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ABSTRACT 10 

Oral delivery of amphotericin B (AmpB) is desirable because it provides a more patient-friendly 11 

mode of administration compared to the current delivery approach akin with the marketed AmpB 12 

formulations. The goal of the study was to investigate the pharmacokinetics and tissue distribution 13 

of orally administered chitosan-coated AmpB-loaded nanostructured lipid carriers (ChiAmpB NLC) 14 

administered to were evaluated in Sprague Dawley rats at a dose of 15 mg/kg. Orally administered 15 

ChiAmpB NLC resulted in demonstrated a two-fold increase in the area under the curve (AUC0-) 16 

compared to the uncoated AmpB NLC and marketed Amphotret®. This enhanced bioavailability of 17 

AmpB suggests prolonged transit and retention of ChiAmpB NLC within the small intestine through 18 

mucoadhesion and subsequent absorption by the lymphatic pathway. The results show that   The 19 

mean absorption and residence times (MAT & MRT) were both significantly higher from ChiAmpB 20 

NLC compared to the other two formulations, which attesting to the mucoadhesive effect. The 21 

ChiAmpB NLC presented a lower nephrotic accumulation with preferential deposition in liver and 22 

spleen. Thus, the limitations of current marketed IV formulations of AmpB are potentially addressed 23 

with the ChiAmpB NLC in addition to utilizing this approach for targeting internal organs in visceral 24 

leishmaniasis. 25 

 26 
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INTRODUCTION 29 

 Oral administration of AmpB appeals to clinicians and patients alike because of the potential 30 

of eliminating the toxicities (notably nephrotoxicity) associated with the current mode of delivery, 31 

which is exclusively by intravenous (IV) administration. It is also bound to reduce treatment cost and 32 

improve the quality of life of the patients (1,2). However, due to the poor solubility and permeability 33 

of challenging physicochemical properties of AmpB, oral delivery of AmpB results in a meager 34 

bioavailability (< 0.3 %) which limits its therapeutic efficacy (3,4). Poor oral absorption of AmpB has 35 

long been reported in different animal trials such as in rats (5,6), mice (7) and dogs (8). 36 

Nanotechnology seems to be the key to unlocking some of the constraints associated with the 37 

administration of Amp orally. However, with the introduction of the nanotechnology, there is a ray 38 

of hope to developing a safer, yet effective oral formulation of AmpB.  39 

Upon oral administration, most drugs are absorbed from the small intestine to the systemic 40 

circulation via the portal blood vein. However, for lipid formulations or hydrophobic drugs, intestinal 41 

lymphatic pathway provides an alternative route, which bypasses the hepatic first pass metabolism 42 

at the liver and results in improved bioavailability (9–11). Additionally, this route portrays a 43 

distinctive characteristic whereby the transportation of the drug occurs over a longer period of time 44 

compared to the portal vein route. Thus, lymphatic pathway can be exploited for prolonged delivery 45 

of therapeutic agents to the systemic circulation (12). 46 

 The goal of the In the this  present investigation was to formulate nanostructured lipid 47 

carriers (NLCs) comprised of beeswax and coconut oil were used as the carrier system for the oral 48 

delivery of AmpB with the aim to exploit the intestinal lymphatic pathway (13,14). A further aim was 49 

to Additionally, chitosan was coat ed the formulation in order to impart mucoadhesive capability so 50 

that the particles are retained longer during transit in the small intestine. The delayed transit will 51 



 

ensure that most of the particles are taken-up. This way, the bioavailability of AmpB would be 52 

improved.  53 

The pharmacokinetic behaviour of the marketed formulation of AmpB, Fungizone® 54 

administered intravenously was reported to exhibit a complex plasma profile, with a rapid fall in 55 

plasma concentration followed by a long elimination half-life (approximately 15 days). In contrast, 56 

the pharmacokinetic behaviour of orally administered AmpB is less known. It is administered orally 57 

to treat localized gastrointestinal (GI) tract infections mainly due to the poor absorption profile. It 58 

was reported that administration of high doses of AmpB (2 - 10 g daily) to humans resulted in 59 

similarly low plasma concentration levels as doses of 30 - 40 mg per day (7,15).  60 

