this paper. The measures considered in this paper can be calculated directly
from the fault tree structure without first deriving the minimal cut sets.

Each measure is defined below, and the equations given enable the measure to be
quantified when all component failures are independent. These definitions will then be
extended to consider the situation when dependencies occur in Section 5.

4.1. Birnbaum’s Measure of Importance

Birnbaum’s measure of importance, denoted by G;(g(t)), also known as the Criticality
Function, is defined as the probability that the system is in a critical state for component i.
The system is in a critical state for component i if the state of the system components results
in the system being in a working state, but should component i fail, it causes the system to
transition to the failed state. An expression for this measure is given in Equation (2):

Gi<q(t)) = sts(li/ q(t)) - sts(oi/ q(t)) 2)

where Qsys(g(t)) is the system unavailability function, the vector of component unavailabil-
ity’s q(8) = (01(8),02(D), - 0i(8) <00 (1)), (Liy 9(8) = (@1(5), G2(8)s - Ly (1))
and (03, 4(£) = (q1(6),42(8)s .- 04, gu(£)).

When the component failure probabilities are all independent, Qsys(q(t)) is linear in
each g;, and an alternative expression for Equation (2) is as follows:

9Qsys(q())
Gi(g(t)) = =227 3
a(t) = =35 3)
When a fault tree, where all basic events are independent, is converted to a BDD,
Birnbaum’s measure of importance can be calculated via a single sweep of the BDD. For
each component, G;(q(t)), is given by Qsys(1;, q(t)) — Qsys(0;, g(t)) where:

Qus(Liy a(t)) = ). Pri(q(®).Poj(a()) + ). FPi(q(t)) (4)

paths paths k not
containing the containing i
1—branch of i
Qus(0i, g(8)) =} Pri(q(t)).Poj(q(t)) + 3 Pila(t) (4b)
paths paths k not
containing the containing i

O0—branch of i
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where Pr;(q(t)) is the probability of the path section from the root vertex to node i, Po} (q(t))
is the probability of the path section from the end of the 1-branch of node 7 to a terminal
1 node, Po?(q(t)) is the probability of the path section from the end of the 0-branch of
node i to a terminal 1 node, and P (q(t)) is the probability of path k, which does not pass
through node i.

4.2. Criticality Measure of Importance

The criticality measure of importance for component i is defined as the probability
that the system is in a critical state for component i and i fails, weighted by the system’s un-
availability at time ¢. An expression for this measure when the basic event i is independent
of other component failures is given in Equation (5).

Qsys(4(t))
When component i belongs to a dependency group, G;(¢(t)) and g;(t) will be depen-

dent. Therefore, the calculation of the system being in a critical state for component i and i
has failed will have to take this into consideration.

4.3. Risk Assessment Worth (RAW) and Risk Reduction Worth (RRW)

The Risk Achievement Worth (RAW) calculates the relative increase in system unavail-
ability when it is known that component i has failed. It can be calculated using Equation

(6).

[RAW _ Qsys(1i,g(t)) — Quys(q(t))
l Qsys(q(t))

The Risk Reduction Worth (RRW) calculates the relative reduction in system unavail-
ability when it is known that component i is working. It is calculated using Equation

(7).
[RRW _ Qsys(q(t)) — Qsys(0;,q(t))
; —
Qsys (q(t))
Since all the terms in Equations (6) and (7) are calculated when predicting Qsys (q(t))

and Birnbaum’s measures of importance, it is a cheap process to provide these extra
measures of importance.

(6)

(7)

5. Importance Measure Calculation Methodologies for Dependent Events

The following sections describe the methodologies to calculate each type of importance
measure taking the modularised fault tree as the system failure model. The methods
presented will enable the importance measures to be calculated when dependencies exist
between the basic events. Each of the modules are mutually independent, as a consequence,
any basic event will only feature in one of these modules or remain a single component
model. In addition, any dependency will only feature in one module. In every case of
the top event, the system failure model, will be represented via a BDD. BDDs emerging
from the modularisation process can be classified as independent, B DD} , where all of the
variables appearing on the diagram are independent of each other, or, as dependent, B DD]D
featuring some variables that have dependencies.

The function that represents system failure probability will be a function of proba-
bilities taken from independent BDD modules, B DD]I =1, , N1, dependent BDD
modules, BDD]D,]' =1,...... , N>, Petri Net Modules, PNj,j =1,...... , N3, Markov modules,
MKVj, ji=1,...... , N4, Complex Factor modules, Cfj,j=1, ...... , N5 and components. This
is illustrated by the structure shown in Figure 8.
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The calculation of each importance measure is discussed in terms of its contribution to
system failure probability, accounting for the modularised system failure probability function.

5.1. Birnbaum’s Measure of Importance

Using Equation (2), Birnbaum’s measure of importance for any component can be
evaluated from two system evaluations, one conditional on the component failed and the
other conditional on the component working. From the example of modularisation shown
in Figure 8, it can be seen that for every component failure event there is a single path
leading up through the diagram to the top event. This path defines the modules whose
probabilities are a function of the component failure probability. If N such modules appear
directly on the path from the root basic event to the top event, then Birnbaum’s measure of
importance can be evaluated for component i using the chain rule:

Gi(a(t)= Gyfs (a(£)-GA3(@(D) - .. G (q(1) ®)

where GAA:II]k(q(t)) is the probability that module M;j is in a critical state for module Mk.
Evaluating Equation (8) requires the ability to calculate the criticality function for modules
defined by complex factors, BDDs, PNs and Markov modules. The details of how these
criticality functions are calculated for each situation is outlined below.

5.1.1. Independent Components Failures Modelled by Complex Factors

Complex factors will be of one logic gate type, AND or OR, linking combinations
of either basic events or other complex factors. These combinations of events are either
all independent or all belonging to a dependency group. In the case that the complex
factor represents a dependency group, then the probability of the event combination will
be determined from the associated Petri Net or Markov model. In the situation that the
complex factor is defined by independent events, then the probability of the factor will be a
linear function of the probabilities of its elements, and Equation (3) holds.

The following can be used for independent complex factors combining events with an
OR gate:

Cfi=fit+tfot...+fit +fu ©9)
where f; are basic events or other complex factors. The complex factor probability is then
given as follows:

n
where g; is the probability of f; and:
. 9 . n
6o = 295 _ 1T — gy (11
! M g
k#j
n
Qcri(lj, a(®) =1 Qcsi(0j, q(t)) =1— [T(1 —aqx) (12)
k=1
k#j
For an independent complex factor that combines events with an AND operator:
Cfi= fifoorooifjor oo S (13)
Qcfi = H7:1 q; (14)
and 20 ;
6" == =11 (15)
! LT

=
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Qcyi(1, q(t) =1 - ﬁ(l —q)  Qcri(0j, (1) =0 (16)

k=1
=

5.1.2. Dependent Component Failures in a Markov Model

To calculate Birnbaum’s measure of importance for component j when j is in a de-
pendency group analysed by a Markov model, it is necessary to return to the definition
of the measure, i.e., the system is in a critical state for component j such that the failure of
component j will cause the system to fail (Equation (2)). To evaluate the two conditional
probabilities in Equation (2), the Markov state transition diagram can be examined, and the
system states partitioned into those where the relevant component, j, has failed and those
where the component is working. Amongst those states where j has failed, Qsys (1 jr q(t))
is evaluated by establishing the likelihoods of these states resulting in system failure. To
calculate Qsys(0;, g(t)), the probability is the likelihood of the states where j is working,
resulting in a system failed state. Using Equation (2) then gives:

GMKVi _ Zall states k withj failed and the system failed Qk
all states | wit aileq
j Yol 1 with j failed QI (17)
o Yoall states m withj working and the system failed Qm
):all states n with j working Qn

where Q s j=1,..... , Nymkv, are the probabilities of the states on the Markov state transi-
tion diagram.

Markov models are used in the analysis to represent the dependencies between all the
elements of a complex factor. As examples, consider the two situations where the Markov
models are illustrated in Figure 9, both where the complex factor is dependent upon two
components: A and B.

