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Abstract: In the context of growing concerns over energy consumption and sustainability, 16 

accurate modelling of occupancy patterns within residential buildings is critical. In this study, 17 

a novel stochastic occupancy model is introduced for simulating human behaviour within 18 

residential buildings by employing Time Use Survey (TUS) data and utilising Markov chains 19 

and probabilistic sampling algorithms. The novelty of this research lies in its approach to 20 

represent the dynamic nature of occupancy across different functional spaces and age groups, 21 

a gap not yet adequately addressed in existing studies. The model's accuracy is ascertained 22 

through ten-fold cross-validation, achieving an average R2 value of 0.91 across key functional 23 

rooms (bedroom, bathroom, kitchen, living room), indicating a high degree of precision. 24 

Applied to a case study of a two-story detached house in the UK, the model effectively reflects 25 

varied behaviour patterns and room occupancy among different age groups. For instance, the 26 

average daily appliance energy consumption for occupants aged 8-14 ranged from 0 to 3.77 27 

kWh (median 1.71 kWh), for ages 15-64 from 0 to 4.93 kWh (median 2.61 kWh), and for over 28 

65 from 0.87 to 5.65 kWh (median 3.60 kWh). This model, with its scalability and accuracy in 29 

capturing the inherent randomness of human behaviour, is a valuable tool for improving energy 30 

consumption simulations and contributing to sustainable residential building design and 31 

management. 32 
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1. Introduction 39 

1.1 Background 40 

Building energy consumption is a key parameter by which the performance of the indoor 41 

environment can be assessed and improved, and occupant behaviours are one of the drivers 42 

causing difference in building energy consumption among buildings with the same function and 43 

in similar climatic conditions [1]. For this reason, the United States Department of Energy 44 

(DOE) issued Standard Building Operating Conditions (SBOC) in 1979 and defined occupancy 45 

schedules for 14 building occupancy types [2, 3]. In 1989, the American Society of Heating, 46 

Refrigerating and Air-Conditioning Engineers (ASHRAE) issued the first standard occupancy 47 

schedules for nine building occupancy types based on the DOE SBOC standards (Fig.1 a)), 48 

which were revised and refined in 2004 and 2013. Additionally, international standards such as 49 

prEN16798-1 and ISO 17772-1:2017 have also addressed occupant schedules for energy 50 

calculations (Fig. 1 b)) [4].  51 

However, these occupancy schedules were based on statistical results, and the descriptions 52 

of occupancy were static and simplified [5]. They fail to capture the temporal and spatial 53 

stochastic nature of occupancy, which is critical for accurately assessing energy consumption 54 

in residential buildings. This limitation is particularly evident when considering the diversity 55 

of occupancy patterns across different regions. For instance, research conducted by Mitra et, al. 56 

showed that Canadians are on average 6.6% less actively occupied in residential buildings than 57 

British [6]. Moreover, even within a single country, occupancy patterns can vary widely. In 58 

China, for example, the time spent in living rooms ranges from 10-11 hours in Beijing to as 59 

little as 5.4 hours in Yinchuan and 4.8 hours in Chengdu [7]. These variations underscore the 60 

importance of developing occupancy models that can more accurately reflect the diverse and 61 

dynamic nature of building occupancy. 62 

 63 

Fig. 1 a) An example of standard ASHRAE schedule for residential buildings [8] (Source: 64 

Section 13 of ASHRAE standard 90.1-1989); b) Hourly residential building pattern for energy 65 

calculation 66 

The behaviour of occupants is one of the most important sources of uncertainty in 67 

predicting building energy use through modelling procedures [1]. Given the diversity in 68 

individual behaviours, applying such oversimplified schedules in building simulation often 69 

result in a significant discrepancy between the simulated results and actual energy consumption. 70 

For example, Duarte et, al. carried out a study in 2013 which showed a 46% difference between 71 



private office and ASHRAE reference occupancy rates [9]. Hong et, al. found that for a typical 72 

single-person office room, different working styles could result in energy consumption varying 73 

from 50% less to 90% more compared to the standard or reference working style[1].  74 

Many studies have shown that the use of occupancy information can save around 10% - 75 

40% of a building's energy consumption [10]. Erickson and Cerpa indicated HVAC control 76 

strategies with predictive and real-time occupancy monitoring via camera sensor networks have 77 

a potential energy saving of 20% [11]. Peng et, al. adaptation to local occupancy scenarios can 78 

save 20.3% of energy [12]. The expected energy use simulated using sensors to detect 79 

occupancy and sleep patterns in the home saves an average of 28% of energy compared to 80 

existing energy simulation methods [13]. 81 

1.2 Occupancy models 82 

In recent years, researchers have done a number of studies to achieve accurate building 83 

occupancy estimation. Back in 2001, Macdonald and Strachan proposed using the Monte Carlo 84 

method to build a basic stochastic model as inputs to simulation tools [14]. Nowadays, some 85 

advanced models are proposed to randomly generate plausible building occupancy models. 86 

Most of the research focuses on the types of public buildings. For instance, Wang et, al. 87 

investigated the occupancy patterns in single-person offices within a large office building in 88 

San Francisco. Their study revealed that the vacancy intervals across the 35 single-person 89 

offices involved in the study were exponentially distributed. They demonstrated three typical 90 

occupancy models for these offices using non-homogeneous Poisson process simulations [15]. 91 

However, the findings, being limited to a single office building, raised questions about their 92 

universal applicability. Addressing this limitation, Page et al. introduced a more versatile 93 

approach using the Markov chain to simulate occupant presence. Their algorithm, implemented 94 

in Matlab, was adaptable to both residential and public buildings, enabling the generation of 95 

occupancy statuses (absence or presence) in various zones over different time series[16]. 96 

Further refining the focus on occupancy modelling, Wang et, al. proposed an innovative 97 

approach that included a basic movement module and an advanced event module. This model 98 

was able to simulate not only the spatial location of each occupant but also zone-level 99 

occupancy of the whole building [17]. Furthermore, a part of the research focused on the 100 

generation or prediction of typical standard occupancy models. Liang et, al. used data mining 101 

methods to learn and predict the occupancy schedule of a whole office building [18]. Happle 102 

et, al. used location-based services (LBS) data to create occupancy schedules of a retail or 103 

restaurant building use type in different cities and compared them with standard schedules [3]. 104 

These studies highlighted the potential of leveraging big data and advanced analytics in 105 

occupancy modelling. 106 

While the majority of earlier occupancy studies concentrated on public buildings, there 107 

has been a notable shift towards residential occupancy models in recent times. This transition 108 

is characterized by the increasing use of national-level Time Use Survey data and the Markov 109 

chain as foundational methods in developing residential occupancy models. For instance, 110 