Tissue distribution studies on newly developed formulations is necessary since it provides 61 

information on the potential tissue accumulation of the formulation and/or the drug. Tissue 62 

accumulation thus, provides insights on potential toxicity or efficacy of the formulation. In this 63 

regard, determination of the plasma level of the AmpB alone is insufficient because there is a poor 64 

correlation between the plasma level and biodistribution of the active in the organs (16,17). 65 

Evaluation of levels of AmpB in the kidneys is crucial because it relates to nephrotoxicity and is the 66 

major limitation to the clinical use of AmpB (15,18). Reticuloendothelial organs (RES) such as liver 67 

and spleen are the target organs for the Leishmania genus, an intracellular parasite which causes 68 

high fatality if left untreated. Currently, AmpB is used as the second-line therapy for visceral 69 

leishmaniasis which comes after parental administration of pentavalent antimony organic 70 

compounds which are associated with high frequency of resistance and side effects (19). Hence, an 71 

accumulation of the AmpB at the aforementioned sites provides an added advantage in terms of 72 

targeting strategy. 73 

Henceforth, in the present study, we aimed to evaluate the i) pharmacokinetic profiles of 74 

AmpB from ChiAmpB NLC in comparison to uncoated AmpB NLC and the marketed formulation, 75 

Amphotret®, ii) retrospectively investigate the mucoadhesion behaviour of ChiAmpB NLC in vivo 76 



 

through analyses of the levels of AmpB in the stomach and small intestine over time and iii) 77 

investigate the tissue distribution of the AmpB in organs-of-interests; kidneys, liver and spleen. 78 

MATERIALS AND METHODS 79 

Materials 80 

 Beeswax and coconut oil were from Acros Organics, New Jersey, USA. Chitosan (low 81 

molecular weight) and phosphate buffered saline tablets (PBS) were purchased from Sigma Aldrich 82 

Co. LLC., Missouri, USA. AmpB and ethylenediaminetetracetic acid, disodium salt dihydrate (EDTA) 83 

were obtained from Fisher Scientific, India. The commercial formulation of AmpB deoxycholate 84 

(Amphotret®, Bharat Serums and Vaccines Limited, India) was a gift from Pahang Pharmacy, 85 

Malaysia. Soya lecithin was purchased from MP Biomedicals (Illkirch, France) and acetic acid was 86 

obtained from R & M Chemicals, India. 1-amino 4-nitronapthalene (≥ 97 %) was obtained from 87 

Apollo Chemicals, San Pedro Sula. All reagents and solvents used of analytical and HPLC grades 88 

respectively. Deionized water used was Milli-Q 18.2 MΩ.cm at 25 °C (Millipore Corp., Bedford, USA).  89 

Methods 90 

Formulation of ChiAmpB NLC formulation 91 

The ChiAmpB NLC was formulated as recently reported (13,14). Briefly, beeswax and 92 

coconut oil were melted at 70 °C before the addition of AmpB and at the same time, Tween-80 and 93 

lecithin were mixed with 10 mL of deionized water and stirred at 70 °C at 500 rpm for 45 minutes. 94 

The surfactant mixture was added into the melted lipids containing AmpB followed by 95 

homogenization at 12 400 rpm for 8 minutes using high speed homogenizer (Ultra-Turrax T25, 96 

Germany). The coarse emulsion was further subjected to probe ultrasonication (Q500 QSonica, 97 

Newtown, CT, USA) for further 8 minutes at 20 % amplitude. The mixture was poured into 4 °C 98 

deionized water under 500 rpm of stirring, making up a total of 100 mL. Chitosan (dissolved in 1 % 99 

v/v acetic acid) was added in a dropwise manner into the formed AmpB NLC in 1: 40 v/v under 100 

stirring of 250 rpm or 15 minutes.  101 



 

The physical properties of the formulation were characterized in terms of particle size, 102 

polydispersity index, zeta potential, encapsulation efficiency and aggregation states as reported 103 

previously (13,14).  104 

High performance liquid chromatography (HPLC) conditions and validation 105 

An Agilent HPLC system (1260 Series, Waldbronn, Germany) equipped with a 15 cm x 4.6 106 

mm reversed-phase C-18 column, Hypersil Gold (ThermoFisher Scientific, Waltham, United States) 107 

with 5 µm particle size stationary phase was used in this study. A mixture of 60 % 2.5 mM EDTA and 108 