W —working W —working
S — Standby R — Failed under repair
F - Failed Q —Queuing for repair

Figure 9. (a) Markov model for a warm standby system; (b) Markov model in the case of one
maintenance engineer (hatched states — system failure).

In the first case, the model represents a dependency due to components A and B
operating in a warm standby configuration (Figure 9a). As such, the sub-system represented
by the Markov model fails when both A and B have failed: Qpxyi = g4.p. Consider first the
criticality function for component A. For states 3 and 5, component A has failed, and for the
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remaining states, 1, 2 and 4, A is in a working state (i.e., working or in standby). Of the states

with component A failed, state 5 has system failure. Therefore, the conditional probability
that the system has failed given that component A has failed, Qsys(14, q(t)) = 0 Qs%Qs) .
Since none of the states with A working result in system failure, Qsys(04, q(t)) = 0.

Repeating the process for component B gives:

mvi _ Qs mkvi _ Qs
Cam = Q3+ Qs Cb Qs+ Qs (1%

In the second example, the dependency is a maintenance dependency between com-
ponents A and B due to their shared repair engineer (Figure 9b). When one component has
failed and the second component fails, it must queue until the engineer has completed the
repair of the first component before the second component repair can start. The system in
this case will fail if A OR B fails (under repair or queuing for repair), so Qpyxvi = §A+B-
Partitioning the states for component A, states 2, 4 and 5 have A failed, and in states 1 and
3, A is working. States 2-5 represent those states where the system has failed. Therefore,

Qsys(1a, q(t)) = % = 1and Qsys(04, q(t)) = ﬁ Completing a similar

process for component B gives the following:

cMkvi_q_ Qs cMkvi_q_ Q2 A
4 ! Q+Q Qi+Qs P ! QL+Q QA+ 19)

5.1.3. Dependent Components Failed Modelled via Petri Net

When the dependency is modelled using a Petri net, the model structure is different
to that of a Markov model, and the states represented in the places, in most cases, just
refer to the status of a single component and are not mutually exclusive. Thus, during the
simulation, the data are retained to enable the required predictions to be made. To calculate
G]P Ni(g(t)), the criticality function for component j data needs to be retained in order to

calculate Qsys (1, q(t)) and Qsys(0;, g(t)). The total time that the simulation spends in the
following conditions is needed:

The system has failed and component j has failed Tj.

The system has failed and component j is working T5.

Component j has failed T3.

Total simulation time Tpport.

Then, Qsys (1, q(t)) = % and Qsys (05, g(t)) = TTOZZ*TS

GPNi(g(t) = Tt 2 0)

5.1.4. BDD Quantification

The calculation of the criticality function for the elements, j, of a BDD structure need to
account for the situations where the failure of j is independent of all other components or it
is a member of one of the dependency groups, Dy. In both cases, it is necessary to calculate
Qsys (15, q(t)) and Qsys (0, q(t)) and then use Equation (2) to calculate G]BDDi(q(t)). In
order to calculate the probability of the BDD failure event given that component j has
failed, Qsys(1;, g(t)), the probabilities of the paths through the BDD to a terminal 1 node
are summed. Consider the BDD in Figure 10, if q; = 1, paths that pass through any node j
will pass through the node on the blue (failed) branch on their way to a terminal 1 node,
and paths that pass through this on the red (working) branch can be ignored. There will
also be other routes to a terminal 1 node that do not pass through a node representing the
state of element .
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Figure 10. Generic BDD structure.

On any path through the diagram, the events encountered can be allocated to sets of
states of components that feature in one of the dependency groups, D;, i = 1...1n4, or
to a set of states of components that fail independently, I. The events that are placed in
each dependency set will feature the element label and indicate if the path passes through
this element on its 1-branch or 0-branch. This combination of events will be labelled Dpath.
Similarly, the collection of elements and their state (working or failed) contained in I will
be labelled Ipath. Qsys(1;, q(t)) and Qsys(0;, g(t)) are then calculated as follows:

Element j fails independently of all other elements

Qsys (1j, q(t)) = Z P(pathy) + Z P(pathy) (21)
Ji€pathy jé pathy
Qsys (05, q(t)) = Z P(pathy) + Z P(pathy) (22)
Jo€pathy ¢ pathy
GPPP (1) = X, ¢, | P(Lpath). H?di [POpath)] | =¥ o, | P(Ipathy). H?dj |[P(Dpath})) (23)

Noting that P(j;) = 1 on the first term and P(jo) = 1 in the second term calcula-
tions, the probability of the events in each Dpath are obtained from the relevant PN or
Markov analysis.

Element j belongs to dependency group D,

. ”dep .
GPPPiq(t) = ¥ |P(Ipathy).| IT[P(Dpathi)] | .P(Dpathf|q; =1)
J1€pathy ;;‘11
e .
+-¢Z, P(Ipathj). E[P(Dpath;)] P(Dpathf|q;, =1)
] & pathy i=
i#d (24)
dep )
— ¥ |P(Ipathy).| T1[P(Dpath)] | .P(Dpath|q;, =1)
jo€ pathy i=1
i#d
ndep .
~ ¥ |P(pathy). TI [P(Dpathy)] .P(Dpath|gj, = 1)
j & pathy =

5.2. Criticality Measure of Importance

For component i, which fails independently of the other basic events, the calculation
of the criticality measure remains, as specified in Equation (5), and can be accomplished
cheaply having obtained Birnbaum’s measure of importance.
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7

For basic events that belong to one of the dependency groups, the criticality function
and the component failure probability cannot be multiplied together, and the probability
that the module is in a critical state and the basic event has failed needs to be evaluated
when considering the analysis of the relevant Petri net or Markov model for the dependency.
The criticality measure of importance is given as follows:

(a(1).Gra(g(®)-. ... ... GaL(a(t)......... GMN N i(g(t)) } /Qsys(q(t)) (25)

where GMN N i is the probability that the dependent module that contains i is critical for
event i and i failure.

5.2.1. Dependent Component Failures in a Markov Model

When calculating the criticality measure of importance for a component that features
in a Markov dependency model, Equation (25) is used. It is required to calculate the
GMN i term from the Markov model. As when calculating Birnbaum’s measure, it is
necessary to consider the definitions of the states represented on the Markov State Transition
Diagram. It is required to identify those states where the system was in a critical state for
component i and then component i fails, leading to system failure. The probability of these
states are then summed to calculate GMN N i.

As an example, consider the calculation of GXXV8? A for the Markov model illus-
trated in Figure 9a. The critical state for component A is State 4. As is shown in the diagram,
when A fails from State 4, the system transitions to State 5 and the system fails, as follows:

GYKV81 0 A = Qs(g(t)) (26)

For the Markov model illustrated in Figure 9b, the critical state for component A is
State 1, and the failure of component A advances to system failed state 2, as follows:

GYKVB M A = Qu(q(t)) 27)

5.2.2. Dependent Component Failures in a Petri Net Model

The approach taken to calculate the criticality measure of importance for a component
included in a Petri net module follows that used to calculate Birnbaum’s measure of
importance for Petri net models where the times of residing in certain condition states are
logged during the simulation. For all component failures that appear in a dependency
group, the criticality importance measure is then calculated using Equation (25), where the
analysis of the Petri net will deliver the GlMN M iterm in the equation.

To calculate GIMN N i, it is necessary to monitor the simulation time in the follow-
ing states:

The system has failed and component i has failed: Tj.

The system has failed and component i is working: T5.

Total simulation time: Ttor.

GMNN i=(Ty — Tb)/Tror (28)

5.3. Risk Achievement Worth and Risk Reduction Worth Measures

The expression used to calculate Risk Achievement Worth is given in Equation (6). All
the terms of this equation have been previously considered during the system assessment
Qsys(q(t)) and the evaluation of Qsys(1;, g(t)) during the quantification of Birnbaum'’s
measure of importance. Therefore, this importance measure can be calculated very cheaply.