Richardson et, al. developed a stochastic occupancy model to describe the active or inactive 111 

states in the house using the first-order Markov–Chain technique [19]. Building on this, 112 

McKenna et, al. refined the approach with the first-order time-inhomogeneous Markov-chain 113 



technique. This optimization allowed for modelling four stochastic states of occupants 114 

(absent/present and active/inactive) within a household [20]. Buttitta and Finn applied the first-115 

order Markov–Chain technique to generate high-time resolution occupancy models and used 116 

them as input parameters to calculate high-time resolution heating load in buildings[21]. In 117 

addition to traditional survey data, the use of monitoring data from household devices has 118 

emerged as a valuable source for occupancy modelling. Huchuk et, al. utilised real consumer 119 

longitudinal data from the connected thermostat devices to predict household occupancy using 120 

different methods, including Logistic regression, Markov model, Random Forest, Hidden 121 

Markov model and Recurrent neural network. Their findings indicated that the Random forest 122 

algorithm outperforms the other models [22]. Causone et al. took a different approach by 123 

collecting energy metering data and employing machine learning algorithms to infer occupant-124 

related input data [23].  Similarly, Diao et, al. proposed to use direct energy consumption results 125 

and energy time use data to identify and classify occupant behaviour through unsupervised 126 

clustering. Their behavioural model offered more accurate and reliable predictions than the 127 

ASHRAE standard schedule [24]. Additionally, Sayed et, al. developed a simple and effective 128 

image conversion technique for predicting occupancy [25]. These diverse methodologies 129 

highlight the evolving complexity and precision in residential occupancy modelling. A detailed 130 

overview of the research methods applied to different types of buildings is shown in Table 1 131 

below.  132 

Table 1 An overview of the occupancy model generation methods  133 

Forecast 

object 
Method/ Algorithm Data source Description Ref. 

Commercial 

buildings 

Non-homogeneous 

Poisson process 

model 

Infrared sensor 

Proposed statistical 

properties of single-person 

office occupancy 

[15] 

 
Markov Chain 

Model 

Movement 

sensor 

Generated the occupancy 

status (absence or 

presence) of occupants in 

different time series in the 

zones 

[16] 

 
Homogeneous 

Markov chain 
Experience 

Modelled the location of 

occupancy and the 

building’s zone-level 

occupancy 

[17] 

 
Inhomogeneous 

Markov chain 

Real-Time 

Locating 

System (RTLS) 

Provided an adaptive 

probabilistic occupancy 

prediction model 

capturing the actual 

behaviour of open office 

occupants and zone-level 

occupants with high 

accuracy 

[26] 

 
Inhomogeneous 

Markov chain 

Wireless 

camera 

Offered two stochastic 

building occupancy 

models for multi-

residential single-area and 

multi-area scenarios 

respectively 

[27] 



 Data mining Sensors 

Provided a building 

occupancy schedule 

available in most office 

buildings 

[18] 

 

Generative 

Adversarial Network 

(GAN) 

Camera 

Introduced methods to 

build occupancy model 

without prior assumptions  

[28] 

 

Feature scaled 

extreme learning 

machine (FS-ELM) 

algorithm 

CO2 

concentration 

data 

Developed an occupancy 

simulator based on a 

discrete-time dynamic 

model of real-time carbon 

dioxide concentration 

measurements 

[29] 

 Statistical methods 
Switch lighting 

equipment data 

Determined five typical 

occupancy patterns 

through analysis of 200 

open-plan offices 

[30] 

 

The S-curve method 

and the probabilistic 

methods 

Questionnaire 

Proposed prediction 

formulas of occurrence 

and frequency for 

activities inside and 

outside the office during 

the workday 

[31] 

 

Adaptive neural-

fuzzy inference 

system (ANFIS) 

model 

Sensor 

monitoring 

Estimated non-residential 

building occupancy 
[32] 

Retail or 

restaurant 

building 

Statistical method 

Location-based 

services (LBS) 

data 

Created a data-driven 

situation-specific and 

representative occupancy 

schedule for different 

building use types 

[3] 

Airport 

building 
The Bayesian model Wi-Fi IPS data 

Predicted high-resolution 

occupancy of the airport 
[33] 

Large 

exhibition 

hall 

Recurrent neural 

network (RNN) 

model with long 

short-term memory 

units (LSTM) 

Image sensors 

and counting 

devices 

Predicted short/long-term 

real-time occupancy in 

exhibition events 

[34] 

Laboratory 

The auto-regressive 

hidden Markov 

model (ARHMM) 

Wireless sensor 

network 

Estimated the number of 

occupants in the 

laboratory 

[35] 

Residential 

buildings 

Probabilistic model 

and the Hierarchical 

clustering algorithm 

TUS and 

Household 

Budget Survey 

(HBS) 

Identified seven 

significant occupancy 

schedules and 

reconstructed individual 

daily and annual 

occupancy 

[36] 

 

Markov Chain 

Monte Carlo 

(MCMC) technique 

Time-Use 

Survey (TUS) 

Generated the stochastic 

occupancy 

(active/inactive) in the 

house 

[19] 

 
Markov Chain 

Monte Carlo 

Time-Use 

Survey (TUS) 

Modelled occupant's state 

(absent/present and 
[20] 



(MCMC) technique active/inactive) in the 

house 

 
A new Markov 

model 

Passive infrared 

sensors 

Predicted short-term 

occupancy in the buildings 
[37] 

 
Machine learning 

algorithms 
Smart meters 

Generated standardized 

occupancy profiles using 

the electricity records 

from smart meters 

[23] 

 

Logistic regression; 

Markov model;  

Random forest; 

Hidden Markov 

model;  

Recurrent neural 

network 

Connected 

thermostats 

Generated household 

occupancy prediction 

models; Random forest 

algorithm outperforms 

other models 

[22] 

 

Unsupervised 

clustering; First-

order 

inhomogeneous 

Markov chain 

American Time 

Use Survey 

(ATUS) 

Identified ten occupant 

behaviour model 
[24] 

 
First-order Markov–

Chain technique 
TUS data 

Generated high-temporal 

resolution occupancy 

model 

[21] 

 Deep learning Sensors 
Developed a method to 

detect building occupancy 
[25] 

 

Generic data-driven 

framework 

(including clustering 

and changepoint 

detection (CPD)) 

Home energy 

management 

system 

(HEMS) 

Explored occupant 

patterns and presence 

probabilities for a set of 

residential buildings 

[38] 

 
Semi-Markov chain 

mode 

Smart 

thermostat data 

Modelled annual 

occupancy schedules for 

urban-scale 

[39] 