40 % acetonitrile was used as the mobile phase at a flow rate of 1.5 mL/min with the wavelength set 109 

at 408 nm.  110 

Calibration curves of AmpB in plasma and tissue were established over 0.1 – 10 µg/mL for 111 

plasma and 1 – 100 µg/g for tissue samples, with at least six data points were used to construct the 112 

curves. The HPLC method was further validated in terms of linearity, recovery, accuracy, precision, 113 

limit of detection (LOD) and limit of quantification (LOQ). 114 

Animals  115 

 In this section was a probe investigation on the performance of the ChiAmpB NLC therefore, 116 

we tried to minimize the number of animals used for the study as much as possible. 12 adult male 117 

Sprague Dawley (268.4 ± 11.1 g) rats used in the pharmacokinetic and tissue distribution studies 118 

were obtained from University Putra Malaysia (UPM). The studies were carried out at The 119 

Comparative Medicine and Technology Unit (COMeT), UPM and approved by the Ethics Committee 120 

of The University of Nottingham (UNMC 19). The rats were housed in ventilated cages at ambient 121 

temperature, maintained under 12/ 12 light-dark cycle and supplied with food and water ad libitum. 122 

The rats were acclimatized for one week before the experiment, reaching the age of 8 weeks. 123 

 124 

 125 



 

Drug administration and blood sampling 126 

 The rats were fasted for 12 hours overnight and then divided into four groups, with three 127 

rats per group. Each group received either one of the following single dose: i) oral gavage of AmpB 128 

NLC, ii) ChiAmpB NLC and iii) Amphotret® at 15 mg/kg of AmpB in 2 mL. The fourth group (iv) was 129 

administered 150 µL of Amphotret® (IV) at a dose of 1.0 mg/kg. The rats were allowed free access to 130 

water throughout the study and food was allowed 4-hour post-dosing. The animals were slightly 131 

anaesthetized with diethyl ether at a dose of 5 g/kg prior to blood sampling. A 500 µL aliquot of 132 

blood was collected from the tail of the rats and transferred to a Microtainer® coated with EDTA at 133 

0, 1, 2, 4, 5, 6, 8 and 24 hours for the orally administered group and 5, 30 minutes, 1, 2, 6, 8 and 24 134 

hours following IV administration. The blood samples were centrifuged at 14 000 rpm (14 463 x g) 135 

for 10 minutes and the supernatant (plasma) was pipetted transferred out carefully and placed in 136 

normal microcentrifuge tubes and . The samples were stored at -20 °C until further analyses were 137 

carried out. 138 

Analyses of plasma and tissue samples 139 

The concentrations of AmpB in the plasma and tissue were analyzed according to a 140 

developed HPLC method. Prior to analysis, a 100 µL aliquot of plasma sample was deproteinized 141 

using 100 µL of methanol containing 13.34 µg/mL of 1-amino 4-nitronaphthalene (IS). The mixture 142 

was vortex-mixed for 5 minutes and then centrifuged at 14 000 rpm (14 463 x g) for 10 minutes. 50 143 

µL of the supernatant was then injected into the HPLC system.  144 

At predetermined time post administration, the rats were humanely sacrificed and the 145 

stomach, small intestine, liver, kidney and spleen were removed after abdominal incision. The 146 

organs were pat-dried with laboratory tissue roll, weighed and homogenized using a high speed 147 

homogenizer (Ultra-Turrax T-25, Germany) at 24 000 rpm for 8 minutes under ice with PBS (pH 7.4) 148 

making up tissue concentration of 0.25 g/mL. The mixture was further ultrasonicated at 20 % 149 

amplitude for 8 minutes. A 100 µL aliquot of tissue homogenate was mixed with 400 µL of methanol 150 



 

containing IS (9.09 µg/mL). The mixture was vortex-mixed for 5 minutes and centrifuged at 14 000 151 

rpm (14 463 x g) for 10 minutes and 50 µL of the supernatant was injected onto the HPLC system.   152 

 153 

Data analyses 154 

The pharmacokinetic parameters were calculated based on a non-compartmental model. 155 

Peak concentration (Cmax) and time of peak concentration (Tmax) were obtained directly from the 156 

individual plasma concentration-time profiles. The Tlag referred to the lag time to the appearance of 157 