The same is true for Risk Reduction Worth, which requires Qsys (Oj, q(t)), which is
again evaluated during the production of Birnbaum’s measure of importance, along with

Qsys(q(t)), to quantify Equation (7).
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6. Case Study: Pressure Cooling Vessel System

To illustrate the approach used to calculate each of the importance measures, consider
the pressure cooling vessel system introduced in Section 2. The dependencies between P1
and P2 are modelled in the Markov diagram shown in Figure 11. Figure 12 contains the
Petri net used to model the relationship between the heat exchangers Hx1 and Hx2.

3

Figure 11. Markov model for secondary failure dependency.

Hx1 Working W(B,n) Hx1 Failed

Hx1 Fails when »
Hx2 unrevealed

" Hx2 Failed ,

revealed / :
/
Q / No
/ : i
p inspection
Hx2 Working Pt 0.01
/
N / 0.0
/
/ ) o V\
W(B,n) O N
]
Hx2 Failed
unrevealed inspection

Figure 12. Petri net model for opportunistic maintenance.

The analysis of the fault tree using the D?>T? algorithm to obtain the top event failure
probability (Qsys(g(t))) will, as intermediate stages, calculate the probability of all of
the complex factors, the probability of dependent events Hx1 and Hx2 with a Petri net
evaluation and the probability of the P1- and P2-dependent events through the use of
Markov assessment. These will then be substituted into the BDD calculations to predict
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top event performance. All of these calculations are retained for use in evaluating the
component importance measures.

A comprehensive assessment of the importance measures for all components in the
pressure cooling vessel system is given stage by stage in the following sections.

6.1. Birnbaum’s Measures of Importance

The criticality function is evaluated for each of the independent modules identified
in the D2T? modularisation process. These are considered in the following sections, first
considering the independent complex factors, Cf2-Cf6; Cf1 represents the dependent event
combination P1.P2 and will be considered later.

6.1.1. Criticality Function Terms for Independent Complex Factors

The criticality function for Cf2 = §1.52 is given in Table 4. The terms in the table are
obtained using Equations (15) and (16) for complex factors with an AND operator.

Table 4. The criticality function of Cf2 with respect to its input factors.

Component (i) Qcp (1, qt) Qe (0, q(1) Ginz(q(t))
51 qs2 0 952
52 qs1 0 qs1

Table 5 contains the criticality function for the complex factor Cf3 = Comp + R1 + Fan +
Motor + R2 + T2 + V1 with respect to its inputs. The factor has seven basic events as inputs
to an OR operator, and the terms are, therefore, evaluated using Equations (11) and (12).

Table 5. The criticality function of Cf3 with respect to its input factors.

Component (i) Qcs3(1, q() Qc3(05, q(V) GEB(q)
1—(1—qr1)-(1 = gFan)- (1= qr1)-(1 = GFan)-
Comp 1 (1 = qMotor)-(1 — qra2)- (1 = qMotor)-(1 — qr2)-
(1—g12).(1 — qv1) (1—q72)-(1 — qv1)
1- (1_QComp)~(1_QFun)- (1_qump)~(1_unn)-
R1 1 (l_qMotor)‘(l_qR2)~ 1_qMotor)~( —qu)
(1—g72).(1 — qv1) (1—q72)-(1 — qv1)
1_(1_5]Comp)-(1_qu)- (1 QComp)-(l_QRl)
Fan 1 (1 _qMotor)‘(l —qu)- (1 _qMotor)-(l —qu)
(1—g72).(1 — qv1) (1—4q72)-(1 — qv1)
1_(1_5]Comp)-(1_qu)- (1_‘7Comp)-(1_‘7Rl)
Motor 1 (1= qran)-(1 — qr2)- (1= qFan).(1 — qr2)-
(1—g72).(1 — qv1) (1—4q72)-(1 — qv1)
1_(1_5]Comp)-(1_qu)- (1_‘7Comp)-(1_‘7Rl)'
R2 1 (1 _qFan)~(1 _LIMotor)~ (1 _LIFan)~(1 _qMotor)~
(1—=q12)-(1 = qv1) (1—=q12)-(1 —qv1)
1= (1= 4qcomp)-(1 — qr1)- (1= qcomp)-(1 = qra)-
T2 1 (1 _qth)'(l _LIMotor)~ (1 _LIFan)~(1 _qMotor)~
(1—qr2)-(1—qv1) (1—qr2)-(1—qv1)
1= (1= 4gcomp)-(1 — qr1)- (1= qcomp)-(1 = qra)-
V1 1 (1 = qran)-(1 = qMotor)- (1 = qran)-(1 = qMotor)-

(1 -9r2)-(1—4q12)

(1 -qr2)-(1—412)

Complex factor 4, Cf4 = P3, is a simple combination of the failure modes for pump
P3, and since it only has one input, its criticality function evaluation is trivial, as shown in
Table 6.
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Table 6. The criticality function of Cf4 with respect to its single input.

Component (i) Qc1a (1, q() Qc14(0;, q(1) G (q)
P3 1 0 1

The final two complex factors are both OR combinations of events. Cf5 = Cf1 + T1,
combines a complex factor and a basic event as inputs, whereas the inputs to Cf6 = Cf2 +
Cf3 + Cf4 are all complex factors. The criticality function evaluations of Cf5 and Cf6 are
given in Tables 7 and 8, respectively. As with Cf3, Equations (11) and (12) are utilised.

Table 7. The criticality function of Cf5 with respect to its inputs.

Component (i) Qcss5(15, q(1) Qcs5(0;, q(1) GEB(q)
1 1 qan 1-qn
1 1 qcf1 1—4qcn

Table 8. The criticality function of Cf6 with respect to its inputs.

Component (i) Qcse(1i, q(1) Qc6(0;, (1) G (q)
cf2 1 1—(1—qcss)-(1 = qcpa) (1 —dcys)-(1 —4csa)
Cf3 1 1—=(1—qcp2)-(1—qcsa) (1—4cp2)-(1 = qcpa)
Cfa 1 1—(1—qcp)-(1 - qcps) (1 —dcp2)-(1 = 4cs3)

6.1.2. Criticality Function Terms for Dependent Complex Factors

Complex factor Cf1 = P1.P2 represents the AND combination of dependent events
P1 and P2, which are modelled through the use of the Markov model to deliver both their
combined probability and the probability of the individual event combinations. The terms
needed to calculate the criticality function for this factor are shown in Table 9 and taken
from the results of the Markov model analysis.

Table 9. The criticality function of Cf1 with respect to its dependent inputs.

Component (i) Qcs1 (14, qV) Qcs1(0;, qt) GiCﬂ(q(t))
P1 qp2 0 qp2
P2 qp1 0 qp1

6.1.3. Criticality Function Terms for BDDs

Two BDDs, shown in Figure 7, are utilised in the D?T2 analysis of the fault tree.
The first represents the top event, Sys, it has two inputs, gate G1 and basic event PoW.
These inputs are independent, and the terms in the criticality function evaluation, given in
Table 10, are obtained using Equations (21)—(23).

Table 10. The criticality function of the top event BDD with respect to its inputs.

Component (i) Qsys (13, q(B) Qsy5(0;, q(V) GY*(q(®)
PoWw 1 961 1-9a
G1 1 gpow 1 —qpow

The second BDD represents the causes of gate G1 in the original fault tree and has four
inputs: independent complex factors Cf5 and Cf6, along with dependent basic events Hx1
and Hx2.
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For the criticality of GI with respect to Cf5, Cf5 is a component in a dependency BDD,
BDD?, and so Equations (21), (22) and (24) are applied considering dependency group,
D2 = {Hx1, Hx2}. There are four paths through the BDD (Shown in Figure 7), as follows:

Cf51 . Cfoq

Cf51 . Cf60 . Hx21

Cf50 . Hx11 . Cf61

Cf50 . Hx1q . Cf60 . Hx24

These give the following;:

Qa1 (1Cf5r q(t)) = qcfe + (1 - que) qHx2 (29a)

Qa1 (OCfSr q(t)> = JHx1-9cf6 + (1 - QCfé)QHxl.sz (29b)

Gg}s(‘l(t)) ={qcfe T (1 - 07Cf6>07Hx2 — qHx1-Cf6 — (1 - (1Cf6)07Hx1.Hx2 (29¢)

where g1, GHx2 and g1 gy are obtained from the original analysis of the Petri net, as
shown in Figure 12.