With the increasing emphasis on the study of human behaviour in buildings, many research 134 

efforts are being made to accurately capture occupancy patterns and behaviours. We found that 135 

some studies for building occupancy schedule use occupancy sensors, cameras, the passive 136 

infrared (PI R) sensor, radio frequency identification (RFID) instruments or other devices that 137 

can be used to collect occupancy data to achieve the purpose of obtaining occupied data and 138 

for occupancy prediction [10, 40-42]. However, the data collected by this method is limited to 139 

a small sample size and is difficult to apply to the entire residential building due to the privacy 140 

issues involved for the occupants and the difficulty of installing the sensors without disturbing 141 

the occupants' activities [7]. 142 

As occupants of residential buildings often refuse direct data collection by researchers or 143 

research institutions entering their homes, several studies attempt to investigate behaviours 144 

through indirect data sources. Fortunately, several countries conduct regular national-wide time 145 

use surveys to gather information about household time use, including time spent and appliance 146 

usage at home. Since 1996, The Japan Bureau of Statistics has conducted a time use survey in 147 

every five years [43]. American Time Use Survey, UK Time Use Survey (TUS) and other time 148 

use surveys collect the amount of time people spend sleeping, working at home, preparing food 149 



and other activities. This time-use data helps to understand household activities and can be used 150 

to roughly determine the locations of individuals in different rooms within the residential 151 

buildings.   Therefore, this type of data source aids in the development of more accurate 152 

occupancy schedules for building simulations. 153 

1.3 Research aim and objectives 154 

In summary, several probabilistic and data-driven approaches to assessing occupancy 155 

levels of buildings have been established in recent years. However, current occupancy 156 

forecasting methods have limitations. First of all, most studies focus on public buildings, while 157 

there are relatively few studies on residential buildings. For those who focus on residential 158 

buildings, few have considered the occupancy of different functional rooms in residential 159 

buildings. Given the prevailing use of static schedules in building energy modelling for 160 

occupancy and the predominant focus on public buildings like offices in existing studies of 161 

occupancy schedules, this research aims to address the need for a stochastic occupancy model 162 

in residential buildings. By utilising extensive real data from TUS, this model captures the 163 

randomness of residents’ behaviours in residential buildings and dynamically quantifies the 164 

probabilities of different groups of people being present in various rooms at different times. It 165 

enables direct integration into building simulations, thereby enhancing the accuracy of 166 

simulation outcomes to closely align with real-world scenarios. 167 

2. Methodology 168 

The methodology employed in this study consists of three primary components, and an 169 

overview of the methodology is given in Fig. 2. The first part involves analytical processing of 170 

the TUS data. This data is carefully analysed and processed to extract relevant information 171 

about residents' activities, their durations, and the rooms they occupy within residential 172 

buildings. Comprehensive examination of the TUS data provides insights into occupant patterns 173 

and behaviours. 174 

The second component utilises the extracted TUS data to construct probabilistic transfer 175 

matrices and generate Markov chains. These matrices capture the transition probabilities of 176 

occupants moving from one room to another within a residential building. By leveraging these 177 

transfer matrices, the stochastic nature of occupancy patterns over time can be simulated. This 178 

enables the modelling of dynamic movements of residents and their presence in different rooms 179 

at different time intervals. 180 

The third component involves the use of probabilistic sampling models. These models 181 

enable the prediction of room occupancy within a residential sample and the generation of 182 

occupant movements between various spaces. By incorporating the probabilistic sampling 183 

method, the inherent uncertainty and randomness in occupant behaviour are accommodated. 184 

Additionally, to validate the accuracy and reliability of our methodology, we employed a 185 

rigorous validation process using 10-fold cross-validation. The dataset was divided into ten 186 

subsets of approximately equal size. In each iteration, nine subsets were used for training the 187 

occupancy models, while the remaining subset was held out for testing. This process was 188 

repeated ten times, with each subset serving as the test set once. 189 



 190 

Fig. 2 Methodology flow chart 191 

2.1 Data Description and Processing 192 

To capture the stochastic nature of occupancy patterns in various rooms, it is essential to 193 



have a database that records the activities of each occupant with fine time granularity, such as 194 

ten-minute intervals. Additionally, a sufficient sample size is crucial to ensure the 195 

representativeness and reliability of the data. TUS data sets from various countries are ideal for 196 

this purpose as they provide detailed and comprehensive activity records. This study drew on 197 

data extracted from the UK TUS conducted in 2014–2015. The data can be downloaded from 198 

the Economic and Social Research Council (ESRC) website [44]. This large-scale household-199 

level survey, which examined how people used their time, was conducted by the National 200 

Centre for Social Research and the Northern Ireland Statistics and Research Agency on behalf 201 

of the University of Oxford’s Centre for Time Use Research. The sample for the UK TUS 202 

comprised households from England, Scotland, Wales and Northern Ireland. A total of 4,238 203 

family interviews were conducted with 10,208 eligible respondents. These respondents 204 

completed 16,550 records of their daily routine, of which 16,533 contained valid data on their 205 

daily behaviours. The data compiled include the participants’ basic information, their locations 206 

and their activities. Each participant aged 8 years and above was provided with two 24-hour 207 

schedules and instructed to record their activities at 10-minute intervals.  208 

The analysis of the TUS data reveals a spectrum of twelve typical activities that 209 

characterise the day-to-day life of a residential building occupant. These include: sleeping, 210 

eating, personal care, employment-related activities, studying, household and family care 211 

activities, voluntary work and meetings, social life and entertainment, sports and outdoor 212 

activities, hobbies and computing activities, mass media activities and travelling. We assume 213 

that these activities occur in one of the functional rooms within the building, such as the kitchen 214 

(including the dining room), bathroom, bedroom, living room, or occur outside of this building. 215 

To elaborate, during a specific 10-minute interval, an individual’s change in location can be 216 

classified into one of three types: remaining static, transitioning from one room to another 217 

within the building, or moving from an outdoor location to an indoor one. For instance, when 218 

the occupant is engaged in eating or cooking, it is associated with a change in location to the 219 

kitchen from either another room within the building or from an outside location. Similarly, 220 

personal care activities correspond to the occupant's change of location from either inside or 221 

outside the building to the bathroom; sleep, employment-related and study activities correspond 222 

to the occupant's change of location from either inside or outside the building to the bedroom, 223 

and other activities correspond to the change of location from either inside or outside the 224 

building to the living room. Table 2 presents the typical activities of occupants and their 225 

corresponding functional rooms.  226 

Table 2 Examples of typical activities and corresponding functional rooms 227 

Activities  Corresponding rooms 

Sleeping Bedroom 

Eating Kitchen (including the dining room) 

