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Abstract

Nitroxides occupy a privileged position among plausible metal-free magnetic resonance imaging 

(MRI) contrast agents (CAs) due to their inherently low-toxicity profiles; nevertheless, their 

translational development has been hindered by a lack of appropriate contrast sensitivity. 

Nanostructured materials with high nitroxide densities, where each individual nitroxide within a 

macromolecular construct contributes to the image contrast, could address this limitation, but the 

synthesis of such materials remains challenging. Here, we report a modular and scalable synthetic 
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approach to nitroxide-based brush-arm star polymer (BASP) organic radical CAs (ORCAs) with 

high nitroxide loadings. The optimized ∼30 nm diameter “BASP-ORCA3” displays outstanding 

T2 sensitivity with a very high molecular transverse relaxivity (r2 > 1000 mM−1 s−1). BASP-

ORCA3 further exhibits excellent stability in vivo, no acute toxicity, and highly desirable 

pharmacokinetic and biodistribution profiles for longitudinal detection of tumors by MRI. When 

injected intravenously into mice bearing subcutaneous plasmacytomas, BASP-ORCA3 affords 

distinct in vivo visualization of tumors on translationally relevant time scales. Leveraging its high 

sensitivity, BASP-ORCA3 enables efficient mapping of tumor necrosis, which is an important 

biomarker to predict therapeutic outcomes. Moreover, BASP-ORCA3 allows for detection of 

millimetric tumor implants in a disseminated murine model of advanced-stage human ovarian 

cancer that possess genetic, histological, and vascular characteristics that are similar to those seen 

in patients. This work establishes BASP-ORCA3 as a promising metal-free spin contrast agent for 

MRI.

Graphical Abstract

Keywords

magnetic resonance imaging; nitroxide; ring-opening metathesis polymerization; star polymers; 
cancer

Imaging technologies have revolutionized clinical practice as well as drug discovery and 

development efforts.1–4 For many imaging modalities, contrast agents (CAs) are used to 

improve signal-to-noise ratios (SNRs) for the detection of pathologic disease states.5–7 For 

example, 18F fluorodeoxyglucose (18F-FDG), iodine, as well as gadolinium chelates and iron 

oxide nanoparticles are among the most commonly utilized CAs for positron emission 

tomography (PET), computed tomography (CT), and magnetic resonance imaging (MRI), 

respectively.8–10 Among these imaging modalities, MRI enables noninvasive monitoring of 

disease progression at more frequent time intervals and minimizes patient exposure to 

ionizing radiation, which are key advantages.11–15 MRI often suffers, however, from poor 

sensitivity, thus making CAs particularly useful in this context. The current generation of 

MRI CAs alter the relaxation time of surrounding water molecules in regions of interest 

(ROIs) via reduction of either the longitudinal relaxation time (T1 contrast) or the transverse 

relaxation time (T2 contrast).16–18 Note that some clinically utilized T2-based MRI CAs are 

metal-based nanoparticle formulations (e.g., superparamagnetic iron oxide nanoparticles 

(SPIONs)). While metal-based CAs have been shown to be generally nontoxic over short 
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time scales, chronic toxicity concerns remain for patients that require repeated or prolonged 

CA exposure.19–21 For example, studies as early as 2007 have demonstrated that gadolinium 

(Gd) chelates may be associated with nephrogenic systemic fibrosis (NSF); thus, their use 

has been prohibited in patients with renal insufficiency.22,23 Iron-based nanoparticle CAs 

(e.g., SPIONs), on the other hand, have also encountered safety concerns, leading to 

discontinuation of their development or withdrawal from the market.19,24,25 The only 

remaining United States Food and Drug Administration (FDA)-approved and available 

SPION is ferumoxytol, which continues to be used off-label as an MRI CA though it has its 

own safety concerns.19,24–27 Note that diagnostic CAs are held to a very high safety 

standard as they are often administered to healthy patients for disease screening.18 To date, 

the major design principle employed to overcome the toxicities of metal-based CAs has been 

to shorten their in vivo circulation times in order to minimize accumulation in otherwise 

healthy organs.28–30 While several metal-based CAs have been developed that have met 

these objectives, they are inherently not suitable for imaging over long time scales (e.g., 

several hours to days) as they are designed to clear rapidly from the body. The development 

of safer nanoparticle-based CAs that feature longer circulation times could enhance the 

signal-to-noise ratio (SNR) of MRI and allow for a higher uptake in tumor tissue and 

internalization by tumor cells, which could lead to applications such as monitoring of drug 

release.

It has been hypothesized that organic-based MRI CAs will be inherently safer than those 

based on metals and that they may provide opportunities for functional or responsive MR 

imaging (e.g., via codelivery of drug molecules or through leveraging the reactivity of 

organic molecules).31–34 This potential has driven several distinct approaches in the 

development of metal-free CAs. For example, 19F,35,36 hyperpolarized 13C,37,38 and 

chemical exchange saturation transfer (CEST)39,40 CAs have all shown promise for MRI; 

the use of these agents, however, often requires specific equipment and personnel with 

specialized training that do not currently exist in clinical settings. Alternatively, 

paramagnetic nitroxides represent a promising class of organic radical contrast agents 

(ORCAs)31,32 that are nontoxic and function via principles that are identical to those of 

current metal-based CAs. As such, an appropriately sensitive ORCA could potentially be 

integrated into existing clinical protocols to achieve safe long-term MRI contrast. 

Historically, the development of nitroxide-based ORCAs for MRI applications33,34 has been 

limited due to two critical weaknesses: (1) their low relaxivity (due to 1 unpaired electron 

per nitroxide as compared to 7 per Gd(III) or 5 per Mn(II) ion); and (2) their rapid in vivo 
reduction to diamagnetic hydroxylamines, which are MRI-inactive.41 Notably, the reducing 

properties of nitroxides have been exploited for several redox-based imaging applications on 

short time scales.42–44 In addition, progress toward the development of significantly more 

stable “reduction resistant” ORCAs has been made.45–48 Moreover, several groups have 

developed nitroxide-based MRI CAs49 where nitroxides are incorporated into a multitude of 

scaffolds ranging from cyclodextrin50 and lipids51 to polymeric systems,52–54 including 

polyurethane55 or polyacetylene.56 Despite such advances, these systems generally suffer 

from low water solubility, poor nitroxide reduction resistance, insufficient relaxivity, and/or 

a lack of in vivo optimization that precludes further development. Further clinical translation 

of ORCAs requires materials with improved circulatory half-lives, pharmacokinetic/
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biodistribution profiles, stability, and MRI sensitivity. For example, to our knowledge, there 

are no examples of tumor detection using nitroxide-based CAs for MRI in translationally 

relevant in vivo models and over extended time scales.

Over the past several years, our group has developed brush-arm star polymers (BASPs) for 

applications that include combination drug delivery and molecular imaging.48,57–61 BASPs 

are prepared via “brush-first” ring-opening metathesis polymerization (ROMP),57 which is a 

convergent and highly scalable process.61 BASPs carry a payload (e.g., drug or imaging 

agent) at the interface between a cross-linked core and a protective hydrophilic polyethylene 

glycol (PEG) shell. The payload is covalently attached to the BASP building blocks, which 

are branched macromonomers (MMs); BASPs with multiplexed functionality can be 

prepared in a simple “plug-and-play” fashion via mixing of different MMs at predetermined 

ratios.48,58–61 In addition, the cross-linked core can be engineered to be stimuli-responsive, 

enabling controlled release of therapeutic or imaging agents while leaving biodegradable 

and/or low mass byproducts.48,58–61 BASPs exhibit consistent in vivo properties, including 

pharmacokinetic and biodistribution profiles, that are independent of their payload.48,60,61 

Moreover, their shells consist of PEGylated bottlebrush polymers, resulting in an extremely 

dense, hyperbranched nanoarchitecture that maintains a relatively small size (∼30 nm) that 

enables accumulation in poorly permeable solid tumors.18,62,63 Finally, we emphasize that 

the major component of our BASPs is PEG, which is a commonly used biomaterial with 

acceptable safety characteristics over long time scales.18,24,61 BASP excretion profiles have 

been extensively examined in murine models, using fluorescence microscopy in conjunction 

with histopathological analyses, demonstrating elimination over several months.61

Despite the advances described above, all of our reported BASPs to date have been made by 

a synthetic approach that results in a single functional species per MM, which has limited 

the overall payload to ∼5–10% by mass. In the context of MR imaging, while our previously 

reported BASP-ORCA1, which carries the reduction resistant cyclohexyl nitroxide (“chex”), 

displays high relaxivity and stability for a nitroxide-based ORCA, its low chex loading 

(6.4% w/w of conjugated species chex-N3; see the Supporting Information (SI) for details) 

limits its imaging utility. While MRI of a simple subcutaneous tumor has been realized with 

this construct, such murine tumor models are inherently easy to visualize using nanomaterial 

constructs due to their exaggerated vascularity.48 To translate a BASP-based ORCA to the 

clinic, a much higher chex loading is required in order to achieve a suitable molecular 

relaxivity at a lower dose, which in turn would require a complete redesign of the BASP 

synthetic approach. Such a redesign may enable the demonstration of effective contrast in 

orthotopic tumor models that better recapitulate human disease.