6.1.4. Component Criticality Function Evaluations

The results presented in Tables 4-11 show the criticality function for each of the inde-
pendent modules of the original fault tree with respect to their inputs. These are the basic
building blocks used to evaluate Birnbaum’s Measure of importance (criticality function)
for each basic event. Table 12 shows the expression used to evaluate each component’s
importance measure and, in the third column, the evaluation of this expression. The ex-
pression to give each measure of component importance is obtained from the structure of
the modules in evaluating t system performance, given in Figure 8.

Table 11. The criticality function of the gate G1 event BDD with respect to its dependent inputs.

Component (i) Qc1(1;, q(®) Qc1(0;, q(V) GSl(q()
_ THx19Cf6 qcre(1— qux1)+
Cf5 1 .
f acse + (1= dcse)- arixe +(1 —qcf6)- GHx1.Hx2 (1 —4qcfe6)-(qHx2 — GHx1.Hx2)
_ THx2qCf5 acrs(1— qux2)+
Cfeé 1 .
f acss + (1= cps)- ari +(1—qcfs)- Hx1.Hx2 (1 —9cf5)-(qHx1 — GHx1.Hx2)
Hx1 qefe + (1= qcfe)- G qacfs (qu6 + (1 —4qcse)- Qsz) <1 - qu5> (que + (1 —qcge)- ‘7sz>
Hx2 qess + (1= qess)- qun qcfe <QCf5 + (1 —qcss)- binl) <1 - qué) (51Cf5 + (1 —qcfs)- b]Hx1)
Table 12. The component criticality functions (Birnbaum’s Measure of Importance).
Component Expression Gi(q(®)
PoW Ghoi (4(t)) 1461
Hx1 GEX%(q(t))-Gik (a(B)) (1= gpow) (1 = 4cgs) (dcse + (1 = qcge)- qrxa)
Hx2 G2 (q(1)).GEha(a(t) (1—qpow) (1 = 4cs5) (dcfs + (1= qcfs)- qux)
1—ap 1— a1,
T GRS (a(8)) GEs(a (1) G a 1) 0 = arom)lacre( = )

(1= qcfe)-(qHx2 — qHx1.mx2) ] (1 = 4cp1)
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Table 12. Cont.

Component

Expression

Gi(q®)

P1

GEYS(q())-GEls(a(H).Gelr (a(H).Gyl ' (a(t))

(1= gpow) [qcf6(1 — qHx1)
(1 —4qcg6)-(qHx2 — qHx1.Hx2) ] (1 — GT1)qP2

P2

GEYS(9(1)).GEls(a(H).Gefy (a().G3 (a(1))

(1= qrow) [acre(1 — qrix1)
(1 —4gcg6)-(qHx2 — qHx1.Hx2) | (1 = 4T1)49P1

S1

GEXS (a(£)).GCl(a(£))-GEls (a(£).Gs (a(8))

(1 —qpow) [dcss5(1 — GHa2
(1—qcss)-(gHx1 — GHx1.Hx2) | (1 = qcg3)-(1 — gcga)dsz

S2

G (a(1).GEL(a(1).-Ge s (a(t).Gef* (a(1))

(1 —qcss)-(grx1 — qHx1H22) ] (1 = qess)-(1— gepa)qst

Comp

GEYS (a(1).GELe(a(1).-Ge s (a(t)-Glmy (a ()

)
).
(1= gpow) [qcf5(1 — qHx2)
).
)

(1= gpow) [4cs5(1 — Gax
(1—qcss)-(qrx1 — qH21H2) ] (1 = qef2)-(1—gepa) (1 —
qMotnr)~(1 - QRl)'

(1= qran)-(1 = qr2).
(1=9gr2)-(1 = qv1)

R1

GEXS(q(1)).GE (a()).Ge s (a(D) .Gl (a (1))

(1 — qpow) [4cs5(1 — grx2)
(1= qcss)-(qrxr — quxrax2) | (1 —gep2).(1—gepa) (1=
‘7Comp)'(1 - qMatur)~
(1= qFan)-(1 — qro)-
(1 =qr2)-(1 = qv1)

Fan

GEX(a(1).GEL (a(1).GE s (a(t)) -Gl (a(1)

(1= gpow) [qcf5(1 — qHx2)
(1—qcss)-(qrx1 — qHx1H2) ] (1 = qef2)-(1—gep) (1 —
qump)~(1 - qu)'

(1 - ’f]Mutor)~(1 - QRZ)-
(1—4712)-(1—qv1)

Motor

GEYS (4(1)).GEL (a(1).GEJ(a(1))-Ci o, (a(8))

(1= gpow) [qcf5(1 = qHa2)
(1—=4css5)-(qrn1 — qHrtH22) ] (1 = qef2)-(1 = gepa) (1 —
qCamp)-(l — qr1)-

(1 = qFan)-(1 — qro)-

(1—412).(1 —qv1)

R2

GEX5(9(1))-GEL (a(1)-GEL2 (a()-GRL (a(1)

(1= gpow) [qcs5(1 — qrx2)
(1—qcss5)-(qrx1 — qHx1H2) ] (1 = qef2)-(1—gepa) (1 —
Gcomp)-(1 — qr1)-

(1 - qFan)-(l - qMotor)~
(1—9r12)-(1—qv1)

T2

GEXS (a(£)).GEl (a(1))-GEla (a(£).GF3 ™ (a(8))

(1 —gpow) [qcf5(1 — qra2)
(1—qcss5)-(qrn1 — qHr1H2) ] (1 = qef2)-(1 = gepa) (1 —
‘JComp)~(1 —qr1)-

(1 —gFan)-(1 — qr2)-

(1 - qMotor)-(l - qu)

V1

G (a(1)).GEl4 (a(D).Gela(a(D).Gyf (a (1))

(1= qprow) [4cs5(1 — grx2)
(1= qcss)-(qrxr — qrxrax2) | (1 —gep2). (1 —gepa) (1=
QComp)'(l - qR1)~
(1 - qFan)'(l - qR2)~
(1 - qT2)~(1 - qMator)

P3

GEXS (4(1).GEL (a(1).GELS (a(1))-GoL* (a(1)

(1= gpow) [qcs5(1 = Gax2)
(1 —4gcss)-(9Hx1 — qHx1H22) (1 = Gcp2)-(1 = geg3)

As an example, consider basic event S1, the case of temperature sensor failure. S1 fails
independently of other basic events in the fault tree.
Using the model structure diagram shown in Figure 8, the influence of S1 on the top

event comes through as follows:

51—+ Cf2 —-Cf6 -Gl — SYS
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Using Equation (8) gives the following expression for the criticality function of S1:

Gs1(a(t) = GE5(q(1))-GEf(a())-Gcls (a(8)-Gs{ *(a()) (30)

The first term of this expression, G21°(g(t)), is given in Table 10, which relates the

criticality function of SYS in terms of its inputs that includes G1.

G2 (a(t) =1 - qpow (31)

The criticality function of G1 with respect to its input Cf6 is given in Table 11 as follows:

GEs(a(t)) = qcfs + (1 - QCf5)QHx1 — JHx2-qCf5 — (1 - LICf5)QHx1.Hx2 (32)
From Tables 4 and 8 we also obtain:
cf6
Gep(a®) = (1=acps) (1-acs) (33)

and
G (g(1) = g2 (34)

Substituting terms 31-34 into Equation (30) gives the following;:

(1—qpow) [quS(l —qux2) (1 —qcs5)-(qHx1 — QHxLsz)} (1 —4qcg3)-(1 —4qcfa)gs2 (35)

where dependent basic events are involved in evaluating their criticality function, which
will require probabilities calculated from the relevant Markov model or Petri Net that
represent their dependencies.