Personal care Bathroom 

Employment-related activities Living room 

Studying Living room 

Household and family care activities Living room 

Voluntary work and meetings Living room 

Social life and entertainment Living room 

Sports and outdoor activities Outdoor 

Hobbies and computing activities Living room 



Mass media activities Living room 

Travelling Outdoor 

Predicting energy consumption patterns in residential buildings presents complex 228 

challenge due to the different behaviours of households, which are influenced by many factors 229 

[45, 46]. Therefore, this study considers factors that influence occupancy schedules, 230 

specifically focusing on the age of occupants and differentiating between weekdays and 231 

weekends. The amount of valid data on occupants is shown in Table 3, and the TUS data is 232 

classified according to age groups: 8-14 years, 15-64 years and 65 years and above. This 233 

classification is in line with the standardised statistical breakdown of the UK's age distribution 234 

from 2011 to 2021 as summarized by O'Neill[47]. 235 

Table 3 Classification of sample respondents’ basic information 236 

Background Groups Description Day Type Frequency Percentage 

(%) 

Age Group 1 8-14 years Weekday 1016 6.15 

   Weekend 559 3.38 

 Group 2 15-64 years Weekday 7514 45.45 

   Weekend 4088 24.73 

 Group 3 65 years and over Weekday 2127 12.87 

   Weekend 1229 7.43 

2.2 The First-Order Markov–Chain Monte Carlo method 237 

Markov chain is a statistical method which has been widely used in building occupancy 238 

modelling [17, 26, 46]. In this study, we utilised the Markov chain approach to construct a 239 

profile of the overall occupancy within a residential building. It is used to model the sequences 240 

of an occupant's movements - specifically between being within or outside the building. We 241 

adopted the concept of 'stochastic movement', indicating that the transitions of occupants 242 

between inside and outside states are random and unpredictable. This movement of occupants 243 

forms the foundation of our occupancy profile. This hypothesis allows the transformation of 244 

occupants between inside and outside a residential building to be modelled as a Markov chain 245 

process. Thus, the occupant's subsequent occupancy status of the residential building depends 246 

only on his/her current state and a certain probability which is defined based on observed 247 

patterns in the data. To elaborate, in the First-Order Markov–Chain Monte Carlo method, the 248 

presence of occupants at a given time step only depends on the presence of occupants at the 249 

previous time step, taking into account factors such as the hour of the day and the day of the 250 

week  [6]. The process begins with a defined starting state. At each time step, a random number 251 

within the interval [0,1] is generated. The transition of the occupant's state is then determined 252 

by comparing this random number with the probabilities indicated in the transition probability 253 

matrix, which links a given time step to a specific class [21]. This approach allows for the 254 

generation of data that accurately simulates the unpredictable nature of occupancy movements 255 

within residential spaces. 256 

Markov chains are stochastic processes in the state space that undergo transitions from one 257 

state to another. It is described in Eq. 1 that the state of the next stage is only related to the state 258 

of the previous stage and the probability of state change.  259 



𝑃𝑟(𝑋𝑛+1 = 𝑥|𝑋1 = 𝑥1, 𝑋2 = 𝑥2,⋯ , 𝑋𝑛 = 𝑥𝑛) = 𝑃𝑟(𝑋𝑛+1 = 𝑥|𝑋𝑛 = 𝑥𝑛)                        Eq. 1 260 

For the First-Order Markov–Chain method, the previous state and the probabilities of the 261 

state change, which are stored in a "transition probability matrix (TPM) " [19]. Transfer 262 

probabilities between states with more than one step are more easily calculated by means of 263 

transfer matrices [37]. At any time step t, the probability transition matrix is denoted as [24]: 264 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥𝑡 =

[
 
 
 
𝑃𝑡

11 𝑃𝑡
12

𝑃𝑡
21 𝑃𝑡

22

⋯ 𝑃𝑡
1𝑛

⋯ 𝑃𝑡
2𝑛

⋮ ⋮
𝑃𝑡

𝑛1 𝑃𝑡
𝑛2

⋱ ⋮
⋯ 𝑃𝑡

𝑛𝑛]
 
 
 

 (𝑡 > 1)                  Eq. 2 265 

Where, 𝑃𝑡
𝑖𝑗

 denotes the observed probability of transition from activity i to activity j at time 266 

step t. It is the conditional probability of activity j at time step t, given that activity i is at time 267 

step t - 1. The sum of each row in the matrix is equal to 1. 𝑃𝑡
𝑖𝑗

 is calculates as 268 

𝑃𝑡
𝑖𝑗

=
𝑂𝑖𝑗

∑ 𝑂𝑚𝑘
𝑚
𝑘=1

                             Eq. 3 269 

where, 𝑂𝑖𝑗 is the observed number of transitions from state i to state j, 𝑂𝑚𝑘 is the observed 270 

number of transitions from state i to state k, and m is the number of possible states. 271 

The TUS data operates on a ten-minute interval basis. This means that a full day's active 272 

occupancy time series data for a specific household comprises 144 states. Each state signifies 273 

the likelihood of occupants being present in the house during each ten-minute segment. 274 

Consequently, 144 conversion matrices were created to represent the transition of the 275 

occupancy situation in the household from time i to the next time i+1. The dimension of the 276 

transition probability matrix is 2 × 2, as shown in Fig. 3. 277 

 278 

Fig. 3. Transition probability matrix at time t 279 

2.3 Probability sampling model 280 

In the previous section, the overall occupancy of a residential house was determined by 281 

the Markov chain method. However, to track the occupancy patterns within various functional 282 

rooms in the house, a more complex approach was necessary. The probability sampling model 283 

was developed primarily on the basis of a probability distribution map of historical presence 284 

which was calculated using TUS data. In this study, we use this model to generate occupancy 285 

of different function rooms in the household. Predictions are made by inverse sampling method 286 

during periods when individuals were present in the rooms. The algorithm for using probability 287 



sampling to predict presence is shown in Fig. 4. For each time step in the day that needs to be 288 

predicted, the occupancy status is determined by comparing the presence probability at that 289 

time step in the profile with a random number drawn from a uniform distribution. If the 290 

probability of occupancy surpasses the random number, the respective time step is considered 291 

as "occupied.". This method is implemented using MATLAB. 292 

 293 

Fig. 4. Flowchart for the probability sampling model 294 

2.4 Ten-fold cross-validation  295 

In our study, we employ the ten-fold cross-validation method [48] to assess the 296 

performance across six groups defined by age and weekdays/weekends. Cross-validation is 297 

widely used as a statistical method to evaluate generalization performance of models. This 298 

method repeatedly divides the data into a training set and a test set for testing and training 299 

respectively. Unlike a single split of the dataset into training and test sets, which can lead to 300 

variability in model performance, cross-validation provides a more stable and thorough 301 

assessment. k-fold cross-validation is the most common cross-validation method, where k is 302 

usually 5 or 10. In k steps, a set of data is retained as a test set and the remaining data is used 303 

as a training set to train the model. The resulting k accuracy scores are averaged and the cross-304 

validation accuracy is summarized into a performance metric for easy comparison [49].  305 