Here, we present an approach to BASP synthesis that enables a second generation of BASP-

based ORCAs that overcome the above challenges. The strategy transforms a previously 

four-step linear synthesis, requiring four chromatography steps (43% overall yield on the 

∼0.1 g scale), to an overall three-step convergent synthesis (two-step longest linear 

sequence) that requires no chromatography and that provides our desired BASP precursor in 

92% overall yield on the 100 g scale.64 Most relevant to this work is the fact that this 

redesigned approach enables the iterative addition of payload to provide for conjugation of 

multiple chex groups per MM. These major breakthroughs in terms of scalability and 
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payload enhancement are deployed herein to prepare BASPs with three chex groups per 

repeat unit (BASP-ORCA3), which have a greatly increased mass fraction of chex 

(theoretical loading of conjugated species chex-N3 in BASP-ORCA3 = 16.7% w/w). Due to 

this enhanced chex density and the retained relaxivity enhancement imparted by the BASP 

scaffold, BASP-ORCA3 features a very high r2 transverse relaxivity of >1000 mM−1 s−1 per 

BASP molecule, which is more than double that of the previous “gold standard” (BASP-

ORCA1) for T2 ORCAs.48 Leveraging the modular nature of BASP synthesis, a secondary 

probe consisting of a near-infrared fluorophore (NIRF) may also be incorporated into BASP-

ORCA3 to enable in vivo longitudinal detection of tumors via dual MR/optical imaging. The 

stability and safety of BASP-ORCA3 were examined, and its pharmacokinetic and 

biodistribution profiles were explored. BASP-ORCA3 generated stable T2 contrast over a 

time scale that is relevant for translational applications (i.e., ≥24 h postinjection), which 

enabled highly sensitive in vivo MRI of tumors in two distinct murine models of human 

cancer (subcutaneous plasmacytomas and disseminated ovarian tumor implants). In addition 

to achieving selective visualization of large subcutaneous tumors as well as small (<5 mm) 

tumors in the disseminated model, BASP-ORCA3 allowed for detailed mapping of tumor 

architectural features with potential prognostic significance (e.g., the presence of tumor 

necrosis that correlates with therapeutic outcomes and tumor activity).

RESULTS AND DISCUSSION

To maximize the relaxivity of BASP-ORCAs, we sought to increase chex loading without 

otherwise altering the physical properties or the optimized sizes of the resultant constructs. 

To achieve this goal, MMs with one, two, or three alkyne functional handles were prepared;
64 reduction-resistant chex-N3 molecules were then appended to these MMs via copper-

catalyzed azide–alkyne cycloaddition to provide mono-, bis-, and tris-chex MMs (chexx-

MM, x = 1, 2, 3). Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) 

mass spectra (Figures S1–S3) and double integration (spin counting) of the electron 

paramagnetic resonance (EPR) spectra of chexx-MM, x = 1–3 (Figure S4) supported the 

presence of one, two, and three nitroxides, respectively. Notably, the theoretical mass 

fraction of chex-N3 increases significantly with x: from 9.4% w/w (x = 1) to 22.6% (x = 3) 

w/w, which is the key to realizing high molecular relaxivity of BASPs in this work (vide 
infra).

BASP-ORCAs were synthesized from the corresponding chexx-MMs, using brush-first 

ROMP (Figure 1).48,57–60 For BASP candidates that were intended to be used for in vivo 
studies, a NIRF-conjugated MM (Cy-MM; 1 mol %) was also incorporated to enable in vivo 
tracking of the resulting BASP-ORCAs by both MRI (high resolution) and in vivo optical 

imaging (high sensitivity).48 Due to the ratiometric control that is provided by the 

convergent brush-first ROMP method, this dual imaging capability was readily achieved 

despite large differences in the concentration requirements for effective tissue enhancement 

that are inherent to the 2 different types of CAs (i.e., mM to μM for MRI and nM to pM for 

NIRF imaging).65 BASP-ORCAs with brush lengths (m) of 7–10 and cross-linker 

equivalences (N) of 20–30 were examined for doubly and triply loaded chexx-MMs (x = 2–

3) (Table S1); these conditions have previously been shown to yield BASPs of optimal size 

and aqueous solubility for in vivo applications.48,57–60 Gel permeation chromatography 
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(GPC) traces acquired from reaction mixtures revealed good MM-to-brush and brush-to-

BASP conversion in all cases (≥90% and ≥80%, respectively, Table S1, Figure S5). 

Moreover, for these m and N values, BASP-ORCAs with diameters of 25–51 nm (as 

determined by dynamic light scattering (DLS) and transmission electron microscopy 

(TEM)) were obtained (Table S1, Figure 2A,B). Based on a combination of size 

(hydrodynamic diameter = 29 ± 10 nm) and relaxivity considerations (vide infra), we chose 

the BASP-ORCA with x = 3, m = 7, and N = 20 (hereafter referred to as BASP-ORCA3) for 

further development. The progression from single- to double and triple-loading of chex in 

this system was included to demonstrate the well-behaved and modular characteristics of our 

platform. In the context of a translational applications, we decided to focus on BASP-

ORCA3 due to its highest nitroxide density and associated molecular relaxivity.

We compared the EPR spectra of chexx-MM (x = 1, 2, 3) to that of the resultant BASP-

ORCA to gain a better understanding of how increasing chex density in our materials 

impacts the nitroxide environment. Computational fitting of the EPR spectra for chexx-MM 

showed that increasing x led to longer correlation times for rotational diffusion and 

increased internitroxide interactions, which reflects the increased molecular size and chex 

density of these MMs (Figure S4). Compared to its constituent MM (chex3-MM), the EPR 

spectrum of BASP-ORCA3 was extensively broadened; three well-resolved peaks for chex3-

MM merged into one broad peak for BASP-ORCA3 (Figure 2C). Longitudinal (r1) and 

transverse (r2) relaxivities of BASP-ORCAs as a function of m, N, and x were measured and 

compared; the per chex values for both r1 and r2 were not altered upon single-, double-, or 

triple-loading (x = 1, 2, or 3 respectively) of chex groups (Table S1).47,48 Most importantly, 

the large enhancement in r2 upon incorporation of chex observed previously for BASP-

ORCA1 was retained;48 BASP-ORCA3 exhibited a per chex r2 value of 4.62 mM−1s−1, 

which is similar to BASP-ORCA1 (4.67 mM−1 s−1)48 and a ∼ 27-fold enhancement 

compared to the value obtained for the benchmark nitroxide 3-CP (Table S1). In addition, 

BASP-ORCA3 features a high chex loading (16.7% w/w; 0.474 mmol chex/g theoretical and 

0.473 mmol/g measured; 99.7% spin concentration as measured by EPR spectroscopy), 

good water solubility (>100 mg/mL), and an optimal size range (29 ± 10 nm by DLS, 43 ± 8 

nm by TEM) for prolonged in vivo circulation and passive tumor accumulation and 

penetration.66,67

As estimated from the molar mass obtained by GPC with static light scattering, BASP-

ORCA3 (Mw = 6.6 × 105 Da, Đ = 1.34) contains >200 chex groups, resulting in a molecular 

r2 value of >1000 mM−1 s−1 at 7 T. Compared to BASP-ORCA1 (molecular r2 ∼ 450 mM−1 

s−1 at 7 T),48 this exceptionally high relaxivity suggested that BASP-ORCA3 would display 

significantly greater MRI contrast at the same concentration. To test this hypothesis, we 

compared the performance of BASP-ORCA3 and BASP-ORCA1 as T2 contrast agents, 

using MRI phantoms. Indeed, BASP-ORCA3 displayed greater contrast than BASP-ORCA1 

at all examined equivalent w/v concentrations (Figures 3A and S6). We further compared 

their imaging sensitivity via incubation of BASP-ORCA3 and BASP-ORCA1 with clusters 

of MM.1S cells, which are derived from an established multiple myeloma cell line, in order 

to determine the minimal cluster size that is detectable by MRI (Figure 3B). Note that this 

detection parameter is a more relevant criterion for the intended use of CAs for in vivo 
tumor identification by MRI. A cluster of 500 MM.1S cells incubated with BASP-ORCA3 

Nguyen et al. Page 6

ACS Nano. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resulted in a ∼9.7% amplification in contrast enhancement, which increased linearly to 

∼24.8% for 50,000 cells; BASP-ORCA1, on the other hand, exhibited <10% enhancement at 

all examined conditions (Figure 3B).