When considering the complex event represented by CfI = P1.P2 is represented by the
Markov model shown in Figure 11, and thus, the discussion in Section 5.1.2 is relevant. The
states in the Markov model with component P1 failed are labelled 2 and 4. Of these, only
state 4 results in system failure. Therefore, Qcs1(1p1, q(t)) = % Since there are no

states when component P1 is working that result in system failure Qcy1 (Op1, 4(£)) = 0, and:

_ Q.
Q2+ Q4

For the heat exchanger, Hx1 is in Dependency Group 2, along with the second heat
exchanger, Hx2. The dependency between the heat exchangers is accommodated in the
Petri net model, which feeds into the dependency BDD that represents the gate event G1.
The criticality function is then as follows:

Grx1(4(1)) = G&1° (4(1)-Giix (q (1)) (37)

G%L (q(t)) is obtained by evaluating Qg1 (1px1, 4(¢)) and Qg1 (Opy1, 4(£)) from the
G1 BDD:

cfl

Gpy (4(t)) (36)

Qc1(1ax1, q(t) = (que + (1 - 46f6>61Hx2) (38a)
Qa1 <0Cf5/ q(t)) = qcfs- (QCfe + (1 - lkf6> Qsz) (38b)

Giving:
G (q(t)) = (1 - qu5)-<‘7Cf6 + (1 - qc,%)quz) (38¢)

where gy, is obtained from the Petri net model solution.
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6.2. Criticality Measures of Importance

Having calculated Birnbaum’s measure of importance (the criticality function), G;(¢(t)),
for those components that fail independently, it is a simple step to evaluate the criticality
measure of importance using Equation (5) since Birnbaum’s measure of importance and
the probability of component failure are independent.

Of the components in the pressure vessel cooling system, P1, P2, Hx1 and Hx2 belong
to dependency groups. In this case, the criticality function, G;(q(t)), and the component
failure probability will be dependent. P1 is dependent upon P2, and this dependency is
modelled using the Markov model shown in Figure 11. Hx1 and Hx2 are dependent events
modelled with the Petri net shown in Figure 12.

The calculation process that considers dependent events for the criticality measure is
described in Sections 5.2.1 and 5.2.2.

The criticality measure calculations for P1 and Hx1 are explained below.

P1(Pump] fails)

The route from P1 to the fault tree top event passes through the following modules:

P1 — Cfl — Cf5 —+ Gl — SYS

Using Equation (25), the criticality measure of importance is as follows:
5= { G (a(£).GEs(a(1).Gf (a(1).Gp ' 1 PL@(®) } /Qsys(a(t))  (39)

where Gg{ 'np1 (q(t)) is the probability that the system is in a critical state for component
P1 and P1 has failed, leading to system failure. From the Markov model for this section of

the problem shown in Figure 11, it can be seen that G, f A P1(q(t)) = Q4.
Hx1 (Heat Exchanger 1 fails)
The heat exchanger’s criticality measure of importance is given as follows:

Ifa= {G?{S(q(t)) GEts(4(t)).Gia N Hx1(q(t)) } /Qsys(q(t)) (40)

where GEL, N Hx1(q(t)) is the probability that the system has failed and component Hx1
has failed, leading to system failure. This probability is logged during the simulation of the
Petri net shown in Figure 12 and substituted into Equation (40).

6.3. RAW and RRW Measures of Importance

To calculate the values of IR4W and IRRW the values for Qsys(1i, q(t)) and
Qsys(0;, q(t)) are required along with Qsys(q(#)) resulting from the D?T? analysis sys-
tem assessment.

To calculate the RAW measure of component importance using Equation (6),
Qsys(1, q(t)) is required. This is evaluated using the results of each of the independent
modules (complex factors, BDDs, Markov models and Petri nets) derived when calculating
Qsys(q(t)). The basic event probability is set to 1, and this is then propagated up through
the hierarchical analysis module structure (shown in Figure 8) to re-process the top event to
produce system failure probability. The relevant equations used for the modules influenced
by each of the basic events are shown in the second column of Table 13. Combining these
equations gives Qsys(1;, q(£)) in the third column of the table.
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Table 13. The probability of system failure dependent upon each component failure.

Component Relevant Equations Qsys(1i, q(1)
PoW sts\PoW:1 1
Hal Qsys|Hxi=1 = qpow + (1 — qpow)- Qc1|Hx1=1 grow+
Qc1Hx1=1 = qcfs + (1 —dcge)- GHx2 (1= gpow)- (dcse + (1 = qcfe)- qr2)
Ha2 Quys|Hxz=1 = qpow + (1 — qpow)- Qc1|Hx2=1 grow+
Qc1jHx2=1 = qcfs + (1 —qcys)- qun (1= qpow)- (Gcfs + (1 = qcfs)- GHa1)
QsysiT1=1 = qrow + (1 — qrow)- Qg1j11=1
Qc1|r1=1 = qcfe-dcss|ri=1 T qefsiri=1-(1 —
T1 . +(1- 1 ) GHa- + qpow +
qcfe)- GHx2 ( qdcfs|T1 1) qHx1-qCf6 (1~ graw)- (dcse b (1 - dcso). grine)
<1 - EICfs\T1:1)~0IHx1.Hx2-(1 —4qcfe)-
Qcpsjri=1 =1
Qsysip1=1 = grow + (1 — gpow)- Q1jp1=1
Qciipi=1 = qcfe-css|pi=1 + dcgsipr=1-(1 — a ) 1 ) )
) (1o e+ qpow + (1 = qpow)- qcfe-(1 — (1 —gp2) (1 = qm1)) +
P1 qcfs)- qHx2 ( qcys|p1 1) GHx1-qCf6 (1= (1= qr2) (1 = qr))-(1  dcge). G+
(1 - ”/CfS\P1:1> rxHx2-(1 = qce) (1 —gp2)-qua-9cfe + (1 — qp2)-gux1.mx2-(1 — 9cf6)
Qcssipi=1 = 1 = (1 = qcs1p1=1) (1 — qm1)
Qcmm:l =4qr2
Quysip2=2 = qrow + (1 = qpow)- Q1p2=1
Qc1/p2=1 = qcfe-Acssipa=1 + dcss|p1=1-(1 — a ) a-a ) )
. + (1= 1 ) ma. + grow + (1 —gpow)- gcfe-(1 — (1 —gp1) (1 —qm1)) +
P2 qcfe)- qHx2 ( qcfs|p2 1) qHx1-4Cf6 (1= (1= gm) (1 = q))-(1  dcge). G+
(1 - quS\P2:1> ~‘1Hx1,Hx2~(1 - QCfé) (1 — qpl).qul-qcfé + (1 — qpl)-QHxLHxZ(l — qcf(,)
Qcssipe=1 = 1 = (1 = qcf1jp2=1) (1 — qm1)
Qcri|pa=1 = gp1
Quysisi=1 = gpow + (1 = qpow)- Qc1js1=1
Qacijsi=1 = dcfe|s1=1-4cfs + qcys-(1— qprow + (1=
qcfelsi=1)- Gux2 + (1 = qegs) e e folsi=1 + qpow)- [1 = (1= 452) (1 = qcy3) (1 = qcpa) |- eps +
51 (1 —qcfs) qrxrax2-(1 = dcgojsi=1) [(1=952) (1 = qcp3) (1 = qca) |- Grna +
Qcrejsi=1 = 1= (1 = qepos1=1)(1 — qcs3) (1= qcgs) qra-[1 = (1= 452) (1 = 4cga) (1 = gepa) | +
(1—qcsa) (1= qcys) qrerax-[(1—qs2) (1 — qcss) (1 — gcga) ]
Qcpalsi=1 = 4s2
Quysisz=1 = qrow + (1 — grow)- Qc1/s2=1
Qcijsa=1 = qcfe|s2=1-4cfs + qcys-(1 — qrow + (1 —
qcgejs2=1)- qux2 + (1= qcys) -Grx-Gcgeis2—1 + qeow)- [1—= (1 =gs1) (1 —qcss) (1 —qepa) | 4crs +
52 (1 —qcfss) qHx1Hx2-(1 — dcgols2=1) [(1=as1) (1 = qegs) (1~ acpa) |- gz +
Qcfojsz—1 = 1= (1= dcpayso—1) (1 — dca) (1 —qcss)-qra-[1 = (1 —q51) (1 — qcg3) (1 — qcpa) ] +
(1—qcsa) (1= qcgs) qrerm-[(1—qs1) (1 — qcs3) (1 — gcga) ]
Qcpais2=1 = gs1
sts\Cnmpzl = qpow + (1 — gpow)- QG1|Comp:1
QG1|Comp=1 = 4cfs|Comp=1-4f5 + qcss-(1 —
1-— J(1—(1— 1-— .
qu6\Comp:1)~ JHx2 + (1 - quS)ﬂHxlAqu@ComP:l + Apow * ( ’71’0("1\/)_[( )((1 _quZ))( qiﬁl)) quS *
Comp (1= qcfs) qrxr.mxe-(1 = Gc fojcomp—1) eyt —dcr Acra) AHx2
CfolComp=1 = (1 —qcss)-qra-(1 = (1 —qcp2) (1 = qcpa)) +
1-— . (11— 1-—
1 (1 gep) (1 - quS\Campzl) (1 dqep) (1= qcss)-qrxrmxe-(1 = qcpa) (1 = qcpa)]
Qcrsjcomp=1 =1
Quysiri=1 = qrow + (1 — qpow)- Qc1jR1=1 ‘a )
Qc1jri=1 = 9cfelr1=1-9cf5 +dcrs-(1 — aPow ~ qpow)-
1-(1- 1-— . 1-—
Gersirim)- i + (1 — dcgs) G ac el + (1= (1= qcs2) (1= qcrs)) qcss +acss(
R1 qcr2) (1= qcra)