In our case, we opt for ten-fold cross-validation. Fig.5 illustrates the procedural steps 306 

involved in the ten-fold cross-validation methodology. The dataset is divided into ten folds, 307 

with each fold containing 10% of the data as the validation set, while the remaining data serves 308 

as the training set. This approach allows a comprehensive evaluation of the performance and 309 

generalizability of the proposed methodology within each group. By evaluating the 310 

performance of the occupancy models across multiple iterations, we were able to assess their 311 

consistency and effectiveness in predicting room occupancy and occupant movements.  312 



 313 

Fig. 5. The procedure of ten-fold cross-validation method for Group 1 (age 8-14 years) on 314 

weekday 315 

Four evaluation indexes, R2, root mean square error (RMSE), mean absolute error (MAE), 316 

and median absolute error (MedAE), are used to verify the proposed model, the definitions are 317 

described below. 318 

The coefficient of determination (R2) indicates how well the predicted values in a model 319 

compare to a scenario where only the mean is used. It is given by the formula for the sum of 320 

squared residuals as shown below: 321 

𝑅2 = 1 −
∑ (𝐸𝑖−𝐸�̂�)

2𝑛
𝑖=1

∑ (𝐸𝑖−𝐸�̅�)
2𝑛

𝑖=1

                   Eq. 4 322 

𝐸�̅� =
1

𝑛
∑ 𝐸𝑖

𝑛
𝑖=1               Eq. 5 323 



Where, 𝐸𝑖 denotes the actual data of occupants, 𝐸�̂� denotes the simulation results of occupants, 324 

𝐸�̅� is the is the average of the actual data, n is the total number of those data. 325 

RMSE is the mean of the square root of the error between the predicted value and the true 326 

value. It quantifies the typical size of the error in the predictions, expressed in absolute units 327 

[18], expressed in the following formula: 328 

𝑅𝑀𝑆𝐸 = √
∑ (𝐸𝑖−𝐸�̂�)

2𝑛
𝑖=1

𝑛
                   Eq. 6 329 

For the perfect model, RMSE is equal to zero when the predicted value exactly matches the 330 

true value, the larger the error, the larger the value. 331 

The Mean Absolute Error (MAE) is similar to the RMSE: 332 

𝑀𝐴𝐸 =
∑ |𝐸𝑖−𝐸�̂�|

𝑛
𝑖=1

𝑛
                  Eq. 7 333 

For the perfect model, MAE is equal to zero when the predicted value exactly matches the true 334 

value; the larger the error, the larger the value. 335 

The MedAE indicates whether the model has a systematic tendency to overestimate or 336 

underestimate. If the value of MedAE is 0, there is no population bias in the prediction method. 337 

The equation is as following  [18]: 338 

𝑀𝑒𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛|𝐸𝑖 − 𝐸�̂�|                   Eq. 8 339 

2.5 Estimating energy consumption associated with energy-related behaviours.  340 

To contrast the standard ARSHRA occupancy schedule with the stochastic occupancy 341 

model put forth in this research, we undertook a comparative study, with a primary focus on 342 

energy-related behaviours and the resultant energy consumption inherent to each schedule. The 343 

concept of energy-related behaviours refers to those activities that involve the direct use of 344 

energy. In the context of a residential setting, these activities encompass the operation of various 345 

household appliances such as televisions, washing machines, computers, microwave ovens and 346 

the like. In essence, each of these appliances forms part of the daily energy consumption profile 347 

of a household, thereby establishing a clear link between occupancy patterns, activities, and 348 

energy usage.  349 

The energy consumption of these appliances can be determined by [24]: 350 

𝐸𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 = 𝑃𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 × 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛            Eq. 9 351 

where, 𝑃𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒  is the equivalent power of an active application device. The power of 352 

common household appliances, as shown in Table 4 [50], were carefully selected from a 353 

comprehensive dataset provided by Generatorist. This dataset compiles power consumption 354 

data from a variety of authoritative sources, including government websites and well-known 355 

generator manufacturers such as Generac, Honda, and Yamaha, as well as major retailers like 356 

Lowe’s, Home Depot, and Sears. These sources offer a mix of average and typical usage values, 357 

making the data robust and applicable to a wide range of residential buildings. In our research, 358 

we assume that when a room is occupied, the energy consumption can be estimated as the 359 



average energy usage of all appliances within that room. Specifically, in the context of a 360 

bedroom, we consider the scenario where occupants primarily use the room for sleeping, and 361 

hence, the only appliances accounted for are two electronic device chargers. 362 

Table 4 The power consumption of household appliances[50] 363 

KITCHEN 

APPLIANCES 

BATHROOM 

APPLIANCES 

LIVINGROOM 

APPLIANCES 

Household 

Appliances 
Watts 

Household 

Appliances 
Watts 

Household 

Appliances 
Watts 

Coffee Maker 
1,000 

W 

Bathroom 

Towel Heater 
60 W Apple TV 3 W 

Cooker Hood 20 W 

Clothes 

Dryer 

(Electric) 

5,400 W AV Receiver 450 W 

Dishwasher 
1,500 

W 
Curling Iron 1,500 W 

Computer 

Monitor 
25 W 

Electric Kettle 
1,200 

W 
Electric Shaver 15 W 

Desktop 

Computer 
100 W 

Electric Oven 
2,150 

W 
Extractor Fan 12 W 

Guitar 

Amplifier 
20 W 

Food Processor 

/Blender 
400 W Hair Dryer 1,250 W 

Home Internet 

Router 
5 W 

Fryer 
1,000 

W 
Iron 1,200 W Home Phone 3 W 

Induction Hob 

(Per Hob) 