To test whether the redesigned BASP nanostructure could still effectively shield the 

increased payload of chex from reduction by common biological reducing agents, BASP-

ORCA3 was exposed to excess ascorbate (Asc) and glutathione (GSH).41,68 We compared 

the reduction kinetics as measured by EPR spectroscopy of BASP-ORCA1 and BASP-

ORCA3 at constant equivalency of reducing agents per chex molecule; in other words, 

BASP-ORCA3 was exposed to a 3-fold higher concentration of reducing agents. Despite this 

difference, the extent of chex reduction remained the same between BASP-ORCA1 and 

BASP-ORCA3 (Figures S7 and S8, Table S2), suggesting that the installation of 3-fold more 

chex onto BASP-ORCA3 did not compromise chex stability. Note that BASP-ORCA1 has 

been demonstrated to provide sufficient nitroxide stability in vivo;48 hence, it was used in 

the current study as the benchmark for stability evaluation. The reduction process was also 

monitored by NIRF spectroscopy (Figures S9 and S10) to determine if the larger chex 

density of BASP-ORCA3 led to increased fluorescence quenching.69 An increase of ∼60% 

fluorescence intensity was observed upon chex reduction, suggesting minimal fluorescence 

quenching compared to our previously reported bottlebrush polymer (Figure S10).47 Given 

the increased nitroxide payload of BASP-ORCA3, this finding is consistent with the ∼30% 

increase in fluorescence intensity that has been observed in BASP-ORCA1 with similar 

kinetics.48 Taken together, these data strongly suggest that the incorporation of 3-fold 

greater nitroxide density in BASP-ORCA3 provides a large increase in molecular relaxivity 

without compromising the beneficial features of the BASP design (e.g., size control, 

stability, limited fluorescing quenching) that are critical to its in vivo performance.

Having established the basic contrast enhancement and physical properties of BASP-

ORCA3, we further evaluated its performance in biological systems. In vitro cytotoxicity 

experiments were conducted by incubating BASP-ORCA3 at varying concentrations with 

different established cell lines: MM.1S, OVCAR8 (high-grade serous ovarian cancer), and 

HUVEC (human umbilical vein endothelial cells). Note that MM.1S and OVCAR8 cells 

were also employed to generate our in vivo model systems (vide infra); HUVEC cells were 

selected as a highly toxin-sensitive in vitro model system and to examine potential in vivo 
vascular toxicities that could be imparted by BASP-ORCA3. After 72 h of continuous in 
vitro exposure, which mimicked expected in vivo behavior during intravascular circulation 

and tumor extravasation,48,60 cell viability was determined by the CellTiter-Glo assay. The 

half-maximal inhibitory concentration (IC50) values of BASP-ORCA3 to affect the viability 

of MM.1S, OVCAR8, and HUVECs were 3.17, 3.81, and 8.12 mg/mL, respectively (Figure 

S11), suggesting negligible in vitro toxicity at practical concentrations. To evaluate the in 
vivo safety profile of BASP-ORCA3, we administered the agent via either intravenous (iv) 

or intraperitoneal (ip) injection to healthy balb/c mice at a fixed dose of 30 mg (1.5 g/kg, n = 

3 mice); the mice were euthanized 24 h later and their organs were excised for histological 

analyses after hematoxylin and eosin (H&E) staining. No signs of gross architectural 

distortion were observed in any major organ, including the lungs, liver, spleen, heart, and 

kidneys (Figure S12). These results were consistent with the well-known tolerability of 
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PEG18,66 and nitroxide-based31–34 materials, supporting the further examination of other in 
vivo performance characteristics of BASP-ORCA3.

The pharmacokinetic (PK) and biodistribution (BD) profiles of our BASP-ORCAs were 

evaluated by NIRF-based optical imaging, using an IVIS Imaging System with gating on the 

fluorescence of ROIs in the Cy5.5 channel (λex/λem = 640/700 nm). Balb/c mice were 

administered BASP-ORCA3 by either iv (n = 3 mice) or ip injection (n = 3 mice) (Figures 

S13 and S14). For determination of PK parameters, blood samples were collected at 

predetermined time points for up to 72 h after administration. The blood samples were 

imaged ex vivo, using the IVIS instrument and the same imaging parameters as described 

above. The percent injected dose (%ID) was plotted as a function of time and fitted to a 

standard two-compartment model70 (Figures S13 and S14), yielding a blood-compartment 

half-life of 13 h (after ip administration) and 26 h (upon iv injection). BASP-ORCA3 

exhibited PK behavior consistent with other hyper-branched PEG-based nanomaterials.48,71 

It was cleared mainly through the liver with a minor contribution from the kidneys, allowing 

for the potential use of this nonmetal-based ORCA in patients with compromised renal 

function.

Having demonstrated the high tolerability and favorable in vivo PK/BD of BASP-ORCA3, 

its contrast sensitivity for in vivo T2-enhanced MRI of tumors was examined. BASP-

ORCA3 was evaluated in the context of a subcutaneous xenograft model of multiple 

myeloma, which is an incurable plasma cell dyscrasia that can lead to lytic bone lesions, 

defective hematopoiesis, and renal failure.72 SCID mice were injected with 2.0 × 106 MM.

1S cells in the flank, establishing a plasmacytoma (i.e., a clinically observed extramedullary 

tumor that consists of multiple myeloma cells); the tumor of each mouse was allowed to 

grow to >1 cm in diameter. Randomized groups of tumor-bearing mice (n = 4) were then 

administered either BASP-ORCA3 or BASP-ORCA1 by iv injection and were imaged by 

MRI and NIRF-based optical imaging after 24 h. Qualitatively, mice in the two treatment 

groups displayed similarly efficient accumulation of CAs at tumor sites as well as similar 

BD profiles (Figures 4A and S15). Quantitative analysis of T2 MR images of tumors 

revealed 12.4 ± 0.4% and 24.3 ± 0.7% (p < 0.05) contrast enhancement for mice injected 

with BASP-ORCA1 and BASP-ORCA3, respectively (Figure 4B,C).

We observed that necrotic tumor regions experienced greater contrast enhancement (Figure 

4B). These contrast changes reached 28.2 ± 2.7% for BASP-ORCA1 and 69.1 ± 3.6% for 

BASP-ORCA3 (p < 0.05) (Figure 4C). In order to evaluate the basis for the difference in 

intratumoral contrast enhancement, the treated tumors were excised; analyses were 

performed on parallel sections by light microscopy after H&E staining to evaluate tissue 

histology; and, fluorescence microscopy was conducted to visualize the locations of the 

NIRF-containing CAs, revealing the specific accumulation of BASP-ORCAs in necrotic 

tumor regions (Figure 4D). While both BASP-ORCAs exhibited this behavior quantitatively 

(Figure 4C), this information went previously unnoticed due to the relatively lower relaxivity 

of BASP-ORCA1 (Figure 4B). Upon examination of the data in total, BASP-ORCA3 

outperformed BASP-ORCA1 with respect to its contrast enhancement capabilities and 

clearly deciphered the presence of necrotic tumor regions. With respect to the latter 

phenomenon, tumor necrosis commonly occurs in large subcutaneous tumors and especially 

Nguyen et al. Page 8

ACS Nano. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tumors composed of MM.1S cells.73 The presence of necrotic sites induces enhanced 

vascular permeability but limits parenchymal tumor diffusion,66 which, in turn, causes 

BASP-ORCAs to passively accumulate in perivascular spaces to a greater degree. This 

finding strongly advocates for the use of BASP-ORCA3 as an effective diagnostic tool for 

the detection of tumor necrosis, which is an important prognostic biomarker that is 

connected to various pathological states as well as to treatment outcomes, including the 

efficacy of radiation and cytotoxic drug therapy.74

As it was important to confirm that the observed enhancements in MRI contrast were due to 

a higher chex density rather than to any improvements in tumor accumulation for BASP-

ORCA3 as compared to BASP-ORCA1, major organs from the same mice were harvested at 

the time of animal sacrifice (after imaging), homogenized, and characterized by EPR 

spectroscopy (to quantify chex radical concentration), by IVIS (to quantify NIRF content), 

and by the bicinchoninic acid assay (BCA assay; to measure the protein concentration in 

tissue samples). While the BD profiles of the two different BASP-ORCAs were similar as 

observed by NIRF-based imaging, EPR quantification revealed higher concentrations of 

chex in the various organs of animals injected with BASP-ORCA3, which is consistent with 

a higher density of chex on a per BASP basis (Figure S16). The chex concentration in the 

tumor was 0.68 ± 0.18 μmol chex/g protein for BASP-ORCA3, which is significantly higher 

than the 0.17 ± 0.04 μmol chex/g protein measured from the tumors of animals that had been 

administered BASP-ORCA1 (p < 0.05, 3.0–4.8% ID/g protein); these values are in good 

agreement with the differences in contrast enhancement that were observed in vivo, vide 
supra (Figures 4C and S16A).