AmpB in the blood after administration. The area under the curve from time zero to last measurable 158 

concentration (AUC0-t) was calculated using trapezoidal method. The AUC from the last measurable 159 

concentration (Ct) to infinity (AUCt-) was calculated by dividing the Ct by k, the apparent elimination 160 

rate constant, which in turn was obtained from the terminal slope of the individual plasma 161 

concentration-time profiles after logarithmic transformation of the plasma concentration values and 162 

application of linear regression. Thus the total (AUC0-) was computed as: 163 

AUC0- = AUC0-t + Ct/k ……………………………………………………………. (1) 164 

The MRT was estimated as follows: 165 

MRT = AUMC0-/ AUC0- ….………………………………………………… (2) 166 

where, AUMC0- is area under the first moment versus time curve which is calculated by adding the 167 

total area from time zero to the last measurable concentration (AUMC0-t) to the area from the last 168 

measurable concentration to time infinity (AUMCt-) of the plasma concentration times time versus 169 

time curves. AUMC0-t was determined using trapezoidal formula while AUMCt- was calculated by 170 

dividing the last concentration times time value with elimination rate constant, k.  171 

The MAT was estimated as follows: 172 

MAT = MRTPO – MRTIV    ……………………………………………………………. (3) 173 



 

where, MRT is the mean residence time, PO is orally administered formulations and IV refers to 174 

administered intravenously. 175 

 176 

The absolute bioavailability, F was calculated as below: 177 

F = 100
.

.

POIV

IVPO

DoseAUC

DoseAUC
……………………………………………………………. (4) 178 

where, AUC is the area under the plasma concentration versus time curve from time zero to infinity, 179 

PO is the oral administration and IV is the intravenous administration.  180 

The relative bioavailability, Fr was calculated as below: 181 

Fr = 100
PO

NLC

AUC

AUC
     ……………………………………………………………. (5) 182 

where, AUCNLC is the area under the curve of plasma concentration versus time curve from time zero 183 

to infinity of rats administered AmpB NLC or ChiAmpB NLC orally and AUCPO is the area under the 184 

curve of plasma concentration versus time curve from time zero to infinity of rats administered 185 

Amphotret® orally. 186 

Statistical analyses 187 

 Statistical evaluation on samples was performed using a one-way analysis of variance 188 

(ANOVA) followed by an independent t-test, where differences were considered significant when p < 189 

0.05. Linearity was evaluated by linear regression analysis, which was calculated by least squares 190 

regression analysis and the ANOVA test. All calculations were conducted using IBM SPSS Statistics 24 191 

(IBM cooperation, New York, NY). 192 

 193 

 194 



 

REESULTS AND DISCUSSION 195 

Prior to the in vivo studies, a HPLC analysis for AmpB in spiked plasma and tissue 196 

homogenates was developed and validated. The validity of the assay was verified by linear ANOVA 197 

regression analysis, which demonstrated a 95 % confidence level in predicting the outcome (p < 198 

0.05). All the r2 values were 0.996 and above, confirming the linearity of the method over the 199 

concentrations analyzed (Table 1).  200 

Table 1: Linearity and sensitivity of AmpB analytical procedure different biological samples 201 

 202 

r2 is the determination coefficient, LOD is the limit of detection and LOQ is the limit of quantification. 203 

LOD and LOQ of plasma is in µg/mL while for tissue homogenate are in ng/g. *p< 0.05: statistical 204 

significance between the mean peak areas of AmpB/ IS and concentration of AmpB. 205 

 206 

The LOD and LOQ values in plasma samples were 0.0093 and 0.031 µg/mL respectively, 207 

which are comparably more sensitive than in other studies (20–22). The LOD in the tissue samples 208 

were found to be 0.65 ng/g for liver, 0.97 ng/g for kidney, 0.99 ng/g for spleen, 0.95 ng/g for 209 

stomach and 0.87 ng/g for small intestine, are comparatively lower than reported analytical 210 

thresholds for AmpB, suggesting a higher sensitivity (1,23).  211 

From Table 2, the average recoveries of AmpB from the biological samples were more than 212 

80 %, indicative of an efficient extraction procedure (24). High percentage of accuracies were 213 

observed in plasma samples, 94 - 97 % (Table 2) and are in accordance with other reported values 214 