(1= gcfs) qrermxe-(1 = dcpojri=1)
Qcfolri=1 = 1 — (1 —qcp2) (1 - L]Cf3|R1:1) (1—4qcrs)
Qcpajri=1 =1

qux2 + (1 —4gcss) qua-(1— (1= qcp2) (1 — qcpa)) +
(1= qcfs) qrxrax2-(1— 4c2) (1 — qega)]
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Table 13. Cont.

Component Relevant Equations Qsys(1i, q(1)
sts\Fﬂnzl = qpow + (1 - qPDW)~ QG1|Fan:1 " (1 )
Qc1/Fan=1 = qcfe|Fan=1-qcf5 + qcfs-(1 — aPow ~ qpow)-
1—(1-— 1-— . + 1-—
F acfs|Fan=1)- qrx2 + (1 — qcys)-GHx1-Gc fo|Fan—1 + [(1= (1 = gep)( )(fc_ﬂ)) q)cfs css(
an (1= gcss) qrxr.mx-(1 = qcpopan—t) Tcy2 9crs
i ) . e+ (1= qcgs) qra-(1— (1= gep) (1 - qcp)) +
QcfolFan=1 =1—(1— ”lez)( - qc;a\am:l) (1—4qcsa) (1= dess)-qrnana-(1— qcp) (1 — dcra))
QCf3\Fan:1 =1
Qsys|Motor=1 = grow + (1 = gpow )- Q1|Motor=1
Q61| Motor=1 = qcfe|Motor=1-9Cf5 + qcss-(1 —
+(1— (1= (1- 1-— . +
qué\Motur:1)~ JHx2 + (1 - quS)ﬂHxl'quﬂMator:l + Apow ( qPU(V\ll)_[( )((1 _quZ))( qif4)) quS
Motor (1 - ’1Cf5)ﬂHxLHx2~(1 - ‘JCfﬁ\Momr:l) fcss ics2 Acsa) a2
Qc fé|tor—0 = (1= dcps) qra-(1 = (1 = dcpa) (1 = gepa)) +
1= qcys)-quamx-(1 = qcp2) (1 — qca)]
1= (1~=qcp) <1 - QCfa\Mntnrzl) (1—49cf4) ( PELEEE 7cr2)( )
QC]S\Motm':l =1
Qsysirz=1 = qrow + (1 — qrow)- Qc1jr2=1
Qa1jre=1 = dcfo|re=1-9css T dcfs-(1— grow + (1 — qrow). [(1 — (1 — gcp2) (1 — qcsa) ) dcss +
R2 qcfelra=1)- Gex2 + (1 — qcss) GHx1 e fo|ra=1 + qers(1—acp2) (1= qegs) quse +
(l - qcf5)‘qHX1~HX2'(1 - qu6\R2:]) (1 — quS)ﬂHxl-(l -(1- qcfz) (1 — qu4)) +
Qcsslre=1 =1 — (1 —qcp2) (1 - quSlRZ:l) (1—4qcsa) (1= 4qcss)-qnanxe-(1 = qcp2) (1 = qcgs)]
Qcrajro=1 =1
Qsys|r2=1 = qrow + (1 — qpow)- Qc1|12-1
Qci|r2=1 = dcgeir2=1-4css +4cys-(1 = qrow + (1= gpow)- [(1 = (1 = qcs2) (1 = qcpa) ) Gegs +
- qcfeir2=1)- qrx2 + (1 = qcgs) -Gra1 Gepojra—1 + acss(1—qes2) (1 —qesa) G +
(1—4qcss)-qrx1mx2-(1 = Gegoro=1) (1—gcs5)qra-(1— (L—qcp) (1 —gcpa)) +
Qcfojra=1 = 1= (1 —qcp2) (1 - ”7Cf3|T2=1) (1—49csa) (1= qcss)-qmame-(1 = qcp2) (1= qcgs)]
Qcpaime=1 =1
Quysivi=1 = grow + (1 — qrow)- Qa1jvi=1
Qa1jvi=1 = qcgejvi=1-4css +dqcss-(1 = qrow + (1= gpow)- [(1 = (1 = qc2) (1 — dcfa)) dcys +
V1 csoviz)- e + (1= dcfs) qua-egevi- + qcrs(1=qcp2) (1= qega) qrxe +
(1= 4qcss) -qrarm-(1 = qcpejvie1) (1—dcgs) qua-(1— (1 —gcp) (1 —qcp)) +
Qcfolvi=1 =1— (1 —4gcra) (1 - ‘7Cf3|V1:1) (1—4qcsa) (1= dqcss) -quximxe-(1 = qcr2) (1 = qcpa)]
Qcpapvi=1 =1
Quysipz=1 = qrow + (1 — grow)- Qc1|p3=1
QG]\PS:] = qcfe|pa=1-9cf5 + quS-(l -
qcfeipa=1)- qrx2 + (1 = qcgs) e dcgops=1 +
P3 el . ! wesd apow + (1 = qpow)- [9css5 + (1 —dcgs) -GHx ]

(1 —qcfs) qrxrEx2-(1 — dcgo|p3=1)
Qcseipa=1 = 1= (1 = qcs2) (1 — 4¢p3) (1 - qu4\P3:1>
Qcfapa=1 =1

The RRW measure of component importance is given in Equation (7) and requires
the evaluation of Qss(0;, 4(t)). This is processed by substituting the basic event failure
probability of 0 and re-calculating the system failure probability. The results of this process
are reported in Table 14. For practical system evaluations, the results for G;(¢q(t)) and
Qsys(1, q(t)) can be calculated as shown in Tables 12 and 13 and then Qs,s(0;, 4(t)) by
taking their difference, as shown in Equation (2).
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Table 14. The probability of system failure dependent upon each component functioning.