To further evaluate BASP-ORCA3 as a tumor imaging platform, its threshold to detect 

minute tumor deposits was explored. For these studies, a murine model of advanced-stage 

and high grade serous ovarian cancer (HGSOC), consisting of intraperitoneal dissemination 

of OVCAR8 cells into nude mice, was employed; this model system exhibits a fast tumor 

growth rate, lower tumor vascularization, and the propensity to establish tumor implants on 

the serosal surfaces of peritoneal organs that range in size from 1 to 5 mm and that display 

similar metastatic patterns, genetic profiles, and histologic features to those of human 

HGSOCs.71,75 BASP-ORCAs were introduced into animals by ip injection, which is a 

clinically relevant mode of therapeutic administration in advanced-stage ovarian cancer that 

has been shown to promote marked accumulation of PEG-based nanomaterials in ovarian 

tumors for imaging and/or therapy.71,75,76 For this current study, NCR-NU mice (n = 5) 

were injected with OVCAR8 cells transfected with firefly luciferase, allowing for facile 

monitoring of the in vivo dissemination and tumor growth via bioluminescence imaging 

(BLI) (Figure 5A). The tumor implants were allowed to establish for 22 days; mice were 

then randomized into groups with equivalent tumor burden. The animals were administered 

either BASP-ORCA3 or BASP-ORCA1 by ip injection. After 24 h, the mice were imaged 

by BLI, NIRF-based optical imaging, and MRI (Figures 5A–C and S17). Qualitatively, 

BASP-ORCAs (as monitored by NIRF-based optical imaging; Cy5.5) colocalized with 

OVCAR8 tumors (as visualized by BLI). Leveraging the high-resolution imaging 

capabilities of MRI, BASP-ORCAs were found to further enhance contrast sensitivity and 

enabled ready visualization of small tumor implants in T2-weighted MR images (Figure 

5C,D). Quantitative analysis revealed contrast enhancements of 14.3 ± 0.9% for BASP-
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ORCA1 and 33.6 ± 4.4% for BASP-ORCA3 (p < 0.05; Figure 5E), which corresponded to a 

2.3-fold improvement in sensitivity with BASP-ORCA3 as compared to its predecessor. 

Notably, this difference in contrast was consistent with the 2.6-fold increased payload of 

chex by weight for BASP-ORCA3.

Upon completion of the in vivo imaging studies, the organs of the mice were processed as 

previously described for the subcutaneous MM.1S model (vide supra) to confirm that the 

observed differences in contrast enhancement were again due to increased chex density 

(Figure 6). Indeed, the chex concentration in the organs of animals that were administered 

BASP-ORCA3 was generally higher than in those that were administered BASP-ORCA1 

(Figure 6B). In tumor tissue, a chex concentration of 2.63 ± 0.61 μmol chex/g protein was 

observed for animals in the BASP-ORCA3 group, whereas the tumors of mice that received 

BASP-ORCA1 possessed 1.00 ± 0.27 μmol chex/g protein (p < 0.05; Figure 6B). NIRF-

based optical imaging confirmed that these differences were due to the increased density of 

chex in BASP-ORCA3 when compared to BASP-ORCA1, as opposed to differences in the 

accumulation of these two particles in tumor tissues (Figure 6C). The observed tumor uptake 

was similar to that of other polymers that were introduced via the same injection route (ip) 

into this tumor model.71,76 We also note that, throughout both tumor imaging studies, the 

BD profiles of the BASP-ORCAs (Figures S15 and S17), which were determined by 

quantification of NIRF and EPR signals in ex vivo organ homogenates, were consistent with 

the BD/PK data acquired in the non-tumor-bearing balb/c mice (Figure S13 and S14), 

supporting the generalizability of our findings for immunocompetent subjects.

CONCLUSIONS

We report a new family of nanoparticles with an exceptionally high nitroxide density. Brush-

first ROMP of a triply loaded chex MM (chex3-MM) produced a macromolecular construct, 

BASP-ORCA3, that features the highest payload of MRI-active chex that has been reported 

to date. In concert with our BASP nanoarchitecture, this high chex density imparts 

outstanding molecular transverse relaxivity while preserving exceptional in vivo stability. 

Due to its very high chex payload, BASP-ORCA3 addresses the low contrast that has, thus 

far, hindered the successful translational development of nitroxide-based MRI CAs. Of 

particular interest is the ability of BASP-ORCA3 to heterogeneously distribute within 

tumors, specifically identifying necrotic regions that may serve as important biomarkers 

(e.g., for radiation resistance). Coupled with the facile ability to prepare BASPs with 

combinations of different therapeutic agents,58–61,77,78 these architectures may provide tools 

for image-guided drug delivery and/or real-time evaluation of therapeutic efficacy. As 

demonstrated in an orthotopic murine model of disseminated human ovarian cancer with 

high clinical relevance, BASP-ORCA3 is able to generate an enhanced T2 signal even within 

poorly vascularized tumor deposits, which enables ready detection of millimetric tumors by 

MRI. Taken together, these data illustrate the translational potential of BASP-ORCA3 for 

applications in early cancer diagnosis and longitudinal therapeutic monitoring. Our work 

further supports the development of nitroxide-based CAs as an alternative to current metal-

based agents for clinical imaging applications.
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METHODS

Synthesis of BASP-ORCAs.

Note: All BASP-ORCA syntheses were performed in a glovebox under N2 atmosphere; 
however, similar results are expected under ambient conditions. All ROMP reactions 
followed the same general procedure, which was modified from reported examples.48,58,59 

Representative procedure for BASP-ORCA synthesis with brush length of 7.07 (m) and 20 

equiv (N) of cross-linker (BASP-ORCA3, x = 3, m = 7.07, N = 20): To a 4 mL vial, a 

suspension of Acetal-XL (12.2 mg, 21.0 μmol, 20.0 equiv) in THF (209.7 μL, 0.1 M Acetal-

XL) was prepared. To a second 4 mL vial containing a stir bar, chex3-MM (34.0 mg, 7.3 

μmol, 7.0 equiv) was added; Cy-MM was then added from a premade 12.5 mg/mL solution 

in THF (24.0 μL, 0.073 μmol, 0.07 equiv). To a third vial, a solution of Grubbs 3rd 

generation bispyridyl catalyst (G3-cat, 0.02 M in THF) was freshly prepared. THF (71.9 μL) 

was then added to the MM vial, followed by the addition of G3-cat solution (52.4 μL, 1.0 

μmol, 1.0 equiv) to give the desired MM/ G3-cat ratio of 7.07:1 (1 mol % of the Cy-MM), 

while achieving a total MM concentration of 0.05 M. The dark blue reaction mixture was 

allowed to stir for 30 min at room temperature before an aliquot (∼5 μL) was taken out and 

quenched with 1 drop of ethyl vinyl ether for GPC analysis. The Acetal-XL suspension was 

then added dropwise (in aliquots of 5 equiv, or ∼50 μL, every 5 min) over the course of 20 

min into the reaction vial, and the dark blue polymerization was allowed to proceed for 6 h 

at room temperature while stirring. To quench the polymerization, a drop of ethyl vinyl ether 

was added. The reaction mixture was transferred to 8 kDa molecular weight cutoff dialysis 

tubing (Spectrum Laboratories) in 5 mL nanopure water, and the solution was dialyzed 

against H2O (500 mL × 3, solvent exchange every 6 h). The dialyzed solution of BASP-

ORCA3 was then concentrated to the desired concentration via centrifugation with a filter 

tube (100 kDa MWCO, Millipore Sigma).

In Vivo MR and NIRF Image Acquisition.

In vivo MR images of the subcutaneous multiple myeloma model were obtained by using a 

7T Bruker BioSpec USR70/30 instrument that is housed in the Lurie Imaging Facility 

Center at the Dana-Farber Cancer Institute (DFCI); in vivo MR images of the disseminated 

xenograft model of advanced-stage ovarian cancer were acquired using a Varian 7T/310/

ASR-whole mouse MRI system housed in the Koch Institute for Integrative Cancer Research 

at MIT. Scans were collected with respiratory gating (PC-SAM version 6.26 by SA 

Instruments Inc.) to avoid noise due to chest movement. The respiratory rate and animal 

temperature were closely monitored during image acquisition. Coronal T2 weighted images 

(T2WIs) were collected by employing the fast spin echo multiple slices pulse sequence with 

TR = 4000 ms; TE(eff) = 48 ms; ETL = 8; FOV = 100 × 50 mm2; 512 × 256 matrix and 2 

averages over 20–30 slices (to capture a maximum number of tumors) that were of 0.5 mm 

thickness and 0.5 mm gap. Axial T2WIs were collected using the fast spin echo multiple 

slices pulse sequence with TR = 4000 ms; TE(eff) = 48 ms; ETL = 8; FOV = 45 × 45 mm2; 

256 × 192 matrix and 2 averages over 20–30 slices (to capture the entire tumor) at 1 mm 

thickness and 1 mm gap. In vivo NIRF-based optical images were obtained by using 

identical IVIS bioluminescence and fluorescence imaging systems (Xenogen) housed in the 

DFCI and MIT facilities. Epifluorescence imaging was acquired through excitation of the 
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Cy5.5 fluorophore (λex/λem = 640/700 nm, exposure time 2–10 s) incorporated within the 

BASP-ORCAs. Imaging of subcutaneous plasmacytomas was performed with animals 

placed on their sides so that their tumors faced the camera; imaging of the disseminated 

ovarian cancer model was performed with animals in the prone position.