 Equation r2 LOD LOQ 

Plasma y = 0.8769x – 0.0731 0.9962* 0.0093 0.031 

Liver y = 0.0324x + 0.0012 1* 0.65 2.16 

Kidney y = 0.0293x + 0.0412 0.9969* 0.97 3.23 

Spleen y = 0.0341x + 0.0109 1* 0.99 3.32 

Stomach y = 0.0394x + 0.0079 0.9998* 0.95 3.17 

Small intestine y = 0.0306x + 0.0362 0.9989* 0.87 2.88 



 

(21,22). The degree of repeatability was evaluated based on the percentage of coefficient variation 215 

(CV) as illustrated in Table 2.  216 

Table 2 Percentage of recovery, accuracy and precision of AmpB/ IS spiked with plasma and tissue 217 

homogenates (mean ± S.D., n = 3 for recovery and n = 6 for accuracy and precision). 218 

 219 

 220 

Low refers to 0.1 µg/ml in plasma and 2.5 µg/g in tissue samples; medium refers to 1 µg/ml in 221 

plasma and 10 µg/g in tissue samples and high refers to 10 µg/ml in plasma and 100 µg/g in tissue 222 

samples. 223 

 224 

 225 

 226 

 227 

 Plasma Liver Kidney Spleen Stomach Small 

intestine 

Recovery 

(%) 

Low 98.2 ± 7.0 73.5 ± 

1.4 

77.6 ± 

5.1 

81.6 ± 

0.3 

95.3 ± 1.6 78.1 ± 0.7 

Medium 100.0 ± 

0.1 

76.1 ± 

1.0 

81.2 ± 

0.5 

85.0 ± 

0.7 

100.2 ± 0.8 85.0 ± 0.3 

High 108.5 ± 

1.1 

92.8 ± 

1.8 

83.5 ± 

0.1 

97.9 ± 

0.2 

113.7 ± 0.3 87.6 ± 0.1 

Accuracy 

(%) 

Low 94.4 ± 2.8 94.8 ± 

1.1 

100.3 ± 

5.1 

100.4 ± 

0.9 

91.8 ± 1.7 98.9 ± 0.4 

Medium 97.1 ± 1.2 99.2 ± 

0.7 

97.4 ± 

0.5 

97.2 ± 

1.2 

93.4 ± 0.4 98.6 ± 0.4 

High 94.6 ± 1.2 97.1 ± 

0.4 

96.3 ± 

0.3 

95.3 ± 

0.3 

94.8 ± 0.2 98.6 ± 0.2 

Precision 

(% CV) 

Low 5.89 3.24 5.27 0.64 4.93 0.89 

Medium 1.77 1.06 1.52 1.83 3.77 0.87 

High 3.20 2.05 2.07 2.67 2.96 0.80 



 

 228 

 229 

 230 

 231 

 232 

The repeatability (CV) of the method in plasma was between 1.77 - 5.89 % which are well 233 

below the accepted limit of 15 % (23,25). Thus, the developed HPLC method was found to be 234 

accurate and reproducible and hence suitable for evaluation of AmpB concentration in rat tissue. 235 

 In the present study, four formulations of AmpB (orally administered AmpB NLC, ChiAmpB 236 

NLC, Amphotret® (PO) and intravenously administered Amphotret® (IV)) were administered to either 237 

of one of the four groups of Sprague Dawley rats. Sprague Dawley rats were chosen as the animal 238 

model in this study due to anatomical, physiological, drug absorption profile and expression of 239 

transporter enzyme similarities of its intestines to that of the human (26). The plasma concentration-240 

time profiles following the four-way administration to the rats are depicted in Figure 1 while 241 

pharmacokinetic parameters derived from them are shown in Table 3.  242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 



 

Table 3 Pharmacokinetic parameters of AmpB from the different formulations (mean ± S.D., n = 3). 250 

 251 

Tmax: time to maximum plasma concentration, Cmax: maximum plasma concentration, AUC0-∞: 252 
area under the curve up to infinity, MRT: mean residence time, MAT: mean absorption time, F: 253 
absolute bioavailability and Fr: relative bioavailability. 254 
*p< 0.05: statistical significance between  255 
a) Amphotret® and developed formulations.  256 
b) ChiAmpB NLC and the remaining formulations 257 
 258 