1,400 

W 

Straightening 

Iron 
75 W 

Home Sound 

System 
95 W 

Microwave 
1,000 

W 

Vacuum 

Cleaner 
200 W Laptop 50 W 

Percolator 800 W 
Washing 

Machine 
1,150 W Mi Box 5 W 

Pressure Cooker 700 W   Monitor 200 W 

Refrigerator / 

Freezer 
700 W   Set Top Box 27 W 

Rice Cooker 200 W   Television 85 W 

Sandwich Maker 700 W 
BEDROOM 

APPLIANCES  

VCR / DVD 

Player 
100 W  

Slow Cooker 160 W Charger (2) 20 W 
Video Game 

System 
40 W 

Steriliser 650 W     

Toaster 850 W     

Water Dispenser 100 W     

Water Filter & 

Cooler 
70 W     

Wine Cooler (18 

Bottles) 
83 W     

 364 

3. Verification the stochastic occupancy model 365 

This section discusses in detail the accuracy of this stochastic model in terms of ten-fold 366 

cross-validation. The generated occupancy data for group 1 at a house on weekdays is presented 367 

in Fig.6 as an example of validation.  368 



 369 

 370 

Fig. 6. Comparison of a generated stochastic occupancy and an actual occupancy. 371 

There are a total of 1,016 sets of data for weekdays in group1, of which 915 sets are used 372 

to generate stochastic occupancy in rooms. The actual occupancy is derived from the remaining 373 

101 sets. In Fig. 6, the lines illustrate the occupancy patterns of the different functional rooms. 374 

The black folded line represents a generated stochastic occupancy from the training set and the 375 

grey folded line denotes the actual occupancy from the test set. As Fig. 6 reveals, the training 376 

and test sets yield curves with nearly identical trends. This similarity suggests that the stochastic 377 

model generated on the training set is accurately capturing the underlying patterns and 378 

behaviours in the data.  379 

Observing the data for different rooms, we see distinct patterns that reflect the occupancy 380 

of people aged 8-14 in real world. It is worth clarifying that the occupancy rate refers to the 381 

likelihood of an individual being in different rooms once they are already at home. In the living 382 

room, both the training and test sets show a peak in occupancy around 6:20. The highest 383 

occupancy is observed between 14:00 and 17:00, after which there is a significant drop at 20:00. 384 

This suggests that the living room is most frequently used in the mid to late afternoon. In the 385 

kitchen, both data sets indicate marked increases in occupancy during the morning, noon, and 386 

evening, respectively. This pattern likely corresponds with meal times, demonstrating the 387 

kitchen's role as a hub of activity at these key points in the day. The bathroom data presents a 388 

more random pattern, with occupancy fluctuating more unpredictably. In the bedroom, it shows 389 

a significant decline in occupancy starting around 6:00, with occupancy rates of less than 0.1 390 

from noon to 20:00. After that, there is a sharp increase to nearly 100% occupancy and 391 

maintained between 23:00 to 6:00. This pattern aligns with typical sleeping hours, indicating 392 

that the bedroom is primarily used during the night.  393 

In the performance evaluation of the proposed model, Table 5 shows the values of four 394 

evaluation indexes, derived from the ten-fold cross-validation of the whole dataset. The 395 
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performance of the model was found to be satisfactory across all the rooms. Normally, a model 396 

with R2 values greater or equal to 0.7 was considered good models [51]. This criterion suggests 397 

that the method proposed in this study exhibits a high degree of accuracy in modelling the 398 

stochasticity inherent in occupancy patterns. The RMSE, a measure of the model's prediction 399 

accuracy, yielded values close to zero across all folds. This suggests that the proposed model 400 

outperform a model generated solely on the mean of the TUS data. The MAE, a metric that 401 

quantifies the difference between the model's predictions and the actual data, also produced 402 

values near zero. This implies that the proposed model's error is minimal. The MedAE, another 403 

measure of prediction error, yielded values close to zero, further attesting to the model's 404 

excellent fit. In conclusion, these indexes collectively validate the accuracy of the proposed 405 

model. 406 

Table 5 The value of four evaluation indexes in each function room 407 

Livingroom R2 RMSE MAE MedAE 

1-fold 0.98 0.07 0.05 0.03 

2-fold 0.98 0.07 0.05 0.03 

3-fold 0.97 0.06 0.06 0.04 

4-fold 0.96 0.09 0.07 0.05 

5-fold 0.97 0.06 0.06 0.04 

6-fold 0.97 0.06 0.05 0.03 

 -fold 0.96 0.07 0.07 0.05 

8-fold 0.96 0.07 0.08 0.07 

 -fold 0.96 0.07 0.06 0.04 

1 -fold 0.98 0.05 0.05 0.04 

Average 0.97 0.07 0.06 0.04 

Kitchen     

1-fold 0.75 0.06 0.04 0.01 

2-fold 0.89 0.04 0.02 0.01 

3-fold 0.86 0.08 0.03 0.01 

4-fold 0.80 0.09 0.03 0.02 

5-fold 0.84 0.08 0.03 0.01 

6-fold 0.85 0.08 0.03 0.01 

 -fold 0.84 0.09 0.03 0.01 

8-fold 0.88 0.10 0.03 0.01 

 -fold 0.85 0.09 0.03 0.02 

1 -fold 0.84 0.07 0.03 0.01 

Average 0.84 0.08 0.03 0.01 

Bathroom     

1-fold 0.80 0.03 0.02 0.01 

2-fold 0.85 0.02 0.02 0.02 

3-fold 0.84 0.04 0.02 0.02 

4-fold 0.78 0.04 0.03 0.02 

5-fold 0.83 0.04 0.02 0.02 

6-fold 0.85 0.04 0.03 0.02 

 -fold 0.85 0.04 0.03 0.01 

8-fold 0.79 0.04 0.03 0.02 

 -fold 0.77 0.05 0.03 0.02 

1 -fold 0.82 0.04 0.03 0.02 

Average 0.82 0.04 0.03 0.02 



Bedroom     

1-fold 0.99 0.06 0.04 0.03 

2-fold 0.99 0.05 0.05 0.02 

3-fold 0.99 0.05 0.04 0.02 

4-fold 0.98 0.05 0.06 0.03 

5-fold 0.99 0.04 0.05 0.03 

6-fold 0.99 0.04 0.04 0.02 

 -fold 0.99 0.05 0.05 0.03 

8-fold 0.99 0.04 0.05 0.03 

 -fold 0.99 0.05 0.04 0.02 

1 -fold 0.99 0.04 0.03 0.02 

Average 0.99 0.05 0.05 0.03 

 408 

4. Application of the method: Case Study in the UK 409 

4.1 Case study house 410 

To validate the proposed approach towards establishing stochastic occupant occupancy in 411 

residential buildings, we applied our method to a typical residential building, serving as our 412 

model case study. This case study aims to cover the occupants in all the groups we divided for 413 

the TUS data. It pivots around a two-storey detached house, presumed to be inhabited by a six-414 

member family, with a room distribution that aligns with the UK Office of National Statistics 415 

data [52]. As illustrated in Fig. 7, it encompasses six rooms with varying functionalities, namely: 416 

three bedrooms, one kitchen, one bathroom and one living room.  417 

 418 

Fig. 7. Different functions spaces of the case study building 419 

The occupants of this building are divided into three distinct age groups: two children aged 420 

between 8-14 years, two young adults aged 15-64 years, and two retirees aged over 65 years. 421 