In Vivo MR and NIRF-Based Optical Imaging of Tumor-Bearing Mice.

Tumor cells for animal implantation were cultured to a final concentration of 20% (see the 

SI for details). Cells were then harvested, resuspended in sterile pH 7.4 PBS buffer, passed 

through sterile 0.2 μm filters, and injected accordingly. MRI and NIRF-based optical images 

were acquired for each animal before injection. BASP-ORCA solutions (30 mg in PBS, 

injected as 0.25 mL of a 120 mg/mL solution, 0.22 mmol chex/kg for BASP-ORCA1; 0.57 

mmol chex/kg for BASP-ORCA3) were prepared, passed through a sterile 0.2 μm filter, and 

administered to the tumor-bearing mice via iv (subcutaneous model) or ip injection 

(orthotopic model). Tumor imaging by MRI and NIRF-based optical imaging was conducted 

24 h thereafter. Mice were then immediately euthanized in a CO2 chamber; their organs 

were collected, imaged, and stored in dry ice for EPR analysis.

Ex Vivo EPR Spectroscopy.

Harvested organs were shipped on dry ice to the University of Nebraska, where they were 

stored at −80 °C. For EPR sample preparation, each tissue sample, one at a time, was rapidly 

thawed and transferred to a weighed vial; 900 μL of PBS buffer (0.5 mM, pH 7.2) were then 

added. The mixture was put into an ice–water bath and homogenized with a rotor stator 

homogenizer; it was then pipeted into a 4 mm outer diameter EPR sample tube. The samples 

were degassed by sonication as needed (for instance, when gas bubbles were visible). The 

EPR tube was capped, sealed with parafilm, and stored briefly in an acetone/dry ice bath 

before spin concentration measurements. Spin concentrations of nitroxide radicals in tissues 

(μmol chex per g protein; Note: see the SI for details of protein content determination) were 

measured at −30 °C (243.2 K) to increase signal-to-noise of the aqueous samples. 

Measurements of tissue samples were alternated with that of the spin concentration 

reference and g-value reference. For tissue samples with low signal-to-noise, the cavity 

background was recorded with identical parameters, including numbers of scans and 

receiver gain. Typical parameters were as follows: microwave attenuation, 20 dB; 

modulation amplitude, 5 Gauss; spectral width, 300 Gauss; resolution, 512 points; 

conversion, 40.96; time constant, 10.24; and sweep time, 20.97 s. These parameters were 

kept identical for the tissues, references, and cavity backgrounds. The number of scans (8–

256) and receiver gain were adjusted as needed for each sample. The reference for spin 

concentration was 0.50 mM Proxyl in PBS (pH 7.2). This reference was always stored in dry 

ice, except during measurements, and occasionally rechecked for spin concentration decay. 

The g-value reference was 2,2-diphenyl-1-picrylhydrazyl powder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Nguyen et al. Page 12

ACS Nano. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ACKNOWLEDGMENTS

We thank the NIH-NCI (1R01CA220468-01 for J.A.J., P.P.G., A.R., A.J.), the NIH-NIBIB (R01 EB-019950-01A1 
for A.R.), the NIH (U01-NS090451 for A.J.), and the National Science Foundation (Graduate Research Fellowship 
for H.V.-T.N.) for support of this research. A.D. acknowledges support from the Fondation Francaise pour la 
Recherche contre le Myelome et les Gammapathies, the Philippe Foundation, and the Multiple Myeloma Research 
Foundation. P.H. acknowledges support from a Wellcome Trust-MIT Postdoctoral Fellowship. PPG acknowledges 
the support of the Charles W. and Jennifer C. Johnson Clinical Investigator Fund and of the Kathryn Fox Samway 
Foundation. This work was supported in part by the Koch Institute Support (core) Grant P30-CA14051 from the 
National Cancer Institute. We thank the Koch Institute Swanson Biotechnology Center for technical support, 
specifically Dr. W. Huang.

REFERENCES

(1). Weissleder R Molecular Imaging in Cancer. Science 2006, 312, 1168–1171. [PubMed: 16728630] 

(2). Willmann JK; van Bruggen N; Dinkelborg LM; Gambhir SS Molecular Imaging in Drug 
Development. Nat. Rev. Drug Discovery 2008, 7, 591–607. [PubMed: 18591980] 

(3). Mankoff DA; Pryma DA; Clark AS Molecular Imaging Biomarkers for Oncology Clinical Trials. 
J. Nucl. Med 2014, 55, 525–528. [PubMed: 24614222] 

(4). Shankar LK The Clinical Evaluation of Novel Imaging Methods for Cancer Management. Nat. 
Rev. Clin. Oncol 2012, 9, 738–744. [PubMed: 23149888] 

(5). Viola KL; Sbarboro J; Sureka R; De M; Bicca MA; Wang J; Vasavada S; Satpathy S; Wu S; Joshi 
H; Velasco PT; MacRenaris K; Waters EA; Lu C; Phan J; Lacor P; Prasad P; Dravid VP; Klein 
WL Towards Non-Invasive Dianostic Imaging of Early-Stage Alzheimer’s Disease. Nat. 
Nanotechnol 2015, 10, 91–98. [PubMed: 25531084] 

(6). Fischer B; Lassen U; Mortensen J; Larsen S; Loft A; Bertelsen A; Ravn J; Clementsen P; 
Hogholm A; Larsen K; Rasmussen T; Keiding S; Dirksen A; Gerke O; Skov B; Steffensen I; 
Hansen H; Vilmann P; Jacobsen G; Backer V; et al. Preoperative Staging of Lung Cancer with 
Combined PET-CT. N. Engl. J. Med 2009, 361, 32–39. [PubMed: 19571281] 

(7). Dimopoulos M; Terpos E; Comenzo RL; Tosi P; Beksac M; Sezer O; Siegel D; Lokhorst H; 
Kumar S; Rajkumar SV; Niesvizky R; Moulopoulos LA; Durie BG IMWG. International 
Myeloma Working Group Consensus Statement and Guidelines Regarding the Current Role of 
Imaging Techniques in the Diagnosis and Monitoring of Multiple Myeloma. Leukemia 2009, 23, 
1545–1556. [PubMed: 19421229] 

(8). Dammacco F; Rubini G; Ferrari C; Vacca A; Racanelli V 18F-FDG PET/CT: a Review of 
Diagnostic and Prognostic Features in Multiple Myeloma and Related Disorders. Clin. Exp. Med 
2015, 15, 1–18. [PubMed: 25218739] 

(9). Lusic H; Grinstaff MW X-Ray-Computed Tomography Contrast Agents. Chem. Rev 2013, 113, 
1641–1666. [PubMed: 23210836] 

(10). Xiao YD; Paudel R; Liu J; Ma C; Zhang ZS; Zhou SK MRI Contrast Agents: Classification and 
Aplication. Int. J. Mol. Med 2016, 38, 1319–1326. [PubMed: 27666161] 

(11). O’Connor JP; Aboagye EO; Adams JE; Aerts HJ; Barrington SF; Beer AJ; Boellaard R; 
Bohndiek SE; Brady M; Brown G; Buckley DL; Chenevert TL; Clarke LP; Collette S; Cook GJ; 
deSouza NM; Dickson JC; Dive C; Evelhoch JL; Faivre-Finn C; et al. Imaging Biomarker 
Roadmap for Cancer Studies. Nat. Rev. Clin. Oncol 2017, 14, 169–186. [PubMed: 27725679] 

(12). Shapiro MG; Westmeyer GG; Romero PA; Szablowski JO; Kuster B; Shah A; Otey CR; Langer 
R; Arnold FH; Jasanoff A Directed Evolution of a Magnetic Resonance Imaging Contrast Agent 
for Noninvasive Imaging of Dopamine. Nat. Biotechnol 2010, 28, 264–270. [PubMed: 
20190737] 

(13). Mi P; Kokuryo D; Cabral H; Wu H; Terada Y; Saga T; Aoki I; Nishiyama N; Kataoka K A pH-
Activatable Nanoparticle with Signal-Amplification Capabilities for Non-Invasive Imaging of 
Tumour malignancy. Nat. Nanotechnol 2016, 11, 724–730. [PubMed: 27183055] 

(14). Harrison VSR; Carney CE; MacRenaris KW; Waters EA; Meade TJ Multimeric Near IR-MR 
Contrast Agent for Multimodal In Vivo Imaging. J. Am. Chem. Soc 2015, 137, 9108–9116. 
[PubMed: 26083313] 

Nguyen et al. Page 13

ACS Nano. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(15). Detappe A; Kunjachan S; Sancey L; Motto-Ros V; Biancur D; Drane P; Guieze R; Makrigiorgos 
GM; Tillement O; Langer R; Berbeco R Advanced Multimodal Nanoparticles Delay Tumor 
Progression with Clinical Radiation Therapy. J. Controlled Release 2016, 238, 103–113.