 259 

 260 

 261 

Figure 1: Plasma concentration-time profile of formulations (mean ± S.D., n = 3), n = 2 for the 24-262 

hour time point. Insert is the plasma concentration-time profiles of orally administered formulations.    263 



 

 264 

Upon administration of  ChiAmpB NLC formulation, the plasma concentration of AmpB was 265 

detectable up to 24 hours whereas, for the other formulations, it was only detectable up to 8-hour 266 

post-administration. As expected, the intravenously administered Amphotret® showed a drastic (10-267 

fold) drop in AmpB plasma concentration, from 3.53 ± 1.01 to 0.34 ± 0.2 µg/mL 2-hour post 268 

administration. This is consistent with the results reported in the literature (27,28). 269 

 Orally administered AmpB NLC and ChiAmpB NLC observed lag times (Tlag) of 2 hours (Figure 270 

1), suggesting that there was a delay in the absorption of both formulations in contrast to 271 

Amphotret® (PO). We hypothesize that due to their lipidic characteristics, the observed lag times 272 

were due to the uptake process via lymph, prompted by the mucoadhesive properties of the 273 

formulations (particularly ChiAmpB NLC) in contrast to Amphotret® (PO) formulation as observed in 274 

other studies (12,29). It is normal to observe a lag time of up to 3 hours before a noticeable increase 275 

in concentration of lipids in lymph or plasma as observed in human (30), rats (31) and sheep (32). 276 

 There was a gradual increase in the plasma concentration of AmpB, reaching peak 277 

concentration (Tmax) at approximately 3.6 and 4.7 hours, respectively for orally administered 278 

Amphotret® and AmpB NLC formulations (Table 3). As compared to AmpB NLC, ChiAmpB NLC 279 

showed an additional delay of approximately 1.6 hours before attaining the Tmax. The longer Tmax 280 

exhibited by both NLCs formulations may yet affirm the indirect transport of the NLCs into the 281 

systemic circulation which is in consistent with results observed by vinpocetine-loaded NLCs (33). 282 

The estimation of Tmax is dependent on the frequency of blood sampling which was a constraint in 283 

the present study due to the limitation and impracticability of frequent sampling points in small 284 

rodents like rats. Hence, further interpretation of the data was sought through arithmetic calculation 285 

using statistical moment analysis in order to evaluate their MRTs.  286 

 MRT refers to the duration of residence of the nanoparticles in the body before elimination. 287 

This involves a composite of kinetic processes such as rate and extent of the absorption process, in 288 



 

vivo release of AmpB and the distribution of the AmpB to various part of the body (34). The MRT of 289 

ChiAmpB NLC was 21.61 ± 0.71 hr, which is significantly higher than the Amphotret® (PO), 7.51 ± 290 

0.15 hr (p < 0.05) and AmpB NLC, 7.48 ± 0.67 hr. This suggests that the ChiAmpB NLC remained in 291 

the body longer which is attributable to the mucoadhesive properties of the chitosan coating. The 292 

mucoadhesiveness of ChiAmpB NLC prolonged the GI transit of the particles through retention at the 293 

site of absorption/ uptake as well as a slow, sustained release of AmpB which in concert with our 294 

previous studies (4,14).  295 

 ChiAmpB NLC showed a higher peak plasma concentration (Cmax), 0.40 ± 0.19 µg/mL as 296 

compared to AmpB NLC and Amphotret® (PO), observing Cmax of 0.34 ± 0.03 and 0.31 ± 0.04 µg/mL, 297 

respectively. Besides, ChiAmpB NLC formulation also observed a significantly higher AUC0- (p < 0.05) 298 

as compared to Amphotret® (PO). The AUC0- of AmpB NLC was significantly higher than Amphotret® 299 