Component Expression Qqys (03, q(t)
PoWw sts\PoWzO qG1
Hxl Qsys|Hx1=0 = grow + (1 — grow ). Qc1|Hx1=0 grow+
Qcijnxi—o = 9cs5 (9cre + (1 —qcgs)- GHx2) (1= gpow)- (Gcss(qefe + (1 —4cgs)- GH2))
Ha2 Qsys|txz=0 = qrow + (1 — gpow)- Qa1jHx2—0 gpow+
Qc1iHx2=0 = Gcfs(dess + (1 —qefs)- Gem) (1 —qpow)- (acse(gcss + (1 —4css)- qma))
Qsys|T1=0 = qPow + (1= gpow)- Qo1)r1=0
Qo1|T1=0 = qcf6-dcss|T1=0 T ‘JCf5\T1:o~(1 -
T1 qcfe)- qHx2 + (1 - ‘1cf5\T1:0> GHx1-qCf6 T+ grow + (1 = qrow)- (acfe-cs1 +acr-(1 —qcfe)- Grx2 +
(1 —=qcs1)qrxr-dese + (1 —depr) Grxraxe-(1— dcgs))
(1 - qusmzo) qux1.Hx2-(1—qcfe)
QcrsiT1=0 = qCf1
Qsys|p1=0 = grow + (1 — grow)- Qc1|p1=0
Qc1jp1—0 = qcfe-dcysip1—o + qcss|p1=o-(1 —
P qefe)- qr + (1 - qus\p1:0>-¢1Hx1-qC/6 + qpow + (1= qpow)- [dcse-qr1 + q11-(1 = 4cfe)- qrr2 +
(1 - qcfs\m:O) qrxax2-(1 = qcfe) (1= am) qra-aegs + (1= ) G - (1= dcso)]
Qcrsipi=1 = 1 — (1 — qcpryp1=1) (1 — 911)
cripi=0 =0
Qsys|p2—0 = grow + (1 — gpow)- Qc1|p2=0
Qc1/p2—0 = qcfe-dcssip2—o + qcss|p2—o-(1 —
P2 qcfe)- qHx2 + (1 - ‘JCf5\P2:0)-CIHx1~'1Cf6 + qrow + (1= qrow)- [qce-qm1 + a11-(1 — qcfe)- qrsz +
(1 - qcfs\m:o) qrx1Hx2-(1 = qcfe) (1= qr)quaqess + (1= qr)-qua me- (1= qcs6)]
Qcrsipa=1 = 1 — (1 — qcp1yp2=1)(1 — 911)
cripa=0 =0
Qsysjsi=o = qrow + (1 — grow)- Qc1js1=0 grow + (1 — Grow).
Qa1jsi=0 = qcfelsi=o-dcss +qcss-(1— - _Oqcﬁ) 1- qocjf4)}-11c)(5 4
s1 Gefolsi=o)- Az + (1= dess) g degojsi=o + qcss-(1=dcys) (1= qcpa)- qmse +
(1771‘7Cf52 AHx1.Hx2-(1 *1‘1Cf6\51:0)1 (1- ‘7Cf5)-‘7Hxl~[1 -(1- qu3) (1- ‘1Cf4)} 4
Qepsmo =1~ (17 Terasio)th = dep) (1 = dcp0) (1~ deys ooz~ gers) (1~ gors)
Qsys|s2=0 = qrow + (1 — qpow)- Qc1)s2-0 grow + (1 — Grom)
0= _o- (1 - © oW I
Qc1js2-0 qcf61|5270 qcys +qcss-( 1= (1= qes3) (1—acga)]qeps +
S qcfels2=0)- qHx2 + (1= qcfs)-qHx1-9cse|s2=0 + gess-(1—acss) (1= dcpa)- Qren +
(1_71qu 52 A1 s 6‘5210)1 (1= acss) qun.[1— (1= qcp3) (1—acpa)] +
Qcfolsz=0 =1 —( éci;j;zz\z:i)( —dcys) (1 —4qcfa) (1= qcss)-qrame- (1= qeps) (1—dqcpa)]
sts\Cump:O = qpow + (l - qPOW)~ QGl\Comp:O
Qc1|comp=0 = dcfs|Comp=0-dcfs + qcss-(1 — row + (1= gpow)- {11 = (1 = Gr1)-(1 = Gagoper)-(1 —
quﬁ\Comp:[))' qHx2 + (1 - qu5)'qHX1'qu6\Comp:0 + qFan)'(l — qR2)(1 — qu)(l — qu)]~qu5 + qu5(1 —
(1= qcss) -qrxrmx2-(1 = ¢ f6/Comp—0) ar1)-(1 = Gasoror)-(1 = GEan)-(1 = Ggo)-(1 — g72).(1 —
Comp Qcrs|Comp=0 = qv1) gux2 + (1= qess)-Gra-[1— (1 -
1-(1—4qcp) (1 — qus\Camp:0> (1—4qcpa) qr1)-(1 = Gpotor)-(1 = GFan)-(1 = 4po)-(1 — q12)-(1 —
Ocrscomms = 1 — (1= ar1)-(1 — Gaotor)- qv1)] + (1 = qcys)-Gax.axe-(1 = qr1)-(1 = Gpope)-(1 —
sl Om’gh — gren)-(1 — 4r2). GFan)-(1 = qro)-(1 — q12)-(1 — 9v1)}
(1=qr2)-(1 = qv1)
Quysir1=0 = qrow + (1 — qrow)- Qc1jR1=0
Qc1jr1=0 = Gcfor1=0-0css + gcrs-(1— qrow + (1= qpow)- {1 = (1 = Gcomp)-(1 = Gptor0r)-(1 —
qcgeiri—0)- G2 + (1= qcys)-qrx-esori—o + qF“”))'((ll’ ‘7R2)'(1) ’(1‘7“)’(1 )’(le)]-‘?C)f?;r ‘7Cf5~)(21*
1-— . (11— _ qcomp)-\L = Aptotor)-\1 = GFan)-(1 = qro)-{1 —4q12).{1 =
R1 (1 —qc5)-qrsma-( qcfs|R1=0) 1) Qe + (1 — Gegs)-qea-[L — (1 —

Qcfolri=o = 1 — (1 —qcp2) (1 - ”7Cf3|R1:0) (1—qcfa)
QCfS\Rl:O =1-(1- qump)~(1 — GMotor )-
(1 - qFlm)~(1 - qRZ)-
(1=412).(1 = qv1)