(16). Caravan P; Ellison JJ; McMurry TJ; Lauffer RB Gadolinium(III) Chelates As MRI Contrast 
Agents: Structure, Dynamics, and Applications. Chem. Rev 1999, 99, 2293–352. [PubMed: 
11749483] 

(17). Sun C; Lee JS; Zhang M Magnetic Nanoparticles in MR Imaging and Drug Delivery. Adv. Drug 
Delivery Rev 2008, 60, 1252–1265.

(18). Smith BR; Gambhir SS Nanomaterials for In Vivo Imaging. Chem. Rev 2017, 117, 901–986. 
[PubMed: 28045253] 

(19). Wang YX Superparamagnetic Iron Oxide Based MRI Contrast Agents: Current Status of Clinical 
Application. Quant. Imaging Med. Surg 2011, 1, 35–40. [PubMed: 23256052] 

(20). Nardone B; Saddleton E; Laumann AE; Edwards BJ; Raisch DW; McKoy JM; Belknap SM; Bull 
C; Haryani A; Cowper SE; Abu-Alfa AK; Miller FH; Godinez-Puig V; Dharnidharka VR; West 
DP Pediatric Nephrogenic Systemic Fibrosis is Rarely Reported: a RADAR Report. Pediatr. 
Radiol 2014, 44, 173–180. [PubMed: 24057195] 

(21). Wang YX Current Status of Superparamagnetic Iron Oxide Contrast Agents for Liver Magnetic 
Resonance Imaging. World J. Gastroenterol 2015, 21, 13400–13402. [PubMed: 26715826] 

(22). Perazella MA Current Status of Gadolinium Toxicity in Patients with Kidney Disease. Clin. J. 
Am. Soc. Nephrol 2009, 4, 461–469. [PubMed: 19201920] 

(23). Kanda T; Fukusato T; Matsuda M; Toyoda K; Oba H; Kotoku J; Haruyama T; Kitajima K; Furui 
S Gadolinium-Based Contrast Agent Accumulates in the Brain Even in Subjects without Severe 
Renal Dysfunction: Evaluation of Autopsy Brain Specimens with Inductively Coupled Plasma 
Mass Spectroscopy. Radiology 2015, 276, 228–232. [PubMed: 25942417] 

(24). Thakor AS; Jokerst JV; Ghanouni P; Campbell JL; Mittra E; Gambhir SS Clinically Approved 
Nanoparticle Imaging Agents. J. Nucl. Med 2016, 57, 1833–1837. [PubMed: 27738007] 

(25). Pierre VC; Allen MJ; Caravan P Contrast Agents for MRI: 30+ Years and Where Are We Going? 
JBIC, J. Biol. Inorg. Chem 2014, 19, 127–131. [PubMed: 24414380] 

(26). Vasanawala SS; Nguyen K-L; Hope MD; Bridges MD; Hope TA; Reeder SB; Bashir MR Safety 
and Technique of Ferumoxytol Administration for MRI Magn. Magn. Reson. Med 2016, 75, 
2107–2111. [PubMed: 26890830] 

(27). FDA Drug Safety Communication: FDA strengthens warnings and changes prescribing 
instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme 
(ferumoxytol); U.S. Food & Drug Administration (FDA), 2015; https://www.fda.gov/Drugs/
DrugSafety/ucm440138.htm (accessed Oct 17, 2018).

(28). Li Y; Lin TY; Luo Y; Liu Q; Xiao W; Guo W; Lac D; Zhang H; Feng C; Wachsmann-Hogiu S; 
Walton JH; Cherry SR; Rowland DJ; Kukis D; Pan C; Lam KS A Smart and Versatile 
Theranostic Nanomedicine Platform Based on Nanoporphyrin. Nat. Commun 2014, 5, 4712. 
[PubMed: 25158161] 

(29). Detappe A; Kunjachan S; Drane P; Kotb S; Myronakis M; Biancur DE; Ireland T; Wagar M; Lux 
F; Tillement O; Berbeco R Key Clinical Beam Parameters for Nanoparticle-Mediated Radiation 
Dose Amplification. Sci. Rep 2016, 6, 34040. [PubMed: 27658637] 

(30). Perez-Balderas F; van Kasteren SI; Aljabali AA; Wals K; Serres S; Jefferson A; Sarmiento Soto 
M; Khrapitchev AA; Larkin JR; Bristow C; Lee SS; Bort G; De Simone F; Campbell SJ; 
Choudhury RP; Anthony DC; Sibson NR; Davis BG Covalent Assembly of Nanoparticles as a 
Peptidase-Degradable Platform for Molecular MRI. Nat. Commun 2017, 8, 14254. [PubMed: 
28198362] 

(31). Zhelev Z; Bakalova R; Aoki I; Matsumoto K.-i.; Gadjeva V; Anzai K; Kanno I Nitroxyl Radicals 
as Low Toxic Spin-Labels for Non-Invasive Magnetic Resonance Imaging of Blood-Brain Barrier 
Permeability for Conventional Therapeutics. Chem. Commun 2009, 53–55.

(32). Hyodo F; Chuang KH; Goloshevsky AG; Sulima A; Griffiths GL; Mitchell JB; Koretsky AP; 
Krishna MC Brain Redox Imaging Using Blood-Brain Barrier-Permeable Nitroxide MRI 
Contrast Agent. J. Cereb. Blood Flow Metab 2008, 28, 1165–1174. [PubMed: 18270519] 

Nguyen et al. Page 14

ACS Nano. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.fda.gov/Drugs/DrugSafety/ucm440138.htm
https://www.fda.gov/Drugs/DrugSafety/ucm440138.htm


(33). Brasch RC Work in Progress: Methods of Contrast Enhancement for NMR Imaging and Potential 
Applications. A Subject Review. Radiology 1983, 147, 781–788. [PubMed: 6342034] 

(34). Brasch RC; London DA; Wesbey GE; Tozer TN; Nitecki DE; Williams RD; Doemeny J; Tuck 
LD; Lallemand DP Work in Progress: Nuclear Magnetic Resonance Study of a Paramagnetic 
Nitroxide Contrast Agent for Enhancement of Renal Structures in Experimental Animals. 
Radiology 1983, 147, 773–779. [PubMed: 6844613] 

(35). DeVience SJ; Pham LM; Lovchinsky I; Sushkov AO; Bar-Gill N; Belthangady C; Casola F; 
Corbett M; Zhang H; Lukin M; Park H; Yacoby A; Walsworth RL Nanoscale NMR Spectroscopy 
and Imaging of Multiple Nuclear Species. Nat. Nanotechnol 2015, 10, 129–134. [PubMed: 
25559712] 

(36). Preslar AT; Tantakitti F; Park KE; Zhang S; Stupp S; Meade TJ 19F-Magnetic Resonance 
Imaging Signals from Peptide Amphiphile Nanostructures are Strongly Affected by Their Shape. 
ACS Nano 2016, 10, 7376–7384. [PubMed: 27425636] 

(37). Schmidt AB; Berner S; Schimpf W; Muller C; Lickert T; Schwaderlapp N; Knecht S; Skinner JG; 
Dost A; Rovedo P; Hennig J; von Elverfeldt D; Hovener JB Liquid-State Carbon-13 
Hyperpolarization Generated in an MRI System for Fast Imaging. Nat. Commun 2017, 8, 14535. 
[PubMed: 28262691] 

(38). Duwel S; Hundshammer C; Gersch M; Feuerecker B; Steiger K; Buck A; Walch A; Haase A; 
Glaser SJ; Schwaiger M; Schilling F Imaging of pH In Vivo Using Hyperpolarized 13C-Labelled 
Zymonic Acid. Nat. Commun 2017, 8, 15126. [PubMed: 28492229] 

(39). Cai K; Haris M; Singh A; Kogan F; Greenberg JH; Hariharan H; Detre JA; Reddy R Magnetic 
Resonance Imaging of Glutamate. Nat. Med 2012, 18, 302–306. [PubMed: 22270722] 

(40). Song X; Airan RD; Arifin DR; Bar-Shir A; Kadayakkara DK; Liu G; Gilad AA; van Zijl PC; 
McMahon MT; Bulte JW Label-Free In Vivo Molecular Imaging of Underglycosylated Mucin-1 
Expression in Tumour Cells. Nat. Commun 2015, 6, 6719. [PubMed: 25813863] 

(41). Hyodo F; Soule BP; Matsumoto K.-i.; Matusmoto S; Cook JA; Hyodo E; Sowers AL; Krishna 
MC; Mitchell JB Assessment of Tissue Redox Status Using Metabolic Responsive Contrast 
Agents and Magnetic Resonance Imaging. J. Pharm. Pharmacol 2008, 60, 1049–1060. [PubMed: 
18644197] 

(42). Hyodo F; Matsumoto K.-i.; Matsumoto A; Mitchell JB; Krishna MC Probing the Intracellular 
Redox Status of Tumors with Magnetic Resonance Imaging and Redox-Sensitive Contrast 
Agents. Cancer Res 2006, 66, 9921–9928. [PubMed: 17047054] 

(43). Zhelev Z; Bakalova R; Aoki I; Matsumoto K.-i.; Gadjeva V; Anzai K; Kanno I Nitroxyl Radicals 
for Labeling of Conventional Therapeutics and Noninvasive Magnetic Resonance Imaging of 
Their Permeability for Blood–Brain Barrier: Relationship between Structure, Blood Clearance, 
and MRI Signal Dynamic in the Brain. Mol. Pharmaceutics 2009, 6, 504–512.