This categorization serves to provide a more detailed understanding of occupancy patterns as 422 

influenced by age. 423 



We further analyse the stochastic movement of these building occupants, focusing on 424 

transitions both within different rooms and between inside and outside of the house. This 425 

analysis aims to depict the model's ability to effectively represent these unpredictable 426 

movement patterns. The step-by-step application of this method is detailed in Fig. 8 below. We 427 

derived the necessary input data for this case from the TUS dataset. The calculations were 428 

performed on a desktop computer with Intel(R) Core (TM) i9-10900 CPU @ 2.80GHz, 32.0 429 

GB of RAM, and running Windows 11 Professional. The time taken to complete a single run 430 

of the stochastic indoor occupancy pattern output was less than 1 second. This level of 431 

computational efficiency indicates that our model can be executed swiftly on standard modern 432 

computing hardware, enhancing its scalability and adaptability for various research and 433 

practical applications. 434 

 435 

Fig. 8. The steps for application for the method 436 

4.2 The generation of the overall occupancy in the house 437 

To construct the transitional probability matrices of the occupancy of the six occupants, 438 

we implemented the Markov chain Monto Carlo method. Using the UK TUS data (2014-2015), 439 

in total 144 matrices were built for each group, representing the transition probabilities of 440 

occupants moving between inside and outside the house throughout the day, at 10 minutes 441 

intervals. Fig. 9 provides an example of such a matrix for occupants between 8-14 years old for 442 

the time interval from 12:00 to 12:10 noon. It reveals that, if a person (aged 8-14) was at home 443 

at 12:00, then there is a 0.977 probability that this person will still be at home at 12:10. 444 

Conversely, if the person is not at home at 12:00, there is a 0.047 probability that this person 445 

will return home at 12:10.  446 



 447 

Fig. 9. An example transition probability matrix for occupants between Ages 8 to 14 years old 448 

at 12:00 noon 449 

Upon applying the obtained transition probability matrices to this case study house, we 450 

were able to derive the house's full-day occupancy status. We conducted three separate tests for 451 

both weekdays and weekends, with the results presented in Fig.10. As can be observed, each 452 

occupancy test is different. However, due to the use of the same transition probability matrix, 453 

they bear similarities. These consistent observations across all the random simulation iterations 454 

not only underscore the reliability of the proposed model but also attest to its ability to 455 

effectively represent stochastic occupancy behaviours.  456 

 457 

Fig. 10. Three random examples of the case study model: Occupancy results for the whole 458 

residential buildings on weekdays and weekends 459 

4.3 The generation of the occupancy for different functional spaces 460 

Building on the findings from Section 4.2 about the overall occupancy in the house, we 461 

employed a probabilistic sampling algorithm to determine the occupancy of each functional 462 

space. This enabled us to generate movement trajectories for occupants as shown in Fig.11. 463 

Occupant 1 and 2 represents individuals aged 8-14 years, occupant 3 and 4 represents 464 

individuals aged 15-64 years and occupant 5 and 6 represents individuals aged over 65 years. 465 



 466 

Fig. 11 Samples of occupancy in the house on a weekday 467 

Figure 11 provides a compelling visualization of how occupancy fluctuates in a household 468 

over a typical weekday. It's crucial to clarify that the daily trajectories illustrated are not direct 469 

empirical data gathered from the UK TUS dataset. Instead, these trajectories are a result of a 470 

data generation process aimed at capturing and reflecting the inherent stochastic nature of 471 

occupant occupancy and movement. Each simulation, or 'run', exhibits its own unique pattern 472 

due to the inherent randomness of the generation process. Nevertheless, these runs all stem 473 

from the same probability basis for the sampling calculations. This ensures that the occupant 474 

behaviour, although unique in each run, exhibits overall similarity in terms of its characteristics. 475 

A deeper look into the generated data reveals recognizable patterns. For instance, 476 

occupants generally leave their bedrooms in the morning, spending most of the daytime in the 477 

living room if they are home (particularly for those aged above 65), migrate to the kitchen 478 

around mealtimes, and return to the bedrooms in the evening.  479 

It is important to note that the time spent in each room — the bedroom, living room, 480 

bathroom, and kitchen — varies significantly among occupants. These variations signify the 481 

stochastic simulation's effectiveness in capturing the random and unpredictable nature of 482 

occupant movement and occupancy. The data generation process thus successfully encapsulates 483 

the true complexity and dynamism inherent in human behaviour within residential 484 

environments. 485 

5 Estimation of the appliance energy consumption  486 

To study the efficacy of the stochastic model in calculating appliance energy consumption 487 

related to occupant behaviours, we used a typical weekday as an example. We compared the 488 

actual data derived from the TUS data, energy consumption calculated by the stochastic model, 489 

and energy consumption based on the ASHRAE standard schedule. 490 

Due to the large size of the TUS data, it was not feasible to simulate all of it. Therefore, a 491 
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random sampling method was used to select subsets of the data for the energy calculation. We 492 

randomly selected subsets of 120 data sets from the weekday dataset across three distinct groups. 493 

These subsets serve as representative samples, providing a snapshot of the larger dataset. The 494 

selection process adhered to a statistical standard of an alpha level less than 0.05, a common 495 

threshold in statistical hypothesis testing that ensures a less than 5% probability of incorrectly 496 

rejecting the null hypothesis, thereby affirming the statistical significance of our chosen sample 497 

sizes for large populations [53]. 498 

The distribution of energy consumption of a typical weekday for each group is shown in 499 

boxplots in Fig. 12. Group 1, comprising individuals aged 8-14, demonstrated an energy 500 

consumption range of 0 to 4.66 kWh in the actual model, with a median value of 2.15 kWh. 501 

The stochastic model for this group showed a similar range of 0 to 3.77 kWh, with a similar 502 

median value of 1.71 kWh. Group 2, consisting of individuals aged 15-64, exhibited an energy 503 

consumption range of 0 to 7.36 kWh in the actual model, with a median value of 2.81 kWh. 504 

The stochastic model for this group presented a range of 0 to 4.93 kWh, with a median value 505 

of 2.61 kWh. For Group 3, which includes individuals aged 65 and above, the actual model 506 

recorded an energy consumption range of 0 to 8.04 kWh, with a median of 4.09 kWh. The 507 

stochastic model for this group showed a range of 0.87 to 5.65 kWh, with a median of 3.60 508 

kWh. The interquartile ranges, representing the spread of the middle 50% of the data, were 509 

found to be similar across all three groups. This similarity suggests comparable variability in 510 

energy consumption between the stochastic model and actual occupancy. The study also 511 

referenced a standard model, which consistently reported an energy consumption of 2.73 kWh. 512 