(PO) (p < 0.05) but was not significantly different from ChiAmpB NLC even though the latter 300 

observed a higher AUC0-. This is in accordance with other studies (4,12) and suggests that the AmpB 301 

was better absorbed from ChiAmpB NLC than from uncoated AmpB NLC and Amphotret® (PO), 302 

which this was also evident in the relative bioavailability (Fr) of ChiAmpB NLC, which was twice 303 

higher than Amphotret® (PO). 304 

 The higher bioavailability observed by both AmpB NLC and ChiAmpB NLC compared to the 305 

other orally administered AmpB can be explained by the fact that beeswax and coconut oil 306 

promoted the lymphatic transport of the NLCs via uptake by the M-cells overlying the lymphoid 307 

follicles and Peyer’s patches (35,36). This is supported by studies which showed that the oral 308 

absorption of the poorly soluble drugs was enhanced with co-administration with lipids whereby the 309 

lymphatic pathway plays a crucial role (12,37). Studies by Yuan et al. (37) showed that up to 77.9 % 310 

of lipid nanoparticles were absorbed through the lymphatic pathway while the remaining was 311 

transported via the portal blood vein. With the lymphatic intestinal pathway, the first pass 312 

metabolism in the liver was avoided and thus, bioavailability of the drug was improved.  313 



 

 The incorporation of chitosan coating on the surface of the NLCs is perceived to protect 314 

AmpB from the harsh GI environment and thus promotes the uptake by the intestinal lymphatics. 315 

Due to the positive charge rendition of chitosan in ChiAmpB NLCs, the NLCs promotes penetration 316 

into the negatively charged mucosal layer and through this adhesion, the AmpB was slowly released 317 

from the system (14). Thus, the increase in residence time and intimate contact of the chitosan-318 

coated NLC with the wall of the small intestine provided the requisite for improved AmpB 319 

absorption. This is in agreement with findings that there was an enhancement in the uptake of 320 

chitosan-coated nanospheres by the gut tissue (4,38). Furthermore, other drug compounds such as 321 

insulin (39), ferrous sulphate (40) and doxorubicin (41) also showed improvement in the respective 322 

absorptions through the incorporation of chitosan coating to lipid nanoparticles. Positively charged 323 

nanoparticles improved the bioavailability of cyclosporine A in dogs (42) and progesterone in rats 324 

(43). 325 

 As mucoadhesion was believed to be a prerequisite for the improved bioavailability of the 326 

AmpB, further investigation on the amount of AmpB in stomach and the small intestine over the GI 327 

transit course of the NLCs was conducted. After 6 hours, most of the AmpB from AmpB NLC was 328 

found in the small intestine (73.1 ± 0.2 µg/g) whereas the AmpB from ChiAmpB NLC was 329 

predominantly found in the stomach (15.4 ± 0.1 µg/g) (Figure 2).  330 



 

 331 

Figure 2: Concentration of AmpB in stomach and small intestine over 6-24 hour-post administration 332 

(mean ± S.D., n = 3), *p < 0.05: statistical significance between 6 and 8-hour values.  333 

 334 

AmpB was undetectable in the stomach after 24 hours which suggests that all the formulations had 335 

emptied into the small intestine by this time. However, AmpB remained detectable in the small 336 

intestine of the rats treated with AmpB NLC and ChiAmpB NLC formulations 24-hour post 337 

administration which suggest that the GI transit for both formulations were more than 24 hours in 338 

contrast to the normal reported rats GI transit time of 12 - 16 hours (44,45). A significant drop (p < 339 

0.05) in the concentration of AmpB was observed in the intestinal tissue in rats treated with AmpB 340 

NLC, from 73.1 ± 0.2 to 10.2 ± 0.4 µg/g between 6 to 8-hour post administration, respectively. A 341 

further drop in the concentration was observed from AmpB NLC between 8 to 24-hour post 342 

administration, reaching a final concentration of 6.6 ± 0.3 µg/g (Figure 2). It is interesting to note 343 

that AmpB NLCs was detectable in the small intestine 24-hour post administration which can be 344 

explained by the small size dimensions of AmpB NLCs with a concomitant increase in surface area, 345 

which together, enhanced the interactive forces at play during mucoadhesion (11,13).  346 



 

On the other hand, the ChiAmpB NLC observed only minimal changes to the concentration 347 

of AmpB in the small intestine, with differences of about 4.6 and 1.0 µg/g between 6 - 8 hours and 8 348 

- 24 hours. Furthermore, ChiAmpB NLC observed a higher concentration of AmpB (7.1 ± 0.6 µg/g) 349 

post 24-hour administration as compared to AmpB NLC, believed to be due to additional 350 

mucoadhesive power provided by the chitosan coating. The preceding accords well with the results 351 

from the pharmacokinetics studies (Table 3), in which ChiAmpB NLC recorded a longer MAT 352 

compared to AmpB NLC, attributable to prolong residence time of the particles at the absorption 353 

site.  354 

One of the major limitations to the clinical applications of the AmpB is its nephrotoxicity. 355 