(44). Zhelev Z; Bakalova R; Aoki I; Lazarova D; Saga T Imaging of Superoxide Generation in the 
Dopaminergic Area of the Brain in Parkinson’s Disease, Using Mito-TEMPO. ACS Chem. 
Neurosci 2013, 4, 1439–1445. [PubMed: 24024751] 

(45). Rajca A; Wang Y; Boska M; Paletta JT; Olankitwanit A; Swanson MA; Mitchell DG; Eaton SS; 
Eaton GR; Rajca S Organic Radical Contrast Agents for Magnetic Resonance Imaging. J. Am. 
Chem. Soc 2012, 134, 15724–15727. [PubMed: 22974177] 

(46). Rajca A; Wang Y; Boska M; Paletta JT; Olankitwanit A; Swanson MA; Mitchell DG; Eaton SS; 
Eaton GR; Rajca S Correction to Organic Radical Contrast Agents for Magnetic Resonance 
Imaging. J. Am. Chem. Soc 2014, 136, 3318–3318. [PubMed: 24533533] 

(47). Sowers MA; McCombs JR; Wang Y; Paletta JT; Morton SW; Dreaden EC; Boska MD; Ottaviani 
MF; Hammond PT; Rajca A; Johnson JA Redox-Responsive Branched-Bottlebrush Polymers for 
In Vivo MRI and Fluorescence Imaging. Nat. Commun 2014, 5, 5460. [PubMed: 25403521] 

(48). Nguyen HV; Chen Q; Paletta JT; Harvey P; Jiang Y; Zhang H; Boska MD; Ottaviani MF; 
Jasanoff A; Rajca A; Johnson JA Nitroxide-Based Macromolecular Contrast Agents with 
Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors. 
ACS Cent. Sci 2017, 3, 800–811. [PubMed: 28776023] 

(49). Hansen K-A; Blinco JP Nitroxide Radical Polymers – a Versatile Material Class for High-Tech 
Applications. Polym. Chem 2018, 9, 1479–1516.

Nguyen et al. Page 15

ACS Nano. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(50). Caglieris F; Melone L; Canepa F; Lamura G; Castiglione F; Ferro M; Malpezzi L; Mele A; Punta 
C; Franchi P; Lucarini M; Rossi B; Trotta F Effective Magnetic Moment in Cyclodextrin–
Polynitroxides: Potential Supramolecular Vectors for Magnetic Resonance Imaging. RSC Adv 
2015, 5, 76133–76140.

(51). Bye N; Hutt OE; Hinton TM; Acharya DP; Waddington LJ; Moffat BA; Wright DK; Wang HX; 
Mulet X; Muir BW Nitroxide-Loaded Hexosomes Provide MRI Contrast In Vivo. Langmuir 
2014, 30, 8898–8906. [PubMed: 24979524] 

(52). Chan JMW; Wojtecki RJ; Sardon H; Lee ALZ; Smith CE; Shkumatov A; Gao S; Kong H; Yang 
YY; Hedrick JL Self-Assembled, Biodegradable Magnetic Resonance Imaging Agents: Organic 
Radical-Functionalized Diblock Copolymers. ACS Macro Lett 2017, 6, 176–180.

(53). Huang Y; Nan A; Rosen GM; Winalski CS; Schneider E; Tsai P; Ghandehari H N-(2-
Hydroxypropyl)methacrylamide (HPMA) Copolymer-Linked Nitroxides: Potential Magnetic 
Resonance Contrast Agents. Macromol. Biosci 2003, 3, 647–652.

(54). Gussoni M; Greco F; Ferruti P; Ranucci E; Ponti A; Zetta L Poly(amidoamine)s Carrying 
TEMPO Residues for NMR Imaging Applications. New J. Chem 2008, 32, 323–332.

(55). Garmendia S; Mantione D; Alonso-de Castro S; Jehanno C; Lezama L; Hedrick JL; Mecerreyes 
D; Salassa L; Sardon H Polyurethane Based Organic Macromolecular Contrast Agents (PU-
ORCAs) for Magnetic Resonance Imaging. Polym. Chem 2017, 8, 2693–2701.

(56). Huang L; Yan C; Cui D; Yan Y; Liu X; Lu X; Tan X; Lu X; Xu J; Xu Y; Liu R Organic Radical 
Contrast Agents Based on Polyacetylenes Containing 2,2,6,6-Tetramethylpiperidine 1-Oxyl 
(TEMPO): Targeted Magnetic Resonance (MR)/Optical Bimodal Imaging of Folate Receptor 
Expressing HeLa Tumors In Vitro and In Vivo. Macromol. Biosci 2015, 15, 788–798. [PubMed: 
25677802] 

(57). Liu J; Burts AO; Li Y; Zhukhovitskiy AV; Ottaviani MF; Turro NJ; Johnson JA Brush-First” 
Method for the Parallel Synthesis of Photocleavable, Nitroxide-Labeled Poly(Ethylene Glycol) 
Star Polymers. J. Am. Chem. Soc 2012, 134, 16337–16344. [PubMed: 22953714] 

(58). Liao L; Liu J; Dreaden EC; Morton SW; Shopsowitz KE; Hammond PT; Johnson JA A 
Convergent Synthetic Platform for Single-Nanoparticle Combination Cancer Therapy: 
Ratiometric Loading and Controlled Release of Cisplatin, Doxorubicin, and Camptothecin. J. 
Am. Chem. Soc 2014, 136, 5896–5899. [PubMed: 24724706] 

(59). Gao AX; Liao L; Johnson JA Synthesis of Acid-Labile PEG and PEG-Doxorubicin-Conjugate 
Nanoparticles via Brush-First ROMP. ACS Macro Lett 2014, 3, 854–857. [PubMed: 25243099] 

(60). Barnes JC; Bruno PM; Nguyen HVT; Liao L; Liu J; Hemann MT; Johnson JA Using an RNAi 
Signature Assay To Guide the Design of Three-Drug-Conjugated Nanoparticles with Validated 
Mechanisms, In Vivo Efficacy, and Low Toxicity. J. Am. Chem. Soc 2016, 138, 12494–12501. 
[PubMed: 27626288] 

(61). Golder MR; Liu J; Andersen JN; Shipitsin MV; Vohidov F; Nguyen HV-T; Ehrlich DC; Huh SJ; 
Vangamudi B; Economides KD; Neenan AM; Ackley JC; Baddour J; Paramasivan S; Brady SW; 
Held EJ; Reiter LA; Saucier-Sawyer JK; Kopesky PW; Chickering DE; et al. Reduction of Liver 
Fibrosis by Rationally Designed Macromolecular Telmisartan Prodrugs. Nat. Biomed. Eng 2018, 
2, 707.

(62). Cabral H; Matsumoto Y; Mizuno K; Chen Q; Murakami M; Kimura M; Terada Y; Kano MR; 
Miyazono K; Uesaka M; Nishiyama N; Kataoka K Accumulation of Sub-100 nm Polymeric 
Micelles in Poorly Permeable Tumours Depends on Size. Nat. Nanotechnol 2011, 6, 815–823. 
[PubMed: 22020122] 

(63). Elsabahy M; Heo GS; Lim S-M; Sun G; Wooley KL Polymeric Nanostructures for Imaging and 
Therapy. Chem. Rev 2015, 115, 10967–11011. [PubMed: 26463640] 

(64). Nguyen HVT; Gallagher NM; Vohidov F; Jiang Y; Kawamoto K; Zhang H; Park JV; Huang Z; 
Ottaviani MF; Rajca A; Johnson JA Scalable Synthesis of Multivalent Macro-monomers for 
ROMP. ACS Macro Lett 2018, 7, 472–476. [PubMed: 30271675] 

(65). Cheon J; Lee J-H Synergistically Integrated Nanoparticles as Multimodal Probes for 
Nanobiotechnology. Acc. Chem. Res 2008, 41, 1630–1640. [PubMed: 18698851] 

(66). Jokerst JV; Lobovkina T; Zare RN; Gambhir SS Nanoparticle PEGylation for Imaging and 
Therapy. Nanomedicine 2011, 6, 715–728. [PubMed: 21718180] 

Nguyen et al. Page 16

ACS Nano. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(67). Maeda H; Wu J; Sawa T; Matsumura Y; Hori K Tumor Vascular Permeability and the EPR Effect 
in Macromolecular Therapeutics: A Review. J. Controlled Release 2000, 65, 271–284.