qump)-(l — AMotor)-(1 — qran)-(1 — Ggo)-(1— qr2)-(1 -

qv)] + (1 = qcss)-qrx1Hx2-(1 = Gcomp)-(1 = Gagorr)-(1 =

qFan)-(1 = qro)-(1 = q12)-(1 — qv1) }
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Component Expression Qqys (03, q(t)
Qsys|Fan=0 = qrow + (1 — qpow)- Qc1|Fan—o
Qc1/Fan—0 = qcfe|Fan—o-qcss + qcss-(1 — grow + (1 = qrow)- {11 — (L = qcomp)-(1 = Gpgorer)-(1 =
qcselran—o)- G2 + (1= qcys) Gra-dese Fan—o + 9r1)-(1 = qgy)-(1 = q72).(1 = 4v1)) g5 +qcps-(1 =
(1 _ qu5)~‘1Hxl.Hx2~(1 _ qué\an:O) qCump) ( qMotar) ( qu) (1 - "7R2)'(1 - qT2)~(l -
Fan qv1) qux2 + (1 —qcss)-gra-[1 — (1=
QcfolFan=0 = 1= (1 —qcp2) (1 - qc;a\am:o) (1—4qcs) qcomp)-(1 = Gptoror)-(1 — qr1)-(1 = Ggo)-(1 = 472).(1 —
QCf?»\le:O =1-(1- ’kump)'(l — qMotor)- qvi)] + (11— qu5)~‘7Hxl.Hx2-(1 - qCDmp)'(l — Gpotor)-(1 —
(1=4qr1)-(1 - qr2)- qr1)-(1 = qgy)-(L —g12)-(L — gv1) }
(1—4gr2)-(1 = qv1)
sts\Motor:O = qpow + (1 — qpow). QGI\MOtor:O
QG1|Motor=0 = qcf6|Motor=0-9Cf5 + qcys-(1 = pow + (1= qpow)- {[1 = (1 = qcomp)-(1 = ggy)-(1 —
LICfé\Motur:[))' qHx2 + (1 - quS)'[]Hxl~qu6\Motor:O + qFan).(l — qu).(l — qu).(l — qu)] -qcfs + qcfs- (
(1= qcss)-qrxtmx2-(1 = qc o Motor—0) Gcomp)-(1 = qgy)-(1 = qran)-(1 = qgy)-(1 — g72).(1 —
Motor Qc f6|Motor=0 = qv1) qux2 + (1 = qess) gaa-[1 — (1 -
1—(1—qcp) <1 - ”Icfa\Mmr:O) (1—4qcrs) qcomp)-(1 = qgy)-(1 = qran)-(1 = qgy) (1 = g12)-(1 = qv1)] +
QCf3\Motor70 =1- (1 - qump)~(1 - qu). 1= quS)'qHﬂ'sz'(l - qump)-(l ~r1)- 1=
El _ QFun)~(]- _ qu). QFzm)'(l - qu)~(1 - qTZ)v(l - QV])}
(1—9gr2)-(1 = qv1)
Quys|rz=0 = qrow + (1 — qpow)- Qc1jr2=0
Qc1|re=0 = 9cfs|r2=0-9cf5 +qcrs-(1 — arow + (1= qpow)- {11 = (1 = gcomp)-(1 — Gpsoror)-(1 —
qcfs|ra=0)- qHx2 + (1= dcys)-GHx1-GefelRa=0 + qran)-(1 = qgy)-(1 = 412)-(1 = qv1)]-qcs5 +qcp5-(1 =
(1- quS)‘QHxlAHxZ(l — qcfe|R2=0) qcomp)-(1 = Aatotor)-(1 = Gran)-(1 — 4g1)-(1 = q12).(1 —
R2 qv1) qax2 + (1 = qcf5)-qHx-[1 — (1 -
Qcselrz=o =1— (1 —4cp2) (1 B qcf3|R2:0> (1—4csa) comp)-(1 = Gasotor)-(1 = qran)-(1 = gy )-(1 = q12)-(1 =
QCf3\R2=0 =1- (l - qCamp)-(l - qMotor)~ qu)} + (1 - QCfS)J']HxlAHxZ(l - QCOmp)~(1 - qu,)‘(l -
(1~ qFan)-(1 = qr1)- qran)-(1 = Gg1)-(1 — 412).(1 — qv1) }
(1—g72)-(1 = qv1)
0= 1-— . _
Qéys‘“—" oW + ( ‘7”"1) QGl(‘lTZ:O apow + (1 = gpow)- {[1 = (1 = Gcomp)-(1 = Gptoror)-(1 —
G1|T2=0 = fqcfe|T2=0-9Cf5 T 4Cfs5- qFan)-(1 = Gg1)-(1 = gr2)-(1 = qv1)]-4c s + 9cps-(1 =
qesoir2=0)- qrx2 + (1= dcss) - qepora=o + qcomp)-(1 = Gptoror)-(1 = GFan)-(1 = qy)-(1 — qr2).(1 =
T2 (1= qcss) -qrx1mx2-(1 = e feT2—0) qv1) gux2 + (1= qcs5)-qua-[1 — (1 -
Qcroiro—o =1— (1 —qc) (1= qcfaimo—0 ) (1 — gcra comp)-(1 = Gptoor)-(1 = qFan)-(1 = qgq)-(1 — qr2).(1 —
f6|T2=0 f: ( 3|12 0)( f ) gv1)] + (1 — qcfs).qHﬂ‘sz.(l _ qCDmp)'(l _ qur).(l _

(1 - CIFzm)'(l - ‘7R1)~
(1—9qr2)-(1—qv1)

GFan)-(1 = qgy)-(1 = qr2).(L = qv1) }

Qsys[vi=o = grow + (1 = grow)- Qc1jvi=o

grow + (1 = qpow)

Qa1jvi=o = dcfs|vi=o-9css + ‘1Cf5~(1 - {i-a- licUmp)~(1 — Datoror)-(1 = GEan)-(1 = qy)-(1 =
cssivi=o)- aHx2 + (1= dcfs) GHx derovizo + q12)-(1 = qr1)l-4css + Ges-(1 = comp)-(1 = Gppopr)-(1 =
Vi (1= dcss)-qrama-(1 = dcgevi-o) Gran)-(1 = Ggp)-(1 = q12)-(1 — qr1) G2 +
Qcrevizo = 1— (1—4qcp2) (1 - qu3|v1:o) (1—qcp) (1= qcs5)-qaa-11 = (1= gcomp)-(1 = Gppoor)-(1 =
0 o =1 (1= geomp)-(1 — Grtoror)- qran)-(1 = 4gy)-(1 = g12)-(1 — qr1)] +
R (1 —4qF, ) (1 imquz) o (1 - qu5)~qu1.Hx2~(1 - QComp)~(1 - qMotur)'(l -
e ’ (1— (11— (1—
(1= q12)-(1 — g2} qran)-(1 = 4ga)-(1 = 412).(1 = gr1) }
Qsys|p3=0 = qrow + (1 — grow)- Qc1|p3=0
Qc1|ps=0 = qcfe|p3=0-dcys + dcgs-(1 — qrow + (1 = qpow)- [[1 = (1 = qcp2)-(1 = qcg3)]-ac5 +
P3 Gcfelpa=0)- qrix2 + (1= qcss) rixt-fcselpa=o + 9cs-(1=qcp2) (1= qess)- G +

(1 —qcfs)qrx1Hx2-(1 — 4cfo|p3=0)
Qcfeipa=o = 1= (1 —qcs2) (1 — 4cp3) (1 - "7Cf4\P3=0>
Qcfajpz=0 =0

(1=4acys)-qr-[1— (1= qcp2)-(1 = acps) ] +
(1= qcfs) qrrrmx2-(1 = 4ep2) (1 — qegs)]

7. Conclusions

This paper shows how the Birnbaum, Criticality, Risk Assessment Worth and Risk
Reduction Worth component importance measures can be calculated when system failure
modelling has been accomplished using a fault tree evaluated using the D*T? methodology.
The calculation process can be implemented very efficiently as the majority of the computa-
tional effort goes into evaluating Birnbaum’s Measure of Importance, also known as the
criticality function, G;(g(t)). This takes advantage of the efficient hierarchical structure of
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independent modules created by the D?T? framework. The criticality functions of each
of the independent modules, with respect to their input variables, are obtained, and the
calculation of G;(q(t)) becomes the product of the relevant module criticality functions.

Once G;(q(t)) has been evaluated, there is relatively little computational effort re-
quired to calculate the criticality measure of importance rankings, IiC.

For the Risk Assessment Worth, I Z-RAW and Risk Reduction Worth, I iRRW additional
calculations have to be performed to calculate Q,,4(1;, q()). Again, this can be carried
out efficiently by re-using the intermediate module probabilities calculated during the
original execution of the D?T? methodology to deliver the top event probability and
frequency. Q,,s(1;, q(t)) is obtained by repeating the top event quantification conditional
on each component having failed. Q,,(1;, q(t)) is then used directly to produce the Risk
Assessment Worth.

Subtracting Q,s(1;, 4(t)) from G;(q(t)) gives a rapid calculation of Qq,s(0;, (%)),
which enables the Risk Reduction Worth measure to be calculated.

Incorporating the calculation of importance measures into the D?T? methodology
extends the current analysis capabilities in terms of providing quantifiable measures that
can be interpreted to identify the weaknesses in the system. Changes can then be imple-
mented that improve system performance. For this implementation, the system assessed
can feature dependencies between the components, complex maintenance processes and
components with any distributions of times to failure or repair. From a practical point of
view, this new advance enables system performance to be improved, making systems safer
by using the available resources in the most effective way.
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