When compared with this standard model, the data from the actual and stochastic models either 513 

surpassed or fell below the standard model's energy consumption. These findings indicate that 514 

the standard model may not accurately represent the inherent variability in energy consumption 515 

of appliances within residential buildings, suggesting that a single, fixed value may not 516 

sufficiently capture the dynamic nature of energy consumption. 517 



 518 

Fig. 12 Appliance energy consumption for occupants at different ages on a typical weekday 519 

6 Discussion 520 

In the present study, we have devised a novel method capable of reflecting the stochastic 521 

occupancy patterns in different functional spaces within residential buildings. The method was 522 

validated using an extensive dataset from the UK TUS, and the results revealed a close match 523 

between the generated activity data and the actual indoor activity statistics of the occupants. 524 

This method not only supplements the lesser-known methods of simulating occupancy in 525 

residential buildings [7, 19], but it also provides a more detailed simulation of occupancy by 526 

categorizing occupants by age. In section 5, we examined the application of the model by 527 

performing appliances energy consumption calculations using the stochastic model, the 528 

standard model, and real data. The results showed that the method was able to better reflect the 529 

stochastic nature of occupancy behaviour.  530 

It is important to note that the energy consumption of these appliances represents only a 531 

part of the total energy consumption in residential buildings. Taking the abovementioned case 532 

study of a six-member family in the UK as an example, we can estimate their daily energy 533 

consumption based on the UK's per capita daily energy usage for heating (3.28 kWh), lighting 534 

(0.62 kWh), and hot water (0.55 kWh) [54]. Roughly, this type of household's daily energy 535 

consumption would range between 28.44 to 55.40 kWh, with a median value of approximately 536 

42.06 kWh. It is crucial to consider that these figures can vary significantly due to external 537 

factors such as weather conditions. To more accurately simulate the entire building's energy 538 

consumption, the stochastic occupancy data generated for each room should be integrated into 539 



building simulation software, such as EnergyPlus, to calculate the energy consumption of all 540 

energy-consuming devices in residential buildings, including HVAC, lighting, domestic hot 541 

water, and appliance usage. This comprehensive approach is our next research goal, aiming to 542 

provide a more complete understanding of residential energy consumption patterns.  543 

Furthermore, this method facilitates the achievement of more accurate predictions via a 544 

relatively simple algorithm. The proposed method employs Markov method and probabilistic 545 

sampling method to model occupancy patterns, enabling the random generation of numerous 546 

data sets that align with actual occupant activity. The true probabilities extracted using TUS are 547 

utilised to predict occupancy, which will yield commendable performance and facilitate the 548 

application of the proposed method to real building energy simulation  [18]. 549 

While this study is predicated on the UK TUS data for validation and simulation purposes, 550 

the proposed method exhibits scalability. By obtaining occupancy rates for different functional 551 

rooms in residential buildings from the TUS data alone, the occupancy patterns of rooms in 552 

residential buildings can be established. Given the availability of TUS data in several, this 553 

method can be employed to simulate the occupancy of residential buildings in countries with 554 

diverse living habits, and to simulate energy consumption as well. 555 

Furthermore, while the TUS data from 2014-2015 has provided a robust foundation for 556 

our study, we must acknowledge that lifestyles and occupancy patterns are subject to change 557 

over time. The COVID-19 pandemic, in particular, has significantly altered how residential 558 

spaces are used, with more people working and studying from home. The methodology and 559 

framework of our model are designed to be adaptable and can be updated with more recent data 560 

as it becomes available. Future research should consider updating the occupancy data to reflect 561 

these recent lifestyle changes, ensuring the continued relevance of occupancy models in a 562 

rapidly evolving world. 563 

7 Conclusion 564 

The study presented herein sought to address the challenge of accurately modelling 565 

occupancy patterns within residential buildings by developing a stochastic occupancy model 566 

based on TUS data. The importance of such models lies in their ability to effectively inform 567 

energy consumption simulations, which in turn aids in the design and management of energy-568 

efficient buildings. 569 

The proposed stochastic occupancy model was verified through an extensive ten-fold 570 

cross-validation process. The model’s performance was evident from the similarity between the 571 

occupancy trends generated by the model and the actual occupancy data. For the four functional 572 

rooms – bedroom, bathroom, kitchen, and living room – the model achieved an average R2 573 

value of 0.91, indicating a high degree of accuracy. Additionally, the average RMSE, MAE, 574 

and MedAE values for these rooms were 0.06, 0.04, and 0.03, respectively, further attesting to 575 

the model's precision in capturing occupancy patterns. 576 

The model was applied to a case study of a two-story detached house in the UK. The 577 

application incorporated an examination of occupancy patterns in different functional spaces 578 

within the residential building and across different age groups. It was found that the model 579 

effectively reflects different behaviour patterns and room occupancies among occupants of 580 



different ages, as well as the resulting variations in appliance energy consumption. For 581 

occupants aged 8-14, a typical day's average appliance energy consumption ranged from 0 to 582 

3.77 kWh, with a median of 1.71 kWh. For occupants aged 15-64, the range was 0 to 4.93 kWh, 583 

with a median of 2.61 kWh. For the elderly aged over 65, the range was 0.87 to 5.65 kWh, with 584 

a median of 3.60 kWh. These findings highlight the variability in energy consumption and 585 

underscore the importance of considering age-specific occupancy and behaviour patterns in 586 

residential energy consumption studies. 587 

Looking ahead, the developed stochastic occupancy data can be integrated into building 588 

simulation software like EnergyPlus. This integration will enable more detailed calculations of 589 

energy consumption for all energy-consuming devices in residential buildings, including HVAC, 590 

lighting, hot water and appliance usage, thereby enhancing the accuracy and applicability of 591 

our model in real-world scenarios. 592 

In conclusion, this research contributes a simple and stochastic model for simulating 593 

occupancy in residential buildings. The method, grounded in a combination of Markov chains 594 

and probabilistic sampling, proved to be effective in generating data that closely aligns with 595 

real-world occupancy patterns. Importantly, it is worth mentioning that the method has the 596 

potential for scalability and can be adapted to various contexts given the availability of TUS 597 

data in numerous countries at different times. Future research could explore the extension of 598 

this model to other building types and the incorporation of additional parameters such as 599 

outdoor environmental conditions or cultural differences in occupancy patterns. 600 
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