(68). Keana JFW; Pou S; Rosen GM Nitroxides as Potential Contrast Enhancing Agents for MRI 
Application: Influence of Structure on the Rate of Reduction by Rat Hepatocytes, Whole Liver 
Homogenate, Subcellular Fractions, and Ascorbate. Magn. Reson. Med 1987, 5, 525–536. 
[PubMed: 3437813] 

(69). Yang Y; Zhao Q; Feng W; Li F Luminescent Chemo-dosimeters for Bioimaging. Chem. Rev 
2013, 113, 192–270. [PubMed: 22702347] 

(70). Rowland M; Benet LZ; Graham GG Clearance Concepts in Pharmacokinetics. J. Pharmacokinet. 
Biopharm 1973, 1, 123–136. [PubMed: 4764426] 

(71). Qi R; Wang Y; Bruno PM; Xiao H; Yingjie Y; Li T; Lauffer S; Wei W; Chen Q; Kang X; Song H; 
Yang X; Huang X; Detappe A; Matulonis U; Pepin D; Hemann MT; Birrer MJ; Ghoroghchian PP 
Nanoparticle Conjugates of a Highly Potent Toxin Enhance Safety and Circumvent Platinum 
Resistance in Ovarian Cancer. Nat. Commun 2017, 8, 2166. [PubMed: 29255160] 

(72). Rajkumar SV; Dimopoulos MA; Palumbo A; Blade J; Merlini G; Mateos MV; Kumar S; 
Hillengass J; Kastritis E; Richardson P; Landgren O; Paiva B; Dispenzieri A; Weiss B; LeLeu X; 
Zweegman S; Lonial S; Rosinol L; Zamagni E; Jagannath S; et al. International Myeloma 
Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. Lancet Oncol 2014, 
15, 538–548.

(73). Ji Y; Jiang C; Zhang X; Liu W; Gao M; Li Y; Wang J; Wang Q; Sun Z; Jiang X; Yao N; Wang X; 
Fang Z; Yin Z; Ni Y; Zhang J Necrosis Targeted Combinational Theragnostic Approach Using 
Radioiodinated Sennidin A in Rodent Tumor Models. Oncotarget 2014, 5, 2934–2946. [PubMed: 
24931286] 

(74). Rey S; Schito L; Koritzinsky M; Wouters BG Molecular Targeting of Hypoxia in Radiotherapy. 
Adv. Drug Delivery Rev 2017, 109, 45–62.

(75). Xiao H; Qi R; Li T; Awuah SG; Zheng Y; Wei W; Kang X; Song H; Wang Y; Yu Y; Bird MA; 
Jing X; Yaffe MB; Birrer MJ; Ghoroghchian PP Maximizing Synergistic Activity When 
Combining RNAi and Platinum-Based Anticancer Agents. J. Am. Chem. Soc 2017, 139, 3033–
3044. [PubMed: 28166401] 

(76). Tao Z; Dang X; Huang X; Muzumdar MD; Xu ES; Bardhan NM; Song H; Qi R; Yu Y; Li T; Wei 
W; Wyckoff J; Birrer MJ; Belcher AM; Ghoroghchian PP Early Tumor Detection Afforded by In 
Vivo Imaging of Near-Infrared II Fluorescence. Biomaterials 2017, 134, 202–215. [PubMed: 
28482280] 

(77). Burts AO; Liao L; Lu YY; Tirrell DA; Johnson JA Brush-First and Click: Efficient Synthesis of 
Nanoparticles that Degrade and Release Doxorubicin in Response to Light. Photochem. 
Photobiol 2014, 90, 380–385. [PubMed: 24117423] 

(78). Johnson JA; Lu YY; Burts AO; Xia Y; Durrell AC; Tirrell DA; Grubbs RH Drug-Loaded, 
Bivalent-Bottle-Brush Polymers by Graft-through ROMP. Macromolecules 2010, 43, 10326–
10335. [PubMed: 21532937] 

Nguyen et al. Page 17

ACS Nano. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Chemical structures and scheme for the synthesis of BASP-ORCAs. (A) Structures of 

BASP-ORCA components used in this work and (B) brush-first ring-opening metathesis 

polymerization (ROMP) scheme for the preparation of BASP-ORCA3 pyr = pyridine; Ph = 

phenyl.
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Figure 2. 
In vitro characterization of BASP-ORCA3. (A) Representative transmission electron 

microscopy (TEM) image of BASP-ORCA3 (negatively stained with 2% wt. uranyl acetate). 

Scale bar: 500 nm. (B) Representative dynamic light scattering (DLS) histogram for BASP-

ORCA3. Dh = hydrodynamic diameter. (C) Electron paramagnetic resonance (EPR) spectra 

for BASP-ORCA3 and chex3-MM.
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Figure 3. 
MRI phantoms of BASP-ORCA3. (A) T2-weighted MRI phantoms at the same w/v 

concentrations (from 0 to 3, 6, 8, 12, 15, 18, and 21 mg/mL) of BASP-ORCA1 and BASP-

ORCA3, which vary by chex density. (B) T2-weighted MRI phantoms (top) and 

quantification of in vitro sensitivity (bottom) of BASP-ORCA1 and BASP-ORCA3 at 6 h 

after incubation with MM.1S cells with 21 mg/mL BASP-ORCA solutions.
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Figure 4. 
In vivo imaging of subcutaneous plasmacytomas. (A) In vivo optical imaging (Cy5.5 

fluorescence; λex/λem = 640/700 nm) of MM.1S (multiple myeloma) cells subcutaneously 

implanted in SCID mice (n = 4); the animals were administered either BASP-ORCA1 or 

BASP-ORCA3 by intravenous injection and their tumors were visualized 24 h later by in 
vivo optical imaging. (B) T2-weighted MR images of the same mice pre- and postinjection, 

revealing differences in T2 signal observed from BASP-ORCA1 vs BASP-ORCA3 and in 

both non-necrotic and necrotic tumor regions. (B) Quantitative analysis of contrast 
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enhancements generated by BASP-ORCA1 vs BASP-ORCA3 in the overall tumor versus in 

necrotic regions. Statistical comparisons were acquired with the Mann–Whitney U-test (*not 

significant, **p ≤ 0.05, ***p ≤ 0.01). (D) Colocalization study confirming the specific 

uptake of BASP-ORCA3 (based on its Cy5.5 signal) in necrotic tumor areas as depicted by 

H&E staining.
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Figure 5. 
In vivo detection of millimetric tumor deposits in a murine model of disseminated ovarian 

cancer. (A) Growth of luciferase-expressing OVCAR8 (ovarian) tumors monitored by 

bioluminescence imaging (BLI). (B) Tumor accumulation of BASP-ORCA3 qualitatively 

visualized by in vivo optical imaging of its near-infrared fluorescence at 24 h after 

intraperitoneal injection. (C) T2-weighted MR images of the same mice pre- and 

postinjection with BASP-ORCA3, demonstrating millimetric tumors on the serosal surfaces 

of peritoneal organs (yellow arrows). Scale bar: 1 cm. (D) Visual validation of tumor 
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implants (yellow arrows). (E) Quantitative analysis of contrast enhancement generated by 

BASP-ORCA1 vs BASP-ORCA3. Statistical comparisons were acquired with the Mann–

Whitney U-test (*not significant, **p ≤ 0.05, ***p ≤ 0.01).
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Figure 6. 
Quantification of the biodistribution profiles of different BASP-ORCAs via quantification of 

EPR and fluorescence signals in ex vivo organ homogenates from the OVCAR8 (ovarian 

tumor) model. (A) Representative EPR spectra of ex vivo organ homogenates from mice 

administered BASP-ORCA3. (B) Quantification of chex content in each organ by EPR (n = 

4–5), revealing greater amounts of chex across the various organs of mice that were 

administered BASP-ORCA3 vs BASP-ORCA1. (C) Biodistribution profiles as quantified 

from NIRF signals, revealing similar profiles for BASP-ORCA1 and BASP-ORCA3; the 

results support that the higher tumor contrast imparted by BASP-ORCA3 is due to its 

increased chex loading. Statistical comparisons between sample tissues and brain tissue 

were acquired using the Mann–Whitney U-test (*not significant, **p ≤ 0.05, ***p ≤ 0.01).
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