Figure 3 show that Amphotret® (IV) marked a five-fold higher accumulation of AmpB in the kidneys 356 

in contrast to ChiAmpB NLC at 8-hour post administration.  357 

 358 

 359 

Figure 3: Tissue distribution of AmpB in rats administered with different formulations over 360 
time (mean ± S.D., n = 3), *p < 0.05: statistical significance between Amphotret®(IV) and 361 
ChiAmpB NLC as well as AmpB NLC formulations 362 

 363 



 

On the other hand, ChiAmpB NLC showed the lowest renal disposition at 4.0 ± 0.9 µg/g 364 

followed by AmpB NLC and Amphotret® (PO), at 5.1 ± 0.2 and 5.9 ± 1.4 µg/g, respectively. 365 

Amphotret® (IV) continued to show preferential disposition in the kidneys 24-hour post 366 

administration, significantly (p < 0.05) higher than from ChiAmpB NLC and AmpB NLC formulations. 367 

This is in accordance with reports which showed that Amphotret® (IV) was more nephrotoxic than 368 

orally administered lipid-based formulations of AmpB (1,12). 369 

 We believe that the observed difference in the renal disposition of AmpB was due to the 370 

aggregation states of AmpB whereby, Amphotret® exhibited the dimer configuration whilst AmpB in 371 

the NLCs formulations exhibited the polyaggregate states (13). Studies by Espada et al. (46) revealed 372 

that the dimer state of AmpB showed preferential disposition in the kidneys and observed mostly, 373 

unilateral kidney atrophy in mice while the polyaggregate states of AmpB conserved both kidneys 374 

with a normal size and appearance. Based on these results, it is likely we can conclude that the low 375 

renal tissue levels of AmpB in rats treated with ChiAmpB NLC may demonstrate a lower 376 

nephrotoxicity potential and thus, may establish a safer toxicity profile than current marketed 377 

formulations (3). 378 

The liver and spleen are part of the RES organs which are target organs for fungal infections 379 

as well as intracellular parasites of Leishmaniasis genus (27). IV administration of Amphotret® to rats 380 

registered the highest concentration of AmpB in both liver and spleen, followed by oral 381 

administration of Amphotret®, AmpB NLC and ChiAmpB NLC 8-hour post administration (Figure 3). 382 

The possible  reason for this phenomenon has to do with the high blood perfusion to these organs 383 

and/or the high uptake of the cells in the RES-type organs (47). 384 

 However, the clearance of AmpB from liver and spleen was faster in rats treated with 385 

Amphotret® (IV), falling drastically to 10.2 ± 0.2 and 8.4 ± 0.3 µg/g in liver and spleen, respectively 386 

24-hour post administration. This indicates that the uptake of the Amphotret® (IV) by the RES cells 387 

was not significant (47). On the other hand, a three-fold increase in AmpB accumulation in both liver 388 



 

and spleen following administration of ChiAmpB NLC was observed at 24 hours. This is in contrast to 389 

the uncoated AmpB NLC, which showed undetectable amount of AmpB in the spleen. The presence 390 

of a high AmpB deposition in the liver and spleen in rats administered with ChiAmpB NLC serves the 391 

possibility of utilizing the former in visceral Leishmaniasis.  392 

 393 

CONCLUSION 394 

 In summary, ChiAmpB NLC demonstrated an improvement in the oral bioavailability of 395 

AmpB compared to the uncoated AmpB NLC and Amphotret® (delivered orally or intravenously). 396 

This improved bioavailability appears to be a culmination of factors including prolonged retention of 397 

ChiAmpB NLC within the small intestine, absorption via intestinal lymphatic pathway, hence 398 

avoidance of first hepatic clearance and a slow, sustained release of AmpB from ChiAmpB NLC. 399 

Furthermore, the ChiAmpB NLC presents a lower risk for nephrotoxicity and higher accumulation in 400 

the liver and spleen. Thus, not only have the limitations inherent with the current mode of AmpB 401 

administration been addressed but also, a clinical targeted strategy is a possibility in the treatment 402 

of visceral leishmaniasis. 403 

 404 
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